
 

 

 

 

 

 

Cryptography Engine Design for IEEE 1609.2 
WAVE Secure Vehicle Communication using FPGA 

 

 

 

 

 

Chanbok Jeong 

 

 

 

 

 

School of Electrical Engineering 

Graduate school of UNIST 

 

 

2014 

 



 

 

  



 

 

 

  



 

 

Abstract 

 

In this paper, we implement the IEEE 1609.2 secure vehicle communication (VC) standard using 

FPGA by fast and efficient ways. Nowadays, smart vehicle get nearer to our everyday life. Therefore, 

design of safety smart vehicle is critical issue in this field. For this reason, secure VC is must 

implemented into the smart vehicle to support safety service. However, secure process in VC has 

significant overhead to communication between objectives. Because of this overhead, if circumjacent 

vehicles are increased, communication overhead of VC is exponentially increased along the number 

of adjacent vehicles. 

To remove this kind of overhead, we design fast and efficient IEEE 1609.2 cryptography engine 

using FPGA. This engine consists of AES-CCM encryption, SHA-256 hash function, Hash_DRBG 

random bit generator, and ECDSA digital signature algorithm and each algorithm is analyzed 

carefully and optimized with specific technics.  

For the AES-CCM, we optimized AES encryption engine. First, we use 32-bit S-box structure to 

remove 8-bit operation of AES. Second, we employ the key save register file architecture to reduce 

frequently key expansion operation when input of key value is always same for AES encryption 

engine. Third, to protect external attacks, we use internal register files to save processed data. Finally, 

we design parallel architecture for both CBC-MAC and counter in AES-CCM algorithm. 

SHA-256 hash function is frequently used in ECDSA algorithm that is significant reason of 

optimization. So, we use parallel architecture for the preprocessing block and the hash computation 

block. And, we design latest schedule block to reduce usage of register and combinational logics.  

In ECDSA, Hash-DRBG is used to generate key value and signature for vehicle message. To make 

Hash-DRBG, we use our SHA-256 design much fast generation of random value.  

ECDSA is most critical and complex module in our cryptography engine. For this module, we use 

affine representation of elliptic curve in ECDSA. So, we can replace the prime arithmetic operation by 

right shift operation and bit operation. And, we implement scalar multiplier to optimize arithmetic 

operation of ECDSA. This kind of replacement is hardware kindly, so we can reduce complexity of 

ECDSA hardware design. 

To implement all of algorithm in IEEE 1609.2 standard, we use Xilinx Virtex-5 FPGA chip with 

ISE 14.6 synthesis tool and Verilog-HDL. 
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Chapter Ⅰ 

Introduction 

Nowadays, many countries enacted or were enacting new traffic safety criteria toward development 

a new car. Customer and market also demand smart vehicle for driving efficiency, prevent 

environmental pollution, safety, and convenience. To satisfy these requirements, vehicle 

communication (VC) is necessary technology for development the smart vehicle or the brand new 

cars.  

To support VC, academy and enterprise push ahead with project and standardization work. For 

instance, SEVECOM, simTD, working group 5 security of ETSI, and eSafety security working group 

of eSafety forum in EU. And, in US IEEE 1609 Wireless Access in Vehicular Environments (WAVE) 

is standardized in order to support VC. It is also standardized in KOREA by the Telecommunications 

Technology Association (TTA) [1, 2].  

But, VC has critical security issue because VC is concerned in safety of vehicle and human in 

vehicle or other traffics. Therefore, to provide VC service, we must resolve security issue. Actually, 

abovementioned VC standards or project define security mechanisms to solve this issues. Typical 

standards is the IEEE 1609.2 WAVE security service. In this standard has 5 security methods these are 

AES-CCM, SHA, DRBG, ECDSA, and ECIES. But, these security methods yield critical overhead in 

VC process. In order to propagate VC rapidly, we must reduce security overhead in VC. 

In this paper, we propose the crypto engine to reduce security overhead in IEEE 1609.2 WAVE 

security methods using FPGA. The crypto engine has 4 security methods these are AES-CCM, SHA, 

DRBG, and ECDSA. To optimize AES-CCM, we use 32 bits S-Box and 32 bits data path to reduce 

required clock cycles in system, using key-box and saving expanded key to remove iterated key 

expansion step, internal registers are used to protect the processed data from external attacks, and 

parallel architecture to improve the throughput of AES-CCM. For the SHA algorithm, we employee 

LMS to reduce usage of register, embed Xilinx IP adder to improve clock cycles, cutting the critical 

path of algorithm using registers, and implement preprocessing unlike other papers. For the DRBG, 

we use our own SHA algorithm to generate the random number and internal finite state machine to 

improve efficiency of system control. In ECDSA algorithm, that use SHA, DRBG algorithms to make 

digital signature. So, we use already implemented IPs these are implemented by us. And, special 

mathematical routines are used to generate and process the elliptic curves for digital signature. That 

routines is much fitted for hardware implementation [3]. 
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Chapter Ⅱ 

Related Works 

The authors of [4] trace the history of VC in the United States and introduce WAVE protocol. In 

1991, Intelligent Vehicle Highway Systems (IVHS) are created by the United States of Congress. The 

goals of IVHS are increased safety, improved congestion, decreased pollution, and saved fuels in 

traffic infrastructure. This plan was served by the National Intelligent Transportation Systems 

Architecture (NITSA) after 13 years and it was become to mater plan of the Intelligent Traffic 

Systems (ITS) in the US. In 2004, an IEEE task group was developing an amendment to the 802.11 

standard to include vehicular environments as 802.11p. Another IEEE team, working group 1609, was 

developing IEEE 1609 standard set that was consisted IEEE 1609.1, IEEE 1609.2, IEEE 1609.3 and 

IEEE 1609.4. Finally, IEEE 1609.2 and IEEE 802.11p are combined by WAVE for the wireless 

accessing in vehicular environment. These 5 components in WAVE are described in this paper, very 

briefly. Especially, security service as IEEE 1609.2 is described with some cryptography algorithms. 

As mentioned above chapter 1, VC has critical security issue for the safety of vehicle environments. 

This issue is analyzed by the authors of [5]. In this article show possibility of cars could be next 

victim of cyber-attacks. Because, vehicle already contain a huge amount of electronics controlled by 

software code and hardware. The authors are performed experiment to analyze security of a modern 

automobile. In the result, they can be hacked to even road test. To hack in to the car, they use OBD-2 

connector of experimented-on car, diagnostic connector, and AVR-CAN module to connect CAN 

protocol in vehicle. And they can be killing engine and malfunction to break system at speeds of up to 

40 MPH. Figure 2-1 shows the experiment environment and result of that. This result was published 

in the Financial Times at March 22th, 2013 [6]. 

 

 
Figure 2 - 1. Environment and result of [5] 
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According to the authors of [7, 8], the data throughput and minimum delay (MD) limits of 802.11p 

VC protocol are analyzed. The MD of VC for 27 Mbps data rate of 1000 Bytes payload data is 565.5 

㎲. The authors of [8], they claim that ECDSA algorithm in IEEE 1609.2 standard yield overhead in 

VANET. Because, ECDSA has require a lot of arithmetic operation to generate digital signature and 

verification of signature. Figure 2-2 shows that overhead of ECDSA rise breaking distance when 

emergency breaking situation in highway. To remove overhead of ECDSA, they use Montgomery 

multiplication that can be used for multiplication, inversion, modular operations of key generation, 

signature generation, and verification. 

 

Figure 2 - 2. Overhead of ECDSA using the NIST elliptic curves in IEEE 1609.2 [8] 

 

In [2], the author analyzes about IEEE 1609 and explains security objectives of C2X and IEEE 

1609.2. Interestingly, author analyze implementation methods of security algorithms in IEEE 1609.2 

with pure software, standard smart cards, and FPGAs or ASICs. At the result, FPGA implementation 

is much feasible solution. But, in this implementation, they didn’t use NIST prime EC curves in IEEE 

1609.2. 

In [9], they are design AES-CCMP (Advanced Encryption Standard-Counter with CBC-MAC 

Protocol) FPGA (Field Programmable Gate Array) hardware for IEEE 802.11i-2004, they are 
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carefully analysis AES-CCM architectures to exploit parallelization of some processes and the design 

of highly specialized processing modules. They aim to design a fast simple iterative AES-CCMP 

hardware architecture with low hardware requirements. In this work, Virtex-4 FPGA implementation 

has 12.259 Efficiency with 149.00 MHz that consist of 1921 FPGA slices and 20 BRAM. Also, this 

paper compare to software implementation and hardware implementation results. Consequently, 

software implementation has high frequency and throughput but it has low efficiency than hardware 

implementation. 

In [10], authors have implemented the hash function in SHA-256 module for HMAC (Hash-based 

Message Authentication Code). To improve the performance, they use four pipeline stages for hash 

computation of four different input messages, and a carry save adder.  

In [11], a compact FPGA processor for the SHA-256 algorithm is implemented without 

preprocessing unit. To optimize the SHA-256 hash function, they have proposed several techniques, 

such as minimization of the critical path, reducing of the memory access by using data reuse, and a 

specific 4-input arithmetic logic unit (ALU). 

The authors of [12], they implement elliptic curve cryptosystem (ECC) with optimized arithmetic 

operation logic. Scalar multiplication operation is the most time consuming operation in ECC. But, 

this logic is used frequently to generate signature and verification. Authors implement multiplier and 

inverter co-processor on F2
m with binary shifter. To implement co-processor, authors use a Xilinx 

Virtex-2 XC2V1000-4FG456 FPGA chip with VHDL. As a result, eight percent slices in FPGA is 

used to calculate multiplication with 166 MHz. For the inverter, thirty-five percent slices in FPGA is 

used to calculate inverter with 115 MHz. 
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Chapter Ⅲ 

IEEE 1609.2 WAVE Protocol Security Service 

An IEEE 1609.2 is part of an IEEE 1609 WAVE Protocol (WAVE) to provide security services for 

application and management messages. As mentioned above, the WAVE is defined for safety, comfort 

and efficiency in vehicle. For these reasons, the WAVE has four sub-standards and also an IEEE 

802.11p physical layer to support Vehicle to X (V2X) communication. An IEEE P1609.1, the first 

sub-standard, defines an application. An IEEE P1609.3 and An IEEE P1609.4 define network service 

and multi-channel operation, respectively [1, 4]. Figure 3-1 shows the WAVE communication stack. 

In this figure, we can show the relationship of each IEEE 1609 sub-layer. 

 

Figure 3 - 1. WAVE Communication Stack with OSI 7-Layer [4] 

The IEEE 1609.2 is consisted of 5 algorithms these are Advanced Encryption Standard – CBC-

MAC (AES-CCM), Secure Hash Function (SHA), Hash-Deterministic Random Number Generator 

(Hash-DRBG), Elliptic Curve Digital Signature Algorithm (ECDSA) and Elliptic Curve Integrated 

Encryption Scheme (ECIES). Connection of each algorithm in the IEEE 1609.2 is represented in 

figure 3-2. In this chapter, we explain each secure algorithm in the IEEE 1609.2, exclude the ECIES. 
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Figure 3 - 2. Entire algorithms in the IEEE 1609.2 

 

3.1 AES-CCM 

The AES-CCM is a unique symmetric key block cipher algorithm in the IEEE 1609.2 to encrypt and 

decrypt data also defined by a NIST SP 800-38C. It is also used for other wireless communication 

protocol like an IEEE 802.11 to encrypt the data. The AES-CCM is consisted of an AES-CBC-MAC 

and a Counter using an AES algorithm as shown in figure 3-3 [1, 9].  

 

Figure 3 - 3. The AES-CCM structure 

The input of the AES cipher (Plaintext) is formatted to 128-bit formatted block by the formatting 

function. This block is processed by a Cipher Block Chaining Message Authentication Code (CBC-
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MAC) and a Counter to encrypt the Plaintext. Both results are XOR-ed to make a Massage Integrity 

Code (MIC) data for authentication of data. And, the ciphertext is generated by the Counter. The 

CBC-MAC and the Counter are processed using the AES algorithm for each step. 

3.1.1 AES 

 

Figure 3 - 4. Round structure of AES (128 bits key size) [13] 

The AES is encryption standard based on symmetric key block cipher. The AES is defined as FIPS-

197 by NIST to substitute a Data Encryption Standard (DES) encryption algorithm. Because, the DES 

has been reported to have performance limitation and security weakness issues in academic research.  
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To develop the AES, NIST require the following standard criteria: minimum system resource usage, 

open source algorithm, ability for hardware and software implementation, robustness to any security 

attack, low complexity for encryption calculation, and implementation in any system environment. 

The AES has three variable lengths of 128, 192, and 256 bits for an encryption key and input block 

size is 128-bit. The encryption key is expanded by a key expansion process that expand the key obey 

the length of key as shown table 3-1. The expanded keys are used to encryption the plaintext at each 

round [13, 14]. 

Table 3 - 6. Key and round of the AES [13] 

Input key size 4 words / 16 bytes 6 words / 24 bytes 8 words / 32 bytes 

Expanded key size 44 words / 176 bytes 52 words / 208 bytes 60 words / 240 bytes 

Round 10 12 14 

 

To encrypt the plaintext, the AES has round structure equal to figure 3-4. First step of round is 

substitution bytes (SubByte) step that substitute a byte-to-byte of plaintext or previous encrypted data 

using a substitution box (S-Box). The shift row (ShiftRow) step shifts the substitution step’s data. 

Input of ShiftRow is shifted compliant with index of row in a processing block. The mix column 

(MixColumn) step permutes bit data in column of the processing block using Galois Filed (GF(28)). 

Final step is add round key that operates bit-wise XOR for the mixed column results with expanded 

key value. These step are same during round 1 and 9 except first and final round. 

3.1.2 CBC-MAC 

The CBC-MAC step in AES-CCM generates message authentication code (MAC) using chaining 

block cipher method with the AES encryption. To make chaining block, the CBC-MAC is iterated 

encryption using AES and XOR operation with previous chaining result. At the end, a chaining block 

is became MAC that result of AES-CCM [15]. 

3.1.3 Counter 

Ciphertext of AES-CCM is generated in counter step. In this step, counter blocks are generated for 

each plaintext block. The counter blocks are consisted with nonce data from an input of AES-CCM 

and simple counter value. The first block in ciphertext is XOR-ed with MAC data from the CBC-

MAC. This value is used to checksum of the ciphertext. So, length of ciphertext is same to plaintext 

without MAC length [15]. 
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3.2 SHA-256 

SHA-256 is kind of the one-way hash function that is published as FIPS 180-3 by the NIST and 

included in SHA-2 family. Through table 3-2, we can show the properties of SHA-256. SHA-256 can 

has up to 264 bits input data. This input data is processed by preprocessing and hash computation. 

Preprocessing stage is padding a message, parsing the padded message into N x 512-bit blocks and 

setting initialization values. When preprocessing stage is completed, hash computation stage generates 

a message schedule blocks using the padded message and a series of hash value using the message 

schedule blocks. Consequentially, the output of SHA-256 is generated as the message digest. The 

SHA-256 has 256 bits message digest. The message digest always has unique value depending on the 

input message [16][17].  

Table 3 - 7. Secure hash algorithm properties [16] 

Algorithm 
Message Size  

(bits) 

Block Size  

(bits) 

Word Size 

(bits) 

Message Digest 

Size (bits) 

SHA-1 < 264 512 32 160 

SHA-224 < 264 512 32 224 

SHA-256 < 264 512 32 256 

SHA-384 < 2128 1024 64 384 

SHA-512 < 2128 1024 64 512 

 

In SHA-256, all operation based on 32-bit unit as a word. Also, all arithmetic operations are based 

on 232. The SHA-256 has six logical functions, these are Ch, Maj, ∑ ( )
{   }
 , ∑ ( )

{   }
 ,   

{   }( ) 

and   
{   }( ),  eight working variables, a, b, c, d, e, f, g, and h and two temporary variables, T1 and 

T2. The logical functions, working variables and temporary variables are used to process hash 

computation stage [16][17]. 

 

3.3 Hash-DRBG 

The hash-DRBG is one of the DRBG mechanisms based on hash functions. As shown in figure 3-5 

the hash-DRBG has many inputs to generate the random bits these are an entropy input, a nonce, a 

personalization string, an additional string, a seed length (seedlen), and a security strength. But, the 

personalization string, and the additional string are optional input to generate the random bits. A 

reseed count in figure 3-5 isn’t input of the hash-DRBG that is initialized at initialization step and 
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reseed step. 

The hash-DRBG has 3 steps to make random bits. These are an instantiate, a generate algorithm, 

and a reseed. The inputs of instantiate algorithm are used to perform initialization for values of hash-

DRBG to generate the random number. These input are concatenated and entered to a hash_df that sub 

algorithm to create instantiation values. The initialization values of in this algorithm are a reseed 

counter, seed value (V), and constant value (C). V and C are generated by the hash_df and reseed 

counter is just assigned value ‘1’. 

The generate algorithm generate the random bit using V, C, the additional input and the seedlen. As 

mentioned above, V and C is generated by instantiation algorithm or regenerated values from 

algorithm itself. In this algorithm use SHA-256 and hashgen algorithm, sub algorithm of DRBG, are 

used to create random bit (returned_bit). In this algorithm, for the robustness of the security strength 

of the algorithm, V and C are regenerated during the generate algorithm and these value are feed to 

algorithm itself to generate the next random bits, V, and C. 

Similarly to instantiate algorithm, the reseed algorithm generate the V and C for generate the 

random bits. Methodology also like the instantiate algorithm. However, the reseed algorithm is called 

when reseed counter is reached to the number of requests between reseeds in table 3-3 and reseed 

counter is initialized to 1 because the V and C doesn’t have enough security strength for robustness. 

For the reseed algorithm, additional input can be entered to reseed algorithm [18]. 

Table 3 - 8. Definitions for hash-DRBG mechanisms [18] 

 SHA-1 SHA-224 

and SHA-

512/224 

SHA-256 

and SHA-

512/256 

SHA-384 SHA-512 

Output block length 160 224 256 384 512 

Maximum entropy input length ≤ 235 bits 

Seed length for Hash-DRBG 440 440 440 888 888 

Maximum personalization string 

length 
≤ 235 bits 

Maximum additional input length ≤ 235 bits 

Number of requests between 

reseeds 
≤ 248 
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Figure 3 - 5. Standard structure of hash-DRBG [17] 

3.4 ECDSA 

ECDSA is typical digital signature generation algorithm in WAVE. In ECDSA algorithm, all values 

are defined over points on elliptic curves. If some attacker try to break the ECDSA algorithm, he/she 

solve the discrete logarithm problems similarly to DSA. The elliptic curve is defined in Equation 3.1. 

In this equation has parameters a and b these are constants [19].  

  =	  +   +  																																																																																																																																	(Eq. 1) 

For the ECDSA in WAVE protocol, it use special recommended NIST elliptic curves, NIST P-224 

and NIST P-256. These curves defined over prime fields. Table 3-4 and table 3-5 shows the parameter 

of each NIST prime curve, respectively [20].  
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Table 3 - 9. List of parameters for curve P-224 [20] 

Parameter Value 

p 26959946667150639794667015087019630673557916260026308143510066298881 

n 26959946667150639794667015087019625940457807714424391721682722368061 

SEED 0x bd713447_99d5c7fc_dc45b59f_a3b9ab8f_6a948bc5 

a -3 

c 0x5b056c7e_11dd68f4_0469ee7f_3c7a7d74_f7d12111_6506d031_218291fb 

b 0xb4050a85_0c04b3ab_f5413256_5044b0b7_d7bfd8ba_270b3943_2355ffb4 

Gx 0xb70e0cbd_6bb4bf7f_321390b9_4a03c1d3_56c21122_343280d6_115c1d21 

Gy 0xbd376388_b5f723fb_4c22dfe6_cd4375a0_5a074764_44d58199_85007e34 

 

Table 3 - 10. List of parameters for curve P-256 [20] 

Parameter Value 

p 115792089210356248762697446949407573530086143415290314195533631308867097853951 

n 115792089210356248762697446949407573529996955224135760342422259061068512044369 

SEED 0xc49d3608_86e70493_6a6678e1_139d26b7_819f7e90 

a -3 

c 0x7efba166_2985be94_03cb055c_75d4f7e0_ce8d84a9_c5114abc_af317768_0104fa0d 

b 0x5ac635d8_aa3a93e7_b3ebbd55 769886bc 651d06b0 cc53b0f6 3bce3c3e 27d2604b 

Gx 0x6b17d1f2 e12c4247 f8bce6e5_63a440f2_77037d81_2deb33a0_f4a13945_d898c296 

Gy 0x4fe342e2_fe1a7f9b_8ee7eb4a_7c0f9e16_2bce3357_6b315ece_cbb64068_37bf51f5 

ECDSA has three process these are key generation, signature generation, and verification of 

signature of WAVE message. Each process use scalar addition, scalar multiplication, scalar inversion, 

point addition, and point multiplication.  

Figure 3-6 shows the key generation process of ECDSA. In this process, private key (d) is generated 

by Hash-DRBG. Public key is generated by multiplication d and point G(x, y). 

Figure 3-7 is process of the signature generation for the message. Signature is consisted with r and s. 

To generate r, a random value k is generated by the Hash-DRBG and performed point multiplication 

with G. At this time, r is reduced by modular p and q operations. Another signature pair s is generated 

using r and k. In s, hashed WAVE message is contained with k, private value d, and r. s is also reduced 

by modular q. 
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Figure 3 - 6. Key generation of ECDSA 
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Figure 3 - 7. Signature generation of ECDSA 

In figure 3-9, we can show the signature verification process of ECDSA. To verification signature, 

signature is hashed using SHA, as e, and separated to s and r by integer checker. s is became u1 using 
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modular p inversion and scalar multiplication with e and reduced by modular q. r is also became u2 

using scalar multiplication with w and modular q. v1 and v2 are performed point multiplication with G 

and Q, respectively, and point addition each other with modular reduction p and q. It is became v that 

is compared with r. If r and v is equal than signature is valid and message of the signature is accepted 

to system. Else, signature is invalid and message is thrown out [20]. 

Integer
checker

SHA

inverters mod q

mod q

w

mod q

r

e
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*(G(x,y))
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mod q

x

v

Compare

T/F

signature

Figure 3 - 8. Signature verification of ECDSA 
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Chapter Ⅳ 

Hardware Implementation of IEEE 1609.2 WAVE Protocol Security 

Service 

In this chapter, we explain how to implement our crypto engine for the security algorithms in IEEE 

1609.2 WAVE. To design cryptography standard algorithm, we need to change that is the software 

kindly described cryptography algorithm in the standard document to hardware structure for the RTL 

coding. There has many issues to overcome to describe the cryptography algorithm. First, because of 

it has sequentially described algorithms, to change the parallel structure for the faster circuit design. 

Second, many for, while, and if statements are used to describe cryptography algorithm. To implement 

these statements to RTL, many big comparators are used to control routines of the number of iteration 

or to finish the if statements. Third, reuse variable to calculate variable itself. Fourth, too long 

arithmetic combination logic path are used to generate cryptography result. Fifth, too wider and many 

operand in arithmetic operation. It is yield huge critical paths for the arithmetic operation. To 

overcome implementation issues, we use parallel architecture, analysis data dependency between 

variables, using bit operations to make simple arithmetic logics, register insertion to long combination 

logic to cut the critical path, and employment Xilinx adder/substracter IP core to improve arithmetic 

combination logic [21]. 

4.1 AES-CCM 

4.1.1 AES 

 

Figure 4 - 9. Proposed architecture of key expansion process 
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To make best performance of AES-CCM, we analyze and implement AES algorithm very carefully 

because of AES is frequently used in AES-CCM. AES has key expansion and AES engine module to 

generate encryption result. Key expansion module is performed expansion operation of input key to 

expanded key. Expanded keys are used to process of each round in AES. In this paper, 128 key length 

of AES engine is implemented. 

In the figure 4-1, there has 8 bits operation data paths and these lead to delay in key expansion path. 

However, because of key expansion is executed only one time during same input key, we didn’t 

optimize the data path. But, it is required key saving operation. So, we employee 128 bits x 11 key 

table (Key_Tbl) to save expanded key values. The substitution box (S_Box) is same module in 

proposed AES engine. The input and output length of key expansion is same 128 bits. 

 

Figure 4 - 10. 8 bits data path architecture of AES encryption engine 

 

 

Figure 4 - 11. Proposed 32 bits data path architecture alter the 8 bits data path 
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Figure 4-2 shows the AES encryption engine structure with 8 bits data path. Input length of the AES 

encryption engine is 128 bits. Output ciphertext length is also 128 bits. In first round, add round key 

operation is performed to generate initial data. After that, second round through tenth round is 

performed to generate encryption result, sequentially. In these rounds, perform substitution byte, shift 

row, mix column, add round key, sequentially. But, in figure 4-3 that is proposed architecture, shift 

row (ShiftRow) is performed before the substitution byte (SubByte). Because, likes sequence of figure 

4-2, changing row data (ShiftRow) to column data (mix column) is required additional buffer to 

transform. But, likes sequence of figure 4-3, changing row data to byte data (SubByte) and byte data 

to column data can be transform without the data buffer. Because, byte data operation is performed 

likes buffer. And, we consider that 32 bits data substitution using substitution box (S_Box) and 32 bits 

data is considered order of mix column with already row-wise shifted bus interface using wire index 

syntax in Verilog-HDL. By the proposed 32 bits operation, we can reduce 4 clock cycles in each 

round and remove substitution buffer in 9 bits operation data path. 

 

Figure 4 - 12. Finite state machine of AES encryption engine 

Figure 4-4 shows the finite state machine (FSM) of AES module. To control key expansion and 

AES encryption engine, control signal is generated in FSM. Because, key expansion and AES 

encryption engine have different round counters and timing of beginning process (do_exped, do_aes) 

and final process (text_valid). 

4.1.2 AES-CCM 

In the figure 4-5, we can show the proposed architecture of AES-CCM. It has parallel structure for 

counter and CBC-MAC process. AES-CCM has nonce, plaintext, and key input signal and ciphertext 

and MAC data are output signal. Formatted block process in figure 4-5 generate formatted block from 

plaintext data into the 128 bits data blocks. But, the first block is consisted with the nonce, the length 

of payload and the length of MAC. For the formatted block process, we use case statement with 

modular to length of plaintext with 128. As shown in figure 4-5. (a), counter process performs AES 
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with a 128-bits counter block that is generated with nonce and counter value as mentioned above. 

Except first encrypted counter block, all the encrypted counter block XOR-ed with formatted block. 

First encrypted counter block is XOR-ed with final data of CBC-MAC that is MAC data for the 

plaintext. 
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Figure 4 - 13. Proposed architecture of AES-CCM 

Figure 4-5. (b) is architecture of CBC-MAC. It perform chaining to previous AES encrypted 

chaining block and current formatted block using XOR operation. Therefore, it has strong data 

dependency current and previous block to generated chaining block. However, it is performed with 

counter process, simultaneously. Using this method, we didn’t wait CBC-MAC result to MAC data. 

That means, we can save huge clock cycles in our system. 



20 

 

 

Figure 4 - 14. Finite state machine of AES-CCM 

To control AES-CCM, we need to generate control signal to control each module in AES-CCM such 

as figure 4-6. This FSM start from READY state. If enable signal (i_do_cbc) is entered into the 

system and the length of plaintext is not zero than state transits to FORMAT state. In FORMAT state, 

system make formatted block data using formatted block process. FORMAT state is remained until 

parsing_counter is not equal to total_block_num. If two values are equal to each other that means all 

plaintext is formatted in to the block. Next state as KEY_EXP is performed key expansion process in 

AES encryption engine until finish of key expansion (key_exp_done). In the DO_AES state, AES 

engine encrypt the counter block on counter process or the chaining block in the CBC-MAC. This 

operation can controlled just one state of FSM because encryption timing of both counter and CBC-

MAC process is same. If DO_AES state is done than state transited to NEXT_DATA to read next 

formatted data for the next encryption process. If enc_block_counter and total_block_num are same 

than state is transited to CBC_DONE and system is terminated. That means, there are no remaining 

block need to encrypt because of the number of encrypted block number is same to the number of 

formatted block. 
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Figure 4 - 15. Finite state machine of formatting function 

Figure 4-7 is FSM of formatting function that is sub FSM of AES-CCM FSM. First state READY is 

transited to FIRST_BLOCK when start signal (do_format) is entered in the system. In 

FIRST_BLOCK state generate flag byte of first formatted block using the length of plaintext and the 

length of MAC. After that, state is transited to S_NONCE. Until these transition, do_format must be 

high. S_NONCE state formatting nonce state into the formatted block and transited to ASSOCIATE 

state if it A_flag is true and data_type is equal to T_ASSOCIATE. If not, state is transited to 

PAYLOAD state. In ASSOCIATE and PAYLOAD data perform formatting function according to the 

data_type. PAYLOAD state is transited to READY state, if Plen is equal to zero. 

4.2 SHA-256 

 

Figure 4 - 16. Proposed architecture of SHA-256 
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To make fast and efficiency SHA-256, we are consisted parallel preprocessing and hash 

computation structure like the figure 1 that is proposed structure of SHA-256. In preprocessing stage, 

the input data is parsed in the 512 padded blocks. The last padded block is consisted 448 bits message 

that is concatenated 1bit 1 value and sequential 0 values, and length. The padded blocks in 

preprocessing stage are used sequentially. So, this stage must be completed before the hash 

computation stage.  

When preprocessing is completed than block scheduler prepare the message schedule blocks (Wt). 

Wt are used to calculate the eight working variables (Compute Memory) and the two temporary 

variables. Therefore, they are muse be prepared before the computation of a compute memory and the 

two temporary variables to generate the message digest blocks.  

To prepare Wt, we are employed a Latest Message Block Schedule module. Actually, Wt from 0 to 

15 are equal to corresponding the padded blocks, but Wt from 16 to 63 are needed calculation using 

previous Wt. So, the Latest Message Block Schedule module make latest Wt. And this operation is one 

step ahead because the other hash computation operations are required this latest Wt.  

In figure 1, we are drawn critical path of hash computation using red path. This path has data 

dependency to calculated variable itself. And, many 32-bit add operations are also affect delay of the 

path. To reduce delay of this critical path, we are used adder/substracter IP logic that is provided 

Xilinx ISE tool [20]. That can be reduced delay by the add operations with some latency. 

4.3 Hash-DRBG 

As mentioned above, hash-DRBG is generated to the pseudo-random bits (RB) using hash function. 

Figure 4-9 shows proposed hash-DRBG architecture for crypto engine of IEEE 1609.2. Hash-DRBG 

has 3 main modules (Instantiation_state, Hash_DRBG_Generate, and Hash_DRBG_Reseed) and 3 

sub modules (Hash_df, SHA-256, and Hashgen) to generate random value.  

First main module is the Instantiation_state that perform initialization to seed value as V, constant 

value as C, and reseed counter (reseed_counter) these are output signal of the Instantiation_state. The 

Instantiation_state has 5 inputs these are Entropy_input, nonce, Personalization_string, Seedlen and 

Security_strength to initiate V, C and Reseed_counter. First 3 inputs are concatenated and entered to 

Hash_df that initiate V. At this time, the length of seed (Seedlen) is entered to Hash_df to determine 

length of V. Seed value V is concatenated with 0x00 and entered Hash_df to initiate C. 

Reseed_counter is simply initialized with 1. 

Second main module is the Hash_DRBG_Generate. The RB is generated in this module. The 
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Hash_DRBG_Generate check that the Reseed_counter is bigger than the Reseed_interval. If the 

Reseed_counter is bigger than the Reseed_interval than this module generate Reseed_required signal 

and terminate the module. If not, module generate the RB. The additional input (Addi_input) is 

optional input to generate the RB that is performed to SHA-256 with 0x02 and V to w. w is added 

with V and performed modular operation with Seedlen. This modular operation is required huge 

arithmetic logic but we implement modular operation using simple bus wire syntax in the Verilog-

HDL. Because, divider is the multiplier of two. Using bus wire syntax, we can implement shift 

arithmetic operation. In this step, remainder of modular operation alter the V. The next process is 

performing the Hashgen sub module with V and requested number of bits. The Hashgen make RB 

using SHA-256. After that, module regenerate V for the next RB. To regenerate V, SHA-256 module 

is used also three 256-bit adder (red circle in Figure 4-9) and right shift operation is required. Right 

shift is same to previous one. But, 256-bit adder yield critical path of this module. If, we use ‘+’ 

operation in Verilog-HDL. It make huge delay. To solve this problem, we use Xilinx 

Adder/Substracter IP and reduce delay of critical path in this module. All process in this module is 

done, Reseed_counter is increased to check how many times RB is generated. 

Third main module is Hash_DRBG_Reseed to reinitialize the V, C and reseed. It has similar step of 

Instantiation_state module. But, to reinitialize V, data is concatenated with V, 0x01, Entropy_input, 

and Additional_input. At this step, Entropy_input and Additional_input can be changed to security 

reason. 
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Figure 4 - 17. Proposed architecture of Hash_DRBG  
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Now, we describe the implementation of the sub modules in this algorithm these are Hash_df, 

Hashgen and SHA-256. SHA-256 is same in section 4.2 SHA-256. We can show the structure of the 

Hash_df in figure 4-10. It is permutation Input_string using SHA-256 until the length of 

Requested_bits is equal to No_of_bits_to_return (seedlen), frequently. To calculate the length of 

Requested_bits, module perform division and ceiling also counter. This arithmetic operation is also 

implemented bus wire syntax. We can also confirm structure of the Hashgen sub module in figure 4-

11. This module similar to the Hash_df. It is permutation the V to generate the RB. 

 

Figure 4 - 18. Proposed architecture of Hash_df 

 

Figure 4 - 19. Proposed architecure of Hashgen 
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Hash_DRBG module is controlled using FSMs below. Because, each module has relationship for 

the operation sequence to generate RM. Figure 4-12 shows the FSM of instantiation algorithm. In this 

FSM, instantiation is done than generate i_do_generate signal to call the FSM of generate in Figure 4-

14. The FSM of generate is control the Hash_DRBG_Generate module to generate RM. If, reseed is 

required than call the FSM of reseed in figure 4-13 to regenerate V, C, and Reseed_counter. If not, 

FSM is iterated when i_do_generate is high. The FSM of reseed is called than FSM make control 

signal to handle Hash_DRBG_Reseed module. FSM is done than the FSM of generate is operated to 

generate RB. 

 
Figure 4 - 20. Finite state machine of instantiation 

 

Figure 4 - 21. Finite state machine of reseed 
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Figure 4 - 22. Finite state machine of generate 
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4.4 ECDSA 

As mentioned previously, ECDSA use multiplication arithmetic operation with wide operands. It is 

required huge amount of clock cycles. To reduce clock cycles of multiplication, we propose 

binary_multiplication logic in figure 4-15. This module add the left shifted multipliers when each bit 

in multiplicand is true. That means, to calculate multiplication, we accumulate the left shifted 

multipliers. 

Proposed binary multiplication use simple shift operation, counters and parallel_adder in figure 4-

16. Binary multiplication is controlled by a bit_count counter. The bit_count is increased at the 

positive edge of clock signal or parallel_adder_done is equal to 1 when num_of_op is equal to 9. That 

means, the Operand register file is full than bit_count is wait until processing of parallel_adder. 

Otherwise, the Operand register file is charged with left shifted up to bit_count i_a when least 

significant bit (LSB) of shifted i_b is equal to 1. And, LSB of shifted i_b is 1 than the num_of_op is 

increased up to 9. The num_of_op is count how many elements are occupied in the Operand register 

file and take a role the select signal of DEMUX to select the element of the Operand register file. If 

num_of_op is equat to 9 than parallel_adder is operated to add the Operand register file and 

num_of_op is initialized to 1 when parallel_adder_done signal is true. And, parallel_adder_done is 

true than output signal of the parallel_adder (o_output) is saved to Operand[0] to accumulate previous 

addition result. 
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Figure 4 - 23. Proposed architecture of binary_multiplication 

As mentioned above, the parallel_adder is used for the binary_multiplication to accumulate the 

multiplier. In figure 4-16, we can show the structure of the parallel_adder. It has two counter 

adder_count and clk_count. adder_count control number of iteration of addition to accumulate value. 

It is increased up to 4 when clk_count is equal to 24. And, control the index of the a and the b register 
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files to accumulate value into the Operand[0] register. clk_count is control the 256_adders by 

increasing up to 24. The 256_adder is Xilinx adder IP and has 22 delays to generate output. But, we 

make delay up to 25 for the reliability of function when module is synthesized. 
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Figure 4 - 24. Proposed architecture of parallel_adder 

 

Chapter Ⅴ 
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Experiment Results 

In this study, Xilinx Virtex-5 FPGA chip and ISE 14.5 synthesis tools are used to implement and 

synthesize the proposed systems with Verilog-HDL [22, 23]. However, ECDSA isn’t synthesized and 

made the experimental result. The total number of register slice and LUT of Virtex-5 is 58880 and 

58880, respectively. 

5.1 AES-CCM 

Proposed AES-CCM is implemented and synthesized with Virtex-5 FPGA library. As a result, 

11913 FPGA slices and 24062 LUTs are used with 166.20 MHz clock frequency. To encrypt the 640 

bit plaintext, AES-CCM spends 433 clock cycles. And, AES spends 76 clock cycles for 128 bits 

encryption data. The result of implementation is summarized in table 5-1. In this implementation, we 

use a lot of resource for AES-CCM because of internal register for protect processed data from attack 

of outside. Table 5-2 shows the usage of register files that is protect processed data. 

Table 5 - 5. FPGA implementation result and comparison with previous works of AES-CCM 

Device FPGA Slice Clock Frequency (MHz) LUT Power (mW) 

Spartan-3 [21] 523 63.7 - - 

Virtex-2 [25] 3474 80.3 - - 

Virtex-2 [9] 1609 117.88 2511 618 

Virtex-4-LX [9] 1921 149 3186 1023 

Virtex-5-LX [26] 1809 213 - - 

Virtex-5-SX [This work] 11913 166.20 24062 1332.8 

 

Table 5 - 6. Usage of register files 

Register File Name Width (bit) Depth 

input_data 128 16 

input_register 8 256 

parser_memory 128 256 

key_box 128 22 

ctr_memory 128 256 

 

Figure 5-1 shows the RTL synthesis result of AES-CCM. We can show AES, Count, CBC-MAC, 
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and interface modules in this figure, respectively. Figure 5-2 is the functional result of AES-CCM. 

o_mic_t is MAC data of plaintext. 

 

Figure 5 - 7. RTL synthesis result of AES-CCM 

 

Figure 5 - 8. Functional simulation result of AES-CCM 
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5.2 SHA-256 

We synthesis proposed SHA-256 architecture and summarize the result of implementation in table 

5-3. In this works, we implement preprocessing process in our FPGA hardware be different from 

previous works. Final result shows 1885 FPGA slices and 9643 LUTs with 179.08 MHz and 

consuming power of our system is 1292.15 mW. Using Xilinx adder IP is improved to clock 

frequency of the system. Our SHA-256 has 137 clock cycles to process 256 bits input data. 

Table 5 - 7. FPGA implementation result of SHA-256 and comparison with previous works 

Device FPGA slice Clock Frequency (MHz) Implementation of Preprocessing 

Virtex-5 [10] 1885 169.00 Software 

Virtex-5 [11] 139 64.45 NO 

Virtex-5 [This work] 2796 179.08 Yes (Hardware) 

 

Figure 5-3 is functional and timing result of our proposed SHA-256 architecture. Input_text is 

formatted block of plaintext and o_message_digest is hashed data of plaintext. Figure 5-4 is RTL 

synthesis result of proposed SHA-256 architecture. We can confirm the preprocessing, computation, 

control logic and interface of SHA-256.  

Figure 5 - 9. Result of functional simulation of SHA-256 
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Figure 5 - 10. RTL view of the SHA-256 

 

5.3 Hash-DRBG 

We also perform implementation and synthesis of proposed hash-DRBG architecture and result is 

summarized in table 5-4. In this table, 16704 FPGA slices and 27055 LUTs are used for hash-DRBG 

with 64.263 MHz and 1330.41 mW consuming power. Unfortunately, we can’t find the reference to 

compare our result. The implemented Hash-DRBG spend 828 clock cycles to generate pseudo-

random bits. 

Table 5 - 8. Synthesis result of proposed hash-DRBG architecture 

Device FPGA Slice Clock Frequency (MHz) LUT Power (mW) 

Virtex-5 16704 64.263 27055 1330.41 

Figure 5-5 is RTL synthesis result of our proposed hash-DRBG. We can confirm that all process in 

DRBG are allocated and connected each other. 
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Figure 5 - 11. RTL view of proposed hash-DRBG 

 

Figure 5 - 12. Timing simulation result of hash-DRBG 

Figure 5-6 is timing simulation result of our proposed hash-DRBG. o_return_bit is generated 

random bits with o_v (seed). o_c is the constant value of current state. 

 

  



37 

 

Chapter Ⅵ 

Conclusions 

In this paper, we implement secure algorithm in IEEE 1609.2 WAVE using FPGA hardware for VC 

security service. VC has a lot of communication load, because a vehicle object communicate many 

other vehicle objects. Also, VC use wireless communication that has serious security problem like 

other wireless communication methods. This security problem has critical affect to not only vehicle 

passengers but also entire traffic. Therefore, implementation of fast and efficient crypto engine for VC 

is essential security component in VC.  

To do this implementation, we modify the 8 bits data path of AES to 32 bits with 32 bits S-Box. And, 

Xilinx Adder IP is used for SHA-256, hash_DRBG, and ECDSA to support arithmetic operations. In 

ECDSA, we develop binary_multiplication module for the scalar multiply, modular and inversion. 

Also, parallel architecture are used to increase operation speed and we analyze the data dependency of 

the algorithm to convert sequential operation to parallel. 

As a result, we can confirm timing simulation about the AES-CCM, SHA-256, Hash-DRBG. And, 

we can confirm the all logic is placed in FPGA via RTL view of synthesis. Each synthesis results can 

be high speed operation for the VC. But, we need to improve the period of critical path and reduce 

resource utilization for the embedded system.  
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