

Cryptography Engine Design for IEEE 1609.2
WAVE Secure Vehicle Communication using FPGA

Chanbok Jeong

School of Electrical Engineering

Graduate school of UNIST

2014

Abstract

In this paper, we implement the IEEE 1609.2 secure vehicle communication (VC) standard using

FPGA by fast and efficient ways. Nowadays, smart vehicle get nearer to our everyday life. Therefore,

design of safety smart vehicle is critical issue in this field. For this reason, secure VC is must

implemented into the smart vehicle to support safety service. However, secure process in VC has

significant overhead to communication between objectives. Because of this overhead, if circumjacent

vehicles are increased, communication overhead of VC is exponentially increased along the number

of adjacent vehicles.

To remove this kind of overhead, we design fast and efficient IEEE 1609.2 cryptography engine

using FPGA. This engine consists of AES-CCM encryption, SHA-256 hash function, Hash_DRBG

random bit generator, and ECDSA digital signature algorithm and each algorithm is analyzed

carefully and optimized with specific technics.

For the AES-CCM, we optimized AES encryption engine. First, we use 32-bit S-box structure to

remove 8-bit operation of AES. Second, we employ the key save register file architecture to reduce

frequently key expansion operation when input of key value is always same for AES encryption

engine. Third, to protect external attacks, we use internal register files to save processed data. Finally,

we design parallel architecture for both CBC-MAC and counter in AES-CCM algorithm.

SHA-256 hash function is frequently used in ECDSA algorithm that is significant reason of

optimization. So, we use parallel architecture for the preprocessing block and the hash computation

block. And, we design latest schedule block to reduce usage of register and combinational logics.

In ECDSA, Hash-DRBG is used to generate key value and signature for vehicle message. To make

Hash-DRBG, we use our SHA-256 design much fast generation of random value.

ECDSA is most critical and complex module in our cryptography engine. For this module, we use

affine representation of elliptic curve in ECDSA. So, we can replace the prime arithmetic operation by

right shift operation and bit operation. And, we implement scalar multiplier to optimize arithmetic

operation of ECDSA. This kind of replacement is hardware kindly, so we can reduce complexity of

ECDSA hardware design.

To implement all of algorithm in IEEE 1609.2 standard, we use Xilinx Virtex-5 FPGA chip with

ISE 14.6 synthesis tool and Verilog-HDL.

Contents

I. Introduction

……………………………………………………………………………….1

II. Related Works .………………………………………………………………….…….…..2

III. IEEE 1609.2 WAVE Protocol Security Service …………………………………………..5

3.1 AES-CCM ……………………..……….…………………………………………….6

3.1.1 AES ….………………..……….……………………………………………..7

3.1.2 CBC-MAC ..…………..……….……………………………………………..8

3.1.3 Counter ………………..……….…………………………………………….8

3.2 SHA-256 ……………………………………………………………………………..9

3.3 Hash-DRBG …..……………………………………………………………………..9

3.4 ECDSA ……………………………………………………………………………...11

IV. Hardware Implementation of IEEE 1609.2 WAVE Protocol Security Service ………..15

4.1 AES-CCM ……………………..……….…………………………………………...15

4.1.1 AES ….………………..……….……………………………………………15

4.1.2 AES-CCM ..…………..……….…………………………………………….17

4.2 SHA-256

…………………………………………………………………………….20

4.3 Hash-DRBG …..…………………………………………………………………….21

4.4 ECDSA ……………………………………………………………………………...26

V. Experiment Result

…………………………………………..…………………………...28

5.1 AES-CCM ……………………..……….…………………………………………...28

5.2 SHA-256

…………………………………………………………………………….30

5.3 Hash-DRBG …..………………………………………………………………….…31

VI. Conclusion ………………………..…………………………………………………..…33

List of Figures

Figure 2 - 1. Environment and result of [5]

Figure 2 - 2. Overhead of ECDSA using the NIST elliptic curves in IEEE 1609.2 [8]

Figure 3 - 1. Figure 3 - 1. WAVE Communication Stack with OSI 7-Layer [4]

Figure 3 - 2. Entire algorithms in the IEEE 1609.2

Figure 3 - 3. The AES-CCM structure

Figure 3 - 4. Round structure of AES (128 bits key size) [13]

Figure 3 - 5. Standard structure of hash-DRBG [18]

Figure 3 - 6. Key generation of ECDSA

Figure 3 - 7. Signature generation of ECDSA

Figure 3 - 8. Signature verification of ECDSA

Figure 4 - 1. Proposed architecture of key expansion process

Figure 4 - 2. 8 bits data path architecture of AES encryption engine

Figure 4 - 3. The AES-CCM structure

Figure 4 - 4. Round structure of AES (128 bits key size) [13]

Figure 4 - 5. Standard structure of hash-DRBG [18]

Figure 4 - 6. Key generation of ECDSA

Figure 4 - 7. Signature generation of ECDSA

Figure 4 - 8. Signature verification of ECDSA

Figure 4 - 1. Proposed architecture of Hash_DRBG

Figure 4 - 2. Proposed architecture of Hash_df

Figure 4 - 3. Proposed architecure of Hashgen

Figure 4 - 4. Finite state machine of instantiation

Figure 4 - 5. Finite state machine of reseed

Figure 4 - 6. Finite state machine of generate

Figure 4 - 7. Proposed architecture of binary_multiplication

Figure 4 - 8. Proposed architecture of parallel_adder

Figure 5 - 1. RTL synthesis result of AES-CCM

Figure 5 - 2. Functional simulation result of AES-CCM

Figure 5 - 3. Result of functional simulation of SHA-256

Figure 5 - 4. RTL view of the SHA-256

Figure 5 - 5. RTL view of proposed hash-DRBG

Figure 5 - 6. Timing simulation result of hash-DRBG

List of Tables

Table 3 - 1. Key and round of the AES [13]

Table 3 - 2. Secure hash algorithm properties [16]

Table 3 - 3. Definitions for hash-DRBG mechanisms [18]

Table 3 - 4. List of parameters for curve P-224 [20]

Table 3 - 5. List of parameters for curve P-256 [20]

Table 5 - 1. FPGA implementation result and comparison with previous works of AES-CCM

Table 5 - 2. Usage of register files

Table 5 - 3. FPGA implementation result of SHA-256 and comparison with previous works

Table 5 - 4. Synthesis result of proposed hash-DRBG architecture

Nomenclature

AES-CCM Advanced Encryption Standard-CBC-MAC

AES-CCMP Advanced Encryption Standard-Counter with CBC-MAC Protocol

ALU Arithmetic Logic Unit

C Constant Value

CBC-MAC Cipher Block Chaining Message Authentication Code

Ch Chance

DES Data Encryption Standard

ECC Elliptic Curve Cryptosystem

ECDSA Elliptic Curve Digital Signature Algorithm

ECIES Elliptic Curve Integrated Encryption Scheme

FPGA Field Programmable Gate Array

GF Galois Filed

Hash-DRBG Hash-Deterministic Random Number Generator

HMAC Hash-based Message Authentication Code

ITS Intelligent Traffic Systems

IVHS Intelligent Vehicle Highway Systems

LSB Least Significant Bit

MAC Message Authentication Code

Maj Majority

MD Minimum Selay

MIC Massage Integrity Code

MixColumn Mix Column

NITSA National Intelligent Transportation Systems Architecture

S-Box Substitution Box

SHA Secure Hash Function

ShiftRow Shift Row

SubByte Substitution Bytes

TTA Telecommunications Technology Association

V Seed Value

V2X Vehicle to X

VC Vehicle Communication

WAVE Wireless Access in Vehicular Environments

1

Chapter Ⅰ

Introduction

Nowadays, many countries enacted or were enacting new traffic safety criteria toward development

a new car. Customer and market also demand smart vehicle for driving efficiency, prevent

environmental pollution, safety, and convenience. To satisfy these requirements, vehicle

communication (VC) is necessary technology for development the smart vehicle or the brand new

cars.

To support VC, academy and enterprise push ahead with project and standardization work. For

instance, SEVECOM, simTD, working group 5 security of ETSI, and eSafety security working group

of eSafety forum in EU. And, in US IEEE 1609 Wireless Access in Vehicular Environments (WAVE)

is standardized in order to support VC. It is also standardized in KOREA by the Telecommunications

Technology Association (TTA) [1, 2].

But, VC has critical security issue because VC is concerned in safety of vehicle and human in

vehicle or other traffics. Therefore, to provide VC service, we must resolve security issue. Actually,

abovementioned VC standards or project define security mechanisms to solve this issues. Typical

standards is the IEEE 1609.2 WAVE security service. In this standard has 5 security methods these are

AES-CCM, SHA, DRBG, ECDSA, and ECIES. But, these security methods yield critical overhead in

VC process. In order to propagate VC rapidly, we must reduce security overhead in VC.

In this paper, we propose the crypto engine to reduce security overhead in IEEE 1609.2 WAVE

security methods using FPGA. The crypto engine has 4 security methods these are AES-CCM, SHA,

DRBG, and ECDSA. To optimize AES-CCM, we use 32 bits S-Box and 32 bits data path to reduce

required clock cycles in system, using key-box and saving expanded key to remove iterated key

expansion step, internal registers are used to protect the processed data from external attacks, and

parallel architecture to improve the throughput of AES-CCM. For the SHA algorithm, we employee

LMS to reduce usage of register, embed Xilinx IP adder to improve clock cycles, cutting the critical

path of algorithm using registers, and implement preprocessing unlike other papers. For the DRBG,

we use our own SHA algorithm to generate the random number and internal finite state machine to

improve efficiency of system control. In ECDSA algorithm, that use SHA, DRBG algorithms to make

digital signature. So, we use already implemented IPs these are implemented by us. And, special

mathematical routines are used to generate and process the elliptic curves for digital signature. That

routines is much fitted for hardware implementation [3].

2

3

Chapter Ⅱ

Related Works

The authors of [4] trace the history of VC in the United States and introduce WAVE protocol. In

1991, Intelligent Vehicle Highway Systems (IVHS) are created by the United States of Congress. The

goals of IVHS are increased safety, improved congestion, decreased pollution, and saved fuels in

traffic infrastructure. This plan was served by the National Intelligent Transportation Systems

Architecture (NITSA) after 13 years and it was become to mater plan of the Intelligent Traffic

Systems (ITS) in the US. In 2004, an IEEE task group was developing an amendment to the 802.11

standard to include vehicular environments as 802.11p. Another IEEE team, working group 1609, was

developing IEEE 1609 standard set that was consisted IEEE 1609.1, IEEE 1609.2, IEEE 1609.3 and

IEEE 1609.4. Finally, IEEE 1609.2 and IEEE 802.11p are combined by WAVE for the wireless

accessing in vehicular environment. These 5 components in WAVE are described in this paper, very

briefly. Especially, security service as IEEE 1609.2 is described with some cryptography algorithms.

As mentioned above chapter 1, VC has critical security issue for the safety of vehicle environments.

This issue is analyzed by the authors of [5]. In this article show possibility of cars could be next

victim of cyber-attacks. Because, vehicle already contain a huge amount of electronics controlled by

software code and hardware. The authors are performed experiment to analyze security of a modern

automobile. In the result, they can be hacked to even road test. To hack in to the car, they use OBD-2

connector of experimented-on car, diagnostic connector, and AVR-CAN module to connect CAN

protocol in vehicle. And they can be killing engine and malfunction to break system at speeds of up to

40 MPH. Figure 2-1 shows the experiment environment and result of that. This result was published

in the Financial Times at March 22th, 2013 [6].

Figure 2 - 1. Environment and result of [5]

4

According to the authors of [7, 8], the data throughput and minimum delay (MD) limits of 802.11p

VC protocol are analyzed. The MD of VC for 27 Mbps data rate of 1000 Bytes payload data is 565.5

㎲. The authors of [8], they claim that ECDSA algorithm in IEEE 1609.2 standard yield overhead in

VANET. Because, ECDSA has require a lot of arithmetic operation to generate digital signature and

verification of signature. Figure 2-2 shows that overhead of ECDSA rise breaking distance when

emergency breaking situation in highway. To remove overhead of ECDSA, they use Montgomery

multiplication that can be used for multiplication, inversion, modular operations of key generation,

signature generation, and verification.

Figure 2 - 2. Overhead of ECDSA using the NIST elliptic curves in IEEE 1609.2 [8]

In [2], the author analyzes about IEEE 1609 and explains security objectives of C2X and IEEE

1609.2. Interestingly, author analyze implementation methods of security algorithms in IEEE 1609.2

with pure software, standard smart cards, and FPGAs or ASICs. At the result, FPGA implementation

is much feasible solution. But, in this implementation, they didn’t use NIST prime EC curves in IEEE

1609.2.

In [9], they are design AES-CCMP (Advanced Encryption Standard-Counter with CBC-MAC

Protocol) FPGA (Field Programmable Gate Array) hardware for IEEE 802.11i-2004, they are

5

carefully analysis AES-CCM architectures to exploit parallelization of some processes and the design

of highly specialized processing modules. They aim to design a fast simple iterative AES-CCMP

hardware architecture with low hardware requirements. In this work, Virtex-4 FPGA implementation

has 12.259 Efficiency with 149.00 MHz that consist of 1921 FPGA slices and 20 BRAM. Also, this

paper compare to software implementation and hardware implementation results. Consequently,

software implementation has high frequency and throughput but it has low efficiency than hardware

implementation.

In [10], authors have implemented the hash function in SHA-256 module for HMAC (Hash-based

Message Authentication Code). To improve the performance, they use four pipeline stages for hash

computation of four different input messages, and a carry save adder.

In [11], a compact FPGA processor for the SHA-256 algorithm is implemented without

preprocessing unit. To optimize the SHA-256 hash function, they have proposed several techniques,

such as minimization of the critical path, reducing of the memory access by using data reuse, and a

specific 4-input arithmetic logic unit (ALU).

The authors of [12], they implement elliptic curve cryptosystem (ECC) with optimized arithmetic

operation logic. Scalar multiplication operation is the most time consuming operation in ECC. But,

this logic is used frequently to generate signature and verification. Authors implement multiplier and

inverter co-processor on F2
m with binary shifter. To implement co-processor, authors use a Xilinx

Virtex-2 XC2V1000-4FG456 FPGA chip with VHDL. As a result, eight percent slices in FPGA is

used to calculate multiplication with 166 MHz. For the inverter, thirty-five percent slices in FPGA is

used to calculate inverter with 115 MHz.

6

Chapter Ⅲ

IEEE 1609.2 WAVE Protocol Security Service

An IEEE 1609.2 is part of an IEEE 1609 WAVE Protocol (WAVE) to provide security services for

application and management messages. As mentioned above, the WAVE is defined for safety, comfort

and efficiency in vehicle. For these reasons, the WAVE has four sub-standards and also an IEEE

802.11p physical layer to support Vehicle to X (V2X) communication. An IEEE P1609.1, the first

sub-standard, defines an application. An IEEE P1609.3 and An IEEE P1609.4 define network service

and multi-channel operation, respectively [1, 4]. Figure 3-1 shows the WAVE communication stack.

In this figure, we can show the relationship of each IEEE 1609 sub-layer.

Figure 3 - 1. WAVE Communication Stack with OSI 7-Layer [4]

The IEEE 1609.2 is consisted of 5 algorithms these are Advanced Encryption Standard – CBC-

MAC (AES-CCM), Secure Hash Function (SHA), Hash-Deterministic Random Number Generator

(Hash-DRBG), Elliptic Curve Digital Signature Algorithm (ECDSA) and Elliptic Curve Integrated

Encryption Scheme (ECIES). Connection of each algorithm in the IEEE 1609.2 is represented in

figure 3-2. In this chapter, we explain each secure algorithm in the IEEE 1609.2, exclude the ECIES.

7

Figure 3 - 2. Entire algorithms in the IEEE 1609.2

3.1 AES-CCM

The AES-CCM is a unique symmetric key block cipher algorithm in the IEEE 1609.2 to encrypt and

decrypt data also defined by a NIST SP 800-38C. It is also used for other wireless communication

protocol like an IEEE 802.11 to encrypt the data. The AES-CCM is consisted of an AES-CBC-MAC

and a Counter using an AES algorithm as shown in figure 3-3 [1, 9].

Figure 3 - 3. The AES-CCM structure

The input of the AES cipher (Plaintext) is formatted to 128-bit formatted block by the formatting

function. This block is processed by a Cipher Block Chaining Message Authentication Code (CBC-

8

MAC) and a Counter to encrypt the Plaintext. Both results are XOR-ed to make a Massage Integrity

Code (MIC) data for authentication of data. And, the ciphertext is generated by the Counter. The

CBC-MAC and the Counter are processed using the AES algorithm for each step.

3.1.1 AES

Figure 3 - 4. Round structure of AES (128 bits key size) [13]

The AES is encryption standard based on symmetric key block cipher. The AES is defined as FIPS-

197 by NIST to substitute a Data Encryption Standard (DES) encryption algorithm. Because, the DES

has been reported to have performance limitation and security weakness issues in academic research.

9

To develop the AES, NIST require the following standard criteria: minimum system resource usage,

open source algorithm, ability for hardware and software implementation, robustness to any security

attack, low complexity for encryption calculation, and implementation in any system environment.

The AES has three variable lengths of 128, 192, and 256 bits for an encryption key and input block

size is 128-bit. The encryption key is expanded by a key expansion process that expand the key obey

the length of key as shown table 3-1. The expanded keys are used to encryption the plaintext at each

round [13, 14].

Table 3 - 6. Key and round of the AES [13]

Input key size 4 words / 16 bytes 6 words / 24 bytes 8 words / 32 bytes

Expanded key size 44 words / 176 bytes 52 words / 208 bytes 60 words / 240 bytes

Round 10 12 14

To encrypt the plaintext, the AES has round structure equal to figure 3-4. First step of round is

substitution bytes (SubByte) step that substitute a byte-to-byte of plaintext or previous encrypted data

using a substitution box (S-Box). The shift row (ShiftRow) step shifts the substitution step’s data.

Input of ShiftRow is shifted compliant with index of row in a processing block. The mix column

(MixColumn) step permutes bit data in column of the processing block using Galois Filed (GF(28)).

Final step is add round key that operates bit-wise XOR for the mixed column results with expanded

key value. These step are same during round 1 and 9 except first and final round.

3.1.2 CBC-MAC

The CBC-MAC step in AES-CCM generates message authentication code (MAC) using chaining

block cipher method with the AES encryption. To make chaining block, the CBC-MAC is iterated

encryption using AES and XOR operation with previous chaining result. At the end, a chaining block

is became MAC that result of AES-CCM [15].

3.1.3 Counter

Ciphertext of AES-CCM is generated in counter step. In this step, counter blocks are generated for

each plaintext block. The counter blocks are consisted with nonce data from an input of AES-CCM

and simple counter value. The first block in ciphertext is XOR-ed with MAC data from the CBC-

MAC. This value is used to checksum of the ciphertext. So, length of ciphertext is same to plaintext

without MAC length [15].

10

3.2 SHA-256

SHA-256 is kind of the one-way hash function that is published as FIPS 180-3 by the NIST and

included in SHA-2 family. Through table 3-2, we can show the properties of SHA-256. SHA-256 can

has up to 264 bits input data. This input data is processed by preprocessing and hash computation.

Preprocessing stage is padding a message, parsing the padded message into N x 512-bit blocks and

setting initialization values. When preprocessing stage is completed, hash computation stage generates

a message schedule blocks using the padded message and a series of hash value using the message

schedule blocks. Consequentially, the output of SHA-256 is generated as the message digest. The

SHA-256 has 256 bits message digest. The message digest always has unique value depending on the

input message [16][17].

Table 3 - 7. Secure hash algorithm properties [16]

Algorithm
Message Size

(bits)

Block Size

(bits)

Word Size

(bits)

Message Digest

Size (bits)

SHA-1 < 264 512 32 160

SHA-224 < 264 512 32 224

SHA-256 < 264 512 32 256

SHA-384 < 2128 1024 64 384

SHA-512 < 2128 1024 64 512

In SHA-256, all operation based on 32-bit unit as a word. Also, all arithmetic operations are based

on 232. The SHA-256 has six logical functions, these are Ch, Maj, ∑ ()
{ }
 , ∑ ()

{ }
 ,

{ }()

and
{ }(), eight working variables, a, b, c, d, e, f, g, and h and two temporary variables, T1 and

T2. The logical functions, working variables and temporary variables are used to process hash

computation stage [16][17].

3.3 Hash-DRBG

The hash-DRBG is one of the DRBG mechanisms based on hash functions. As shown in figure 3-5

the hash-DRBG has many inputs to generate the random bits these are an entropy input, a nonce, a

personalization string, an additional string, a seed length (seedlen), and a security strength. But, the

personalization string, and the additional string are optional input to generate the random bits. A

reseed count in figure 3-5 isn’t input of the hash-DRBG that is initialized at initialization step and

11

reseed step.

The hash-DRBG has 3 steps to make random bits. These are an instantiate, a generate algorithm,

and a reseed. The inputs of instantiate algorithm are used to perform initialization for values of hash-

DRBG to generate the random number. These input are concatenated and entered to a hash_df that sub

algorithm to create instantiation values. The initialization values of in this algorithm are a reseed

counter, seed value (V), and constant value (C). V and C are generated by the hash_df and reseed

counter is just assigned value ‘1’.

The generate algorithm generate the random bit using V, C, the additional input and the seedlen. As

mentioned above, V and C is generated by instantiation algorithm or regenerated values from

algorithm itself. In this algorithm use SHA-256 and hashgen algorithm, sub algorithm of DRBG, are

used to create random bit (returned_bit). In this algorithm, for the robustness of the security strength

of the algorithm, V and C are regenerated during the generate algorithm and these value are feed to

algorithm itself to generate the next random bits, V, and C.

Similarly to instantiate algorithm, the reseed algorithm generate the V and C for generate the

random bits. Methodology also like the instantiate algorithm. However, the reseed algorithm is called

when reseed counter is reached to the number of requests between reseeds in table 3-3 and reseed

counter is initialized to 1 because the V and C doesn’t have enough security strength for robustness.

For the reseed algorithm, additional input can be entered to reseed algorithm [18].

Table 3 - 8. Definitions for hash-DRBG mechanisms [18]

 SHA-1 SHA-224

and SHA-

512/224

SHA-256

and SHA-

512/256

SHA-384 SHA-512

Output block length 160 224 256 384 512

Maximum entropy input length ≤ 235 bits

Seed length for Hash-DRBG 440 440 440 888 888

Maximum personalization string

length
≤ 235 bits

Maximum additional input length ≤ 235 bits

Number of requests between

reseeds
≤ 248

12

Figure 3 - 5. Standard structure of hash-DRBG [17]

3.4 ECDSA

ECDSA is typical digital signature generation algorithm in WAVE. In ECDSA algorithm, all values

are defined over points on elliptic curves. If some attacker try to break the ECDSA algorithm, he/she

solve the discrete logarithm problems similarly to DSA. The elliptic curve is defined in Equation 3.1.

In this equation has parameters a and b these are constants [19].

 =	 + + 																																																																																																																																	(Eq. 1)

For the ECDSA in WAVE protocol, it use special recommended NIST elliptic curves, NIST P-224

and NIST P-256. These curves defined over prime fields. Table 3-4 and table 3-5 shows the parameter

of each NIST prime curve, respectively [20].

13

Table 3 - 9. List of parameters for curve P-224 [20]

Parameter Value

p 26959946667150639794667015087019630673557916260026308143510066298881

n 26959946667150639794667015087019625940457807714424391721682722368061

SEED 0x bd713447_99d5c7fc_dc45b59f_a3b9ab8f_6a948bc5

a -3

c 0x5b056c7e_11dd68f4_0469ee7f_3c7a7d74_f7d12111_6506d031_218291fb

b 0xb4050a85_0c04b3ab_f5413256_5044b0b7_d7bfd8ba_270b3943_2355ffb4

Gx 0xb70e0cbd_6bb4bf7f_321390b9_4a03c1d3_56c21122_343280d6_115c1d21

Gy 0xbd376388_b5f723fb_4c22dfe6_cd4375a0_5a074764_44d58199_85007e34

Table 3 - 10. List of parameters for curve P-256 [20]

Parameter Value

p 115792089210356248762697446949407573530086143415290314195533631308867097853951

n 115792089210356248762697446949407573529996955224135760342422259061068512044369

SEED 0xc49d3608_86e70493_6a6678e1_139d26b7_819f7e90

a -3

c 0x7efba166_2985be94_03cb055c_75d4f7e0_ce8d84a9_c5114abc_af317768_0104fa0d

b 0x5ac635d8_aa3a93e7_b3ebbd55 769886bc 651d06b0 cc53b0f6 3bce3c3e 27d2604b

Gx 0x6b17d1f2 e12c4247 f8bce6e5_63a440f2_77037d81_2deb33a0_f4a13945_d898c296

Gy 0x4fe342e2_fe1a7f9b_8ee7eb4a_7c0f9e16_2bce3357_6b315ece_cbb64068_37bf51f5

ECDSA has three process these are key generation, signature generation, and verification of

signature of WAVE message. Each process use scalar addition, scalar multiplication, scalar inversion,

point addition, and point multiplication.

Figure 3-6 shows the key generation process of ECDSA. In this process, private key (d) is generated

by Hash-DRBG. Public key is generated by multiplication d and point G(x, y).

Figure 3-7 is process of the signature generation for the message. Signature is consisted with r and s.

To generate r, a random value k is generated by the Hash-DRBG and performed point multiplication

with G. At this time, r is reduced by modular p and q operations. Another signature pair s is generated

using r and k. In s, hashed WAVE message is contained with k, private value d, and r. s is also reduced

by modular q.

14

Figure 3 - 6. Key generation of ECDSA

DRBG

mod p

G(x, y) = gk

mod q

r

inverter

SHASign Gen

K-1

e

d

mod q

s

message

signature

*

Figure 3 - 7. Signature generation of ECDSA

In figure 3-9, we can show the signature verification process of ECDSA. To verification signature,

signature is hashed using SHA, as e, and separated to s and r by integer checker. s is became u1 using

15

modular p inversion and scalar multiplication with e and reduced by modular q. r is also became u2

using scalar multiplication with w and modular q. v1 and v2 are performed point multiplication with G

and Q, respectively, and point addition each other with modular reduction p and q. It is became v that

is compared with r. If r and v is equal than signature is valid and message of the signature is accepted

to system. Else, signature is invalid and message is thrown out [20].

Integer
checker

SHA

inverters mod q

mod q

w

mod q

r

e
ew

rw

u1

u2

*(G(x,y))

*(Q(x,y))

mod p+

mod p

mod q

x

v

Compare

T/F

signature

Figure 3 - 8. Signature verification of ECDSA

16

Chapter Ⅳ

Hardware Implementation of IEEE 1609.2 WAVE Protocol Security

Service

In this chapter, we explain how to implement our crypto engine for the security algorithms in IEEE

1609.2 WAVE. To design cryptography standard algorithm, we need to change that is the software

kindly described cryptography algorithm in the standard document to hardware structure for the RTL

coding. There has many issues to overcome to describe the cryptography algorithm. First, because of

it has sequentially described algorithms, to change the parallel structure for the faster circuit design.

Second, many for, while, and if statements are used to describe cryptography algorithm. To implement

these statements to RTL, many big comparators are used to control routines of the number of iteration

or to finish the if statements. Third, reuse variable to calculate variable itself. Fourth, too long

arithmetic combination logic path are used to generate cryptography result. Fifth, too wider and many

operand in arithmetic operation. It is yield huge critical paths for the arithmetic operation. To

overcome implementation issues, we use parallel architecture, analysis data dependency between

variables, using bit operations to make simple arithmetic logics, register insertion to long combination

logic to cut the critical path, and employment Xilinx adder/substracter IP core to improve arithmetic

combination logic [21].

4.1 AES-CCM

4.1.1 AES

Figure 4 - 9. Proposed architecture of key expansion process

17

To make best performance of AES-CCM, we analyze and implement AES algorithm very carefully

because of AES is frequently used in AES-CCM. AES has key expansion and AES engine module to

generate encryption result. Key expansion module is performed expansion operation of input key to

expanded key. Expanded keys are used to process of each round in AES. In this paper, 128 key length

of AES engine is implemented.

In the figure 4-1, there has 8 bits operation data paths and these lead to delay in key expansion path.

However, because of key expansion is executed only one time during same input key, we didn’t

optimize the data path. But, it is required key saving operation. So, we employee 128 bits x 11 key

table (Key_Tbl) to save expanded key values. The substitution box (S_Box) is same module in

proposed AES engine. The input and output length of key expansion is same 128 bits.

Figure 4 - 10. 8 bits data path architecture of AES encryption engine

Figure 4 - 11. Proposed 32 bits data path architecture alter the 8 bits data path

18

Figure 4-2 shows the AES encryption engine structure with 8 bits data path. Input length of the AES

encryption engine is 128 bits. Output ciphertext length is also 128 bits. In first round, add round key

operation is performed to generate initial data. After that, second round through tenth round is

performed to generate encryption result, sequentially. In these rounds, perform substitution byte, shift

row, mix column, add round key, sequentially. But, in figure 4-3 that is proposed architecture, shift

row (ShiftRow) is performed before the substitution byte (SubByte). Because, likes sequence of figure

4-2, changing row data (ShiftRow) to column data (mix column) is required additional buffer to

transform. But, likes sequence of figure 4-3, changing row data to byte data (SubByte) and byte data

to column data can be transform without the data buffer. Because, byte data operation is performed

likes buffer. And, we consider that 32 bits data substitution using substitution box (S_Box) and 32 bits

data is considered order of mix column with already row-wise shifted bus interface using wire index

syntax in Verilog-HDL. By the proposed 32 bits operation, we can reduce 4 clock cycles in each

round and remove substitution buffer in 9 bits operation data path.

Figure 4 - 12. Finite state machine of AES encryption engine

Figure 4-4 shows the finite state machine (FSM) of AES module. To control key expansion and

AES encryption engine, control signal is generated in FSM. Because, key expansion and AES

encryption engine have different round counters and timing of beginning process (do_exped, do_aes)

and final process (text_valid).

4.1.2 AES-CCM

In the figure 4-5, we can show the proposed architecture of AES-CCM. It has parallel structure for

counter and CBC-MAC process. AES-CCM has nonce, plaintext, and key input signal and ciphertext

and MAC data are output signal. Formatted block process in figure 4-5 generate formatted block from

plaintext data into the 128 bits data blocks. But, the first block is consisted with the nonce, the length

of payload and the length of MAC. For the formatted block process, we use case statement with

modular to length of plaintext with 128. As shown in figure 4-5. (a), counter process performs AES

19

with a 128-bits counter block that is generated with nonce and counter value as mentioned above.

Except first encrypted counter block, all the encrypted counter block XOR-ed with formatted block.

First encrypted counter block is XOR-ed with final data of CBC-MAC that is MAC data for the

plaintext.

M
U

X

Fo
rm

atted

B
lo

ck

Figure 4 - 13. Proposed architecture of AES-CCM

Figure 4-5. (b) is architecture of CBC-MAC. It perform chaining to previous AES encrypted

chaining block and current formatted block using XOR operation. Therefore, it has strong data

dependency current and previous block to generated chaining block. However, it is performed with

counter process, simultaneously. Using this method, we didn’t wait CBC-MAC result to MAC data.

That means, we can save huge clock cycles in our system.

20

Figure 4 - 14. Finite state machine of AES-CCM

To control AES-CCM, we need to generate control signal to control each module in AES-CCM such

as figure 4-6. This FSM start from READY state. If enable signal (i_do_cbc) is entered into the

system and the length of plaintext is not zero than state transits to FORMAT state. In FORMAT state,

system make formatted block data using formatted block process. FORMAT state is remained until

parsing_counter is not equal to total_block_num. If two values are equal to each other that means all

plaintext is formatted in to the block. Next state as KEY_EXP is performed key expansion process in

AES encryption engine until finish of key expansion (key_exp_done). In the DO_AES state, AES

engine encrypt the counter block on counter process or the chaining block in the CBC-MAC. This

operation can controlled just one state of FSM because encryption timing of both counter and CBC-

MAC process is same. If DO_AES state is done than state transited to NEXT_DATA to read next

formatted data for the next encryption process. If enc_block_counter and total_block_num are same

than state is transited to CBC_DONE and system is terminated. That means, there are no remaining

block need to encrypt because of the number of encrypted block number is same to the number of

formatted block.

21

Figure 4 - 15. Finite state machine of formatting function

Figure 4-7 is FSM of formatting function that is sub FSM of AES-CCM FSM. First state READY is

transited to FIRST_BLOCK when start signal (do_format) is entered in the system. In

FIRST_BLOCK state generate flag byte of first formatted block using the length of plaintext and the

length of MAC. After that, state is transited to S_NONCE. Until these transition, do_format must be

high. S_NONCE state formatting nonce state into the formatted block and transited to ASSOCIATE

state if it A_flag is true and data_type is equal to T_ASSOCIATE. If not, state is transited to

PAYLOAD state. In ASSOCIATE and PAYLOAD data perform formatting function according to the

data_type. PAYLOAD state is transited to READY state, if Plen is equal to zero.

4.2 SHA-256

Figure 4 - 16. Proposed architecture of SHA-256

22

To make fast and efficiency SHA-256, we are consisted parallel preprocessing and hash

computation structure like the figure 1 that is proposed structure of SHA-256. In preprocessing stage,

the input data is parsed in the 512 padded blocks. The last padded block is consisted 448 bits message

that is concatenated 1bit 1 value and sequential 0 values, and length. The padded blocks in

preprocessing stage are used sequentially. So, this stage must be completed before the hash

computation stage.

When preprocessing is completed than block scheduler prepare the message schedule blocks (Wt).

Wt are used to calculate the eight working variables (Compute Memory) and the two temporary

variables. Therefore, they are muse be prepared before the computation of a compute memory and the

two temporary variables to generate the message digest blocks.

To prepare Wt, we are employed a Latest Message Block Schedule module. Actually, Wt from 0 to

15 are equal to corresponding the padded blocks, but Wt from 16 to 63 are needed calculation using

previous Wt. So, the Latest Message Block Schedule module make latest Wt. And this operation is one

step ahead because the other hash computation operations are required this latest Wt.

In figure 1, we are drawn critical path of hash computation using red path. This path has data

dependency to calculated variable itself. And, many 32-bit add operations are also affect delay of the

path. To reduce delay of this critical path, we are used adder/substracter IP logic that is provided

Xilinx ISE tool [20]. That can be reduced delay by the add operations with some latency.

4.3 Hash-DRBG

As mentioned above, hash-DRBG is generated to the pseudo-random bits (RB) using hash function.

Figure 4-9 shows proposed hash-DRBG architecture for crypto engine of IEEE 1609.2. Hash-DRBG

has 3 main modules (Instantiation_state, Hash_DRBG_Generate, and Hash_DRBG_Reseed) and 3

sub modules (Hash_df, SHA-256, and Hashgen) to generate random value.

First main module is the Instantiation_state that perform initialization to seed value as V, constant

value as C, and reseed counter (reseed_counter) these are output signal of the Instantiation_state. The

Instantiation_state has 5 inputs these are Entropy_input, nonce, Personalization_string, Seedlen and

Security_strength to initiate V, C and Reseed_counter. First 3 inputs are concatenated and entered to

Hash_df that initiate V. At this time, the length of seed (Seedlen) is entered to Hash_df to determine

length of V. Seed value V is concatenated with 0x00 and entered Hash_df to initiate C.

Reseed_counter is simply initialized with 1.

Second main module is the Hash_DRBG_Generate. The RB is generated in this module. The

23

Hash_DRBG_Generate check that the Reseed_counter is bigger than the Reseed_interval. If the

Reseed_counter is bigger than the Reseed_interval than this module generate Reseed_required signal

and terminate the module. If not, module generate the RB. The additional input (Addi_input) is

optional input to generate the RB that is performed to SHA-256 with 0x02 and V to w. w is added

with V and performed modular operation with Seedlen. This modular operation is required huge

arithmetic logic but we implement modular operation using simple bus wire syntax in the Verilog-

HDL. Because, divider is the multiplier of two. Using bus wire syntax, we can implement shift

arithmetic operation. In this step, remainder of modular operation alter the V. The next process is

performing the Hashgen sub module with V and requested number of bits. The Hashgen make RB

using SHA-256. After that, module regenerate V for the next RB. To regenerate V, SHA-256 module

is used also three 256-bit adder (red circle in Figure 4-9) and right shift operation is required. Right

shift is same to previous one. But, 256-bit adder yield critical path of this module. If, we use ‘+’

operation in Verilog-HDL. It make huge delay. To solve this problem, we use Xilinx

Adder/Substracter IP and reduce delay of critical path in this module. All process in this module is

done, Reseed_counter is increased to check how many times RB is generated.

Third main module is Hash_DRBG_Reseed to reinitialize the V, C and reseed. It has similar step of

Instantiation_state module. But, to reinitialize V, data is concatenated with V, 0x01, Entropy_input,

and Additional_input. At this step, Entropy_input and Additional_input can be changed to security

reason.

24

Figure 4 - 17. Proposed architecture of Hash_DRBG

25

Now, we describe the implementation of the sub modules in this algorithm these are Hash_df,

Hashgen and SHA-256. SHA-256 is same in section 4.2 SHA-256. We can show the structure of the

Hash_df in figure 4-10. It is permutation Input_string using SHA-256 until the length of

Requested_bits is equal to No_of_bits_to_return (seedlen), frequently. To calculate the length of

Requested_bits, module perform division and ceiling also counter. This arithmetic operation is also

implemented bus wire syntax. We can also confirm structure of the Hashgen sub module in figure 4-

11. This module similar to the Hash_df. It is permutation the V to generate the RB.

Figure 4 - 18. Proposed architecture of Hash_df

Figure 4 - 19. Proposed architecure of Hashgen

26

Hash_DRBG module is controlled using FSMs below. Because, each module has relationship for

the operation sequence to generate RM. Figure 4-12 shows the FSM of instantiation algorithm. In this

FSM, instantiation is done than generate i_do_generate signal to call the FSM of generate in Figure 4-

14. The FSM of generate is control the Hash_DRBG_Generate module to generate RM. If, reseed is

required than call the FSM of reseed in figure 4-13 to regenerate V, C, and Reseed_counter. If not,

FSM is iterated when i_do_generate is high. The FSM of reseed is called than FSM make control

signal to handle Hash_DRBG_Reseed module. FSM is done than the FSM of generate is operated to

generate RB.

Figure 4 - 20. Finite state machine of instantiation

Figure 4 - 21. Finite state machine of reseed

27

28

Figure 4 - 22. Finite state machine of generate

29

4.4 ECDSA

As mentioned previously, ECDSA use multiplication arithmetic operation with wide operands. It is

required huge amount of clock cycles. To reduce clock cycles of multiplication, we propose

binary_multiplication logic in figure 4-15. This module add the left shifted multipliers when each bit

in multiplicand is true. That means, to calculate multiplication, we accumulate the left shifted

multipliers.

Proposed binary multiplication use simple shift operation, counters and parallel_adder in figure 4-

16. Binary multiplication is controlled by a bit_count counter. The bit_count is increased at the

positive edge of clock signal or parallel_adder_done is equal to 1 when num_of_op is equal to 9. That

means, the Operand register file is full than bit_count is wait until processing of parallel_adder.

Otherwise, the Operand register file is charged with left shifted up to bit_count i_a when least

significant bit (LSB) of shifted i_b is equal to 1. And, LSB of shifted i_b is 1 than the num_of_op is

increased up to 9. The num_of_op is count how many elements are occupied in the Operand register

file and take a role the select signal of DEMUX to select the element of the Operand register file. If

num_of_op is equat to 9 than parallel_adder is operated to add the Operand register file and

num_of_op is initialized to 1 when parallel_adder_done signal is true. And, parallel_adder_done is

true than output signal of the parallel_adder (o_output) is saved to Operand[0] to accumulate previous

addition result.

D
E

M
U

X

M
U

X

M
U

X

M
U

X

Figure 4 - 23. Proposed architecture of binary_multiplication

As mentioned above, the parallel_adder is used for the binary_multiplication to accumulate the

multiplier. In figure 4-16, we can show the structure of the parallel_adder. It has two counter

adder_count and clk_count. adder_count control number of iteration of addition to accumulate value.

It is increased up to 4 when clk_count is equal to 24. And, control the index of the a and the b register

30

files to accumulate value into the Operand[0] register. clk_count is control the 256_adders by

increasing up to 24. The 256_adder is Xilinx adder IP and has 22 delays to generate output. But, we

make delay up to 25 for the reliability of function when module is synthesized.

31

parallel_adder

adder_count clk_count

Operand[0]

Operand[1]

256_adder

Operand[2]

Operand[3]

256_adder

Operand[4]

Operand[5]

256_adder

Operand[6]

Operand[7]

256_adder

Operand[8]

Operand[9]

256_adder

Operand[0]

(0, ..., 4)

Operand[1]

Operand[2]

Operand[3]

Operand[4]

Operand[5]

Operand[6]

Operand[7]

Operand[8]

Operand[9]

(0, …, 24)

increase clk

o_sum

Figure 4 - 24. Proposed architecture of parallel_adder

Chapter Ⅴ

32

Experiment Results

In this study, Xilinx Virtex-5 FPGA chip and ISE 14.5 synthesis tools are used to implement and

synthesize the proposed systems with Verilog-HDL [22, 23]. However, ECDSA isn’t synthesized and

made the experimental result. The total number of register slice and LUT of Virtex-5 is 58880 and

58880, respectively.

5.1 AES-CCM

Proposed AES-CCM is implemented and synthesized with Virtex-5 FPGA library. As a result,

11913 FPGA slices and 24062 LUTs are used with 166.20 MHz clock frequency. To encrypt the 640

bit plaintext, AES-CCM spends 433 clock cycles. And, AES spends 76 clock cycles for 128 bits

encryption data. The result of implementation is summarized in table 5-1. In this implementation, we

use a lot of resource for AES-CCM because of internal register for protect processed data from attack

of outside. Table 5-2 shows the usage of register files that is protect processed data.

Table 5 - 5. FPGA implementation result and comparison with previous works of AES-CCM

Device FPGA Slice Clock Frequency (MHz) LUT Power (mW)

Spartan-3 [21] 523 63.7 - -

Virtex-2 [25] 3474 80.3 - -

Virtex-2 [9] 1609 117.88 2511 618

Virtex-4-LX [9] 1921 149 3186 1023

Virtex-5-LX [26] 1809 213 - -

Virtex-5-SX [This work] 11913 166.20 24062 1332.8

Table 5 - 6. Usage of register files

Register File Name Width (bit) Depth

input_data 128 16

input_register 8 256

parser_memory 128 256

key_box 128 22

ctr_memory 128 256

Figure 5-1 shows the RTL synthesis result of AES-CCM. We can show AES, Count, CBC-MAC,

33

and interface modules in this figure, respectively. Figure 5-2 is the functional result of AES-CCM.

o_mic_t is MAC data of plaintext.

Figure 5 - 7. RTL synthesis result of AES-CCM

Figure 5 - 8. Functional simulation result of AES-CCM

34

5.2 SHA-256

We synthesis proposed SHA-256 architecture and summarize the result of implementation in table

5-3. In this works, we implement preprocessing process in our FPGA hardware be different from

previous works. Final result shows 1885 FPGA slices and 9643 LUTs with 179.08 MHz and

consuming power of our system is 1292.15 mW. Using Xilinx adder IP is improved to clock

frequency of the system. Our SHA-256 has 137 clock cycles to process 256 bits input data.

Table 5 - 7. FPGA implementation result of SHA-256 and comparison with previous works

Device FPGA slice Clock Frequency (MHz) Implementation of Preprocessing

Virtex-5 [10] 1885 169.00 Software

Virtex-5 [11] 139 64.45 NO

Virtex-5 [This work] 2796 179.08 Yes (Hardware)

Figure 5-3 is functional and timing result of our proposed SHA-256 architecture. Input_text is

formatted block of plaintext and o_message_digest is hashed data of plaintext. Figure 5-4 is RTL

synthesis result of proposed SHA-256 architecture. We can confirm the preprocessing, computation,

control logic and interface of SHA-256.

Figure 5 - 9. Result of functional simulation of SHA-256

35

Figure 5 - 10. RTL view of the SHA-256

5.3 Hash-DRBG

We also perform implementation and synthesis of proposed hash-DRBG architecture and result is

summarized in table 5-4. In this table, 16704 FPGA slices and 27055 LUTs are used for hash-DRBG

with 64.263 MHz and 1330.41 mW consuming power. Unfortunately, we can’t find the reference to

compare our result. The implemented Hash-DRBG spend 828 clock cycles to generate pseudo-

random bits.

Table 5 - 8. Synthesis result of proposed hash-DRBG architecture

Device FPGA Slice Clock Frequency (MHz) LUT Power (mW)

Virtex-5 16704 64.263 27055 1330.41

Figure 5-5 is RTL synthesis result of our proposed hash-DRBG. We can confirm that all process in

DRBG are allocated and connected each other.

36

Figure 5 - 11. RTL view of proposed hash-DRBG

Figure 5 - 12. Timing simulation result of hash-DRBG

Figure 5-6 is timing simulation result of our proposed hash-DRBG. o_return_bit is generated

random bits with o_v (seed). o_c is the constant value of current state.

37

Chapter Ⅵ

Conclusions

In this paper, we implement secure algorithm in IEEE 1609.2 WAVE using FPGA hardware for VC

security service. VC has a lot of communication load, because a vehicle object communicate many

other vehicle objects. Also, VC use wireless communication that has serious security problem like

other wireless communication methods. This security problem has critical affect to not only vehicle

passengers but also entire traffic. Therefore, implementation of fast and efficient crypto engine for VC

is essential security component in VC.

To do this implementation, we modify the 8 bits data path of AES to 32 bits with 32 bits S-Box. And,

Xilinx Adder IP is used for SHA-256, hash_DRBG, and ECDSA to support arithmetic operations. In

ECDSA, we develop binary_multiplication module for the scalar multiply, modular and inversion.

Also, parallel architecture are used to increase operation speed and we analyze the data dependency of

the algorithm to convert sequential operation to parallel.

As a result, we can confirm timing simulation about the AES-CCM, SHA-256, Hash-DRBG. And,

we can confirm the all logic is placed in FPGA via RTL view of synthesis. Each synthesis results can

be high speed operation for the VC. But, we need to improve the period of critical path and reduce

resource utilization for the embedded system.

38

REFERENCES

1. IEEE Std 1609.2-2013. (April, 2013.) IEEE Standard for Wireless Access in Vehicular

Environments Security Services for Applications and Management Messages. [Online].

Available: http://standards.ieee.org/ndstds/standard/1609.2-2013.html

2. T. Schütze, “Automotive Security: Cryptography for Car2X Communication", tech. rep.,

Rodhe & Schwarz, Germany, pp. 1-16, March, 2011.

3. NSA, (April, 2010) Mathematical routines for the NIST prime elliptic curves [Online].

Available: https://www.nsa.gov/ia/_files/nist-routines.pdf

4. Roberto A. Uzcátegui, Guillermo Acosta-Marum, “WAVE: A Tutorial,” IEEE

Communications Magazine, Vol. 47, Issue. 5, pp.126–133, May 2009.

5. K. Koscher, A. Czeskis, F. Roesner, S. Patel, and T. Kohno, “Experimental security analysis

of a modern automobile” Security and Privacy (SP), 2010 IEEE Symposium, pp. 447-462,

2010.

6. C. Bryant, “Cars could be next victim of cyber attacks”,

http://www.ft.com/intl/cms/s/0/59ccfbbe-90b9-11e2-a456-

00144feabdc0.html#axzz2S154hemO, Financial Times, March 22, 2013.

7. Y. Wang, X. Duan, D. Tian, G. Lu, H. Yu, “Throughput and Delay Limits of 802.11p and its

Influence on Highway Capacity”, Procedia-Social and Behavioral Sciences, vol. 96, pp.

2096-2104, Nov. 2013.

8. Jonathan Petit and Zoubir Mammeri, “Authentication and consensus overhead in vehicular ad

hoc networks”, Telecommunication Systems, Vol. 52, Issue 4, pp. 2699-2712, 2013.

9. I. Algredo-Badillo, et al, “Efficient hardware architecture for the AES-CCM protocol of the

IEEE 802.11i standard", Computers & Electrical Engineering, pp. 565-577, 2010.

10. H. E. Michail, et al., “On the Exploitation of a High-Throughput SHA-256 FPGA Design for

HMAC,” ACM Trans. on Reconfigurable Tech. and Sys., vol. 5 no. 1, pp. 1–28, 2012.

11. R. García, et al., “A compact FPGA-based processor for the Secure Hash Algorithm SHA-

256,” Computers & Electrical Engineering, vol. 40, no. 1, pp. 194–202, 2014

39

12. Miguel Morales-Sandoval and Claudia Feregrino-Uribe, “On the Hardware Design of an

Elliptic Curve Cryptosystem,” ENC’04, pp.64-70, Sept. 2004.

13. W. Stallings, Cryptography and Network Security Principles and Practices, 4th ed. Prentice

Hall, 2005.

14. NIST FIPS-197. (November, 2001.) “Advanced Encryption Standard,” [Online]. Available:

http://csrc.nist.gov/publications/PubsFIPS.html

15. NIST SP 800-38C. (May, 2004.) Recommendation for Block Cipher Modes of Operation:

The CCM Mode for Authentication and Confidentiality. [Online]. Available:

http://csrc.nist.gov/publications/PubsSPs.html

16. NIST FIPS PUB 180-3. (October, 2008), “Secure Hash Standard(SHS),” [Online]. Available :

http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf

17. Chanbok Jeong and Youngmin Kim, “Implementation of Efficient SHA-256 Hash Algorithm

for Secure Vehicle Communication using FPGA”, ISOCC 2014 conf., pp. 224-225, Nov.

2014.

18. NIST SP 800-90A. (January, 2012), “Recommendation for Random Number Generation

Using Deterministic Random Bit Generators,” Available : [Online].

http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf

19. Tao Zhang, Luca Delgrossi, Vehicle Safety Communications: Protocols, Security, and Privacy,

Hoboken, New Jersey : John Wiley Sons, Inc., 2012.

20. FIPS PUB 186-3. (June, 2009.) “Digital Signature Standard (DSS),” [Online]. Available:

http://csrc.nist.gov/publications/PubsFIPS.html

21. Xilinx LogiCORE IP Adder/Substracter v11.0. (March, 2011), [Online]. Available:

http://www.xilinx.com/support/documentation/ip documentation/addsub_ds214.pdf

22. Xilinx. (March, 2013.) XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD

Devices. [Online]. Available:

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_5/xst.pdf

23. Xilinx. (March, 2013.) ChipScope Pro Software and Cores User Guide. [Online]. Available:

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_5/chipscope_pro_sw_co

res ug029.pdf

40

24. A. Aziz, A. Samiah, N. Ikram, “A secure framework for robust secure wireless network (RSN)

using AES-CCMP", Proceedings of the fourth international Bhurban conference on applied

sciences and technology, 2005.

25. N. Smyth, M. McLoone, JV. McCanny, “WLAN security processor", IEEE Trans Circ Syst I:

Fund Theory, pp. 1506-1520, 2006.

26. H. Rha, H. Choi, \Efficient Pipelined Multistream AES CCMP Architecture for Wireless

LAN", Information Science and Applications (ICISA), 2012 International Conference, pp. 1-

5, May 2012.

41

Acknowledgement

I would like to appreciate completion my master thesis to Prof. Youngmin Kim. His advice,

teaching, and encouragement guided to make better research result and quality of my life. And, also,

research members in NanoDA Lab. thank for help adapting for UNIST and researching about my

thesis. Committee members of my thesis defense are also thank you for the advice about my thesis. It

is very helpful for my further research plan.

저의 사랑하는 부모님의 헌신과 동생 덕분에 연구에 전념할 수 있었습니다. 이렇게 잘

연구를 끝내고 졸업할 수 있게 도와 주셔서 감사합니다.

그리고 나의 고등학교 친구들, 대학교 친구들과 연구실 분들, 그리고 UNIST에 정섭이,

은지, BICDL 식구들에게도 졸업을 축하해 주어 감사하다고 전하고 싶습니다.

I also would like to express appreciation to some other people, well, I’ll cut this short for now.

	I. Introduction
	II. Related Works
	III. IEEE 1609.2 WAVE Protocol Security Service
	3.1 AES-CCM
	3.1.1 AES
	3.1.2 CBC-MAC
	3.1.3 Counter

	3.2 SHA-256
	3.3 Hash-DRBG
	3.4 ECDSA

	IV. Hardware Implementation of IEEE 1609.2 WAVE Protocol Security Service
	4.1 AES-CCM
	4.1.1 AES
	4.1.2 AES-CCM

	4.2 SHA-256
	4.3 Hash-DRBG
	4.4 ECDSA

	V. Experiment Result
	5.1 AES-CCM
	5.2 SHA-256
	5.3 Hash-DRBG

	VI. Conclusion
	CCC.pdf
	Ⅰ. Introduction
	1.1 Principle of lithium ion batteries
	1.2 Components of lithium ion batteries
	1.2.1 Cathode materials
	1.2.2 Anode materials
	1.2.3 Electrolytes
	1.2.4 Separators

	1.3 References

	Ⅱ. Synthesis of highly dispersive and electrically conductive silver-coated silicon of anode material for lithium-ion batteries
	2.1 Introduction
	2.2 Experimental
	2.2.1 Synthesis of silver-coated silicon
	2.2.2 Characterization of silver-coated silicon
	2.2.3 Electrochemical tests

	2.3 Results and discussion
	2.4 Conclusion
	2.5 References

	Ⅲ. Synthesis of antimony-doped tin oxide coated natural graphite and its electrochemical property as battery anode
	3.1 Introduction
	3.2 Experimental
	3.2.1 Synthesis of ATO-coated graphite
	3.2.2 Characterization of ATO-coated graphite
	3.2.3 Electrochemical tests

	3.3 Results and discussion
	3.4 Conclusion
	3.5 References

<startpage>12
I. Introduction 1
II. Related Works 3
III. IEEE 1609.2 WAVE Protocol Security Service 6
 3.1 AES-CCM 7
 3.1.1 AES 8
 3.1.2 CBC-MAC 9
 3.1.3 Counter 9
 3.2 SHA-256 10
 3.3 Hash-DRBG 10
 3.4 ECDSA 12
IV. Hardware Implementation of IEEE 1609.2 WAVE Protocol Security Service 16
 4.1 AES-CCM 16
 4.1.1 AES 16
 4.1.2 AES-CCM 18
 4.2 SHA-256 21
 4.3 Hash-DRBG 22
 4.4 ECDSA 29
V. Experiment Result 32
 5.1 AES-CCM 32
 5.2 SHA-256 34
 5.3 Hash-DRBG 35
VI. Conclusion 37
</body>

