
Nonlinear predictive control on a
heterogeneous computing platform

Bulat Khusainov ∗ Eric C. Kerrigan ∗∗ Andrea Suardi ∗

George A. Constantinides ∗

∗ Department of Electrical & Electronic Engineering, Imperial College
London, London, SW7 2AZ, UK(e-mail:

b.khusainov,a.suardi,g.constantinides@imperial.ac.uk.)
∗∗ Department of Electrical & Electronic Engineering and Department

of Aeronautics, Imperial College London, London, SW7 2AZ,
UK(e-mail: e.kerrigan@imperial.ac.uk).

Abstract:
Nonlinear Model Predictive Control (NMPC) is an advanced control technique that often relies
on computationally demanding optimization and integration algorithms. This paper proposes
and investigates a heterogeneous hardware implementation of an NMPC controller based on
an interior point algorithm. The proposed implementation provides flexibility of splitting the
workload between a general-purpose CPU with a fixed architecture and a field-programmable
gate array (FPGA) to trade off contradicting design objectives, namely performance and
computational resource usage. A new way of exploiting the structure of the Karush-Kuhn-Tucker
(KKT) matrix yields significant memory savings, which is crucial for reconfigurable hardware.
For the considered case study, a 10x memory savings compared to existing approaches and
a 10x speedup over a software implementation are reported. The proposed implementation
can be tested from Matlab using a new release of the Protoip software tool, which is
another contribution of the paper. Protoip abstracts many low-level details of heterogeneous
hardware programming and allows quick prototyping and processor-in-the-loop verification of
heterogeneous hardware implementations.

Keywords: Nonlinear predictive control; Hardware-software co-design; Scheduling

1. INTRODUCTION

Model predictive control (MPC) is an advanced control
technique that allows systematic performance optimiza-
tion, constraint handling and tackling multiple input and
multiple output systems (Rawlings and Mayne, 2009).
MPC relies on solving optimization problems at every
sampling instant, which applies tight constraints on the
algorithm execution time and hence limits the application
scope to slow plants.

However, recent developments in algorithms for solving on-
line optimization problems allows applying predictive con-
trol to systems with relatively fast dynamics (Debrouwere
et al., 2014). In addition to improvements on the software
side, employing reconfigurable computing platforms, such
as as field-programmable gate arrays (FPGAs), resulted in
a further speedup of linear MPC algorithms (Jerez et al.,
2012; Hartley et al., 2014). Extending a hardware accel-
eration approach to nonlinear model predictive control
(NMPC) is not straightforward, because NMPC involves
both optimization and integration, while only the former
is known to be efficiently mapped onto reconfigurable plat-
forms. For this reason existing FPGA implementations of
NMPC mostly rely on stochastic algorithms (Ayala et al.,
2016; Xu et al., 2016), which cannot guarantee local op-
timality, feasibility and closed-loop stability. Accelerating
deterministic algorithms on hardware might be achieved

by employing heterogeneous computing platforms that in-
volve both a general-purpose processor with a fixed archi-
tecture and FPGA logic. For example, Peyrl et al. (2015)
present a heterogeneous implementation of a multiple-
shooting based NMPC algorithm. The authors propose
implementing integration on software while accelerating a
fast gradient-based quadratic programming (QP) solver on
an FPGA. The reported speedup of the heterogeneous im-
plementation over a software realization is 1.6x and further
improvement is limited, since integration and optimization
algorithms have comparable computational complexity.
This is a consequence of Amdahl’s law (Amdahl, 1967),
which states that an algorithm’s speedup is limited by the
part of the workload that cannot benefit from acceleration.

This paper proposes and investigates a heterogeneous
implementation of a nonlinear interior point algorithm
for predictive control. The main features of the proposed
implementation are:

• Flexible splitting of the algorithmic workload between
software and hardware for trading off the compu-
tational resource usage against performance. A 10x
speedup of a heterogeneous implementation com-
pared to a pure software implementation is reported.

• A new way of exploiting the structure of the Karush-
Kuhn Tucker (KKT) matrix that allows a significant
memory reduction compared to the existing approach

of Boland and Constantinides (2011). For the consid-
ered example, a 10x memory saving is reported.

Another contribution of the paper is a new release of the
Protoip software tool (Suardi et al., 2015). The tool allows
quick prototyping and processor-in-the-loop verification of
optimization algorithms on a Xilinx Zynq system-on-a-
chip (SoC), which contains an ARM processor and FPGA
fabric. In contrast to the previous releases, which were
focused on pure FPGA implementations, the new version
of Protoip allows incorporating both an ARM processor
and FPGA. Protoip can be used both for quick testing of
the proposed implementation from Matlab and for design
and verification of other heterogeneous implementations.

2. OPTIMAL CONTROL PROBLEM FORMULATION

We consider the nonlinear optimal control problem (OCP)
with initial state x̂ and prediction horizon T :

min
u,x

∫ T

0

(
1

2
xT (t)Qcx(t) +

1

2
uT (t)Rcu(t)

+xT (t)Scu(t)

)
dt+

1

2
xT (T)Pcx(T)

(1a)

subject to: x(0) = x̂, (1b)

ẋ(t) = fc(x(t), u(t)), ∀t ∈ [0, T] (1c)

Jx(t) + Eu(t) ≤ h, ∀t ∈ [0, T] (1d)

JTx(T) ≤ hT , (1e)

where fc : Rn × Rm → Rn; Qc ∈ Sn+, Rc ∈ Sm++

and Sc ∈ Rn×m are state, input and cross penalty ma-
trices, respectively. Sn++(Sn+) denotes the set of positive
(semi-)definite matrices. Path constraints are defined by
J ∈ Rv×n, E ∈ Rv×m, h ∈ Rv, where v is the number
of inequality constraints; the terminal constraint (1e) is
defined by JT and hT with compatible dimensions. The
presented formulation can be generalized for time-varying
reference tracking, which, as will be shown later, requires
only changing the software part of the algorithm.

3. TARGET COMPUTING HARDWARE

The target hardware for the proposed implementation is
a Xilinx Zynq-7000 XC7Z020 SoC with dual-core ARM
Cortex-A9 and FPGA logic that contains 53200 lookup
tables (LUTs), 106400 flip-flops (FFs), 220 DSP blocks
and 140 block RAMs with total capacity 4.9 Mb. Commu-
nication between software and hardware is performed via
an AXI interface.

Programming heterogeneous platforms is not trivial , since
the subsystems are often configured using different devel-
opment environments, which creates problems with com-
munication and library reusage. Modelling languages for
programming SoCs, e.g. the Mathworks HDL coder, pro-
vide a high level of abstraction, ease of building prototypes
and flexibility of moving the workload between subsys-
tems. Unfortunately, these benefits come at the price of ef-
ficiency (in terms of resource usage and computation time)
of the generated code. An alternative is using C-based
tools, e.g. Xilinx SDSoC, that provide a good compromise
between code efficiency and design effort. However, in this
case, user has to take responsibility for creating testbench
files, which often slows down the design process.

Zynq SOC
PC

ARM FPGA

plant
model

user's
algorithm

(hardware)

user's
algorithm
(software)

AXI

Fig. 1. Processor-in-the-loop test with Protoip.

The new release of Protoip provides infrastructure for
quick prototyping and verification of online optimization
algorithms using a C-based approach. Using the vendor’s
software on the underlying levels (Xilinx Vivado, Vivado
HLS, SDK) Protoip creates template projects, software
verification testbench files and processor-in-the-loop (PIL)
testing facilities. A PIL test implies running the optimiza-
tion algorithm on a hardware platform while simulating
the controlled system on a desktop machine, which allows
rapid closed-loop performance verification (see Figure 1).
The tool is implemented in the Tcl scripting language and
is available on the Xilinx Tcl store. A Matlab interface is
provided for compatibility with state-of-the-art optimiza-
tion and control toolboxes.

4. NONLINEAR PREDICTIVE CONTROL
ALGORITHMS

Direct solution of the continuous-time optimal control
problem (1) involves two main stages: integration, i.e.
solving the ordinary differential equation (ODE), and
optimization. Implementing integration on an FPGA is
not desirable because of the following reasons:

• The ODE (1c) may involve mathematical expressions
(e.g. sine and square root) that require significant
amounts of computational resources compared to
standard addition and multiplication operations.

• Due to the non-regular structure in fc, reusing com-
putational logic becomes non-trivial.

Optimization algorithms, on the other hand, can benefit
from hardware acceleration due to (i) their iterative na-
ture, which is beneficial for reusing computational logic,
and (ii) the fact that linear algebra algorithms can be
efficiently mapped onto hardware (Jerez et al., 2012).

Taking the above into account we consider two classes
of algorithms for solving (1): shooting-based and direct
transcription algorithms (Betts, 2010). The common fea-
ture of shooting methods is decoupling the ODE and
optimization solvers. Accelerating only the latter does not
result in significant improvements, due to Amdahl’s law,
since the workloads of the two operations are comparable.
In contrast, direct transcription algorithms transform (1)
directly to a discrete OCP by approximating the ODE
with algebraic equations based on numerical integration
equations, i.e.

min
u0...uN−1
x0...xN
r0...rN−1

N−1∑
k=0

(
1

2
xTkQdxk +

1

2
uTkRduk

+xTk Sduk

)
+

1

2
xTNPdxN

(2a)

subject to: x0 = x̂, (2b)

c(xk+1, xk, uk, rk) = 0, k = 0, . . . , N − 1 (2c)

Jxk + Euk ≤ h, k = 0, . . . , N − 1 (2d)

JTxN ≤ hT , (2e)

where N is the horizon length, rk = [r
(1)T
k . . . r

(l)T
k]T ∈ Rnl

is a vector of integrator intermediate stages and l is the
number of stages per sampling instant. Note that discrete-
time weight matrices (Qd ∈ Rn×n, Rd ∈ Rm×m, Sd ∈
Rn×m, Pd ∈ Rn×n) should be chosen to approximate cor-
responding continuous-time weights. More details on com-
puting quadrature approximations can be found in Betts
(2010).

The OCP (2) can be transformed into an NLP of the form

min
θ

1

2
θTHθ + θTh (3a)

subject to Fnl(θ) = f, (3b)

Gθ ≤ g, (3c)

where θ = [xT0 , r
T
0 , u

T
0 , . . . , x

T
N−1, r

T
N−1, u

T
N−1, x

T
N]T .

NLP (3) incorporates both integration and optimization,
which potentially opens the possibility of accelerating
both subproblems. Primal-dual interior point algorithms
have proven their efficiency for numerical solution of
optimal control problems (Shahzad et al., 2012). Moreover,
with interior-point algorithms, the structure of the KKT
matrix associated with the OCP remains fixed (unlike
with active set methods), which is desirable for hardware
implementations (Jerez et al., 2012).

The next section introduces a structure-exploiting hetero-
geneous implementation of an interior point algorithm for
solving (3). All results assume explicit Euler integrator, i.e.
no intermediate integration steps are used. However, the
implementation can be generalized to any Runga-Kutta
family integrator by only changing the software part.

5. ALGORITHM AND IMPLEMENTATION DETAILS

5.1 Primal-dual interior-point algorithm

Algorithm 1 and Appendix A outline the steps of primal-
dual interior point algorithm for solving (3). The algorithm
is based on the QP algorithm in Wright (1997). The
only modification is replacing linear equality constraints
with nonlinear, which results in an additional Jacobian
evaluation step. The main workload of the algorithm is
concentrated in solving the system of linear equations. The
matrix associated with the problem is symmetric and can
be reordered to achieve the following structure:

A =

0 −I 0 0 0 0 0 0 0 0 0
−I Q∗

0 S∗
0 A∗T

0 0 0 0 0 0 0 0
0 S∗T

0 R∗
0 B

∗T
0 0 0 0 0 0 0 0

0 A∗
0 B

∗
0 0 −I 0 0 0 0 0 0

0 0 0 −I Q∗
1 S∗

1 A∗T
1 0 0 0 0

0 0 0 0 S∗T
1 R∗

1 B
∗T
1 0 0 0 0

0 0 0 0 A∗
1 B

∗
1 0 −I 0 0 0

0 0 0 0 0 0 −I Q∗
2 S∗

2 A∗T
2 0

0 0 0 0 0 0 0 S∗T
2 R∗

2 B
∗T
2 0

0 0 0 0 0 0 0 A∗
2 B

∗
2 0 −I

0 0 0 0 0 0 0 0 0 −I P ∗

(4)

Algorithm 1 Primal-dual interior point method for NLP

1: Initial point (θ[0], ν[0], λ[0], s[0]) : (λ[0], s[0]) ≥ 0, reduc-
tion parameter: 0 ≤ σ ≤ 1

2: for k = 0 to niter do
3: Evaluate ∇Fnl(θ[k])

4: A[k] =

[
H +GTW[k]G ∇FTnl(θ[k])
∇Fnl(θ[k]) 0

]
5: b[k] =

[
rdual
req

]
6: Solve A[k]z[k] = b[k] for z[k] =

[
∆θ[k]
∆ν[k]

]
7: ∆λ[k] = W[k](G(θ[k] + ∆θ[k])− g) + σµs−1

[k]

8: ∆s[k] = −s[k] − (G(θ[k] + ∆θ[k])− g)

9: α[k] = max(0,1]α : (λT[k], s
T
[k]) + α(∆λT[k],∆s

T
[k]) > 0

10: (θT[k+1], ν
T
[k+1], λ

T
[k+1], s

T
[k+1])

T=

α[k](∆θ
T
[k],∆ν

T
[k],∆λ

T
[k],∆s

T
[k])

T + (θT[k], ν
T
[k], λ

T
[k], s

T
[k])

T

11: end for

Evaluate
derivatives

Partial variable
Elimination in KKT

equations

Lanczos
kernel

Matrix-vector
multiplication

Line search

Linear system

Fig. 2. Algorithm 1 flow diagram with MINRES solver.

where[
Q∗
i S∗

i

S∗T
i R∗

i

]
=

[
Qd Sd
STd Rd

]
+ [J E]

T
W part
i [J E] , (5a)

P ∗ = Pd + JTTW
part
N JT (5b)

and W part
i is a diagonal matrix containing corresponding

diagonal elements of W[k]. A∗
i and B∗

i correspond to
Jacobians of the equality constraints, i.e.

A∗
i = ∇xi

c(xi+1, xi, ui, ri), (6)

B∗
i = ∇ui

c(xi+1, xi, ui, ri). (7)

A symmetric system of linear equations can be solved
using direct methods, e.g. LDL decomposition, and iter-
ative methods, e.g. MINRES. Decomposition algorithms
often involve many division computations, which are more
complicated from a hardware implementation point of
view compared to addition and multiplication. Moreover,
parallelizing computations is not straightforward with di-
rect algorithms. In contrast, iterative methods mainly
rely on matrix-vector multiplications, while having very
few division and square root computations. In this work
we use the MINRES algorithm, which can be efficiently
mapped onto hardware (Boland and Constantinides, 2008)
and is well studied in relation to optimal control applica-
tions (Shahzad et al., 2012).

5.2 Proposed implementation

Assuming that Algorithm 1 is implemented using the
MINRES linear solver it can be visualized with the block
diagram in Figure 2. We consider four different ways of
splitting the workload between software and hardware:

• The entire algorithm is implemented in software.
• Only the matrix-vector multiplication is accelerated

in hardware and the rest is implemented in software.
• The whole Lanczos kernel is accelerated in hardware

and the rest is implemented in software.
• The whole linear system solver is accelerated in

hardware and the rest is implemented in software.

Note that for all considered options, the Jacobians are eval-
uated in software to avoid synthesising resource-consuming
nonlinear operators. Operations that are implemented in
hardware can be classified into:

• Scalar operations, which do not require acceleration.
• Vector-vector operations, which can be efficiently

pipelined in hardware.
• Matrix-vector multiplication, which is the most resource-

consuming part. Efficient implementation requires ex-
ploiting sparsity.

One possible way to exploit the structure of Ak is based
on considering the matrix as banded (Jerez et al., 2012).
In this case the number of parallel computations is defined
by the bandwidth and cannot be changed with respect to
resource availability. In this work we treat the matrix as
block sparse and, in addition, exploit sparsity within each
block that, as will be seen in the case study in Appendix B,
can lead to a 10x saving in memory.

Matrix-vector multiplication can potentially be paral-
lelized by simultaneous processing of the blocks in (4)
highlighted by solid lines. However, consecutive blocks
are coupled via negative identity matrices, i.e. each block
accesses areas in the input vector associated with its neigh-
bours, which applies restrictions on memory partitioning.
For matrix-vector multiplication, handling negative iden-
tity matrices is reduced to data transfer operations with
changing the sign bit. After negative identity matrices
are processed, the remaining parts (grey area) can be
parallelized, since there is no overlap in accessing input
vector partitions.

The efficiency of multiplication also depends on how spar-
sity within each block is handled. For example, consider
the sparse matrix •

•
•
•

︸ ︷︷ ︸

output vector

=

 a11 a12 0 0
a21 0 a23 0
0 a32 0 0
0 0 0 a44

︸ ︷︷ ︸

sparse matrix

 •
•
•
•

︸ ︷︷ ︸
input vector

. (8)

Each non-zero element in the matrix corresponds to a
multiply-accumulate (MAC) operation, i.e. each non-zero
element is multiplied by a corresponding element of the
input vector and added to the corresponding element of the
output vector. The order of processing non-zero elements
does not affect the final result, however, it does affect out-
put vector read-write dependencies and hence pipelining
possibilities. For the considered example, processing of a12
cannot be started before a11 is fully processed, since both
elements require writing data to the same element of the
output vector. Hence, MAC operations have to be sched-
uled in such a way that the distance (in terms of computer
clock cycles) between processing non-zero elements from
the same row is maximized. This scheduling problem can

0 1 2 3 1 2

0 0 1 3 1 2

0 1 2 3 1 2

0 1 2 3 1 2

a11 a32a21 a44

×

+

Address
port

Data
port

Address
port

Data
port

Address
port 1

Address
port 2

Data
port 1

Data
port 2

y1 y3y2 y4

Multiplier
latency

Adder
latency

x3x2 x4x1

Finite state machine
Multiply-accumulate

unit

Input vector

Output vector

Matrix

Fig. 3. MAC circuit for the example in (8).

C
o

m
p

u
ta

ti
o

n
 t

im
e

,
c
lo

c
k
 c

y
c
le

s

0

200

400

600

800

1000

No pipelining

Pipelining without scheduling

Pipelining with scheduling

Fig. 4. The impact of scheduling on computation time of
a sparse matrix-vector multiplication (for each gray
block in (4)). It is assumed that the latency for the
addition and multiplication units are 6 and 5 clock
cycles, respectively. The number of nonzero elements
is 74, which is the case for the example in Appendix B.

be formulated as an optimization problem

max
d,Ssched

d (9a)

subject to:

|t(aij)− t(akl)| > d ∀aij ∈M,∀akl ∈M : i = k, j 6= l
(9b)

1 ≤ t(aij) ≤ Nnz ∀aij ∈M (9c)

t(aij) 6= t(akl) ⇐⇒ i 6= k, j 6= l (9d)

where d ∈ Z is a slack variable, M = {a11, a12, a21, a23,
a32, a44} is the set of non-zero elements, Nnz is the number
of non-zero elements, t(aij) is the queue number of aij and
Ssched = [t(a11), t(a12), t(a21), t(a23), t(a32), t(a44)]T ∈
ZNnz . Since all blocks in (4) have the same sparsity
pattern, the scheduling problem is solved only once. The
resulting MAC circuit for the considered example (8) is
shown in Figure 3. Note that due to symmetry of Ak only
the lower triangular part is stored.

The impact of scheduling on the time taken for sparse
matrix-vector multiplication is presented in Figure 4.
For this case study the problem (9) was solved using
the YALMIP built-in branch and bound solver (Lofberg,
2004). If pipelining is implemented without scheduling,
the initiation interval is equal to the adder latency, which
limits potential improvement. With a systematic schedul-
ing approach, read-write dependencies are avoided, which
allows one to start processing a new non-zero element
every clock cycle, i.e. achieving an initiation interval of
one.

floating point units

0 20 40 60 80

C
o

m
p

u
ta

ti
o

n
 t

im
e

,
c
lo

c
k
 c

y
c
le

s

200

400

600

800

1000

1200

1400

1600

1800

Proposed appraoch

Existing implementation

Fig. 5. Trading off computational time against processor
resource usage for matrix-vector multiplication (4).
Each circle represents a design with a certain degree of
parallelism. The floating point unit is either floating
point addition or multiplication. For the considered
test case, N = 20 and the ODE model is given in
Appendix B. It is assumed that the latency of the
addition and multiplication units are 6 and 5 clock
cycles, respectively. Details on the existing implemen-
tation can be found in Jerez et al. (2012).

Although matrix-vector multiplication (4) can be paral-
lelized by allocating a MAC unit to each grey block, we
propose trading off computation time against resource
usage by varying the number of MAC units, as shown in
Figure 5.

6. SYNTHESIS AND SIMULATION RESULTS

Four implementations (software only and three hetero-
geneous) of Algorithm 1 were deployed and tested with
Protoip. Single precision floating point data arithmetic
was used, clocking the CPU and FPGA at 667 MHz and
100 MHz, respectively. The benchmark plant model and
OCP parameters are given in Appendix B. For the consid-
ered example, the pure software implementations were not
able to compute optimal solution within one sampling in-
stant Ts = 150 ms and niter = 15, as can be seen in Table 1.
Speeding up certain parts of the computational workload
on the FPGA and allocating two MAC units for matrix-
vector multiplication resulted in a reduced computational
time and hence implementing the algorithm online.

The trade-off between the closed-loop performance and
processor resource usage for the feasible designs from
Table 1 is illustrated in Figure 6. We measure closed-
loop performance based on a PIL simulation with the cost
function

V (u,x) =

Nsim−1∑
k=0

(
1

2
xTkQdxk +

1

2
uTkRduk + xTk Sduk), (10)

where uk is an input to the plant and xk is a state
of the plant at sampling instance k. The number of
simulation samples Nsim is chosen to reflect convergence
or divergence of the controlled plant. Resource usage

Table 1. Algorithm execution times with het-
erogeneous implementations. Feasible designs

are highlighted with a gray background.

N Software, ms Mat-vec
multipli-
cation on
FPGA, ms

Lanczos
kernel on
FPGA, ms

Linear
solver on
FPGA, ms

2 416 144 78 48
3 600 227 125 68
4 1043 373 195 109
5 1316 502 265 135
6 2033 695 366 191

Resource usage

0.05 0.1 0.15 0.2 0.25 0.3

P
e

rf
o

rm
a

n
c
e

 c
o

s
t

fu
n

c
ti
o

n

50

60

70

80

90

100

110

Fig. 6. Trading off closed-loop performance against re-
source usage by splitting the workload between soft-
ware and hardware.

is measured as geometric mean of relative utilization
of each resource type, namely LUT, FF, block RAM
and DSP. Three out of seven considered designs are
Pareto-optimal. The notable point is that Pareto-optimal
designs are achieved by splitting the workload between
software and hardware in different ways, which justifies
the flexibility of the software-hardware splitting of the
proposed implementation.

7. CONCLUSIONS

This paper presented a heterogeneous implementation of
an interior point-based nonlinear predictive controller. Ac-
celerating the linear algebra routines in hardware resulted
in a significant speedup over a software-only implemen-
tation. Moreover, it was shown that performance can be
efficiently traded off against resource usage by shifting the
computational workload between the CPU and the FPGA.

Further work will be focused on automating the design
process by formulating the NMPC design problem as
multi-objective optimization problem in order to identify
design trade offs in a systematic way as in Khusainov et al.
(2016). The list of possible design variables can include
both hardware (e.g. parallelization level) and software (e.g.
horizon length or number of iterations) parameters.

ACKNOWLEDGEMENTS

This work was funded from the People Programme (Marie
Curie Actions) of the European Union’s Seventh Frame-
work Programme (FP7/2007-2013) under REA grant
agreement no 607957 (TEMPO).

REFERENCES

Amdahl, G.M. (1967). Validity of the single pro-
cessor approach to achieving large scale comput-
ing capabilities. In Proceedings of the April
18-20, 1967, Spring Joint Computer Conference,
AFIPS ’67 (Spring), 483–485. ACM, New York,
NY, USA. doi:10.1145/1465482.1465560. URL
http://doi.acm.org/10.1145/1465482.1465560.

Ayala, H., Sampaio, R., Muñoz, D.M., Llanos, C., Coelho,
L., and Jacobi, R. (2016). Nonlinear model predictive
control hardware implementation with custom-precision
floating point operations. In 2016 24th Mediterranean
Conference on Control and Automation (MED), 135–
140. doi:10.1109/MED.2016.7535908.

Betts, J. (2010). Practical Methods for Optimal Control
Using Nonlinear Programming. Society for Industrial
and Applied Mathematics, second edition.

Boland, D. and Constantinides, G.A. (2008). An FPGA-
based implementation of the minres algorithm. In 2008
International Conference on Field Programmable Logic
and Applications, 379–384. IEEE.

Boland, D. and Constantinides, G.A. (2011). Op-
timizing memory bandwidth use and performance
for matrix-vector multiplication in iterative meth-
ods. ACM Trans. Reconfigurable Technol. Syst.,
4(3), 22:1–22:14. doi:10.1145/2000832.2000834. URL
http://doi.acm.org/10.1145/2000832.2000834.

Debrouwere, F., Vukov, M., Quirynen, R., Diehl, M.,
and Swevers, J. (2014). Experimental validation of
combined nonlinear optimal control and estimation of an
overhead crane. IFAC Proceedings Volumes, 47(3), 9617
– 9622. doi:10.3182/20140824-6-ZA-1003.01674. 19th
IFAC World Congress.

Hartley, E., Jerez, J., Suardi, A., Maciejowski, J.M., Ker-
rigan, E., and Constantinides, G. (2014). Predictive
Control using an FPGA with Application to Aircraft
Control. IEEE Transactions on Control Systems Tech-
nology, 22(3), 1006–1017.

Jerez, J.L., Ling, K.V., Constantinides, G.A., and Kerri-
gan, E.C. (2012). Model predictive control for deeply
pipelined field-programmable gate array implementa-
tion: algorithms and circuitry. IET Control Theory &
Applications, 6, 1029–1041(12).

Khusainov, B., Kerrigan, E., and Constantinides,
G. (2016). Multi-objective co-design for model
predictive control with an FPGA. In Euro-
pean Control Conference 2016. IEEE. URL
http://hdl.handle.net/10044/1/30637.

Lofberg, J. (2004). Yalmip : a toolbox for model-
ing and optimization in matlab. In 2004 IEEE
International Conference on Robotics and Automa-
tion (IEEE Cat. No.04CH37508), 284–289. doi:
10.1109/CACSD.2004.1393890.

Peyrl, H., Ferreau, H.J., and Kouzoupis, D. (2015). A
hybrid hardware implementation for nonlinear model
predictive control. IFAC-PapersOnLine, 48(23), 87 –
93. doi:http://dx.doi.org/10.1016/j.ifacol.2015.11.266.

Rawlings, J. and Mayne, D. (2009). Model Predictive
Control: Theory and Design. Nob Hill Pub.

Shahzad, A., Kerrigan, E.C., and Constantinides, G.A.
(2012). A stable and efficient method for solv-
ing a convex quadratic program with application to
optimal control. SIAM Journal on Optimization,
22(4), 1369–1393. doi:10.1137/11082960X. URL
http://dx.doi.org/10.1137/11082960X.

Suardi, A., Constantinides, G.A., and Kerrigan, E.C.
(2015). Software development kit for FPGA: A fast
FPGA prototyping tool for embedded optimization. In
European Control Conference.

Wright, S. (1997). Applying new optimization algorithms
to model predictive control. In Fifth International
Conference on Chemical Process Control – CPC V, 147–
155. CACHE Publications.

Xu, F., Chen, H., Gong, X., and Mei, Q. (2016).
Fast nonlinear model predictive control on FPGA
using particle swarm optimization. IEEE Transac-
tions on Industrial Electronics, 63(1), 310–321. doi:
10.1109/TIE.2015.2464171.

Appendix A. REMAINING DETAILS FOR
ALGORITHM 1

µ[k] :=
λT[k]s[k]

length(s[k])
, W[k] := Λ[k]S

−1
[k] ,

req := −(Fnl(θ[k])− f), rdual := −(H +GTW[k]G)θ[k]−
− h−∇FTnl(θ[k])ν[k] −GT (λ[k] −W[k]g + σµ[k]s

−1
[k])

where Λ[k] and S[k] are diagonal matrices containing the
elements of λ[k] and s[k] respectively.

Appendix B. GANTRY CRANE MODEL AND OCP
PARAMETERS

ẋ(1) = x(2), ẋ(3) = x(4), ẋ(5) = x(6), ẋ(7) = x(8)

ẋ(2) =− (0.22 sin(x(5))x(6)
2

+ 15.85u(1)− 44.17x(2)

+ 4.61cos(x(5)) sin(x(5)))/(0.47cos(x(5))
2 − 3.84)

ẋ(4) =− (0.22 sin(x(7))x(8)
2

+ 15.85u(2)− 43.02x(4)

+ 4.61cos(x(7)) sin(x(7)))/(0.47cos(x(7))
2 − 2.13)

ẋ(6) =(0.22 cos(x(5)) sin(x(5))x(6)
2
+

+ 37.67 sin(x(5)) + 15.85u(1) cos(x(5))−
− 44.17x(2) cos(x(5)))/(0.22 cos(x(5))

2 − 1.80)

ẋ(8) =(0.22 cos(x(7)) sin(x(7))x(8)
2
+

+ 20.89 sin(x(7)) + 15.85u(2) cos(x(7))−
− 43.02x(4) cos(x(7)))/(0.22 cos(x(7))

2 − 1.00)

x̂ = [0, 0, 0, 0, π/3, 0, π/4, 0]T , Sd = 0n,m
Qd = diag(10, 0, 10, 0, 10, 0, 10, 0), Pd = Qd
Rd = diag(0.01, 0.01), J = 0v,n,where v = 4

E =

[
1 0 −1 0
0 1 0 −1

]T
, d = [2 2 2 2]

T

