9 research outputs found

    Cryptography Engine Design for IEEE 1609.2 WAVE Secure Vehicle Communication using FPGA

    Get PDF
    Department Of Electrical EngineeringIn this paper, we implement the IEEE 1609.2 secure vehicle communication (VC) standard using FPGA by fast and efficient ways. Nowadays, smart vehicle get nearer to our everyday life. Therefore, design of safety smart vehicle is critical issue in this field. For this reason, secure VC is must implemented into the smart vehicle to support safety service. However, secure process in VC has significant overhead to communication between objectives. Because of this overhead, if circumjacent vehicles are increased, communication overhead of VC is exponentially increased along the number of adjacent vehicles. To remove this kind of overhead, we design fast and efficient IEEE 1609.2 cryptography engine using FPGA. This engine consists of AES-CCM encryption, SHA-256 hash function, Hash_DRBG random bit generator, and ECDSA digital signature algorithm and each algorithm is analyzed carefully and optimized with specific technics. For the AES-CCM, we optimized AES encryption engine. First, we use 32-bit S-box structure to remove 8-bit operation of AES. Second, we employ the key save register file architecture to reduce frequently key expansion operation when input of key value is always same for AES encryption engine. Third, to protect external attacks, we use internal register files to save processed data. Finally, we design parallel architecture for both CBC-MAC and counter in AES-CCM algorithm. SHA-256 hash function is frequently used in ECDSA algorithm that is significant reason of optimization. So, we use parallel architecture for the preprocessing block and the hash computation block. And, we design latest schedule block to reduce usage of register and combinational logics. In ECDSA, Hash-DRBG is used to generate key value and signature for vehicle message. To make Hash-DRBG, we use our SHA-256 design much fast generation of random value. ECDSA is most critical and complex module in our cryptography engine. For this module, we use affine representation of elliptic curve in ECDSA. So, we can replace the prime arithmetic operation by right shift operation and bit operation. And, we implement scalar multiplier to optimize arithmetic operation of ECDSA. This kind of replacement is hardware kindly, so we can reduce complexity of ECDSA hardware design. To implement all of algorithm in IEEE 1609.2 standard, we use Xilinx Virtex-5 FPGA chip with ISE 14.6 synthesis tool and Verilog-HDL.ope

    An analyzing process on wireless protection criteria focusing on (WPA) within computer network security

    Get PDF
    Network security from a long ago approaches to cryptography and hash functions which are tremendous and due to the weakness of different vulnerabilities in the networks and obviously there is a significant need for analyzes. In this manuscript, the state-of-the-art wireless environment is focused solely on the sensor technology, in which security needs to be integrated with the Wireless Protected Access (WPA) standards. Wireless networking includes numerous points of view from wireless sensor systems, ad hoc mobile devices, Wi-Max and many more. The authentication and dynamic encryption is modified by system managers so that general communication can be anchored without any sniper effort in order to perform higher degrees of security and overall execution. The key exchange mechanism in wireless systems such as forward cases is accompanied by the sophisticated cryptography so as to anchor the whole computer state. The manuscript carries out a significant audit of test points of view using the methodologies used for the cryptography angle for protection and honesty in the wireless case, stressing Wi-Fi Secure Protected (WPA) needs

    Chiffrement authentifié sur FPGAs de la partie reconfigurable à la partie static

    Get PDF
    Communication systems need to access, store, manipulate, or communicate sensitive information. Therefore, cryptographic primitives such as hash functions and block ciphers are deployed to provide encryption and authentication. Recently, techniques have been invented to combine encryption and authentication into a single algorithm which is called Authenticated Encryption (AE). Combining these two security services in hardware produces better performance compared to two separated algorithms since authentication and encryption can share a part of the computation. Because of combining the programmability with the performance ofcustom hardware, FPGAs become more common as an implementation target for such algorithms. The first part of this thesis is devoted to efficient and high-speed FPGA-based architectures of AE algorithms, AES-GCM and AEGIS-128, in order to be used in the reconfigurable part of FPGAs to support security services of communication systems. Our focus on the state of the art leads to the introduction of high-speed architectures for slow changing keys applications like Virtual Private Networks (VPNs). Furthermore, we present an efficient method for implementing the GF(2¹²⁸) multiplier, which is responsible for the authentication task in AES-GCM, to support high-speed applications. Additionally, an efficient AEGIS-128is also implemented using only five AES rounds. Our hardware implementations were evaluated using Virtex-5 and Virtex-4 FPGAs. The performance of the presented architectures (Thr./Slices) outperforms the previously reported ones.The second part of the thesis presents techniques for low cost solutions in order to secure the reconfiguration of FPGAs. We present different ranges of low cost implementations of AES-GCM, AES-CCM, and AEGIS-128, which are used in the static part of the FPGA in order to decrypt and authenticate the FPGA bitstream. Presented ASIC architectures were evaluated using 90 and 65 nm technologies and they present better performance compared to the previous work.Les systèmes de communication ont besoin d'accéder, stocker, manipuler, ou de communiquer des informations sensibles. Par conséquent, les primitives cryptographiques tels que les fonctions de hachage et le chiffrement par blocs sont déployés pour fournir le cryptage et l'authentification. Récemment, des techniques ont été inventés pour combiner cryptage et d'authentification en un seul algorithme qui est appelé authentifiés Encryption (AE). La combinaison de ces deux services de sécurité dans le matériel de meilleures performances par rapport aux deux algorithmes séparés puisque l'authentification et le cryptage peuvent partager une partie du calcul. En raison de la combinaison de la programmation de l'exécution de matériel personnalisé, FPGA deviennent plus communs comme cible d'une mise en œuvre de ces algorithmes. La première partie de cette thèse est consacrée aux architectures d'algorithmes AE, AES-GCM et AEGIS-128 à base de FPGA efficaces et à grande vitesse, afin d'être utilisé dans la partie reconfigurable FPGA pour soutenir les services de sécurité des systèmes de communication. Notre focalisation sur l'état de l'art conduit à la mise en place d'architectures à haute vitesse pour les applications lentes touches changeantes comme les réseaux privés virtuels (VPN). En outre, nous présentons un procédé efficace pour mettre en œuvre le GF(2¹²⁸) multiplicateur, qui est responsable de la tâche d'authentification en AES-GCM, pour supporter les applications à grande vitesse. En outre, un système efficace AEGIS-128 est également mis en œuvre en utilisant seulement cinq tours AES. Nos réalisations matérielles ont été évaluées à l'aide Virtex-5 et Virtex-4 FPGA. La performance des architectures présentées (Thr. / Parts) surpasse ceux signalés précédemment. La deuxième partie de la thèse présente des techniques pour des solutions à faible coût afin de garantir la reconfiguration du FPGA. Nous présentons différentes gammes de mises en œuvre à faible coût de AES-GCM, AES-CCM, et AEGIS-128, qui sont utilisés dans la partie statique du FPGA afin de décrypter et authentifier le bitstream FPGA. Architectures ASIC présentées ont été évaluées à l'aide de 90 et 65 technologies nm et présentent de meilleures performances par rapport aux travaux antérieurs

    Survey of FPGA applications in the period 2000 – 2015 (Technical Report)

    Get PDF
    Romoth J, Porrmann M, Rückert U. Survey of FPGA applications in the period 2000 – 2015 (Technical Report).; 2017.Since their introduction, FPGAs can be seen in more and more different fields of applications. The key advantage is the combination of software-like flexibility with the performance otherwise common to hardware. Nevertheless, every application field introduces special requirements to the used computational architecture. This paper provides an overview of the different topics FPGAs have been used for in the last 15 years of research and why they have been chosen over other processing units like e.g. CPUs

    Analysis and Design of Symmetric Cryptographic Algorithms

    Get PDF
    This doctoral thesis is dedicated to the analysis and the design of symmetric cryptographic algorithms. In the first part of the dissertation, we deal with fault-based attacks on cryptographic circuits which belong to the field of active implementation attacks and aim to retrieve secret keys stored on such chips. Our main focus lies on the cryptanalytic aspects of those attacks. In particular, we target block ciphers with a lightweight and (often) non-bijective key schedule where the derived subkeys are (almost) independent from each other. An attacker who is able to reconstruct one of the subkeys is thus not necessarily able to directly retrieve other subkeys or even the secret master key by simply reversing the key schedule. We introduce a framework based on differential fault analysis that allows to attack block ciphers with an arbitrary number of independent subkeys and which rely on a substitution-permutation network. These methods are then applied to the lightweight block ciphers LED and PRINCE and we show in both cases how to recover the secret master key requiring only a small number of fault injections. Moreover, we investigate approaches that utilize algebraic instead of differential techniques for the fault analysis and discuss advantages and drawbacks. At the end of the first part of the dissertation, we explore fault-based attacks on the block cipher Bel-T which also has a lightweight key schedule but is not based on a substitution-permutation network but instead on the so-called Lai-Massey scheme. The framework mentioned above is thus not usable against Bel-T. Nevertheless, we also present techniques for the case of Bel-T that enable full recovery of the secret key in a very efficient way using differential fault analysis. In the second part of the thesis, we focus on authenticated encryption schemes. While regular ciphers only protect privacy of processed data, authenticated encryption schemes also secure its authenticity and integrity. Many of these ciphers are additionally able to protect authenticity and integrity of so-called associated data. This type of data is transmitted unencrypted but nevertheless must be protected from being tampered with during transmission. Authenticated encryption is nowadays the standard technique to protect in-transit data. However, most of the currently deployed schemes have deficits and there are many leverage points for improvements. With NORX we introduce a novel authenticated encryption scheme supporting associated data. This algorithm was designed with high security, efficiency in both hardware and software, simplicity, and robustness against side-channel attacks in mind. Next to its specification, we present special features, security goals, implementation details, extensive performance measurements and discuss advantages over currently deployed standards. Finally, we describe our preliminary security analysis where we investigate differential and rotational properties of NORX. Noteworthy are in particular the newly developed techniques for differential cryptanalysis of NORX which exploit the power of SAT- and SMT-solvers and have the potential to be easily adaptable to other encryption schemes as well.Diese Doktorarbeit beschäftigt sich mit der Analyse und dem Entwurf von symmetrischen kryptographischen Algorithmen. Im ersten Teil der Dissertation befassen wir uns mit fehlerbasierten Angriffen auf kryptographische Schaltungen, welche dem Gebiet der aktiven Seitenkanalangriffe zugeordnet werden und auf die Rekonstruktion geheimer Schlüssel abzielen, die auf diesen Chips gespeichert sind. Unser Hauptaugenmerk liegt dabei auf den kryptoanalytischen Aspekten dieser Angriffe. Insbesondere beschäftigen wir uns dabei mit Blockchiffren, die leichtgewichtige und eine (oft) nicht-bijektive Schlüsselexpansion besitzen, bei denen die erzeugten Teilschlüssel voneinander (nahezu) unabhängig sind. Ein Angreifer, dem es gelingt einen Teilschlüssel zu rekonstruieren, ist dadurch nicht in der Lage direkt weitere Teilschlüssel oder sogar den Hauptschlüssel abzuleiten indem er einfach die Schlüsselexpansion umkehrt. Wir stellen Techniken basierend auf differenzieller Fehleranalyse vor, die es ermöglichen Blockchiffren zu analysieren, welche eine beliebige Anzahl unabhängiger Teilschlüssel einsetzen und auf Substitutions-Permutations Netzwerken basieren. Diese Methoden werden im Anschluss auf die leichtgewichtigen Blockchiffren LED und PRINCE angewandt und wir zeigen in beiden Fällen wie der komplette geheime Schlüssel mit einigen wenigen Fehlerinjektionen rekonstruiert werden kann. Darüber hinaus untersuchen wir Methoden, die algebraische statt differenzielle Techniken der Fehleranalyse einsetzen und diskutieren deren Vor- und Nachteile. Am Ende des ersten Teils der Dissertation befassen wir uns mit fehlerbasierten Angriffen auf die Blockchiffre Bel-T, welche ebenfalls eine leichtgewichtige Schlüsselexpansion besitzt jedoch nicht auf einem Substitutions-Permutations Netzwerk sondern auf dem sogenannten Lai-Massey Schema basiert. Die oben genannten Techniken können daher bei Bel-T nicht angewandt werden. Nichtsdestotrotz werden wir auch für den Fall von Bel-T Verfahren vorstellen, die in der Lage sind den vollständigen geheimen Schlüssel sehr effizient mit Hilfe von differenzieller Fehleranalyse zu rekonstruieren. Im zweiten Teil der Doktorarbeit beschäftigen wir uns mit authentifizierenden Verschlüsselungsverfahren. Während gewöhnliche Chiffren nur die Vertraulichkeit der verarbeiteten Daten sicherstellen, gewährleisten authentifizierende Verschlüsselungsverfahren auch deren Authentizität und Integrität. Viele dieser Chiffren sind darüber hinaus in der Lage auch die Authentizität und Integrität von sogenannten assoziierten Daten zu gewährleisten. Daten dieses Typs werden in nicht-verschlüsselter Form übertragen, müssen aber dennoch gegen unbefugte Veränderungen auf dem Transportweg geschützt sein. Authentifizierende Verschlüsselungsverfahren bilden heutzutage die Standardtechnologie um Daten während der Übertragung zu beschützen. Aktuell eingesetzte Verfahren weisen jedoch oftmals Defizite auf und es existieren vielfältige Ansatzpunkte für Verbesserungen. Mit NORX stellen wir ein neuartiges authentifizierendes Verschlüsselungsverfahren vor, welches assoziierte Daten unterstützt. Dieser Algorithmus wurde vor allem im Hinblick auf Einsatzgebiete mit hohen Sicherheitsanforderungen, Effizienz in Hardware und Software, Einfachheit, und Robustheit gegenüber Seitenkanalangriffen entwickelt. Neben der Spezifikation präsentieren wir besondere Eigenschaften, angestrebte Sicherheitsziele, Details zur Implementierung, umfassende Performanz-Messungen und diskutieren Vorteile gegenüber aktuellen Standards. Schließlich stellen wir Ergebnisse unserer vorläufigen Sicherheitsanalyse vor, bei der wir uns vor allem auf differenzielle Merkmale und Rotationseigenschaften von NORX konzentrieren. Erwähnenswert sind dabei vor allem die für die differenzielle Kryptoanalyse von NORX entwickelten Techniken, die auf die Effizienz von SAT- und SMT-Solvern zurückgreifen und das Potential besitzen relativ einfach auch auf andere Verschlüsselungsverfahren übertragen werden zu können

    Provably Secure Authenticated Encryption

    Get PDF
    Authenticated Encryption (AE) is a symmetric key cryptographic primitive that ensures confidentiality and authenticity of processed messages at the same time. The research of AE as a primitive in its own right started in 2000. The security goals of AE were captured in formal definitions in the tradition in the tradition of provable security (such as NAE, MRAE, OAE, RAE or the RUP), where the security of a scheme is formally proven assuming the security of an underlying building block. The prevailing syntax moved to nonce-based AE with associated data (which is an additional input that gets authenticated, but not encrypted). Other types of AE schemes appeared as well, e.g. ones that supported stateful sessions. Numerous AE schemes were designed; in the early years, these were almost exclusively blockcipher modes of operation, most notably OCB in 2001, CCM in 2003 and GCM in 2004. At the same time, issues were discovered both with the security and applicability of the most popular AE schemes, and other applications of symmetric key cryptography. As a response, the Competition for Authenticated Encryption: Security, Applicability, and Robustness (CAESAR) was started in 2013. Its goals were to identify a portfolio of new, secure and reliable AE schemes that would satisfy the needs of practical applications, and also to boost the research in the area of AE. Prompted by CAESAR, 57 new schemes were designed, new types of constructions that gained popularity appeared (such as the Sponge-based AE schemes), and new notions of security were proposed (such as RAE). The final portfolio of the CAESAR competition should be announced in 2018. In this thesis, we push the state of the art in the field of AE in several directions. All of them are related to provable security, in one way, or another. We propose OMD, the first provably secure dedicated AE scheme that is based on a compression function. We further modify OMD to achieve nonce misuse-resistant security (MRAE). We also propose another provably secure variant of OMD called pure OMD, which enjoys a great improvement of performance over OMD. Inspired by the modifications that gave rise to pure OMD, we turn to the popular Sponge-based AE schemes and prove that similar measures can also be applied to the keyed Sponge and keyed Duplex (a variant of the Sponge), allowing a substantial increase of performance without an impact on security. We then address definitional aspects of AE. We critically evaluate the security notion of OAE, whose authors claimed that it provides the best possible security for online schemes under nonce reuse. We challenge these claims, and discuss what are the meaningful requirements for online AE schemes. Based on our findings, we formulate a new definition of online AE security under nonce-reuse, and demonstrate its feasibility. We next turn our attention to the security of nonce-based AE schemes under stretch misuse; i.e. when a scheme is used with varying ciphertext expansion under the same key, even though it should not be. We argue that varying the stretch is plausible, and formulate several notions that capture security in presence of variable stretch. We establish their relations to previous notions, and demonstrate the feasibility of security in this setting. We finally depart from provable security, with the intention to complement it. We compose a survey of universal forgeries, decryption attacks and key recovery attacks on 3rd round CAESAR candidates

    Security in automotive microcontrollers of next generation

    Get PDF
    Information technology – we define broadly as being systems based on digital hardware and software – has gained central importance for many new automotive applications and services.On the production side we observe that the cost for electronics and IT is approaching the 50% threshold of all manufacturing costs.One aspect of modern IT systems has hardly been addressed in the context of automotive applications: IT security. Security is concerned with protection against the manipulation of IT systems by humans. After a brief review of the evolution in the last five years of the IT security in the automotive environment, we will see the state of art of the security features of the automotive microcontrollers.laslty it will be presented an hardware module that ensure the privacy aspect, of the IT security, in a bus communication in an automotive environment
    corecore