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Abstract— A field programmable gate array (FPGA)-based
predictive controller for a spacecraft rendezvous manœuvre
is presented. A linear time varying prediction model is used
to accommodate elliptical orbits, and a variable prediction
horizon is used to facilitate finite time completion of manœuvres.
The resulting constrained optimisation problems are solved
using a primal dual interior point algorithm. The majority
of the computational demand is in solving a set of linear
equations at each iteration of this algorithm. To accelerate this
operation, a custom circuit is implemented, using a combination
of Mathworks HDL Coder and Xilinx System Generator for
DSP, and used as a peripheral to a MicroBlaze soft core
processor. The system is demonstrated in closed loop by linking
the FPGA with a simulation of the plant dynamics running in
Simulink on a PC, using Ethernet.

I. INTRODUCTION

IMPLICIT generation of a control law through solution of a
constrained optimisation problem makes model predictive

control (MPC) particularly suitable for control scenarios
where reconfiguration is necessary. The prediction model,
cost function and constraints can be updated online to reflect
changes in system parameters or control objectives. In [1]–
[4], linear time-varying (LTV) prediction models are used to
perform spacecraft manœuvres in elliptical orbits. Simulations
show that fuel consumption using MPC is favourable in
comparison to other methods. Variable horizon predictive
control (VH-MPC) is a variant of MPC, suited to “completion”
type control problems, such as aerial vehicle manœuvres [5]
and spacecraft rendezvous [4], [6], [7] due to its finite-time
completion properties. Exploiting this, [4] presents a family of
VH-LTV-MPC controllers to perform a spacecraft rendezvous
operation, with a controlled chaser spacecraft performing
rendezvous with a passive target in an orbit around Mars [8].

VH-LTV-MPC has a high computational burden, and a
contemporary guidance, navigation and control computer
would require a dedicated co-processor to support the MPC.
Instead of using an extra high-performance general purpose
microprocessor, an alternative would be to employ a custom
peripheral circuit, designed to carry out all or part of the
predictive control function, trading high clock frequencies
(problematic in space applications due to radiation exposure)
for parallelism, and offering opportunities to reduce power
consumption.
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A. Background: FPGA based predictive control

Field programmable gate arrays (FPGAs) are configurable
silicon devices that enable a system designer to implement
custom circuits without the need to produce custom chips.

Recently there has been interest in using FPGAs to exploit
opportunities for parallelism in the numerical algorithms
used to implement MPC, with a variety of approaches
proposed. A hybrid software-hardware design is advocated
by [9]–[11]. The first uses a primal barrier method and
the custom accelerator is used to calculate the gradient
vector and Hessian matrix of the augmented cost function
at each iteration, whilst the latter two use an active set
method, with a custom circuit accelerating matrix/vector-
vector multiplication. Full hardware implementations of MPC
controllers are documented in [12] (active set), [13]–[16]
(interior point), although [16] uses a soft-core microprocessor
to bridge between the MPC and the outside world. At the
other end of the spectrum, [17] implements MPC using
a custom soft-core processor with non-standard numerical
representations to minimise the FPGA resource (and power)
requirements. With the exception of [15], [16], systems with
one or two inputs are considered, and no prior FPGA-based
predictive controllers consider variable prediction horizons
and time-varying prediction models.

B. Summary

This paper presents an FPGA-based implementation of
a variable horizon predictive controller, for a phase of the
spacecraft rendezvous application in an elliptical orbit, based
on a simplified version of one modes of operation from [4].
The design is implemented and tested on a Xilinx ML605
Evaluation Board [18], using Ethernet to communicate with a
simulation of the spacecraft dynamics running in Simulink on
a PC. Resource usage and power consumption are analysed.

An uncondensed MPC form is used. This scales favourably
in terms of prediction horizon [19] and is advantageous for
model reconfiguration, since once the time varying state space
matrices are computed, the remaining effort in constructing
the optimisation problem is data transfer rather than the
multiplication of large, dense matrices.

A primal-dual interior point (PD-IP) algorithm [20] is
implemented to solve the constrained optimisation problems.
Following the hybrid software-hardware paradigm, the al-
gorithm is co-ordinated by a Xilinx MicroBlaze soft-core
processor, and a custom peripheral circuit is designed to
assist in the construction and to perform the solution of the
set of linear equations that arise at each iteration of the PD-IP
algorithm. This is the bottleneck in optimisation problems
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of the scale considered. In contrast to prior designs, where
register transfer languages (RTL) such as Verilog [10], VHDL
[12], [14]–[16], or high level C-like languages (System-C,
[13]) have been used, the custom peripheral presented here
is designed using a combination of Mathworks HDL Coder
2012a and Xilinx System Generator for DSP 14.2. This gives
almost the same fine-grained clock-cycle accurate control of
the design that an RTL would offer, but, being based upon
Simulink, enables high-level visualisation of connectivity
between components and rapid simulation.

The remainder of the paper is organised as follows:
Section II develops the control problem; Section III describes
the FPGA-based implementation; Section IV analyses the
FPGA resource usage and power consumption; Section V
describes the test-bench setup and presents closed-loop
performance results; and Section VI concludes.

II. PREDICTIVE CONTROL PROBLEM

The scenario considered here is the medium-short range
phase of the rendezvous in the Mars Sample Return mission
[4], [8], starting at the point where the controlled spacecraft
(chaser) has been brought into approximately the same orbit
as the spacecraft with which it must rendezvous (target), but
with a significant separation in true anomaly (i.e. an in-track
separation of a few tens of kilometres). The control objective
is to guide the chaser towards the vicinity of the target via
a sequence of pre-determined “holding points” at which it
must remain until given clearance. The time spent at holding
points is unknown a priori, so at a given instant the goal is
to enter the next holding point. The scenario terminates once
the final holding point has been reached.

The Yamanaka-Ankersen (Y-A) equations [21] describe the
dynamics of the relative position and velocity of the chaser
with respect to the target in a local-vertical local-horizontal
(LVLH) reference frame centred on the target, with the z-
axis pointing towards the central body, the y-axis normal to
the orbital plane, and the x-axis completing a right-handed
set. Unlike the LTI Clohessey-Wiltshire (C-W) equations
(e.g. [22]), these apply to elliptical orbits, but are parameter
varying in terms of the true anomaly, ν of the target. In
the MSR capture scenario, the target is passive, so the Y-A
equations are LTV, since ν is only a function of time.

As in [4], [6], a 1-norm cost is used to reflect propellant
consumption being directly proportional to delivered thrust.
A variable control horizon is used to enable a compromise
between completion time and propellant usage. Letting xi ∈
Rnx and ui ∈Rnu denote the predicted state and control input
i time steps into the future, xT ∈Rnx denote a target setpoint,
x(k) denote the actual measured (estimated) state at time
k ∈ Z+, γ > 0 ∈ R be a weighting parameter, and θ(k) ,
(x0,u0, . . . ,xN), the optimisation problem posed is

J∗ = minN,θ ∑
N−1
i=0 (1+ γ‖ui‖1) (1a)

s.t. x0 = x(k), (1b)
xi+1 = Aixi +Biui, i ∈ {0, . . . ,N−1}, (1c)

xN = xT (k +N), (1d)

0≤ ui ≤ umax, i ∈ {0, . . . ,N−1}, (1e)
N ≤ Nmax, (1f)

where Ai denotes the Y-A state transition matrix corresponding
to a prediction from time step i to i+1. The plant input is
modelled as an impulsive change in velocity, partitioned
into positive and negative components aligned with the three

axes, so Bi = Ai

[
0 0
I3 −I3

]
. Control u(k) = u0 is applied to

the plant, the rest of θ(k) is discarded and the process is
repeated at the next sampling instant. To improve numerical
conditioning of the matrices within the PD-IP algorithm, the
state and input vectors are scaled so that relative positions are
in units of 20 m, velocities in units of 1/60 m/s and inputs
in units of 1/330 m/s.

The variable horizon problem (1) can be posed as a
sequence of Nmax linear programs (LPs), each with fixed
N. An LP is QP with a zero Hessian matrix, and the PD-IP
algorithm for QP does not require a strictly positive definite
Hessian matrix. Therefore, to facilitate future component
reuse (for example for trajectory tracking during the final
few metres of the rendezvous, for which a quadratic cost
is more appropriate), a QP solver is implemented. The QP
representation of (1), with N fixed is

min
θ

1
2

θ
T Hθ +hT

θ (2)

subject to Fθ = f and Gθ ≤ g where, letting ⊕ denote
the direct matrix sum, ⊗ denote the Kronecker product,
Ip denote the p-dimensional identity matrix, 0q×r denote
a q × r matrix of zeros and 1q×r denote a q × r ma-

trix of ones, H =
(⊕N−1

i=0 Hi
)
⊕HN , h =

[
1N⊗hi

hN

]
, F =IN⊗

[
−Inx 0nxu

]
0Nnx×nx

0nx×Nnxu −Inx

0nT×Nnxu FN

+

 0nx×N(nxu) 0nx⊕N−1
i=0

[
Ai Bi

]
0Nnx×nx

0nT×Nnxu 0nT×nx

,

f =

−x(k)
0Nnx×1

fN

, G =
[(⊕N

i=0 Gi
)
,0Nnc×nx

]
, g =

[
1N⊗gi

]
. In

(1), with fixed N, every Hi = 0nxu×nxu , hi =
[
01×nx γ11×nx

]T ,

FN = Inx , fN = xN , Gi =
[

0nu×nx −Inu

0nu×nx Inu

]
, and gi =

[
0nu×1
umax

]
.

III. MPC CONTROLLER ARCHITECTURE

Since the cost function (1a) in problem (1) is not convex
with respect to the N, each of the convex constrained optimi-
sation problems corresponding to horizons N = {1, . . . ,Nmax}
is solved in sequence according to Algorithm 1. A Xilinx
MicroBlaze soft-core processor (with floating point unit) is
used to calculate the LTV prediction matrices, and provide
data to a custom peripheral core designed to solve the set
of linear equations that occur at each iteration of the PD-IP
algorithm, which solves the optimisation problem occuring
at step 3 of Algorithm 1. Using the annotation (M) to denote
a process performed on the MicroBlaze and (F) to indicate
that the process happens in the custom logic implemented in
the FPGA fabric, Algorithm 2 shows the software-hardware



Algorithm 1: Variable horizon MPC controller
Initialisation:
1. Jopt = ∞, Nopt = 0, θopt = 0;
for j = 1 to Nmax

2. Calculate A j, B j using [21];
3. Solve (1) s.t. N = j. If feasible, J j = J∗, else J j = ∞;
if J j < Jopt

4. Jopt = J j, Nopt = j, θopt = θ ∗;
end if

end for.
5. Return u0 from θopt .

partition. The notation nc(= 2Nnu) is used to denote the total
number of inequality constraints.

Algorithm 2: PD-IP Algorithm
1. Initialisation: θ0, λ0, s0, z0, σ , IIP (M)
for k = 0 to IIP−1

Linearisation:
2. µk = zT

k sk/Nnc (M)
3. wk = zk./sk (elementwise) (M)

4. mk =

 θk
λk

σ µk1nc ./sk−diag(wk)gk + zk

 (M)

5. Φk = GT diag(wk)G (F)

6. Ak =
[

H +Φk FT

F 0

]
(F)

7. bk =
[
−h

f

]
−
[

H +Φk FT GT

F 0 0

]
mk (F)

Solve:

8. Akck = bk, where ck =
[

∆θk
∆λk

]
(F)

9. Calculate G(θk +∆θk)−g (M)
10. ∆zk = diag(wk)(G(θk +∆θk)−g)+σ µks−1

k (M)
11. ∆sk =−G(θk +∆θk)− sk (M)

Line search:

12. αk = max[0,1] α :
[

λk +α∆λk
sk +α∆sk

]
> 0 (M)

Update:
13. (θ ,λ ,z,s)k+1 = (θ ,λ ,z,s)k +α∆(θ ,λ ,z,s)k (M)

end for

The number of iterations is fixed, since in a real time
setting, the time to obtain a solution (even if not optimal)
should be bounded. Some of the optimisation problems might
be infeasible for shorter horizons N. Three heuristics are used
to attempt to identify infeasibility and/or a poor solution after
IIP iterations: the solution is assumed infeasible if for any
j, (‖b j‖∞ + Nncµ j) > 104 mini (‖bi‖+Nncµi), [23] and the
solution is also rejected as likely infeasible if µIIP−1 > 10−3

or ‖bIIP−1‖∞ > 0.01‖b0‖∞ (i.e. the result has not converged
sufficiently).

As in [15], [16], the system of linear equations is solved
using the minimum residual (MINRES) algorithm. In the
present context, this iterative method can be considered
preferable to factorisation-based methods, being dominated
by matrix-vector multiplications, which are very easily

parallelised, and the number of iterations (i.e. the solution
time) can be traded for solution accuracy.

At a high level, the custom peripheral core (PCORE) is
split into two major parts. The first component performs steps
(5-7) of the Algorithm 2, building the linear system, whilst
the second, more complex component performs step 8.

Outside
world

Micro
-Blaze

Ethernet

MINRES
solver

Linear
system
builder

AXI-
lite

Fig. 1. High-level architecture of controller implementation

The PCORE is connected to the MicroBlaze using the
AXI4-lite bus, which presents data and status registers as
shared memory locations (Figure 1).

A. Linear system builder

The linear system builder is designed using Xilinx System
Generator for DSP, and consists of four main modes of
operation. In the first mode, the vectorised matrices Ai, Bi, Gi,
Fi, Hi (in row major form) and vectors mk, wk and [−hT , f T ]T

are communicated from the MicroBlaze to the peripheral via
a shared FIFO RAM. Five additional shared RAMs of length
(Nmax +1) are used, with element i of each of these RAMs
containing the address of the first element of Ai, Bi, etc.
(Figure 2). Consequently Ai etc. do not need to be stored

A0	  
A1	  
A2	  
A3	  
A4	  
etc.	  
	  
	  

RADDR	  DOUT	  

Index	  of	  element	  of	  Ai	  

RADDR	  
i	  

DOUT	  
Ai	  

Fig. 2. Indexing of time varying prediction matrices

sequentially and can be repeated (e.g. for LTI cases) without
the overhead of re-writing the time invariant matrices to the
PCORE.

The second mode triggers a state machine which calculates
GT diag(wk)G + H and stores this row-wise in a further
RAM of size Nmax(nx +nu)2 +n2

x . This calculation requires
Nmax(nx +nu)2 dot products per PD-IP iteration. To achieve a
throughput of one scalar addition per clock cycle within
each dot product (after an initial latency), elementwise
multiplication is performed in single precision floating point
using a pipelined IP-core, then converted to 64-bit signed
fixed point with a 32-bit fractional part [11]. The accumulated
result is transformed back to single precision floating point.

The third mode triggers a second state machine which
addresses the RAMs to construct a sequence of numbers
comprising the rows of a compact block representation of



Ak: 

HΦxx,0 HΦxu,0 −I AT
0

HΦux,0 HΦuu,0 0 BT
0

HΦxx,1 HΦxu,0 −I AT
1

HΦux,1 HΦuu,0 0 BT
1

...
...

...
...

HΦxx,N 0 −I [FT
N ,0]

−I 0 0 0
A0 B0 −I 0
...

...
...

...
FN 0 0 0


. (3)

Whilst less generic than interleaving the primal, dual and
slack variables corresponding to each stage of the prediction
horizon forming a banded matrix [19], to perform dot products
of the rows of (3) with appropriately sized vectors with a
throughput of one dot product per clock cycle requires a
bank of (3nx + nu) multipliers in parallel, in constrast to
(2nu +4nx−1) if a band structure were exploited.

The fourth mode triggers the second state machine again
with an additional configuration flag enabled, and in com-
bination with a second multiply-accumulate device and a
subtractor to calculate bk as in step 7, and presents this
sequence as a separate output.

B. MINRES solver

The majority of the computation in the MINRES algorithm
comprises the Lanczos process. This is implemented using
fixed-point arithmetic, enabled by the preconditioner proposed
by [24], [25], which ensures that key variables are in the
range [−1,1]. Using the notation Zk,mn to denote the nth
element of the mth row of matrix Z at iteration k, by letting

Mk,mn =

{(
∑p |Ak,mp|

)−1/2 if m = n
0 otherwise

(4)

instead of directly solving Akck = bk, MINRES is used
to solve (MkAkMk) c̃k = (Mkbk)/‖Mkbk‖2, and ck =
Mk‖Mkbk‖2c̃k. The preconditioner is calculated from the
row-wise sequence of the elements of (3) and stored in a dual-
port RAM. The sequence (3) is also simultaneously stored
temporarily in a single-port RAM. After the preconditioner
is calculated, the contents of the RAM are read in sequence
and multiplied by the corresponding two elements of the
preconditioner (determined by a state machine addressing the
dual port RAM containing the preconditioner), converted to
a fixed point representation and written to a bank of block
RAMs, each of which will contain a single column of the
preconditioned version of (3).

The key operation within the Lanczos process is a matrix-
vector multiplication, (MkAkMk)v performed at each itera-
tion. This is implemented as a bank of (3nx +nu) multipliers,
a bank of (3nx + nu) single port RAMs comprising the
columns of the preconditioned fixed point copy of (3) and
a bank of 2nx dual port RAMs and nu single port RAMs,
containing appropriately ordered elements of v. Simulink HDL
coder transparently handles element-wise vector operations

and automatically creates the tree-reduction structure for
adding the products together, and perform register balancing
between tree stages. However, to efficiently use the 25×18-
bit hardware multiplier units (DSP48E) on the FPGA and to
avoid timing issues at the implementation stage, the operands
are split and long multiplication is performed in stages, with
pipeline registers (delay blocks) inserted in between. Using
the notation (u/s)Fixxx_yy to denote an (un)signed xx-bit
number with yy-bit fractional part, a data type of sFix25_23
is used for the matrix and sFix35_33 for the elements of v.
This uses 2 DSP48Es per vector element.

The Lanczos process also requires a reciprocal square root
operation to be performed. This is implemented as an integer
square root operation followed by calculation of the reciprocal
of the result. Due to the word lengths involved (sFix52_50),
the Simulink built-in blocks generate a design with many
layers of logic between registers even if automatic register
balancing is used in the synthesis tools. These operations need
only be performed on scalars and therefore do not need to be
pipelined, so to circumvent this limitation, a standard integer
division algorithm and an integer square root algorithm are
implemented as state machines using M-code. The result of
this operation is stored as type sFix64_32.

Outside of the Lanczos process, the remainder of the
algorithm is implemented using floating point arithmetic since
the bounds on the magnitudes are not known a priori. This is
designed using Xilinx System Generator for DSP to instantiate
pipelined IP-cores performing floating point operations and
type conversions, with the HDL description of the Lanczos
process imported as a “black box”. A single precision (32-
bit) floating point data type is used in preference to the
more common double precision (64-bit) representation, this
decision being motivated by FPGA resource usage.

IV. RESOURCE AND POWER USAGE

Table I shows the resource usage of the MicroBlaze and
custom circuit on the FPGA on the ML605 Evaluation Board.
The resources used specifically in the Lanczos process are
also shown in italic. An estimate of utilisation for a selection
of smaller FPGAs is also presented.

TABLE I
FPGA RESOURCE USAGE

Component FF LUT DSP48E BRAM
Microblaze 8608 9864 6 41

Custom PCORE 28873 26359 199 67
(Lanczos) (9806) (8198) (89) (34)
Total 37481 36223 205 108

As % of available resources
Virtex 6 VLX240T 12.4% 24.0% 26.7% 26.0%

Virtex 6 VLX75T 40.3% 77.8% 71.2% 69.2%
Virtex 5 VSX95T 63.7% 61.5% 32.0% 44.3%
Artix 7 A100T 29.6% 57.1% 85.4% 80.0%
Kintex 7 K70T 45.7% 88.3% 85.4% 80.0%

(FF: Flip-flop, LUT: Look-up table, BRAM: Block RAM, DSP48E: Hardware
multiplier)

Using Xilinx Power Analyzer’s default operating conditions,
power consumption of the system is estimated. This shows



that the majority of power consumption is due to “leakage”
(i.e. due to quiescent currents) and the custom PCORE. The
power consumption of the PCORE and leakage are estimated
for a selection of smaller FPGAs, using the Timing and
Power Analysis workflow in System Generator for DSP
and presented in Table II. (Totals in brackets exclude the
MicroBlaze). The estimated consumption of the PCORE is
consistent over the FPGA models considered, so to gain
a further reductions in power consumption, improving the
sharing of resources between tasks would be worthwhile.

TABLE II
ESTIMATED POWER CONSUMPTION

FPGA Total PCORE Leakage
Virtex 6 LX240T 5.247 W 0.6 W 3.481 W
Virtex 6 LX75TL (2.176 W) 0.6 W 1.081 W

Artix XC7A100TL (0.988 W) 0.6 W 0.041 W
Kintex XC7K70TL (0.965 W) 0.6 W 0.042 W

V. CLOSED-LOOP SIMULATION

The design is used to control a simulation of the plant
dynamics on a PC connected to the FPGA using UDP/IP over
100 Mbit ethernet. The target orbital parameters, the chaser
relative position and velocity and parameters configuring the
number of algorithm iterations are transmitted to the FPGA,
which returns the optimal cost, optimal prediction horizon
and the full predicted state and input trajectory.

A. Simulator and scenario

Continuous-time target orbit dynamics and chaser relative
dynamics are simulated in Simulink. The target is modelled
as being in a Keplerian orbit [22] around Mars, with
semimajor axis a = 4643 km and eccentricity e = 0.2044.
The orbital radius at perigee is rp = 3.6939×106 m. The
the open-loop chaser relative dynamics are modelled using
the continuous time-varying equations from which the Y-A
equations [21] derive. Navigation uncertainty is modelled as
zero-mean additive Gaussian white noise on each channel.
With r denoting the Euclidean distance from the target, the
standard deviation is 0.35/1000r +0.0028 (m) for position,
and 0.0115/1000r +0.003 (m/s) for velocity measurements
[4]. The impulsive thrust input request from the predictive
controller delivered as a 1 s pulse of acceleration, 1 s after
the control instruction is received from the FPGA (this delay
is unmodelled in the prediction).

In elliptical scenarios, points on the x-axis in the rel-
ative reference frame, with zero instantaneous velocity,
are not unforced equilibria. The terminal state xT (k +
N) is chosen as a point on a periodic holding trajec-
tory. Letting hp be the average distance the target, νN =
ν(k + N), and ρN = (1 + ecosνN), then xT (k + N) =
hp
[
ρN ,0,−esinνN ,−k2eρ2

N sinνN ,0,k2(ρ2
N−ρ3

N)
]T , where

k2 = µ2/

(
rp

√
2µ
(
r−1

p −0.5a−1
))3

, and µ is the gravita-

tional parameter.
The scenario demonstrated starts at a position of

x(0) = [10000 m,0 m,0 m,0 m/s,0 m/s,0 m/s]T ) and the

hold points are scheduled to be centred at 5000 m, 2000 m,
1000 m, 500 m, 200 m and 100 m in front of the target. The
chaser is released from a holding point when Nopt ≤ 2 for at
least 5 sampling instants. Based on [4], the sampling period is
chosen to be Ts = 300 s, and the weighting parameter γ = 35.
The impulsive control input bound umax = 1 m/s.

B. Control results
Table III shows metrics for the quality of the control

performance, with respect to variation in the number of
interior point iterations IIP, and the number of MINRES
iterations, IMR = bη (N(2nx +nu)+nx +nT )c. These include
the completion time of the whole scenario, the solution time
for the full VH-LTV-MPC problem at each sampling instant,
the cumulative impulsive velocity change ∆V applied, and the
maximum and mean 2-norm of the difference between the
control action from the FPGA-based strategy and an “ideal”
solution solved on the PC using GLPK [26]. (For context, the
MicroBlaze runs at 100 MHz, and the peripheral MINRES
accelerator at 200 MHz). Figure 3 shows an example closed
loop trajectory with IIP = 22 and η = 1.1.
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Fig. 3. Closed loop trajectory with FPGA in the loop

C. Computational load (for one fixed horizon)
The apportionment of computation time for a fixed horizon

N = 20 is presented in Table IV, obtained empirically
using a 100 MHz Timer Counter peripheral connected to
the MicroBlaze.

TABLE IV
COMPUTATION TIME APPORTIONMENT FOR N = 20, IIP = 22, η = 1.1

Operation Runs Ticks Total (ms)
Prediction model 1 16829 16829 0.17

Prediction model transfer 1 6867 6867 0.07
Memory initialisation 1 3594 3594 0.04

Vector transfer IIP 31403 690866 6.9
Microblaze computation IIP 86676 1906872 19.06

PCORE computation IIP 224464 4938208 49.38
Total 7563236 75.6

In comparison, for a fixed horizon N = 20, an LP solver
generated using CVXGEN [27], configured with prediction
matrices starting from ν = π/2 with x0 on the x axis
at 10000 m, and scheduled holding point at 5000 m takes
314 ms to run 23 iterations directly on the MicroBlaze using
single precision arithmetic. The FPGA-based solver offers
a 4× speedup (or 2.5× cycle-per-cycle due to the different
clock rates). The FPGA-based solver can also handle dense
quadratic stage and input costs with no modifications. A QP
solver for such costs from CVXGEN takes 1.79 s with single
precision arithmetic (14× more cycle-per-cycle).



TABLE III
CLOSED LOOP PERFORMANCE RESULTS

(a) Completion time (s)
IMR scaling, η

IIP 0.9 1.0 1.1 1.2
20 36000 35700 36300 35700
22 37200 35700 35700 35700
24 36600 35700 35700 35700
26 37200 35700 35700 36000
28 37200 36000 35700 35700

(b) Solution time (ms)
IMR scaling, η

IIP 0.9 1.0 1.1 1.2
20 626 655 684 713
22 687 720 752 784
24 749 785 820 854
26 811 850 887 925
28 873 914 955 996

(c) ∆V usage (m/s)
IMR scaling, η

IIP 0.9 1.0 1.1 1.2
20 4.85 4.79 4.85 4.78
22 4.84 4.84 4.76 4.76
24 4.81 4.84 4.76 4.83
26 4.88 4.76 4.76 4.79
28 4.82 4.84 4.76 4.76

(d) Max norm input error (m/s)
IMR scaling, η

IIP 0.9 1.0 1.1 1.2
20 3.56×10−2 3.56×10−2 1.45×10−2 2.90×10−3

22 3.76×10−3 3.47×10−3 3.33×10−3 6.19×10−4

24 3.29×10−2 2.41×10−3 4.54×10−4 1.93×10−1

26 8.41×10−3 2.28×10−3 2.68×10−3 1.75×10−3

28 1.45×10−2 3.26×10−3 2.93×10−4 2.11×10−3

(e) Mean norm input error (m/s)
IMR scaling, η

IIP 0.9 1.0 1.1 1.2
20 8.20×10−4 3.84×10−4 1.72×10−4 2.54×10−5

22 2.88×10−4 8.20×10−5 4.06×10−5 6.25×10−6

24 7.30×10−4 1.11×10−4 1.36×10−5 1.62×10−3

26 3.05×10−4 7.49×10−5 3.08×10−5 1.56×10−5

28 5.59×10−4 1.43×10−4 4.38×10−6 1.87×10−5

VI. CONCLUSIONS AND FUTURE DEVELOPMENTS

This paper has presented the design and evaluation of a
predictive controller for a phase of spacecraft rendezvous on
an FPGA using a mixed hardware-software approach, with the
custom hardware component accelerating the critical path of
the algorithm. The controller supports a LTV prediction model
and a variable horizon, and the custom hardware components
are implemented using Simulink HDL Coder and Xilinx
System Generator for DSP. Further work will investigate the
application to additional rendezvous phases, and improving
the efficiency of the custom hardware component.
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