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Abstract—Alternative and more efficient computational meth-
ods can extend the applicability of MPC to systems with tight
real-time requirements. This paper presents a “system-on-a-chip”
MPC system, implemented on a field programmable gate array
(FPGA), consisting of a sparse structure-exploiting primal dual
interior point (PDIP) QP solver for MPC reference tracking and
a fast gradient QP solver for steady-state target calculation. A
parallel reduced precision iterative solver is used to accelerate the
solution of the set of linear equations forming the computational
bottleneck of the PDIP algorithm. A numerical study of the effect
of reducing the number of iterations highlights the effectiveness
of the approach. The system is demonstrated with an FPGA-in-
the-loop testbench controlling a nonlinear simulation of a large
airliner. This study considers many more manipulated inputs
than any previous FPGA-based MPC implementation to date,
yet the implementation comfortably fits into a mid-range FPGA,
and the controller compares well in terms of solution quality and
latency to state-of-the-art QP solvers running on a standard PC.

Index Terms—Predictive control, Field programmable gate
arrays, Optimization methods, Aerospace control

I. INTRODUCTION

A strength of model predictive control (MPC) is its ability
to systematically handle constraints [1]–[4]. At each sampling
instant, the solution of a constrained finite-horizon optimal
control problem is used as the basis for the control action
applied to the plant. With a linear prediction model, a convex
quadratic cost function and linear inequality constraints on the
plant states and inputs, this can be posed as a convex quadratic
program (QP). For MPC with offset-free reference tracking,
it is commonplace to also calculate a steady state equilibrium
target to which the MPC regulates [5]–[7]. For a system with
redundant actuators, this requires the solution of an additional
(albeit smaller) constrained optimisation problem.
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For small predictive control problems, an attractive option is
to pre-compute the explicit solution of the QP as a piecewise-
affine function of the current state (and reference) using multi-
parametric programming [8], [9]. For large predictive control
problems, the computation and storage of the explicit solution
is impractical, and the constrained optimisation problem must
be solved online. For a broad range of control applications
that could benefit from employing predictive control, the
cost and power requirements of general purpose computing
platforms necessary to meet hard real-time requirements are
unfavourable, and custom circuits designed specifically for
the predictive control application are an attractive alternative.
In this paper, a field-programmable gate array (FPGA)-based
implementation of an MPC controller for a large airliner is
demonstrated. Tracking of roll, pitch and airspeed are achieved
through the use of a steady state target calculator and MPC
regulator [5], [6], each requiring the solution of a constrained
QP. Whilst arguments for the use of MPC in flight control
can be found in [10]–[12], the focus of the present paper is
on the FPGA-based methodology for implementation of the
optimisation scheme rather than tuning controller parameters
or obtaining formal certificates of stability, for which a mature
body of theory is already available [3], [13].

A. Background and Motivation

Field programmable gate arrays (FPGAs) are reconfigurable
chips that can be customised for a specific application. This
enables the implementation of complex algorithms exploit-
ing wide parallellisation. For predictive control applications,
FPGAs are easily embedded as a system component, and offer
cycle-accurate timing guarantees. The low clock frequencies in
comparison to high-performance microprocessors can translate
to lower power consumption. Computational speed is regained
through parallelisation and customisability. Transistor scaling
is still improving the performance and reducing the power
consumption and cost in each new technology generation.

There have been several previous FPGA implementations of
QP solvers for predictive control. In [21], speeds comparable
to MATLAB implementations were achieved for an aircraft
example with four states, by using a high-level synthesis tool
to convert a C-like description into a hardware description.
A soft-core (sequential) processor implemented on the FPGA
fabric was used in [20] to execute a C implementation of the
QP solver and demonstrate the performance on a two-state
drive-by-wire system. In [22], [23], a mixed software/hardware
implementation is used where the core matrix computations
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TABLE I
CHARACTERISTICS OF EXISTING FPGA-BASED QP SOLVER IMPLEMENTATIONS

Year Ref. Number Method Linear QP Design Implementation Clock QP size
format Solver Form Entry Architecture Frequency nv nc

2011 [14] fixed Mehrotra IP Cholesky D AccelDSP custom HW 20 MHz 3 6
2011 [15] fixed/float Hildreth – D – custom core – – –
2011 [16] float23 log-barrier IP CG D VHDL custom HW 70 MHz 12 24
2012 [17] float32 Active set Factorization D C/Verilog HW/PowerPC 100 MHz 3 6
2012 [18] float24 Active set Chol-update D VHDL custom HW 70 MHz 12 24
2012 [19] float18 log-barrier IP CG D VHDL custom HW 70 MHz 16 32
2012 [20] float32 Dual Cholesky D C/C++ soft-core 150 MHz 3 6
2012 Present (MPC) float32 PDIP MINRES S VHDL custom HW 250 MHz 377 (174) 408 (170)
2012 Present (tgtcalc) fixed FGM N/A D HDL-Coder custom HW 250 MHz 29 58

PDIP denotes “primal dual interior point”, FGM denotes “fast gradient method”, D and S denote dense and sparse formulations, respectively, whereas ‘–’ indicates data not
reported in publication, and N/A denotes that the field is not applicable. HW denotes hardware. “Soft-core” indicates vendor provided sequential soft processor, whilst “custom
core” indicates a user-designed soft processor. Symbols nv and nc denote the number of decision variables and number of inequality constraints, respectively. For the present
MPC, values for horizons of N = 12 (no brackets) and N = 5 (brackets) are shown.

are carried out in parallel custom hardware, whilst the re-
maining operations are implemented in a general purpose
microprocessor. The performance was evaluated on two-state
systems. In contrast, in [17] the linear solvers were imple-
mented in software while custom accelerators were used for
the remaining operations. A motor servo system with two
states was used as a case study. The use of non-standard
number representations was studied in [15] with a hybrid
fixed-point floating-point architecture and a non-standard MPC
formulation tested on a satellite example with six states. Whilst
[14] presents a full fixed-point implementation, no analysis
or guarantees are provided for handling the large dynamic
range manifested in interior-point methods. Recently, active-
set [18] and interior-point [16], [19] architectures were pro-
posed using (very) reduced precision floating-point arithmetic
and solving a condensed QP. Feasibility was demonstrated
on an experimental setup with a 14th order SISO open-loop
stable vibrating beam, with impressive computation times.
Many online optimisation-based FPGA controllers have been
for low-dimensional systems — a domain in which explicit
MPC could also potentially be an option. In [24] a summary of
FPGA-based MPC implementations up until 2010 is presented.
Table I in the present work shows a survey of more recent
developments, albeit highlighting little progress. A common
trend is the use of dense QP formulations in contrast with the
current trends in research for structure-exploiting optimisation
algorithms for predictive control.

B. Summary of Contribution

The present paper considers a plant model with significantly
more manipulated inputs than prior FPGA-based implementa-
tions. Furthermore, the sparse structure of the uncondensed op-
timisation problem is exploited and unlike prior FPGA-based
implementations of MPC, the steady-state target calculator for
offset free control is included on-chip as a separate constrained
QP. The implementation is also capable of running reliably at
higher clock rates than prior designs. Table II summarises key
characteristics of the design.

1) MPC Regulator: The MPC regulator is based on a
modification to a VHDL-based design, first presented in [24],
[25] and applied in [26]. A primal-dual interior-point (PDIP)
algorithm is used to solve the constrained QP. A parallel
implementation of the minimum residual (MINRES) algorithm

is used to solve the system of linear equations occuring at
each iteration of the PDIP algorithm. Unlike many embedded
microprocessors, an FPGA does not preclude standard double
precision arithmetic. However, single precision arithmetic is
used to reduce the number of hardware resources required,
since this reduces the size, cost and power consumption of
the FPGA device needed to realise the design.

The MINRES algorithm is known to be sensitive to numer-
ical precision and conditioning, and a preconditioner is often
needed to accelerate convergence and to improve the quality
of the converged solution. In [24], [25] no preconditioning was
used, whilst in [26] a scaling of the state space prediction ma-
trices was demonstrated as an effective off-line preconditioner.

To demonstrate the trade-off between control performance
and solution time, a numerical study is performed to in-
vestigate the compromise between the number of iterations
of the inner MINRES algorithm, and the effect of off-line
model scaling and on-line matrix preconditioning. All of these
directly influence the total solution time and the solution
quality, both in terms of fidelity of the computed control input
with respect to that obtained from a standard QP solver, and
in terms of the resulting closed loop control performance.
Despite using single precision arithmetic, the proposed design
using off-line scaling and on-line preconditioning, running
on an FPGA with the circuit clocked at 250 MHz, gives
solution accuracies and times comparable to those of standard
matrix factorisation-based algorithms using double precision
arithmetic on a mid-range (circa 2012) laptop computer.

2) Target Calculator: The design for the MPC regulator
exploits the sparse structure of the optimisation problem
[27], [28]. This structure is not present in the steady state
target calculation problem and therefore the design cannot
be re-used without substantial modification. FPGA resource
constraints make implementing a second floating point interior
point solver an unrealistic option. Since the target calculation
problem is dense and bound constrained, the steady state target
calculator is realised using the fast gradient method (FGM)
[29]. This was carried out using the Mathworks’ HDL Coder
[30], using fixed point arithmetic.

3) System Integration: The two QP solvers are each im-
plemented as peripherals to a Xilinx MicroBlaze soft-core
processor [31], which is used to handle data transfer between
the two QP solvers and the outside world via UDP/IP over
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TABLE II
KEY PARAMETERS CHARACTERISING MPC IMPLEMENTATION

(a) MPC parameters

Description Value
Plant States 12
Plant Inputs 17
Disturbances 10

Horizon 12
Sampling period 0.2 s

(b) QP Solver characteristics

(MPC regulator)
QP Algorithm Primal-dual interior point

Arithmetic 32-bit IEEE float
(Target calculator)

QP Algorithm Fast gradient method
Arithmetic Fixed point

(c) FPGA circuit parameters

Description Value Description Value
Test board Xilinx ML605 MPC clock 250 MHz

FPGA Model Xilinx V6-LX240T Target calc. clock 250 MHz
Synthesis tool Xilinx ISE MicroBlaze clock 100 MHz

100 Mbit/s Ethernet. In contrast to [17], [22], [23] where the
custom circuit is used to accelerate key parts of the QP solver
with the remainder implemented in software on a conventional
processor, the present design uses the MicroBlaze solely to
bridge communication. This can be replaced with a custom
interface layer to suit the demands of a given application.

The resulting “system-on-a-chip” is verified using a test-
bench system with the plant model (in this case a high-
fidelity nonlinear model of the rigid body dynamics of a large
airliner [11]), simulated faster-than-real-time in SIMULINK.
The plant state estimates and output reference setpoints are
communicated to the system running on the FPGA in the
payload of a UDP packet at each sampling instant, with the
FPGA returning control commands in the same manner.

C. Outline

The remainder of the paper is organised as follows: Sec-
tion II summarises the MPC control problem; Section III
introduces the case study application; Section IV describes
the hardware implementation; Section V presents a numerical
investigation of the trade-off between MINRES iterations, on-
line and off-line preconditioning and control performance;
Section VI describes the test bench; Section VII presents
numerical results; and Section VIII concludes.

II. PREDICTIVE CONTROL PROBLEM

In this section, the constrained, linear predictive tracking
control problem with quadratic cost is briefly summarised. The
forms of the two quadratic programs to be solved on the FPGA
at each sampling instant are described.

A. Predictive regulation control problem

Let x ∈ Rnx and u ∈ Rnu denote the state and controlled
input of a nonlinear plant at an equilibrium trim point, where
nx is the number of states and nu is the number of inputs.
Defining the nonlinear plant state at time k as x(k) ∈ Rnx and
input u(k) ∈ Rnu respectively, and letting δx(k) , x(k)− x,
and δu(k) , u(k)− u, a linear prediction model of the form

δx(k + 1) = Aδx(k) +Bδu(k) +Bdw(k) (1)

can be obtained by linearisation of a nonlinear model around
this (x, u), where A ∈ Rnx×nx , B ∈ Rnx×nu and Bd ∈
Rnx×nw , and w(k) ∈ Rnw is an unmeasured disturbance.

Letting δxs(r(k)) and δus(r(k)) be state and input setpoints
relative to the equilibrium trim point, N be the control horizon
(equal to the prediction horizon), δx̂(k) be the current estimate
of the linearised state, ŵ(k) be an estimate of the unmeasured
disturbance, δxi and δui denote predicted state and input
deviations from the trim point at a time instant i steps into
the future, θ , [δxT0 , δu

T
0 , · · · , δxTN ]T , ‖ • ‖2M be a shorthand

for •TM•, and P ≥ 0, Q ≥ 0, R > 0 be appropriately sized
weighting matrices, then the finite-horizon optimal control
problem to solve at each time step is

min
θ
‖δxN − δxs‖2P +

N−1∑

i=0

(
‖δxi − δxs‖2Q + ‖δui − δus‖2R

)

(2a)

subject to: δx0 = δx̂(k) (2b)
δxi+1 = Aδxi +Bδui +Bdŵ(k), i = 0, . . . , N − 1 (2c)
δumin ≤ δui ≤ δumax, i = 0, . . . , N − 1. (2d)

For simplicity, state constraints are neglected and with only
input constraints considered, no further measure is needed to
ensure that a feasible solution to the QP exists, hence no
method to detect infeasibility is required in the QP solver.

Letting ⊗ denote the Kronecker product, ⊕ denote the
matrix direct sum, Ii ∈ Ri×i be an identity matrix, and
1i ∈ Ri×1 be a vector of ones, let

H , 2 (IN ⊗ (Q⊕R))⊕ P (3a)

G ,
[
IN ⊗

[
0nu×nx

Inu

0nu×nx
−Inu

]
, 02Nnu×nx

]
(3b)

F ,




−Inx

A B −Inx

...
. . .

−Inx


 (3c)

h , 2
[
−1TN ⊗

[
δxTs Q δuTs R

]
−δxTs P

]T
(3d)

g , 1N ⊗
[
δuTmax −δuTmin

]T
(3e)

f ,
[
−x̂T (k) −(1TN ⊗ ŵT (k)BTd )

]T
. (3f)

The optimal control problem (OCP) (2) is posed as a
parametric QP,

minθ
1
2θ
THθ + hT θ subject to Gθ ≤ g, Fθ = f (4)

where vectors h and f change between problem instances.

B. Steady state target calculation

For nominal offset-free steady state tracking of reference
setpoints it is common to use a target calculator [5]–[7] to
calculate δxs and δus that satisfy

Aδxs(k) +Bδus(k) +Bwŵ(k) = δxs(k) (5a)
Crδxs(k) = r(k) (5b)

and δumin ≤ δus ≤ δumax, δxmin ≤ δxs ≤ δxmax (5c)
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where Cr ∈ Rnr×nx , and r(k) ∈ Rnr is a vector of nr
reference setpoints to be tracked without offset if, for some
value r∞, r(k) → r∞ as k → ∞. A feasible solution to

(5) is not guaranteed to exist. Let As ,
[
(A− I) B
Cr 0

]
,

Bs ,
[
−Bw 0

0 I

]
, θs ,

[
δxs
δus

]
, bs ,

[
ŵ(k)
r(k)

]
and W > 0

be a weighting matrix. The solution of

minθs
1
2θ
T
s A

T
sWAsθs − bTs BTs WAsθs (6)

subject to (5c) will find a solution satisfying the equality con-
straints if one exists and return a least-squares approximation if
one does not. This is a dense QP with no equality constraints;
however, it is not guaranteed that ATsWAs > 0 and the
solution of (6) may not be unique. Defining Q , Q⊕R, A⊥s
to be a matrix whose columns form an orthogonal basis of
Ker(As) and Hs , ATsWAs +A⊥s A

⊥T

s QA⊥s A⊥
T

s , a (strictly
convex) target calculation problem can now be posed as

minθs
1
2θ
T
s Hsθs − bTs BTs WAsθs (7)

subject to (5c). The optimal values δx∗s(r(k)) and δu∗s(r(k))
are then used as the setpoints in the regulation problem (2).

III. CASE STUDY — CONTROL OF A LARGE AIRLINER

For this implementation, the control of the roll, pitch and
airspeed of a nonlinear Simulink-based model [11], [32] of the
rigid-body dynamics of a Boeing 747-200 with individually
manipulable controls surfaces is considered.

A prediction model of the form (1) is obtained by lineari-
sation of the nonlinear model about an equilibrium trim point
for straight and level flight at an altitude of 600 m and an
airspeed of 133 ms−1, discretised with a sample period of
Ts = 0.2 s. The linearised model considers 14 states (roll
rate, pitch rate, yaw rate, airspeed, angle of attack, sideslip
angle, roll, pitch, yaw, altitude, and four engine power states).
Yaw angle and altitude are neglected in the prediction model
used for the predictive controller, since they do not affect the
roll, pitch and airspeed (leaving 12 remaining states). The
17 inputs considered consist of four individually manipulable
ailerons, left spoiler panels, right spoiler panels, four indi-
vidually manipulable elevators, a stabiliser, upper and lower
rudder, and four engines. The effects of landing gear and
flaps are not considered as these substantially change the local
linearisation. The disturbance input matrix Bd is selected to
describe an input disturbance in discrete time that is equivalent
to a constant disturbance to the rate of each of the first 10
states in continuous time. The cost function (2a) is chosen
with the weights in Table III and the constraints on the inputs
are summarised in Table IV.

The twelve states δx(k) of the model (1) are assumed
measurable, along with the two variables that were neglected
in the prediction mode: the altitude, and the yaw angle. The
disturbance w(k) cannot be measured. As is standard practice
in predictive control, an observer is therefore used to esti-
mate w(k). The observer includes a one step ahead prediction
to allow the combined target calculator and predictive regulator
a deadline of one sampling period for computation.

TABLE III
COST FUNCTION

Matrix Value
Q diag(7200, 1200, 1400, 8, 1200, 2400, 4800, 4800,

0.005, 0.005, 0.005, 0.005)
R diag(0.002, 0.002, 0.002, 0.002, 0.003, 0.003, 0.02,

0.02, 0.02, 0.02, 21, 0.05, 0.05, 3, 3, 3, 3)
P Solution to discrete-time algebraic Riccati equation

TABLE IV
INPUT CONSTRAINTS

Input Feasible region Units
1,2 Right, left inboard aileron [−20, 20] deg
3,4 Right, left outboard aileron [−25, 15] deg
5,6 Right, left spoiler panel array [0, 45] deg
7,8 Right, left inboard elevator [−23, 17] deg
9,10 Right, left outboard elevator [−23, 17] deg
11 Stabiliser [−12, 3] deg

12,13 Upper, lower rudder [−25, 25] deg
14–17 Engines 1–4 [0.94, 1.62] –

The target calculator is configured with Cr = [e4, e7, e8]T ,
where ei is the ith column of the 29 × 29 element identity
matrix, in order that the references to be tracked are airspeed,
roll, and pitch angle. The weighting matrix W is selected as
an appropriately sized identity matrix.

IV. HARDWARE IMPLEMENTATION

Whilst for software running on desktop-oriented platforms
the use of IEEE double precision (64-bit) floating-point
arithmetic is generally unquestioned, for embedded platforms
single precision (32-bit) arithmetic is often preferred due to
the super-linear relationship between word-length and silicon
resources [33]. In addition, memory storage and bandwidth
requirements — key issues for resource-constrained embedded
applications — decrease with the number of bits used. Many
applications, including predictive control, do not require the
accuracy provided by double precision arithmetic if sufficient
care is taken to formulate the problem in a numerically
favourable way.

Factors different to those important for a software imple-
mentation can motivate the choice of algorithm for a custom
hardware design. In sequential software, a smaller floating-
point operation (FLOP) count leads to shorter algorithm
runtimes. In hardware it is the ratio of parallelisable work
to sequential work that determines the potential speed of an
implementation. Furthermore, the proportion of different types
of operations can also be an important factor. For example,
multiplication and addition have lower latency and use fewer
hardware resources than division or square root operations.

A. MPC QP Solver

This subsection describes the main architectural and algo-
rithmic details for the design of the solver for problem (4).

1) Primal-dual Interior-point Algorithm: The present de-
sign uses a primal-dual interior-point algorithm [28] with an
iterative linear solver at its core (Figure 1). Iterative linear
solvers can be preferable over direct (factorisation-based)
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methods in this context, despite the problem sizes being small
in comparison to the problems for which iterative methods
have been used historically. Firstly, matrix-vector multiplica-
tion accounts for most of the computation at each iteration,
an operation offering multiple parallelisation and pipelining
opportunities. Secondly, there are few division and square root
operations compared to factorisation-based methods. Finally,
these methods allow one to trade off accuracy for compu-
tational time by varying the number of iterations. Despite
iterative methods being more sensitive to poor conditioning
than direct methods, for the present application, with suitable
problem scaling, a relatively small number of iterations can
be sufficient to obtain adequate accuracies, as observed in
Section V. Conversely, direct methods are more difficult
to parallelise and pipeline, with many points at which all
subsequent operations depend upon the solution of a single
division operation (with a comparatively long latency).

Because there is no matrix factorisation to re-use, a simple
primal-dual interior-point algorithm [28] is employed instead
of Mehrotra’s predictor-corrector algorithm [34], which is
commonly found in software packages. Rather than checking
a termination criterion, the number of interior-point iterations
is fixed to 18 since this guarantees that a (possibly suboptimal)
solution is available at a given time. A detailed investigation
into the number of iterations needed by interior-point methods
is not the subject of this paper, however, a posteriori testing in-
dicates that 18 iterations is sufficient to achieve the accuracy of
solution needed, and a crude bound on the duality measure at
the final iteration indicates µ18 ≥ 1.52 · 0.3518 ≈ 1.4× 10−8.
Both this and its reciprocal are well within the dynamic range
of single precision floating point arithmetic. In step 5 of the
PDIP algorithm, a backtracking line search algorithm is used,
reducing the step-length by a factor of 0.5 per iteration, over
a maximum of 17 iterations before rounding to zero.

To accelerate the convergence of the iterative linear solver
for Step 3 in the PDIP algorithm, a positive diagonal precondi-
tioner [33], [35] is used whose elements (indexed with braced
subscripts) are given by

M{ii}(Ak) , 1/
√∑Z

j=1 |Ak,{ij}|, (8)

where Z is the number of columns of the matrix. The
problem M(Ak)AkM(Ak)wk = M(Ak)bk is solved and the
solution to the original problem is recovered by computing
zk = M(Ak)wk. Hardware resource usage motivates the use
of a simple diagonal structure. Whilst the original motivation
for the derivation of this preconditioner was to bound vari-
ables rather than to improve convergence [33], [35], it has a
positive effect on the convergence of the iterative algorithms
for this and other applications. The hardware implementation
is outlined in Section IV-A3 and its effect on reducing the
number of iterations required for convergence is illustrated in
Sections V and VII.

2) Architecture of QP Solver: This design is based on the
initial architecture described in detail in [24], [25], imple-
mented using VHDL and Xilinx IP-cores for floating point
arithmetic and RAM structures. The implementation is split
into two distinct blocks: one block accelerates the computa-

1. Initialization θ0 = 0.05, ν0 = 0.3 ·1, λ0 = 1.5 ·1, s0 =
1.5 ·1, σ = 0.35, IIP = 18.
for k = 0 to IIP − 1
2. Linearization Λk = Diag(λk), Sk = Diag(sk)

Â ,
[
H FT

F 0

]
, Φk , GTW−1k G, W−1k , ΛkS

−1
k

µk , (λTk sk)/(Nl + 2p),

rθk , −Φkθk − h− FT νk −GT (λk − ΛkS
−1
k g + σµks

−1
k ),

rνk , −Fθk + f, Ak = Â+

[
Φk 0
0 0

]
, bk =

[
rθk
rνk

]
.

3. Solve Akzk = bk for zk ,
[

∆θTk ∆νTk
]T

4. ∆λk , ΛkS
−1
k (G(θk + ∆θk)− g) + σµks

−1
k

∆sk , −sk − (G(θk + ∆θk)− g)

5. Line Search αk , max(0,1] α :

[
λk + α∆λk
sk + α∆sk

]
> 0.

6. (θk+1, νk+1, λk+1, sk+1) =
(θk, νk, λk, sk) + αk(∆θk,∆νk,∆λk,∆sk)

end

Fig. 1. Primal-dual interior-point algorithm

tional bottleneck of the algorithm (solving the linear equations
in Figure 1, step 3) implementing a parallel MINRES solver;
the other block computes all the remaining operations.

The block that prepares the linear systems consists of a
custom sequential machine with custom complex instructions
that reduce instruction storage requirements and is close to
100% efficient, i.e. there are no cache misses or pipeline stalls,
so a useful result is produced at every clock cycle. The original
sequence of instructions has been modified for problems
with only input bound constraints, significantly reducing the
amount of computation for calculating Φk. In addition, more
instructions have been added to calculate the preconditioner M
and to recover the search direction zk from the result for the
preconditioned system given by the linear solver. Since very
few elements in Φk are changing from iteration to iteration,
the updating of the preconditioner M is not costly.

The parallel MINRES solver accelerates computations by
performing dot-products in a parallel fashion. This block
consists of a bank of multipliers that perform all the multipli-
cations concurrently followed by an adder reduction tree that
accumulates the results. Since matrix Ak can be rearranged
into a banded form by interleaving the primal and dual
variables [27], the size of the dot-products is equal to the size
of the band 2V − 1 where V = 2nx + nu is the halfband of
the matrix. A customised storage scheme is used to exploit the
fact that many elements in Ak are constant or zero and there
is repetition due to the multi-stage problem structure and time-
invariance. This saves approximately 70% of memory storage
requirements in comparison to a standard banded storage
scheme [24]. Exploitation of this structure would not have
been possible with direct methods, since the non-zero band in
the factorised matrices becomes dense.

Another benefit of FPGA technology for real-time ap-
plications is the ability to provide cycle accurate compu-
tation time guarantees. Let IIP and IMR be the number
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TABLE V
VALUES FOR c IN (9) FOR DIFFERENT IMPLEMENTATIONS.

Horizon Online preconditioning Horizon Online preconditioning
N Yes No N Yes No
5 29 28 12 40 39

of PDIP and MINRES iterations, respectively. Let fc de-
note the clock frequency (250 MHz in this implementation)
and c relate the time spent by the sequential block to the
time spent in a MINRES iteration (this varies with differ-
ent implementations as described in Table V). Let Z =
N(2nx+nu)+2nx denote the number of elements in bk, and
P , d(2Z + V + 12dlog2(2V − 1)e+ 230) /Ze, then for the
current design, computation time is given by

(IIP ·P ·Z(IMR + c)) /fc seconds. (9)

3) Online Preconditioning Implementation: Two options
for implementing the online preconditioning can be consid-
ered. The first option is to compute the preconditioned matrix
in the sequential block and store it in the linear solver. This
requires no extra computational resources; however, it imposes
an extra computational load on the sequential block, increasing
overall latency. It also prohibits the use of the customised
reduced storage scheme, since the non-zero elements that were
previously constant between iterations are no longer constant
in the preconditioned matrix.

The second option, adopted by the present implementation,
only computes the preconditioner in the sequential block.
The original matrix is stored in RAM in the linear solver
component, and the preconditioner is applied by a bank of
multipliers inserted at the output of the memory. This requires
approximately three times as much computation; however,
this is not on the critical path, i.e. memories storing the
matrix can be read earlier, so there is no effect on execution
speed. The reduced storage scheme is retained at the cost of
a significant increase in the number of multipliers. There is
a trade-off between the extra resources needed to implement
this procedure and the amount of acceleration gained through
a reduction in iteration count, as investigated in Section VII.

B. Target Calculator

The QP solver described in Section IV-A2 is designed to
directly exploit the sparse structure of the problem (4). The
target calculation problem (7) does not exhibit such a structure,
thus the solver of Section IV-A2 cannot be applied directly. A
separate QP solver is therefore required.

Matrix Hs ∈ Rns×ns , where ns = nx + nu is relatively
small, positive definite by construction, and the constraints (5c)
are simple bounds. The FGM algorithm [29] is considered, be-
ing division free and well-suited to fixed-point implementation
(which uses significantly fewer FPGA resources).

A diagonal scaling matrix Ms is obtained in the same
manner as (8). The scaled matrix Hs , MsHsMs has its
numerical values in the range [−1, 1] and eigenvalues in the
range (0, 1] (proven in [33], [35]). The same scaling is applied
to calculate F s , MsA

T
sWBsbs and θq , Ms[δx

T
q , δu

T
q ]T ,

1. Initialisation
θ
(0)

s = 0, y(0) = 0, L = 1, µ = λmin(Hs),
β = (1−√µ)/(1 +

√
µ), kmax = IFG

for k = 1 to kmax

2. Update
∇J (k) ← Hsy(k−1) + fs
θ
(k)

s ← max{min{y(k−1)− (1/L)∇J (k), θmax}, θmin}
∆θ

(k)
s ← θ

(k)
s − θ(k−1)s , y(k) = θ

(k)

s + β∆θ
(k)
s

end for
3. Output θ∗s = θ

(kmax)

s

Fig. 2. Fast Gradient Method (where eig(Hs) ⊆ (0, 1])

q ∈ {max,min}. For the plant described in Section III, the
minimum and maximum eigenvalues of Hs are λmin(Hs) ≈
0.002 and λmax(Hs) ≈ 5582. After scaling, λmin(Hs) ≈
2.79× 10−4 and λmax(Hs) = 1.0.

The implementation is prototyped at a register transfer level
using SIMULINK and the MATLAB Fixed Point Toolbox, with
control logic specified using M-code function blocks and
programmatically converted to VHDL using Mathworks’ HDL
Coder R2012a. The target calculator circuit is implemented as
four distinct subsystems. Subsystem #1 calculates fs , F sbs
through multiplication of an ns × nb element matrix by nb
element vector (where nb = nd + nr). Since this occurs only
once per sample, this matrix-vector multiplication is carried
out sequentially, with one multiplication and one addition
happening simultaneously per clock cycle, to conserve FPGA
resource usage. Subsystem #2 contains the implementation
of the FGM (Figure 2). As with MINRES, the majority
of the effort in this algorithm occurs in a matrix vector
multiplication, which happens once per iteration. The matrix
Hs is stored with each column in a separate RAM, so that
the multiplication of the elements of each row of Hs with the
elements of y(k−1) can be performed in parallel, with the sum
of the elementwise products calculated using a pipelined tree
reduction structure. This latter being conveniently generated by
HDL Coder by using the “Sum of Elements” block configured
to use a “Tree” structure, with register balancing. Subsystem
#3 reverses the preconditioning, element-by-element in series,
and subsystem #4 calculates T−1Q Qxs, T−1R Rus and T−1Q Pxs
— the input parameters to be used to construct h (3d) for
the MPC controller circuit of Section IV-A2, but scaled by
diagonal matrices TQ and TR to improve problem conditioning
(Section V).

The fixed point data types (Table VI) are chosen to match
the resources present in the particular FPGA device targeted.
In particular, data types for multiplication operations are
chosen with consideration of the DSP48E resources on the
FPGA, each of which includes a 25×18 bit integer multiplier.
Matrix values are represented with a 25 bit data type and
vector variables with a 35 bit data type, meaning that two
DSP48E units are required per vector element to enable a
throughput of one element-wise vector product per clock cycle.

The length of the integer portions are chosen based on
the maximum ranges expected based on the input constraints
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TABLE VI
DATA TYPES USED WITHIN TARGET CALCULATOR

Subsystem Variable Dimension Data type
1 bs 13× 1 sfix35_En21
1 F s 29× 13 sfix25_En18

1/2 fs 29× 1 sfix35_En21
2 Hs 29× 29 sfix25_En23
2 y(k) 29× 1 sfix35_En21
2 θmax, θmin 29× 1 sfix35_En21

2/3 θ
(k)
s 29× 1 sfix35_En21

3 diag(Ms) 29× 1 sfix25_En19
3/4 θs 29× 1 sfix35_En21
4 Ls 41× 29 sfix25_En16

4

T
−1
Q Qxs

T−1
R Rxs
T−1
Q Pxs

 41× 1 sfix35_En21

TABLE VII
TARGET CALCULATOR TIMING

Subsystem Clock cycles Overlap
1 nb + nsnb + 10 –
2 ns + IFG(ns + 33) −ns
3 ns + 4 −ns
4 ns + (2nx + nu)ns + 10 −ns

Total (IFG + nb + nu + 2nx)ns + 33IFG + nb + 24

Overlap is the number of cycles where data is transferred from one stage to
the next which must be subtracted to obtain overall timing.

from the case study (Section III). The number of clock cycles
needed is shown by stage in Table VII, where IFG denotes the
number of FGM iterations. The time for each FGM iteration
is insignificant compared to the interior point regulator, so
IFG = 1000 is chosen as a conservative value. A detailed
analysis of the convergence properties of FGM using fixed
point arithmetic can be found in [36].

V. OFFLINE PRE-SCALING FOR PDIP/MINRES

For each PDIP iteration, the convergence of the MINRES
algorithm used to solve Akzk = bk, and the accuracy of
the final estimate of zk are influenced by the eigenvalue
distribution of Ak. When no scaling is performed on the
prediction model and cost matrices for this application, and no
preconditioning is applied on-line, inaccuracy in the estimates
of zk leads the PDIP algorithm to not converge to a satisfactory
solution. Increasing the number of MINRES iterations fails to
improve the solution, yet increases the computational burden.

Preconditioning applied online at each iteration of the PDIP
algorithm can accelerate convergence and reduce the worst-
case solution error of zk. In [26], an off-line pre-scaling was
used in lieu of an on-line preconditioner, with the control
performance demonstrated competitive with the use of con-
ventional factorisation-based algorithms on a general purpose
platform. The rationale behind the pre-scaling is now restated
and numerical results presented to demonstrate that combining
systematic off-line pre-scaling with on-line preconditioning
yields better performance compared to mutually exclusive use.

Matrix Ak is not constant, but W−1k is diagonal. Since
there are only upper and lower bounds on inputs, the varying
component of Ak, Φk only has diagonal elements. Moreover,

as k → IIP − 1, the elements of W−1k corresponding
to inactive constraints approach zero. Therefore, despite the
diagonal elements of W−1k corresponding to active constraints
becoming large, as long as only a handful of these exist at any
point, the perturbation to Â is of low rank, and will have a
relatively minor effect on the convergence of MINRES. Hence,
rescaling the control problem to improve the conditioning of
Â should also improve the conditioning of Ak in some sense.

Prior to scaling, for N = 12, cond(Â) = 1.77 × 107.
The objective of the following procedure is to obtain diagonal
matrices TQ > 0 and TR > 0 to scale the linear state space
prediction model and quadratic cost weighting matrices as
follows: A ← TQAT

−1
Q , B ← TQBT

−1
R , Bd ← TQBd,

Q ← T−1Q QT−1Q , R ← T−1R RT−1R , δumin ← TRδumin,
δumax ← TRδumax. This substitution is equivalent to

Â ← M̂ÂM̂, where (10)

M̂ ,
((
IN ⊗

(
T−1Q ⊕ T−1R

))
⊕ T−1Q

)
⊕ (IN+1 ⊗ TQ) .

(11)
Since TQ and TR are diagonal, the diagonal structure of Φk
is retained. The transformation (10) is a function of both TQ
and its inverse, and both of these appear quadratically.

In [37] some guidelines are provided for desirable scaling
properties. In particular, it is desirable to scale the rows and
columns of Â so that they are all of similar magnitude.
Whilst not exactly the original purpose, it should be noted
that if the preconditioner (8) is applied repeatedly (i.e. re-
preconditioning the same matrix multiple times) to a general
square matrix of full rank, the 1-norm of each of the rows
converges asymptotically to unity. The method proposed here
for normalising Â follows naturally but with the further caveat
that the structure of M̂ is imposed to be of the form (11).
Consequently, it is not (in general) possible to scale Â such
that all row norms are equal to an arbitrary value. Instead, the
objective is to reduce the variation in row (and column) norms.
Empirical testing suggests that normalising the 2-norm of the
rows of Â (subject to (11)) gives the most accurate solutions
from the PDIP method for the present application.

Noting the structure of Â, define the following vectors:

sx ,
{
sx ∈ Rn : sx,{i} =

(∑n
j=1Q

2
ij +

∑n
j=1A

2
ji + 1

)1/2}

su ,
{
su ∈ Rm : su,{i} =

(∑m
j=1R

2
ij +

∑n
j=1B

2
ji + 1

)1/2}

sN ,
{
sN ∈ Rn : sN,{i} =

(∑n
j=1 P

2
ij + 1

)1/2}

sλ ,
{
sλ ∈ Rn : sλ,{i} =

(∑n
j=1A

2
ij +

∑m
j=1B

2
ij + 1

)1/2}
.

Also, define elementwise, l1 ,
√
su/µ and

l2 , {l2 ∈ Rn > 0 : (l2)4 = ((Nsx + sN )/(1 +Nsλ))}
where µ , (N

∑
sx +

∑
sN +N

∑
sλ + n)/(2(N + 1)n),

and apply the Algorithm in Figure 3. Table VIII shows
properties of Â that influence solution quality, before and after
application of the prescaling with ε = 10−7: the condition
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Data: A, B, Q, R, P , ε
1. Let tQ ← 1n, and tR ← 1m.
Repeat:
2. Calculate l1, l2 as functions of current data, and define
L1 , diag(l1), L2 , diag(l2).
3. Update: tQ ← L2tQ, tR ← L1tR, A ← L2AL

−1
2 , B ←

L2BL
−1
1 , Q← L−12 QL−12 , P ← L−12 PL−12 , R← L−11 RL−11 .

Until: (‖l2 − 1‖ < ε) ∩ (‖l1 − 1‖ < ε)
Output: TQ , diag(tQ), TR , diag(tR).

Fig. 3. Offline prescaling algorithm

TABLE VIII
EFFECTS OF OFFLINE PRECONDITIONING

Scaling cond(Â) std ‖Â{i,:}‖1 std ‖Â{i,:}‖2 std |λi(Â)|
Original 1.77× 107 5.51× 103 4.33× 103 4.35× 103

Scaled 2.99× 104 0.6845 0.5984 0.6226

number of Â; the standard deviation of the row 1– and 2–
norms; and the standard deviation of the magnitude of the
eigenvalues, which are substantially reduced by the scaling.

Figure 4 shows three metrics for the quality of the solution
from the MINRES-based PDIP solver over the duration of
a closed-loop simulation with a prediction horizon N = 12.
The number of MINRES iterations per PDIP iteration is varied
for four different approaches to preconditioning (none, offline,
online, and combined online and offline). These experiments
were performed in software, but a theoretical computation time
using (9) for the FPGA implementation is also shown.

With neither preconditioning nor offline scaling, the con-
trol performance is unacceptable. Even when the number of
MINRES iterations is equal to 2Z = 2 × 516 = 1032, the
mean stage cost over the simulation is high (the controller
failed to stabilise the aircraft), and the worst case control error
in comparison to a conventional PDIP solver using double
precision arithmetic and a factorisation-based approach is of
the same order as the range of the control inputs. Using
solely online preconditioning, control performance (in terms
of the cost function) does not start to deteriorate signifi-
cantly until the number of MINRES iterations is reduced
to b0.25Zc = 129, although at this stage the worst case
relative accuracy is still poor (but mean relative accuracy
is tolerable). With only offline preconditioning, worst case
relative control error does not deteriorate until the number
of MINRES iterations is reduced to b0.75Zc = 387 and
control performance does not deteriorate until this is reduced
to b0.1Zc = 51. When combined, control performance is
maintained with b0.03Zc = 15 iterations, and worst case
control accuracy is maintained with b0.08Zc = 41 iterations.

VI. FPGA-IN-THE-LOOP TESTBENCH

The hardware-in-the-loop experimental setup used to test the
predictive controller design has two goals: providing a reliable
real-time closed-loop simulation framework for controller de-
sign verification; and demonstrating that the controller could
be plugged into a plant presenting an appropriate interface.
Figure 5 shows a schematic of the experimental setup. The
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(d) Online & Offline Preconditioning

Fig. 4. Numerical performance for a closed-loop simulation with N =
12, using PC-based MINRES-PDIP implementation with online and offline
preconditioning (missing markers for the mean error indicate that at least one
control evaluation failed due to numerical errors). Offline prescaling appears
to be more effective than the online preconditioning alone, but combined use
yields significantly better numerical performance than using either alone.

QP solver, running on a Xilinx FPGA ML605 evaluation board
[38], controls the nonlinear model of the B747 aircraft running
in SIMULINK on a PC. At every sampling instant k, the
observer estimates the next state δx̂(k+ 1|k) and disturbance
ŵ(k + 1|k). For the testbench, the roll, pitch and airspeed
setpoints comprising the reference signal r(k) in the target
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Fig. 5. Hardware-in-the-loop experimental setup.

upon which a software application, bridges the communication
between the Ethernet interface and the two QP solvers. As
well as being simpler to implement, this architecture provides
some system flexibility in comparison to a dedicated custom
interface, with a small increase in FPGA resource usage (Ta-
ble VIII) and communication delay, and allows easy portability
to other standard interfaces, e.g. SpaceWire, CAN bus, etc., as
well as an option for direct monitoring of controller behaviour.

Table VIII shows the FPGA resource usage of the different
components in the system-on-a-chip testbench, as well as the
proportion of the FPGA used for two mid-range devices with
approximately the same silicon area from the last two technol-
ogy generations (the newer FPGA offers more resources per
unit area, meaning a smaller, cheaper, lower power model can
be chosen). The linear solver uses the majority of the resources
in the MPC QP solver, while the MPC QP solver consumes
substantially more resources than the target calculator, since it
is solving a larger optimization problem (refer to Section II).
Table VIII also highlights the cost of using preconditioning.

VII. FPGA-IN-THE-LOOP CLOSED LOOP PERFORMANCE

A closed-loop system with the FPGA in the loop, con-
trolling the nonlinear model of the Boeing 747 from [38]
is compared with running the complete control system on
a conventional computer using factorisation-based methods.
The two QP solvers are first evaluated separately, and then
trajectory plots of the closed loop trajectories for the complete
system are presented. The reference trajectory is continuous,
piecewise continuous in its first derivative, and consists of a
period of level flight, followed by a 90◦ change in heading,
then by a 200 m descent, followed by a 10 ms−1 deceleration.

A. MPC Regulator

Solution times and control quality metrics for the regulator
QP solver are presented for a 360 s simulation, with N = 12
and N = 5 in Table IX. Based on the results of Section V,
for N = 12, the number of MINRES iterations per PDIP
iteration IMR = 51. For N = 5, IMR = 30. This is higher
than was empirically determined to be necessary; however,
the architecture of the QP solver requires that the MINRES
stage must run for at least as long as the sequential stage. The
control accuracy metrics presented are

emax � maxi,k

���uF
{i}(k)− u∗

{i}(k)
��� /

�
δumax,{i} − δumin,{i}

�

eµ � meani,k

���uF
{i}(k)− u∗

{i}(k)
��� /

�
δumax,{i} − δumin,{i}

�

where uF (k) is the calculated control input, and u∗(k) is the
hypothetical true solution and the subscript · {i} indicates an
elementwise index. Since the true solution is not possible to
obtain analytically, the algorithm of [27], implemented using
MATLAB Coder, is used as a baseline.

The metrics are presented alongside those for custom soft-
ware QP solvers generated using the state-of-the-art CVXGEN
[35] (for N = 5 only since for N = 12 the problem was
too large to handle) and FORCES [36] (for N = 12 and
N = 5) tools. PC-based comparisons are made using double
precision arithmetic on a laptop with a 2.4 GHz Intel Core
2 Duo processor. The code from CVXGEN and FORCES is
modified to use single precision arithmetic and timed running
directly on the 100 MHz MicroBlaze soft core on the FPGA
for the number of iterations observed necessary on the PC.
(Double precision floating point arithmetic would be emulated
in software, and not provide a useful timing comparison.)
Whilst obtaining results useful for control from the single
precision modification to the CVXGEN solver proved to be too
challenging, the timing result is presented assuming random
data for the number of iterations needed on the PC. The
MicroBlaze used for the software solvers is configured with
throughput (rather than area) optimisations, single precision
floating point unit (including square root), maximum cache
sizes (64 kB data and 64 kB instruction) and maximum cache
line length (8 words).

For N = 12, the FPGA-based QP solver (at 250 MHz) is
slightly faster than the PC-based QP solver generated using
FORCES (at 2.4 GHz) based on wall-clock time but ≈ 10×
faster on a cycle-by-cycle basis. It is also ≈ 65× faster than
the FORCES solver on the MicroBlaze (at 100 MHz), which
would fail to meet the real-time deadline of Ts = 0.2 s by a
factor of approximately 10. By contrast, the clock frequency
for the FPGA-based QP solver could be reduced by a factor
of ≈ 15 (reducing power requirements, and making a higher
FPGA resource utilisation factor possible), or the sampling rate
increased by the same factor (improving disturbance rejection)
whilst still meeting requirements. Worst-case and mean control
error are competitive. A similar trend is visible for N = 5
with the FPGA-based solver only marginally slower than the
CVXGEN solver on the PC in terms of wall-clock time.

The maximum communication time over Ethernet, exper-
imentally obtained by bypassing the interface with the QP
solvers in the software component is 0.6990 ms. The values
for FPGA-based implementation in Table IX are normalised
by subtracting this, since it is independent of the QP solver.

B. Target calculator

The accuracy and computation time of the fixed-point
FPGA-based target calculator is compared with double and
single precision variants of the same algorithm generated using
MATLAB Coder, and with a solver generated using CVXGEN
in Table X. FORCES is not considered here since the target
calculation problem does not have a multi-stage structure.
Whilst the accuracy of the FPGA-based implementation is
slightly inferior to the other options (but as demonstrated by

Fig. 5. Hardware-in-the-loop experimental setup.

calculator (5) that the predictive controller is designed to track,
are provided by simple linear control loops, with the roll and
pitch setpoints as a function of a reference yaw angle and
reference altitude, respectively. The airspeed setpoint is passed
through a low-pass filter. The vectors δx̂(k+1|k), ŵ(k+1|k)
and r(k) are represented as a sequence of single-precision
floating point numbers in the payload of a UDP packet via an
S-function and this is transmitted over 100 Mbit/s Ethernet.
The FPGA returns the control action in another UDP packet.
This is applied to the plant model at the next sampling instant.

On the FPGA the two custom hardware circuits implement-
ing the QP solvers for target calculation and MPC regulation
are connected to a Xilinx MicroBlaze soft core processor,
upon which a software application, bridges the communication
between the Ethernet interface and the two QP solvers. As well
as being simpler to implement, this architecture provides some
system flexibility in comparison to a dedicated custom inter-
face, with a small increase in FPGA resource usage (Table IX)
and communication delay, and allows easy portability to other
standard interfaces, e.g. SpaceWire, CAN bus, etc., as well as
an option for direct monitoring of controller behaviour.

Table IX shows the FPGA resource usage of the different
components in the system-on-a-chip testbench, as well as the
proportion of the FPGA used for two mid-range devices with
approximately the same silicon area from the last two technol-
ogy generations (the newer FPGA offers more resources per
unit area, meaning a smaller, cheaper, lower power model can
be chosen). The linear solver uses the majority of the resources
in the MPC QP solver, while the MPC QP solver consumes
substantially more resources than the target calculator, since it
is solving a larger optimization problem (refer to Section II).
Table IX also highlights the cost of using preconditioning.

Using Xilinx Power Analyser (XPA) it is estimated that
the Virtex 6 LX240T FPGA-based system draws 9.75 W of
power, of which 4.277 W is quiescent (e.g. leakage) and
5.469 W is dynamic. This is less than the 35 W thermal design
power (TDP) associated with the microprocessor in the laptop
used for performance comparison in the following section. A
smaller, low-voltage or more modern FPGA model can reduce
power consumption (particularly leakage). Within the custom
circuit, 3.00 W is used in the interior point QP solver and
0.12 W in the FGM target calculator.

VII. FPGA-IN-THE-LOOP CLOSED LOOP PERFORMANCE

A closed-loop system with the FPGA in the loop, con-
trolling the nonlinear model of the Boeing 747 from [32]
is compared with running the complete control system on
a conventional computer using factorisation-based methods.
The two QP solvers are first evaluated separately, and then
trajectory plots of the closed loop trajectories for the complete
system are presented. The reference trajectory is continuous,
piecewise continuous in its first derivative, and consists of a
period of level flight, followed by a 90◦ change in heading,
then by a 200 m descent, followed by a 10 ms−1 deceleration.

A. MPC Regulator

Solution times and control quality metrics for the regulator
QP solver are presented for a 360 s simulation, with N = 12
and N = 5 in Table X. Based on the results of Section V,
for N = 12, the number of MINRES iterations per PDIP
iteration IMR = 51. For N = 5, IMR = 30. This is higher
than was empirically determined to be necessary; however,
the architecture of the QP solver requires that the MINRES
stage must run for at least as long as the sequential stage. The
control accuracy metrics presented are

emax , maxi,k

∣∣∣uF{i}(k)− u∗{i}(k)
∣∣∣ /
(
δumax,{i} − δumin,{i}

)

eµ , meani,k
∣∣∣uF{i}(k)− u∗{i}(k)

∣∣∣ /
(
δumax,{i} − δumin,{i}

)

where uF (k) is the calculated control input, and u∗(k) is the
hypothetical true solution and the subscript · {i} indicates an
elementwise index. Since the true solution is not possible to
obtain analytically, the algorithm of [27], implemented using
MATLAB Coder, is used as a baseline.

The metrics are presented alongside those for custom soft-
ware QP solvers generated using current versions of CVXGEN
[39] (for N = 5 only since for N = 12 the problem
was too large to handle) and FORCES [40] (for N = 12
and N = 5). PC-based comparisons are made using double
precision arithmetic on a laptop with a 2.4 GHz Intel Core
2 Duo processor. The code from CVXGEN and FORCES is
modified to use single precision arithmetic and timed running
directly on the 100 MHz MicroBlaze soft core on the FPGA
for the number of iterations observed necessary on the PC.
(Double precision floating point arithmetic would be emulated
in software, and not provide a useful timing comparison.)
Whilst obtaining results useful for control from the single
precision modification to the CVXGEN solver proved to be too
challenging, the timing result is presented assuming random
data for the number of iterations needed on the PC. The
MicroBlaze used for the software solvers is configured with
throughput optimisations, single precision floating point unit
(including square root), maximum cache sizes (64 kB data and
64 kB instruction) and maximum cache line length (8 words).

For N = 12, the FPGA-based QP solver (at 250 MHz) is
slightly faster than the PC-based QP solver generated using
FORCES (at 2.4 GHz) based on wall-clock time but ≈ 10×
faster on a cycle-by-cycle basis. It is also ≈ 65× faster than
the FORCES solver on the MicroBlaze (at 100 MHz), which
would fail to meet the real-time deadline of Ts = 0.2 s by a
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TABLE IX
FPGA RESOURCE USAGE

MicroBlaze Target calculator MINRES solver Sequential stage MINRES solver Sequential stage
unpreconditioned unpreconditioned preconditioned preconditioned

LUT 9081 ( 6%) [ 3%] 4469 ( 3%) [ 1%] 70183 (47%) [23%] 2613 ( 2%) [ 1%] 94308 (63%) [31%] 3274 ( 2%) [ 1%]
REG 7814 ( 3%) [ 1%] 9211 ( 3%) [ 2%] 89927 (30%) [15%] 3575 ( 1%) [ 1%] 123920 (41%) [20%] 4581 ( 2%) [ 1%]

BRAM 40 (10%) [ 4%] 5 ( 1%) [ 0%] 77 (19%) [ 7%] 14 ( 3%) [ 1%] 77 ( 19%) [ 7%] 20 ( 5%) [ 2%]
DSP48E 5 ( 1%) [ 0%] 66 ( 9%) [ 2%] 205 (27%) [ 7%] 2 ( 0%) [ 0%] 529 (69%) [19%] 2 ( 0%) [ 0%]

Synthesis estimate of absolute and precentage resource usage of the FPGA mounted on the Xilinx ML605 (round brackets) and Xilinx VC707 (square
brackets) Evaluation Boards. An FPGA consists of look-up tables (LUT), registers (REG), embedded RAM blocks (BRAM) and multiplier blocks (DSP48E).

TABLE XI
COMPARISON OF FPGA-BASED TARGET-CALCULATOR PERFORMANCE

Implementation Numerical accuracy FGM Solution Time
QP Solver emax eµ ms Cycles
F /HDL-FGM Fix 2.0× 10−2 3.4× 10−4 0.39 7.3× 104

PC/EML-FGM Flt64 – – 1.04 2.5× 106

PC/CVXGEN Flt64 1.7× 10−3 1.2× 10−4 0.58 1.4× 106

UB/EML-FGM Flt32 1.4× 10−5 2.6× 10−7 148.32 1.5× 107

FPGA (F) running at 250 MHz, PC (PC) at 2.4 GHz, (UB) at 100 MHz.
HDL-FGM is hardware FGM solver, EML-FGM is compiled M-code solver.
(–) indicates a baseline.

factor of approximately 10. By contrast, the clock frequency
for the FPGA-based QP solver could be reduced by a factor
of ≈ 15 (reducing power requirements, and making a higher
FPGA resource utilisation factor possible), or the sampling rate
increased by the same factor (improving disturbance rejection)
whilst still meeting requirements. Worst-case and mean control
error are competitive. A similar trend is visible for N = 5
with the FPGA-based solver only marginally slower than the
CVXGEN solver on the PC in terms of wall-clock time.

The maximum communication time over Ethernet, exper-
imentally obtained by bypassing the interface with the QP
solvers in the software component is 0.6990 ms. The values
for FPGA-based implementation in Table X are normalised by
subtracting this, since it is independent of the QP solver.

B. Target calculator

The accuracy and computation time of the fixed-point
FPGA-based target calculator is compared with double and
single precision variants of the same algorithm generated using
MATLAB Coder and with a solver generated using CVXGEN,
in Table XI. FORCES is not considered here since the target
calculation problem does not have a multi-stage structure.
Whilst the accuracy of the FPGA-based implementation is
slightly inferior to the other options (but as demonstrated by
closed-loop simulation still adequate), the solution wall-clock
time is faster than the fastest PC-based algorithm compared,
and more than 200× faster on a cycle-per-cycle basis than
running a single precision FGM directly on the MicroBlaze,
and negligible in comparison to the MPC computation time.

C. Combined system

Trajectories from the closed-loop setup, with N = 12 for
the PDIP-based MPC regulator, and the FGM-based target
calculator running on the FPGA are shown in Figure 6. The
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Fig. 6. Closed loop state and input trajectory plots from FPGA-in-the-loop
testbench

reference trajectory is tracked, inputs constraints are enforced
during transients, and the zero-value lower bound on the
spoiler panels is not violated in steady state.

VIII. CONCLUSIONS

This paper has demonstrated the implementation of a
“system-on-a-chip” MPC control system, including predictive
control regulator and steady-state target calculation on an
FPGA. A Xilinx MicroBlaze soft-core processor is used to
bridge communication between the two custom QP solvers,
and the outside world over Ethernet. The controller is tested
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TABLE X
COMPARISON OF FPGA-BASED MPC REGULATOR PERFORMANCE (WITH BASELINE FLOATING POINT TARGET CALCULATION IN SOFTWARE)

Implementation Relative numerical accuracy Mean Max Solution time
QP Solver Bits N IMR emax eµ cost QP (ms) Clock cycles
F /P-MINRES 32 12 51 9.67× 10−4 3.02× 10−5 5.2246 12 2.89× 106

PC/RWR1998 64 12 – – – 5.2247 23 5.59× 107

PC/FORCES 64 12 – 5.89× 10−3 1.69× 10−4 5.2250 13 3.09× 107

UB/FORCES 32 12 – 3.83× 10−3 7.31× 10−5 5.2249 1911 1.91× 108

F /P-MINRES 32 5 30 9.10× 10−4 2.95× 10−5 5.2203 4 1.09× 106

PC/RWR1998 64 5 – – – 5.2204 11 2.64× 107

PC/CVXGEN 64 5 – 1.04× 10−3 1.84× 10−5 5.2203 3 7.20× 106

PC/FORCES 64 5 – 5.00× 10−3 1.24× 10−4 5.2207 6 1.44× 107

UB/CVXGEN 32 5 – ?? ?? ?? (269) (2.69× 107)
UB/FORCES 32 5 – 4.14× 10−3 8.01× 10−5 5.2205 823 8.23× 107

(FPGA QP solver (F) running at 250 MHz, PC (PC) at 2.4 GHz and MicroBlaze (UB) at 100 MHz. (–) indicates a baseline. (??) indicates that
meaningful data for control could not be obtained). P-MINRES indicates preconditioned MINRES. RWR1998 indicates the algorithm of [27].

in closed-loop with a non-linear simulation of a large airliner
— a plant with substantially more states and inputs than any
previous FPGA-based predictive controller.

The MPC regulator employs a PDIP algorithm using sin-
gle precision floating point arithmetic, with a preconditioned
iterative method used to solve systems of linear equations.
A numerical investigation shows that with preconditioning
and the correct plant model scaling, a relatively small num-
ber of MINRES iterations is required to achieve sufficient
control accuracy for this application. The steady state target
calculator uses the fast gradient method (FGM) implemented
using fixed point arithmetic. This is economical in terms of
FPGA resources, and is faster than an equivalent algorithm
in floating point arithmetic on a laptop PC, whilst running
at approximately 10% of the clock frequency. The whole
system can fit onto a mid-range FPGA, and uses less than
1/3 of the power of the laptop microprocessor with which it is
compared. Lower clock frequencies could be used to further
reduce power consumption further, whilst still meeting real-
time control deadlines.
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