
Authenticated Encryption on FPGAs from the

Reconfigurable Part to the Static Part

Karim Moussa Ali Abdellatif

To cite this version:

Karim Moussa Ali Abdellatif. Authenticated Encryption on FPGAs from the Reconfigurable
Part to the Static Part. Cryptography and Security [cs.CR]. Université Pierre et Marie Curie
- Paris VI, 2014. English. <NNT : 2014PA066660>. <tel-01158431>

HAL Id: tel-01158431

https://tel.archives-ouvertes.fr/tel-01158431

Submitted on 1 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Thèses en Ligne

https://core.ac.uk/display/46815584?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://tel.archives-ouvertes.fr/tel-01158431

THÈSE DE DOCTORAT DE L’UNIVERSITÉ PIERRE ET
MARIE CURIE

Spécialité: Informatique, Télécommunication et Électronique

École Doctorale Informatique, Télécommunication et Électronique

Présentée par:

Karim Moussa Ali Abdellatif

Pour obtenir le grade de

Docteur de l’Université Pierre et Marie Curie

CHIFFREMENT AUTHENTIFIÉ SUR FPGAs DE LA PARTIE
RECONFIGURABLE À LA PARTIE STATIC

Soutenue le 07/10/2014

devant le jury composé de:

M. Bruno Robisson ENSM.SE/CEA Rapporteur
M. Lilian Bossuet Laboratoire Hubert Curien Rapporteur
M. Jean-Claude Bajard LIP6 Examinateur
M. Hayder Mrabet FLEXRAS Examinateur
M. Olivier Lepape NanoXplore Examinateur
M. Habib Mehrez LIP6 Directeur de thèse
Mme. Roselyne.Chotin-Avot LIP6 Encaderante de thèse

Ph.D. THESIS OF THE PIERRE AND MARIE CURIE
UNIVERSITY

Departament: Electronics, Telecommunications and Computer Science

Presented by:

Karim Moussa Ali Abdellatif

Submitted to obtain the Ph.D. degree from:

University of Pierre and Marie Curie

Authenticated Encryption on FPGAs from the Reconfigurable
Part to the Static Part

Defense date: 07/10/2014

Committee in charge:

M. Bruno Robisson ENSM.SE/CEA Reviewer
M. Lilian Bossuet Laboratoire Hubert Curien Reviewer
M. Jean-Claude Bajard LIP6 Examiner
M. Hayder Mrabet FLEXRAS Examiner
M. Olivier Lepape NanoXplore Examiner
M. Habib Mehrez LIP6 Thesis Advisor
Mme. Roselyne.Chotin-Avot LIP6 Thesis Co-Advisor

Abstract

Communication systems need to access, store, manipulate, or communicate

sensitive information. Therefore, cryptographic primitives such as hash func-

tions and block ciphers are deployed to provide encryption and authentica-

tion. Recently, techniques have been invented to combine encryption and

authentication into a single algorithm which is called Authenticated Encryp-

tion (AE). Combining these two security services in hardware produces better

performance compared to two separated algorithms since authentication and

encryption can share a part of the computation. Because of combining the

programmability with the performance of custom hardware, FPGAs become

more common as an implementation target for such algorithms.

The first part of this thesis is devoted to efficient and high-speed FPGA-based

architectures of AE algorithms, AES-GCM and AEGIS-128, in order to be

used in the reconfigurable part of FPGAs to support security services of com-

munication systems. Our focus on the state of the art leads to the introduction

of high-speed architectures for slow changing keys applications like Virtual

Private Networks (VPNs). Furthermore, we present an efficient method for

implementing the GF(2128) multiplier, which is responsible for the authenti-

cation task in AES-GCM, to support high-speed applications. Additionally,

an efficient AEGIS-128 is also implemented using only five AES rounds. Our

hardware implementations were evaluated using Virtex-5 and Virtex-4 FP-

GAs. The performance of the presented architectures (Thr./Slices) outper-

forms the previously reported ones.

ii

The second part of the thesis presents techniques for low cost solutions in

order to secure the reconfiguration of FPGAs. We present different ranges of

low cost implementations of AES-GCM, AES-CCM, and AEGIS-128, which

are used in the static part of the FPGA in order to decrypt and authenticate

the FPGA bitstream. Presented ASIC architectures were evaluated using 90

and 65 nm technologies and they present better performance compared to the

previous work.

Keywords– Authenticated Encryption, FPGAs, ASIC, Secure Reconfigura-

tion.

iii

To the memory of my father ..

Acknowledgements

After seemingly endless days of typing and correcting, the time has come to

write the last part of this thesis. I will take this opportunity to thank several

people who have greatly influenced the journey leading to this dissertation.

First of all, great appreciation goes to my supervisors Prof. Habib Mehrez

and Dr. Roselyne Chotin-Avot for giving me the chance to do the PhD degree

in LIP6. I am grateful for the freedom I have been given during my research

and the guidance provided when needed.

I would like to extend my gratitude to Prof. Hesham Hamed, Prof. Hassan

Aboushady, Dr. Alp Kilic and Vinod Pangracious for their valuable sup-

port along the way. A great thank you goes to Akram Malak, Dr. Raouf

Khalil, Yasser Yousry, Tamer Badran, Alhassan Sayed, Mohamed Shaaban,

and Mootaz Allam for making working hours more enjoyable.

Besides my colleagues, I appreciate the care and support of my good friends,

who always managed to move my thoughts away from work when needed like

Ahmed Nabil, Mahmoud Borcan, Ahmed Nadi, and Bahaa Elmasry.

Finally, I would like to thank my parents to whom I owe a great deal. To

my late father Moussa Abdellatif, thank you for showing me that the key to

immortality is to live a life worth remembering. Very special thanks and a lot

of love go to my wife Nouranne Fahhim who always motivated and supported

me with great enthusiasm.

For all our freedom martyrs, Egypt 25/01/2011

iv

Contents

Abstract i

Acknowledgements iv

Contents v

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Motivation . 1

1.1.1 Authenticated Encryption 1

1.1.2 FPGAs . 3

1.2 Contributions . 6

1.3 Thesis organization . 8

I High Speed FPGA-based AE Architectures 10

2 Authenticated Encryption 11

2.1 Introduction . 11

2.2 Advanced Encryption Standard (AES) 12

2.2.1 Algorithm specifications 12

2.2.2 Hardware implementation 16

2.3 AES-CCM . 19

2.3.1 Algorithm specifications 19

2.3.2 Hardware implementation 21

2.4 AES-GCM . 22

2.4.1 Algorithm specifications 23

2.4.2 Hardware implementation 25

2.5 AEGIS . 30

2.5.1 Algorithm specifications 30

v

Contents vi

2.6 Conclusion . 36

3 High Speed Authenticated Encryption for Slow Changing Key
Applications Using FPGAs 37

3.1 Introduction . 37

3.2 High Speed AES-GCM Architectures Using FPGAs 38

3.2.1 Efficient Parallel AES-GCM cores 44

3.3 Bitstream security of the proposed architectures 49

3.4 Hardware comparison . 51

3.5 Conclusion . 54

4 Efficient and High Speed Key-Independent AES-Based Au-
thenticated Encryption Architectures Using FPGAs 55

4.1 Introduction . 55

4.2 Efficient KOA-Based GHASH 56

4.3 High speed AES-GCM . 61

4.4 Efficient hardware implementation for AEGIS-128 63

4.5 Hardware comparison . 66

4.6 Conclusion . 70

II Low Cost Solutions for Secure FPGA Reconfigu-
ration 71

5 Low Cost Solutions for Secure FPGA Reconfiguration 72

5.1 Introduction . 72

5.2 FPGA reconfiguration . 73

5.3 Previous work . 75

5.4 Low cost AE architecture for secure reconfiguration 81

5.4.1 Proposed AES-CCM 83

5.4.2 Proposed AES-GCM 87

5.4.3 Proposed AEGIS-128 92

5.5 Hardware comparison . 97

5.6 Conclusion . 100

6 Summary and Future Work 102

6.1 Thesis Summary . 102

6.2 Future work . 103

List of Figures

1.1 Two separated algorithms for encryption and authentication . 2

1.2 Authenticated encryption . 3

1.3 Reprogrammability using bitstream 4

1.4 Reconfigurable part (user part) architecture 5

1.5 FPGA reconfiguration using NVM 5

1.6 Thesis contribution . 6

2.1 AES algorithm . 14

2.2 Key expansion of AES-128 . 15

2.3 (a) Iterative design. (b) Pipelined design 18

2.4 AES-CCM . 21

2.5 AES-GCM . 24

2.6 Polynomial Multiplication using KOA 27

2.7 (a) KOA based GHAH. (b) Pipelined KOA based GHASH . . 28

2.8 The state update function of AEGIS-128 33

3.1 Key-synthesized AES . 40

3.2 SubBytes implementation with BlockRAMs (a), with LUTs (b),
with composite field approach (c) 41

3.3 GF(2128) multiplier proposed by [1] 42

3.4 Proposed key-synthesized AES-GCM 43

3.5 GHASH operation . 44

3.6 Proposed parallel GHASHs with fixed operand during running
time operation . 46

3.7 4-parallel AES-GCM using key-synthesized method 48

3.8 Secure bitstream communication 50

3.9 Hardware comparison on Virtex4 53

4.1 Proposed pipelined KOA-based GHASH 59

4.2 Proposed AES-GCM architecture 62

4.3 Proposed high speed AEGIS-128 architecture 65

4.4 Hardware comparison on Virtex-5 69

5.1 Remote reconfiguration . 74

5.2 Cloning attack . 74

vii

List of Figures viii

5.3 Reverse engineering attack . 75

5.4 Tampering attack . 75

5.5 Bitstream encryption/decryption by [2] 77

5.6 Bitstream encryption . 79

5.7 Bitstream encryption and authentication in Virtex6 80

5.8 our Proposed approach . 83

5.9 1/4 round-based AES . 84

5.10 Proposed AES-CCM (encryption and authentication) 85

5.11 Proposed AES-CCM (decryption and authentication) 86

5.12 Proposed GF(2128) multiplier 88

5.13 Proposed AES-GCM (encryption and authentication) 89

5.14 Proposed AES-GCM (decryption and authentication) 91

5.15 (a) Full AES-round. (b) (1/4) AES-round 93

5.16 Proposed AEGIS-128 architecture (encryption and authentica-
tion) . 95

5.17 Proposed AEGIS-128 architecture (decryption and authentica-
tion) . 96

5.18 Area Comparison using 90 nm technology 100

List of Tables

2.1 Hardware comparison . 19

2.2 Hardware comparison of the previous AES-CCM architectures 22

2.3 Data flow control for GHASH calculation by [3] 29

2.4 Hardware comparison of the previous AES-GCM architectures
on FPGAs . 31

3.1 Precomputed round keys . 39

3.2 Hardware comparison . 52

4.1 Hardware comparison . 67

5.1 Hardware comparison . 81

5.2 Previous work summery . 82

5.3 Hardware comparison . 98

5.4 Configuration throughput of some FPGA family members . . 100

ix

Chapter 1

Introduction

In this chapter, we introduce the overall motivation for this work and describe

the contributions. Furthermore, we outline the principal organization of the

core chapters.

1.1 Motivation

1.1.1 Authenticated Encryption

In our growing world of technology, the amount of information that we share

with the rest of the digital universe is constantly increasing. Our demands

to conceal confidential data are therefore being strongly needed and become

very important. The protection of a message includes the protection of con-

fidentiality and authenticity. There are two main approaches to authenticate

and encrypt a message:

1. The first approach is to treat the encryption and the authentication sep-

arately. A block cipher or stream cipher is used to encrypt the plaintext,

and a Message Authentication Code (MAC) is used to authenticate the

1

Chapter 1. Introduction 2

message as shown in Fig. 1.1. For example, we may use Advanced

Encryption Standard (AES) [4] for encryption, and then apply Pelican

Message Authentication Code (Pelican-MAC) [5] or Hash Message Au-

thentication Code (HMAC) [6] to the message to generate the MAC. The

encryption algorithm encrypts the message using a certain key (key1) to

provide the encrypted message. The authentication algorithm generates

the MAC using another key (key2) to provide the receiver with the en-

tity of the sender (authentication). The receiver decrypts the encrypted

message with the same key (key1) and authenticates the message (MAC

computation) using key2 to compare it with the sent MAC in order to

detect if they are equal or not.

Authentication

Decryption

Key1

Key2

Computed

Match? Y/N
MAC

MAC

Message

Receiver

Message

Key1

Encryption

Message

Authentication

Sender

Key2

Insecure Channel

M
A

C

Encrypted Message

Encrypted

Message

Match?

Figure 1.1: Two separated algorithms for encryption and authentication

2. Another approach is to apply an integrated Authenticated Encryption

(AE) algorithm to the message to provide both encryption and authen-

tication. One can expect that this is more efficient since encryption and

authentication can share a part of the computation. AE algorithms use

only one key for encryption and authentication as shown in Fig. 1.2.

Therefore, the key exchange and storage issues are better compared to

using two separated algorithms.

AE has been used in many widely standards such as Secure Shell (SSH) [7],

Secure Sockets Layer / Transport Layer Security (SSL/TLS) [8], IPsec [9], and

IEEE 802.11 (Wi-Fi) [10]. This has made AE very important in protocols to

secure the fundamentals of the information and communication infrastructure.

Chapter 1. Introduction 3

Encrypted Message

M
A

C

Authenticated

Encryption

Computed
MAC

Key1

Y/NMatch?
MAC

Message
Message

Receiver

Message

Sender

Authenticated
Encryption

Key1

Insecure Channel

Encrypted

Figure 1.2: Authenticated encryption

There are now two NIST recommended modes of operation for authenticated

encryption, namely, Counter with Cipher Block Chaining Mode (CCM) [11]

and Galois Counter Mode (GCM) [12]. Quite some AE schemes have been

proposed, and more are expected to join the ranks with the ongoing CAE-

SAR1. The CAESAR competition is a move towards selecting a portfolio of

AE schemes that should improve upon the state of the art. AEGIS [13] is

considered one of the submitted proposals to CAESAR.

Software realizations of such algorithms have the advantage that they are

portable to multiple platforms. In general, they have a fast time to market.

However, they can be applied in systems with limited traffic at low encryp-

tion rates. Moreover, software-based applications are not power efficient com-

pared to specialized hardware architectures. Speed and power are two major

drawbacks that motivate the hardware design exploitation of cryptographic

primitives.

1.1.2 FPGAs

The increasing costs of silicon technology have put considerable pressure on

developing dedicated SoC solutions. This means that the technology will be

used increasingly for high-volume or specialist markets. Recently, Field Pro-

grammable Gate Arrays (FPGAs) have been proposed as a hardware tech-

nology for communication systems as they offer the capability to develop the

1Competition for Authenticated Encryption: Security, Applicability, and Robustness.

Chapter 1. Introduction 4

most suitable circuit architecture of the application in a similar way to SoC

systems. Compared to a full custom ASIC design, they are cost efficient, eas-

ier to manage and can immediately be put into operation. Furthermore, they

can continuously be reprogrammed during and after the design.

In order to redefine the functionality of the FPGA, a bitstream configuration

file is uploaded on the FPGA. The reconfiguration includes downloading this

bitstream file which contains the new design on the FPGA. As shown in Fig.

1.3, the bitstream is processed by the static part (configuration logic) which is

not programmable. After that, the Static Random Access Memory (SRAM)

is programmed by the processed bitstream. By programming SRAM cells, the

functionality on the FPGA reconfigurable part (user part) can be tailored to

implement the new design.

00001001
11001101
01101001

Application

User Logic

S
R

A
M

 M
em

o
ry

C

el
ls

Static Part

FPGA

Bitstream

Figure 1.3: Reprogrammability using bitstream

Configurable Logic Blocks (CLBs), interconnections, and embedded compo-

nents (like Block Rams (BRAMs) and Digital Signal Processing (DSP) units)

shown in Fig. 1.4 are established by programming SRAM cells to connect

fabricated routing wires together.

SRAM-based FPGAs such as those manufactured by Xilinx and Altera com-

prise the largest fraction of the overall market. Because SRAM memory is

volatile, SRAM cells must be loaded with configuration data each time the

device powers up. Configuration data is typically transmitted from an exter-

nal memory source (Non Volatile Memory (NVM)) (see Fig. 1.5), such as a

flash memory or a configuration device, to the FPGA.

In recent years, FPGAs manufacturers have come closer towards filling the

performance gap between FPGAs and ASICs, enabling them, not only to

serve as fast prototyping but also to become active players as components in

Chapter 1. Introduction 5

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/OI/OI/OI/OI/O

I/OI/OI/OI/OI/O

CLB

CLB

CLB

CLB

CLBCLB

CLB

CLB

CLB

CLB

CLB

CLB

I/O Pads

Configurable Logic
 Block

Embedded Components

Routing
Resources

Figure 1.4: Reconfigurable part (user part) architecture

Application

User Logic

S
R

A
M

 M
em

o
ry

C

el
ls

Static Part

FPGA

Bitstream

Non Volatile

Memory (NVM)

Figure 1.5: FPGA reconfiguration using NVM

embedded systems. As an example, Virtex-5 family [14] of FPGAs has 2400-

25920 CLBs, 1152-11664 Kb BRAMs, 8-24 multi-Gigabit transceivers, 32-640

DSP slices, 4-12 digital clock managers, and 2-6 PLL clock generators. Thus,

FPGAs are integral parts in embedded system design.

Chapter 1. Introduction 6

1.2 Contributions

This thesis deals principally with the design of efficient hardware implemen-

tations of cryptographic algorithms for encryption and authentication. We

propose FPGA and application-specific ASIC implementations that target a

wide range of different applications.

In particular, we focus on the hardware design of current AE algorithms. Fig.

1.6 shows the main contributions of this thesis. We investigate new efficient

and high speed FPGA-based architectures of AE algorithms which will be

in the user part (reconfigurable part) of the FPGA. Also, with the gathered

knowledge, we define a framework to present different ranges of low cost ASIC

architecture of AE algorithms which are inserted in the static part in order to

protect the Intellectual Property (IP) of FPGA Bitstreams.

User Logic

S
R

A
M

 M
em

o
ry

C

el
ls

Static Part

Match?

Low Cost AE

Y/N

High Speed AE

FPGA

Computed
MAC

Encrypted Bitstream

M
A

C

Memory (NVM)

Non Volatile

MAC

Encrypted
Bitstream

Figure 1.6: Thesis contribution

The contributions of this thesis can be summarized in the following points:

• High speed AE for slow changing key applications on FPGAs

– Algorithms for authenticated encryption are the most suitable solu-

tion to reliably secure a network link. AES-GCM has been utilized

in various security-constrained applications. VPNs are widely em-

ployed to connect private local area networks to remote locations.

VPNs use AES-GCM for encryption and authentication. Current

commercial security appliances of VPNs allow a throughput from

40 to 60 Gbps [15, 16]. We describe the benefits of VPNs as be-

ing a slow changing key environment in order to design efficient

high speed architectures. In addition, we present a solution for the

Chapter 1. Introduction 7

parallelization of AES-GCM cores in order to support applications

up to 100 Gbps. Moreover, we present a protocol to secure the

reconfiguration of the proposed architectures on FPGAs.

• FPGA-based high performance AES-GCM using Efficient GF (2128)

multiplier

– The performance of AES-GCM is always determined by the GF(2128)

multiplier (authentication part) because of the inherent computa-

tion feedback. We introduce an efficient pipelined Karatsuba Of-

man Algorithm (KOA) for the GF(2128) multiplier to support high

speed applications. In particular, the computation feedback is re-

moved by analyzing the complexity of the computation process.

The proposed GF(2128) multiplier is evaluated with the pipelined

AES in order to support high speed applications.

• Efficient hardware implementation for AEGIS

– Pushed by our involvement into the hardware design of efficient

AE algorithms, we decided to follow the CAESAR competition by

designing high speed architecture of AEGIS which was accepted to

the first round of the CAESAR competition.

All presented architectures in these contributions aim at applications

with high demands for data throughput and performance. For these

designs, we primarily employ Xilinx Virtex-4 and Virtex-5 FPGAs as

an implementation target. Our proposed high speed architectures pro-

vide most savings in logic and routing resources with the highest data

throughput on FPGAs compared to previous work reported in open lit-

erature.

• Low cost solutions for IP protection of FPGA bitstreams

– IPs loaded on the FPGAs represent a kind of investment that

requires protection especially in case of remote reconfiguration.

Therefore, the FPGA must accept encrypted bitstreams from au-

thorized entities. We present different low cost solutions for per-

forming decryption and authentication of bitstreams. Efficient and

Chapter 1. Introduction 8

compact ASIC AE architectures, AES-CCM, AES-GCM, and AEGIS,

are added in the static part of the FPGA to support encrypted and

authenticated bitstreams.

Presented ASIC architectures were evaluated by using 90 and 65 nm

technologies. Our comparison to previous work reveals that our archi-

tectures are more area-efficient.

1.3 Thesis organization

The outline of this thesis is as follows:

• Chapter 2 gives detailed overview about current AE algorithms. AES-

CCM, AES-GCM, and AEGIS are discussed in detail. Later in the

chapter, we highlight the previous work that covers the hardware imple-

mentations of AE algorithms.

• Chapter 3 is entirely dedicated to high speed AES-GCM architectures

for slow changing key applications like VPNs. It presents an efficient

method for the parallelization of AES-GCM cores on FPGAs. Further-

more, we propose a protocol to protect the bitstream of the proposed

architectures on FPGAs.

• Chapter 4 presents an efficient method for the GF (2128) multiplier

used in AES-GCM. By focusing on the drawbacks of the previous ar-

chitectures of GF (2128) multipliers, we propose an efficient method to

remove the computation feedback in the GF (2128) multiplier. This is

accomplished by the presented pipelined Karatsuba Ofman Algorithm

(KOA)-based GF (2128). Finally, an efficient high speed architecture of

AEGIS is also presented in this chapter.

• Chapter 5 starts with an overview of security issues used in reconfigu-

ration of FPGAs and analyze how well they are suited to IP protection

of FPGA bitstreams. Later in this chapter, low cost implementations of

AE algorithms are presented for FPGA bitstreams protection.

Chapter 1. Introduction 9

• Chapter 6 summarizes the thesis and points out some future work.

Part I

High Speed FPGA-based AE

Architectures

10

Chapter 2

Authenticated Encryption

2.1 Introduction

Originally, confidentiality and authenticity services have been implemented

separately, by using two different algorithms. Encryption algorithms are used

to ensure confidentiality while Message Authentication Codes (MACs) can be

used to provide authentication. When two separated algorithms are used to

provide independent security services, it is considered cryptographically secure

to use separated keys for each algorithm. Recently, techniques have been

invented to combine encryption and authentication into a single algorithm

which is called Authenticated Encryption (AE). Combining these two security

services in hardware might support the following advantages:

• Area requirement for a single algorithm could be smaller compared to

two separated algorithms because encryption and authentication can

share a part of the computation.

11

Chapter 2. Authenticated Encryption 12

• A slight advantage regarding key management and key storage issues

because AE needs only a single key for both encryption and authentica-

tion.

The following is a brief overview of the most popular AE algorithms that have

been developed as a result of the current research. The aim is to provide the

details of AE algorithms to allow the reader to understand and analyze each

algorithm. Also, for each algorithm, we present the previous work in terms of

the hardware implementation in order to highlight the current challenges of

the state of the art.

The most common way of constructing an AE scheme is a mode of operation

for a block cipher, like AES [4]. Therefore, in order to discuss AE algorithms

clearly, it is useful to highlight AES because it is common in all AE schemes

that we will present.

2.2 Advanced Encryption Standard (AES)

For the drawbacks of the previous symmetric-key cryptographic standards

such as the DES and the 3DES, they have been replaced by the Advanced

Encryption Standard (AES) [4]. In particular, the AES has overcome the

drawbacks of the previous standards in terms of vulnerability to brute force

attacks and slow software implementations. The AES was accepted by the

National Institute of Standards and Technology (NIST) in 2001 and since its

acceptance, it has been utilized in a variety of security-constrained applications

like IEEE 802.11i standard [17]. It is considered by industry and government

environments as the essential scheme to protect sensitive information.

2.2.1 Algorithm specifications

The AES algorithm is a symmetric-key cipher, in which both the sender and

the receiver use a single key for encryption and decryption. The data block

length is fixed to be 128 bits, while the key length can be 128, 192, or 256

Chapter 2. Authenticated Encryption 13

bits. It is an iterative algorithm. Each iteration can be called a round, and

the total number of rounds, N, is 10, 12, or 14, when the key length is 128,

192, or 256 bits, respectively.

The 128-bit data block is divided into 16 bytes. These bytes are mapped to

a 4 × 4 array called the State, and all the internal operations of the AES

algorithm are performed on the State. Each byte in the State is detonated by

S(i,j) (0 ≤ i ≤ 3, 0 ≤ j ≤ 3) and is considered as an element of GF (28) with

P (x) = x8 + x4 + x3 + x + 1 as an irreducible polynomial. Fig. 2.1 shows the

block diagram of the AES algorithm.

In the encryption of the AES algorithm, each round except the final round

consists of four transformations in a fixed order:

1. SubBytes is a non-linear transformation that substitutes the bytes of

the state independently, using a s-box built over two steps: computa-

tion of the multiplicative inverse in the Galois field GF (28) followed by

an affine transformation in GF(2). The SubBytes can be described as

follows:

S(i, j) = MS−1
i,j + C (2.1)

where M is an 8 × 8 binary matrix, S−1 is the multiplicative inverse of

the input, and C is an 8-bit binary vector with only 4 nonzero bits.

2. ShiftRows is a simple shifting transformation. The first row of the State

does not change, while the second, third and fourth rows cyclically shift

one byte, two bytes and three bytes to the left, respectively

3. MixColumns multiplies in GF (28) each column of the of the State (4

bytes) with a(x) modulo x4 + 1 where

a(x) = 03x3 + 01x2 + 01x + 02. (2.2)

4. AddRoundKey adds a round key to the state in GF(2).

Chapter 2. Authenticated Encryption 14

++ ++

Mix Columns

+ + + + + + + + + + +

Mix Columns

0 1 2 3 4 5 6 7 8 9 10 11 12 1413 15

Mix Columns Mix Columns

+

0 1 2 3 4 5 6 7 8 9 10 11 12 1413 15

C
ip

h
er

te
x
t

(C
)1
2
8

1
2
8

P
la

in
te

x
t

A
d
d
 R

o
u
n
d
 K

ey

R
o
u
n
d
 1

R
o
u
n
d
 2

R
o
u
n
d
 N

Key Schedule

128/192/256

Key

Mix Columns

S S S S S S S S S S S S SS S S

16 input Bytes

16 output Bytes

SubBytes()

MixColumns()

AddRoundKey()

1
2

8

1
2

8

1
2

8

k0 k1 k2 k N

Figure 2.1: AES algorithm

The AES round is completed with the key expansion (see Fig. 2.2), which

generates the round keys from the original key. This expansion is defined on

4-bytes words and mainly uses the transformations of the round. A single

round key is made up by four words and is updated to the next round key

using g function which combines the SubWord (s-box over a 4-byte input)

and RotWord (word shift) functions. The rest of the key parts are generated

using XOR function.

Chapter 2. Authenticated Encryption 15

k k k k k k k k k k

0 1 2 3 4 5 6 7 8 9 10 15k k11 k12 k13 k14 k

W[0] W[2]W[1] W[3]

g

W[4] W[5] W[6] W[7]

32 32 32 32

3232
3232

Figure 2.2: Key expansion of AES-128

The transformations in the decryption process perform the inverse of the cor-

responding transformations in the encryption process.

1. InvSubBytes performs the inverse of the SubBytes stage as follows:

S(i, j) = (MS−1
i,j + C)−1. (2.3)

2. InvShiftRows does not change the first row, while the rest of the

rows are cyclically shifted to the right by the same offset as that in

the ShiftRows.

3. InvMixColumns multiplies the polynomial formed by each column of

the State with a(x)−1 modulo x4 + 1, where

a(x) = 0bx3 + 0dx2 + 09x + 0e. (2.4)

Chapter 2. Authenticated Encryption 16

4. AddRoundKey adds a round key to the state in GF(2), while the

round keys are computed in the reverse order within the key expansion

process.

2.2.2 Hardware implementation

After the standardization of AES, several research contributions focusing on

hardware implementations of the algorithm have been presented. Nowadays,

almost each possible AES architecture, covering the entire design space (both

in ASIC and FPGA), has been investigated. Companies and federal organi-

zations have plenty of choice in selecting the suitable design.

We list the major components and strategies that characterize the AES hard-

ware design:

• Datapath: AES is defined by 128-bit state with 8-bit operations. As

a result, the designer has the choice to adapt or shrink the datapath

of his architecture according to the system specification. Typical dat-

apath widths are 128, 64, 32, 16, or 8 bits. The datapath size affects

directly the area occupation and the final throughput of the AES core.

It represents a sort of area/speed trade-off. In [18], the authors analyze

different-datapath implementations on FPGAs.

• Round components: The SubBytes transformation is the most costly

(both in size and propagation delay) component of the AES round. In

terms of the ShiftRows operation, it does not consume any logic because

it is implemented as a straightforward routing of the signals without

any specific hardware component, while the most efficient strategy to

realize MixColumns is with the combinational logic as shown in [19].

Several approaches to design the SubBytes have been developed and

implemented. We describe briefly three main solutions:

1. Block Random Access Memory (BRAMs)

The s-box is implemented as a Look Up Table (LUT) and stored

in a dedicated memory. This approach is particularly suitable for

Chapter 2. Authenticated Encryption 17

modern FPGAs, which contain BRAMs. This approach saves the

logic area because the most consuming part (s-boxes) are imple-

mented as BRAMs (see [20])

2. Composite field

In [21], composite field arithmetic is employed to reduce the area

requirements, and different implementations for the inversion in

subfield GF (24) are compared. This reduction to composite fields

brings significant improvement in flexibility and in the area costs

of SubBytes.

3. FPGA LUT

The third approach is dedicated only to FPGA devices. The s-box

can be directly instantiated in LUTs located in the FPGA logic

elements. As example, the basic logic elements of Xilinx FPGAs

are called slices and each slice comprises a different number of LUTs

depending on the selected device. In a Xilinx Virtex-5 chip a single

s-box is implemented on 32 6-input LUTs because of 6-input LUT

technology (see [22]).

• Rolled or unrolled: The operation mode of AES influences remarkably

the performance of the implementation. Feedback modes like Cipher

Block Chaining (CBC) mode [23] lead to iterative designs, where single

round is considered to be the most efficient solution. Fig. 2.3(a) shows

the iterative design using only one round. An example of the iterative

design is shown in [22]. Because of using only one round, the throughput

of the iterative design of AES-128 presented by [22] is as follows:

Throughput(Mbps) =
Fmax(Mhz)× 128

10
. (2.5)

Full unrolled architectures combined with pipelining (Fig. 2.3(b)) can be

exploited only by the feedback-free modes [23] like Electronic Codebook

(ECB) and Counter (CTR) mode. Unrolled designs with pipelining are

able to achieve 20-30 Gbps, simply by putting a pipeline stage between

the rounds. To further increase the speed, pipelining can also be im-

plemented inside the round and the SubBytes operation (see [18]). The

throughput of the pipelined design is calculated as follows:

Chapter 2. Authenticated Encryption 18

K
ey

 S
ch

ed
u

le
R

o
u

n
d

+

K
ey

 S
ch

ed
u

le

+

R
o

u
n

d
 1

R
o

u
n

d
 2

R
o

u
n

d
 1

0

K
ey

1
2
8

1
2
8

K
ey

1
2
8

P
la

in
te

x
t

(P
)

C
ip

h
er

te
x

t
(C

)

C
ip

h
er

te
x

t
(C

)

P
la

in
te

x
t

(P
)

(a
)

(b
)

F
ig
u
r
e
2
.3
:

(a
)

It
er

at
iv

e
d

es
ig

n
.

(b
)

P
ip

el
in

ed
d

es
ig

n

Chapter 2. Authenticated Encryption 19

Throughput(Mbps) = Fmax(Mhz)× 128. (2.6)

Table 2.1 shows the hardware hardware comparison between the iterative

design and the pipleined design. It is clear that the pipelined design

consumes more area compared to the iterative design, while the speed

is higher.

Table 2.1: Hardware comparison

Design FPGA Area (slices) Frequency Throughput
Mhz Gbps

Iterative [22] Vertex-E 2257 169 2.1
Pipelined [18] Spartan-III 17425 196.1 25.1

After giving an overview of AES, the following sections present the current

AE algorithms and how they are implemented on FPGAs and ASIC.

2.3 AES-CCM

Counter with Cipher Block Chaining Mode (CCM) [24] can be used in con-

junction with any approved 128-bit block cipher like AES. CCM has been

specified in the draft IEEE 802.11i standard for wireless networks. It has also

been specified in IEEE 802.15 (Wireless Personal Area Networks) and 802.16

(Broadband Wireless Metropolitan Area Networks) standards. It is designed

for packet environment, where all the data is available in storage before the

processing. This implies that it is not online.

2.3.1 Algorithm specifications

Variables:

N : 128-bit Valid nonce

A : 128-bit Associated data

Chapter 2. Authenticated Encryption 20

P : 128-bit Plaintext

C : 128-bit Ciphertext

MAC : 128-bit Message Authentication Code

L : Message length

Key:128-bit Key

Specifications:

AES-CCM has four inputs: an AES key, N, P, and A. AES-CCM generates

two outputs: C and MAC. N and A are used to verify the correctness of

the MAC. Fig. 2.4 shows the block diagram of CCM. It depends on the

block cipher AES in two modes. Cipher Block Chaining (CBC) mode for the

authentication, while the encryption is performed by Counter (CTR) mode.

A and N are not encrypted but they are authenticated in order to verify the

correctness of authentication.

Encryption and MAC generation:

1. The plaintext P is stored in a memory.

2. N, A, and P are loaded to AES in CBC mode to generate Y, this value

is used for authentication.

3. The first value of the counter is encrypted (CTR mode) to be S[0] which

is mixed with Y through XOR operation in order to generate the final

MAC.

4. Encryption is performed by CTR mode.

Decryption and MAC verification:

1. Decryption is performed by XORing C[i] with the values of the encrypted

counter S[i] to give P.

2. N, A, and P are loaded to AES in CBC mode to generate Y.

3. Y is XORed with S[0] to generate the MAC.

4. MAC verification is computed.

Chapter 2. Authenticated Encryption 21

+ +

S[i]

P[i]

C[i]

S[0]

Y

MAC

AES

S[L]

AES

KeyCTR[0]

S[0]

AES

KeyCTR[1]

S[1]

AES

KeyCTR[2]

S[2]

CTR[n] Key

AES

+ + +

AES AES AES

Key Key Key Key

Y

CBC mode

N

A p[L]

CTR mode

p[1]

Figure 2.4: AES-CCM

2.3.2 Hardware implementation

There are some research contributions focusing on the hardware implemen-

tations of AES-CCM on FPGAs and ASIC. Because of being feedback-based

algorithm (it depends on CBC mode), iterative design of AES is always used

in the hardware implementation.

In [25], iterative AES (one round) was used to implement the architecture of

AES-CCM on FPGAs and ASIC. The proposed architecture in [25] used one

AES block for doing both authentication and encryption. This manner de-

creases the consumed area because there is only one AES architecture that is

used for the two modes, CBC and CTR modes. As a result the speed of the ar-

chitecture is reduced by 2 compared to the use of two AES architectures. Two

Chapter 2. Authenticated Encryption 22

iterative components of AES were implemented for both encryption and au-

thentication on FPGAs in [26]. In [27], FPGA-based AES-CCM was presented

by using two blocks of AES and they are 32-based datapath architectures.

From the previous discussion, it is clear that AES-CCM is a feedback-based

algorithm because it depends on the CBC mode in terms of performing the

authentication task. Therefore, only iterative-based designs of AES are appli-

cable to CCM, while using pipelined designs is not. As a result, the overall

speed is limited as shown in Table 2.2.

Table 2.2: Hardware comparison of the previous AES-CCM architectures

Design Implementation Area Frequency Throughput
platform Mhz Mbps

[25] 90 nm 0.057 mm2 148 434
[26] Spartan-3 633 slices 100.08 1051.5

(90 nm)
[27] Spartan-3 487 slices + 4 BRAMs 247 687.3

(90 nm)

2.4 AES-GCM

Galois Counter Mode (GCM) [28] is an AE algorithm. It is well-suited for

wireless, optical, and magnetic recording systems due to its multi-Gbps au-

thenticated encryption speed, outstanding performance, minimal computa-

tional latency as well as high intrinsic degree of pipelining and parallelism.

New communication standards like IEEE 802.1ae [29] and NIST 800-38D have

considered employing GCM to enhance their performance.

It simultaneously provides confidentiality, integrity and authenticity assur-

ances on the data. It can be implemented in hardware to achieve high speeds

with low cost and low latency. It was designed to meet the need for an au-

thenticated encryption mode that can efficiently achieve speeds of 10 Gbps

and higher in hardware.

Chapter 2. Authenticated Encryption 23

2.4.1 Algorithm specifications

Operations:

The following operations are used in AES-GCM:

⊕ : bit-wise exclusive OR

‖ : concatenation

Variables:

IV: 96-bit Initialization Vector

A: 128-bit Associated data

P: 128-bit Plaintext

C: 128-bit Ciphertext

L: Message length

MAC: Message Authentication Code

Key:128-bit Key

Specifications:

AES-GCM accepts four inputs: an AES key, IV, P, and A. AES-GCM gen-

erates two outputs: C and MAC. A is used to verify the correctness of the

MAC. Fig. 2.5 shows the block diagram of AES-GCM. It contains an AES

engine in CTR mode for encryption, while the authentication is performed by

the Galois Hash (GHASH) which is composed of chained GF(2128) multipliers.

Encryption and MAC generation:

1. Generation of H by encrypting 0128 block

H = E(Key, 0128). (2.7)

2. Assigning the first value of the counter (CTR[0]) as follows:

Chapter 2. Authenticated Encryption 24

AES

Key

AESAES AES AES

+ + +

+ ++

+

GF(2128)

Multiplier

GF(2128)

Multiplier

GF(2128)

Multiplier

GF(2128)

Multiplier
GF(2

128
) GF(2

128
) GF(2

128
) GF(2

128
)

"00..00" CTR[2]CTR[1]CTR[0] Key Key Key Key

H

H H H HA

P[1] P[2]

C[1] C[2]

MAC

Encryption using CTR mode

Authentication using
GF multiplier

C[L]

P[L]

CTR[L]

Multiplier Multiplier Multiplier Multiplier

Figure 2.5: AES-GCM

CTR[0] =

IV ‖ 0311 If(length(IV) = 96)

H × IV otherwise

where the multiplication between H and IV is a GF (2128)-based multi-

plication.

3. Encryption is performed by AES in CTR mode.

4. Authentication is computed by the GF (2128) multipliers chain and the

output is XORed with the encrypted value of CTR[0] in order to obtain

the final MAC.

Decryption and MAC verification:

1. Generation of H by encrypting 0128 block (Equation 2.7).

2. Assigning the first counter value (step 2 in encryption stage)

3. Decryption is performed by XORing the encrypted values of the counter

with C to obtain P.

Chapter 2. Authenticated Encryption 25

4. MAC verification is accomplished by the same scenario of the encryption

process.

2.4.2 Hardware implementation

As we presented before, two main components in AES-GCM are an AES engine

and a GF (2128) multiplier. Also, the main goal of AES-GCM is to support

high speed applications (10 Gbps and higher in hardware). Therefore, most

of the previous hardware architectures were proposed to support high speed

applications. As a result, the pipelined AES (pipelined AES implementation

has been discussed in Section 2.1) is used to perform the encryption task of

AES-GCM [3, 30, 31]. The second important part of AES-GCM is the GHASH

which depends on the inherent feedback operations chain of the GF (2128)

multipliers. Therefore, the system performance is always determined by the

GF (2128) multiplier.

The GF (2128) multiplier uses irreducible polynomial P (x) = x128 + x7 + x2 +

x+1 to compute the multiplication between A and H as shown in Algorithm

1.

Algorithm 1 GF(2128) multiplier

1: Input A, H ∈ GF(2128), P(x) Field Polynomial
2: Output X
3: X=0
4: for i = 0 to 127 do
5: if Ai = 1 then
6: X ←− X ⊕H
7: end if
8: if H127 = 0 then
9: H ←− rightshift(H)

10: else
11: H ←− rightshift(H)⊕ P (x)
12: end if
13: end for
14: Return X

In [32], [33], and [34], the multiplication was performed using bit-parallel,

digit-serial, and hybrid multipliers. Supporting high speed applications moti-

vates using the parallel version which performs the multiplication in only one

Chapter 2. Authenticated Encryption 26

clock cycle. In Algorithm 1, if H is fixed, the multiplier is called a fixed

operand GF(2128) multiplier as shown by [1]. This design proposed by [1] can

be used efficiently (smaller area) on FPGAs as the circuit is specialized for H.

The drawback in [1] is the need for a new reconfiguration in case of changing

the key.

Karatsuba Ofman Algorithm (KOA) [35] is used to reduce the complexity

(consumed area) of the GF(2128) multiplier. More precisely, the single step

KOA algorithm splits two m bit inputs A and B into four terms Ah, Al, Bh, Bl

which are m/2 bit terms. The 1-step iteration of KOA shown in Fig. 2.6 can

be described as:


Dl = Al ×Bl

Dhl = (Ah ⊕ Al)× (Bh ⊕Bl)

Dh = Ah ×Bh

D = DhX
m ⊕Xm/2(Dh ⊕Dhl ⊕Dl)⊕Dl.

(2.8)

After the multiplication stage is processed using KOA, the binary field reduc-

tion step is used to convert the length of the vector from 2m−1 to m as shown

in Equation 2.9.

C(x) = D mod P (x) (2.9)

where P(x) is the field polynomial used for the multiplication operation.

KOA was used by [30] to reduce the complexity (consumed area) of the

GF(2128) multiplier as shown in Fig. 2.7(a). Because the GHASH is a chain

of the GF (2128) multipliers, the GHASH output (Fig. 2.7(a)) is calculated as

follows:

Output = (Ci ⊕ Zi−1)×H. (2.10)

The drawback of the architecture presented in [30] is the critical delay resulting

from the multiplication stage. In order to reduce the data path (critical delay)

Chapter 2. Authenticated Encryption 27

+ +

hB Bl Ah Al

Dl

Dl

Dhl

Dh

Dh

+

+

= (m/2) Multiplier

= XOR operation

Binary field reduction
(mod P)

mm

m/2
m/2

m/2
m/2

m−1m−1

m−1

2m−1

m

B A

D

C

Figure 2.6: Polynomial Multiplication using KOA

of the KOA multiplier, pipelining concept was accomplished by [3] as shown

in Fig. 2.7(b). Equation 2.10 was written by [3] as follows:

Output = Q1 ⊕Q2 ⊕Q3 ⊕Q4, where (2.11)

Q1 = (((C1 ×H4 ⊕ C5)×H4 ⊕ C9)×H4 ⊕)×H4 (2.12)

Q2 = (((C2 ×H4 ⊕ C6)×H4 ⊕ C10)×H4 ⊕)×H3 (2.13)

Chapter 2. Authenticated Encryption 28

Q
1

Q
2

Q
3

Q4

+
(a)

Ci
Ci

Z i

+

mod(p)

HH
4

(b)

X Y

Z

P
ip

el
in

ed
 K

O
A

Output

Output

+H

mod(p)

KOA multiplier

Figure 2.7: (a) KOA based GHAH. (b) Pipelined KOA based GHASH

Q3 = (((C3 ×H4 ⊕ C7)×H4 ⊕ C11)×H4 ⊕)×H2 (2.14)

Q4 = (((C4 ×H4 ⊕ C8)×H4 ⊕ C12)×H4 ⊕)×H. (2.15)

The hardware architecture proposed by [3] (Fig. 2.7(b)) is a 4-stage pipelined

KOA-based GHASH. An example of data flow control for the GHASH is shown

in Table 2.3, where C1 C8 is the input sequence and ”-” denotes ”don’t

care”. At the beginning, H4 is passed to port Y. After the input of C6, H is

passed to port Y. The partial GHASH values Q1, Q2, Q3, and Q4 are ready

at the 9th, 15th, 18th, and 12th clock, respectively. As shown from Table 2.3,

the multiplier output resulting from 8 frames of 128-bit is ready after 19 clock

cycles. Therefore, the real throughput is calculated as follows:

Chapter 2. Authenticated Encryption 29

Table 2.3: Data flow control for GHASH calculation by [3]

Clock Ci X Y Z Comment

1 C1 C1 H4 0
2 C2 C2 H4 0
3 C3 C3 H4 0
4 C4 C4 H4 0
5 C5 (C1 ×H4)⊕ C5 H4 C1 ×H4

6 C6 (C2 ×H4)⊕ C6 H C2 ×H4

7 C7 (C3 ×H4)⊕ C7 H C3 ×H4

8 C8 (C4 ×H4)⊕ C8 H C4 ×H4

9 - - - ((C1 ×H4)⊕ C5)H
4 z = Q1

10 0 ((C2 ×H4)⊕ C6)×H H ((C2 ×H4)⊕ C6)×H
11 0 ((C3 ×H4)⊕ C7)×H H ((C3 ×H4)⊕ C7)×H
12 0 - - ((C4 ×H4)⊕ C8)×H z = Q4

13 0 - - -
14 0 ((C2 ×H4)⊕ C6)×H2 H ((C2 ×H4)⊕ C6)×H2

15 - - - ((C3 ×H4)⊕ C7)×H2 z = Q2

16 - - - -
17 - - - -
18 - - - ((C2 ×H4)⊕ C6)×H3 z = Q3

19 - - - - GHASH

Throughput(Mbps) = Fmax(MHz) × 128× (
8

19
). (2.16)

The last component of Equation 2.16 is (8
19

), it is called the reduction factor

and the authors of [3] neglected this component in their throughput calcu-

lation. Therefore, their presented design of GHASH has not increased the

throughput as they claimed.

Henzen et al. [31] proposed 4-parallel AES-GCM using pipelined KOA. Their

design achieved the authentication of 18 frames of 128-bits in 11 clock cycles

because of the latency resulting from the pipelined KOA. As a result, their

throughput is calculated as follows:

Throughput(Mbps) = Fmax(MHz) × 128× 18

11
. (2.17)

The authors of [31] neglected this component (18
11

) in their throughput calcu-

lation and replaced it by 4. Hence, their presented parallel design of GHASH

has not increased the throughput by 4 as shown in Equation 2.17.

Chapter 2. Authenticated Encryption 30

Table 2.4 shows the hardware comparison of the current AES-GCM cores on

FPGAs. It is clear that the maximum throughput resulting from implementing

single AES-GCM core on FPGAs (Virtex-5) is 17.9 Gbps with 4628 slices ([3]).

In terms of the parallel cores, the maximum throughput is 48.8 Gbps ([31]).

2.5 AEGIS

The field of AE has received more interest in the light of the recently an-

nounced CAESAR (Competition for Authenticated Encryption: Security, Ap-

plicability, and Robustness). CAESAR will define a portfolio of AE algorithms

that offer advantages over AES-GCM. Secure and efficient algorithms for spe-

cific or possibly multiple environments will be presented.

There are some AE schemes have been proposed, and more are expected to join

the ranks with the ongoing CAESAR. In this section, we present an overview

on AEGIS [36] which is considered one of the candidates to CAESAR. It is

constructed from the AES encryption round function (not the last round).

AEGIS is a stream cipher with a large state which is updated continuously.

Therefore, the attacks against a block cipher cannot be applied directly to

it. The goal of AEGIS is to achieve high performance and strong security as

outlined in [36]. AEGIS-128 processes a 16-byte message block with five AES-

round functions, and AEGIS-256 uses 6 AES round functions. More precisely,

we will highlight AEGIS-128 because the thesis concentrates on 128-based AE

algorithms.

2.5.1 Algorithm specifications

Operations:

⊕ : bit-wise exclusive OR

& : bit-wise AND

‖ : concatenation

Variables and constants:

Chapter 2. Authenticated Encryption 31

T
a
b
l
e
2
.4
:

H
ar

d
w

ar
e

co
m

p
ar

is
on

of
th

e
p

re
v
io

u
s

A
E

S
-G

C
M

ar
ch

it
ec

tu
re

s
on

F
P

G
A

s

F
P

G
A

ty
p

e
D

es
ig

n
S
u
b
B

y
te

s
A

re
a

(s
li
ce

s)
B

R
A

M
s

M
ax

-F
re

q
T

h
r.

T
h
r.

/S
li
ce

M
H

z
G

b
it

/s
M

b
p
s/

S
li
ce

[3
]

V
ir

te
x
4

A
E

S
-G

C
M

B
R

A
M

77
12

82
28

5
15

.4
1.

99
[3

]
V

ir
te

x
4

A
E

S
-G

C
M

C
om

p
.

14
34

9
0

27
7

14
.9

1.
04

[3
]

V
ir

te
x
5

A
E

S
-G

C
M

B
R

A
M

35
33

41
31

4
16

.9
4.

78
[3

]
V

ir
te

x
5

A
E

S
-G

C
M

C
om

p
64

92
0

31
4

16
.9

2.
60

[3
]

V
ir

te
x
5

A
E

S
-G

C
M

L
U

T
46

28
0

32
4

17
.5

3.
77

[3
2]

V
ir

te
x
4

A
E

S
-G

C
M

B
R

A
M

13
20

0
11

4
11

0
14

1.
07

[3
2]

V
ir

te
x
4

A
E

S
-G

C
M

C
om

p
.

21
60

0
0

90
11

.5
2

0.
53

[3
1]

V
ir

te
x
5

4-
p
ar

al
le

l
A

E
S
-G

C
M

B
R

A
M

95
61

45
0

23
3

48
.8

5.
1

[3
1]

V
ir

te
x
5

4-
p
ar

al
le

l
A

E
S
-G

C
M

C
om

p
18

50
5

0
23

3
48

.8
2.

64
[3

1]
V

ir
te

x
5

4-
p
ar

al
le

l
A

E
S
-G

C
M

L
U

T
14

79
9

0
23

3
48

.8
3.

29

Chapter 2. Authenticated Encryption 32

The following variables and constants are used in AEGIS-128:

IV128 : The 128-bit initialization vector

P : 128-bit plaintext

C : 128-bit ciphertext

mi : 128-bit data block

const0 : The first 16 bytes of const

const1 : The second 16 bytes of const

K128 : The 128-bit key

msglen : The bit length of the plaintext

AEGIS depends on the AESRound (A,B), where A is the 16-byte state,

B is the 16-byte round key. It is performed using the AES round functions

(ShiftRows, SubBytes, MixColumns, and AddRoundKey). With a 128-bit key

and a 128-bit initialization vector, AEGIS-128 encrypts and authenticates a

message with length less than 264 bits. The authentication MAC length is less

than or equal to 128 bits. It is strongly recommend the use of a 128-bit MAC.

The state update function of AEGIS-128:

The state update function shown in Fig. 2.8 updates the 80-byte state Si with

a 16-byte message block mi.

Si+1 = StateUpdate128(Si,mi) is given as follows:

Si+1,0 = AESRound(Si,4, Si,0 ⊕mi)

Si+1,1 = AESRound(Si,0, Si,1)

Si+1,2 = AESRound(Si,1, Si,2)

Si+1,3 = AESRound(Si,2, Si,3)

Si+1,4 = AESRound(Si,3, Si,4).

(2.18)

Chapter 2. Authenticated Encryption 33

+

+
+

+
+

+S
S

S
S

S

S
S

S
S

S

i,
0

i,
1

i,
2

i,
3

i,
4

i+
1

,0
i+

1
,1

i+
1

,2
i+

1
,3

i+
1

,4

w
w

S
u

b
B

y
te

s

S
h

if
t

R
o

w
s

S
u

b
B

y
te

s

S
h

if
t

R
o

w
s

S
u

b
B

y
te

s

S
h

if
t

R
o

w
s

S
u

b
B

y
te

s
S

u
b

B
y

te
s

S
h

if
t

R
o

w
s

S
h

if
t

R
o

w
s

M
ix

C
o

lu
m

n
s

M
ix

C
o

lu
m

n
s

M
ix

C
o

lu
m

n
s

M
ix

C
o

lu
m

n
s

M
ix

C
o

lu
m

n
s

m
i

F
ig
u
r
e
2
.8
:

T
h

e
st

at
e

u
p

d
at

e
fu

n
ct

io
n

of
A

E
G

IS
-1

28

Chapter 2. Authenticated Encryption 34

The initialization of AEGIS-128:

The initialization of AEGIS-128 consists of loading the key and IV into the

state, and running the cipher for 10 steps with the key and IV being used as

message.

1. Load the key and IV into the state as follows:

S−10,0 = IV128

S−10,1 = Const1

S−10,2 = Const0

S−10,3 = K128 ⊕ Const0

S−10,4 = K128 ⊕ Const1.

2. For i = -5 to -1, m2i = K128, m2i+1 = K128 ⊕ IV128.

3. For i = -10 to -1, Si+1 = StateUpdate128(Si,mi).

The encryption of AEGIS-128:

After the initialization, at each step of the encryption, a 16-byte plaintext

block Pi is used to update the state, and Pi is encrypted to Ci. If the size of

the last message block is less than 128 bits, it is padded with 0 bits to a full

block, and the padded full block is used to update the state.

1. If the last plaintext block is not a full block, use 0 bits to pad it to 128

bits.

2. For i = 0 to (msglen
128
− 1), the state is updated to perform encryption.

Ci = Pi ⊕ Si,1 ⊕ Si,4 ⊕ (Si,2&Si,3)

Si+1 = StateUpdate128(Si, Pi).
(2.19)

Chapter 2. Authenticated Encryption 35

The finalization of AEGIS-128 (MAC generation):

After encrypting all the plaintext blocks, the authentication MAC is generated

using seven more steps. The message being used at this stage is part of the

state at the end of the encryption, together with the length of the associated

data and the length of the message.

1. Let tmp = lenA‖msglen, where lenA and msglen are represented as

64-bit integers

2. For i= (msglen
128

) to (msglen
128

+ 6), mi = Smsglen
128

,3 ⊕ tmp

3. For i= (msglen
128

) to (msglen
128

+ 6), the state is updated:

Si+1 = StateUpdate128(Si, Pi)

4. The authentication MAC is generated from the state msglen
128

+7 as follows:

MAC = ⊕4
i=0(S(msglen

128
+7),i). (2.20)

The decryption and verification of AEGIS-128:

The exact values of the key and the IV should be known to the decryption

and verification process. The decryption is similar to encryption, and it is

described below:

1. For i = 0 to (msglen
128
−1), the state is updated to perform the decryption.

Pi = Ci ⊕ Si,1 ⊕ Si,4 ⊕ (Si,2&Si,3)

Si+1 = StateUpdate128(Si, Pi).
(2.21)

2. The finalization in the decryption process is the same as that in the

encryption process (authentication).

Chapter 2. Authenticated Encryption 36

In terms of the hardware implementation, to our knowledge, there is no any

current hardware implementation for AEGIS.

2.6 Conclusion

In this chapter, we highlighted current AE algorithms, AES-CCM, AES-GCM,

and AEGIS. Each algorithm was presented in detail and also followed by

the current hardware implementations. Regarding AES-CCM, we showed the

disadvantages of AES-CCM. It is not suitable for online applications as the

message must be stored first before performing the authentication and the

encryption. Also, it is not suited to high-speed implementations, because

CBC-MAC is neither pipelinable nor parallelizable (see Table 2.2). In terms

of AES-GCM, four different FPGAs-based architectures have been presented

in the open literature ([32],[30],[3],[31]). It is clear that these contributions

do generally have common challenge related to the throughput of their archi-

tectures (see Equation 2.16, Equation 2.17, and Table 2.4). Additionally, we

presented an overview of AEGIS which is considered one of the candidates to

CAESAR. Till now, there is no any hardware implementation for AEGIS.

Chapter 3

High Speed Authenticated

Encryption for Slow Changing

Key Applications Using FPGAs

3.1 Introduction

Virtual Private Networks (VPNs) offer an economic alternative to leased lines

for building a private network. It is set up by allowing users to tunnel through

the public network in a manner that manages the tunnel participants to enjoy

a secure connection if they are on a typical private network. VPN tunnels

can be either static (between two routers) or dynamic (between end-users and

routers). VPNs use AES-GCM as a solution for protecting confidentiality and

authenticity. Commercial security appliances of VPNs allow a throughput

from 40 to 60 Gbps [37, 38]. Recently, the Cisco ASR 1000 Series Embedded

Services Processors (ESPs) are used to support high throughput VPNs up to

200 Gbps [39]. The secret key used for encryption and authentication in these

networks is changed weekly, monthly or yearly. Therefore, they are considered

infrequent-key based applications.

This chapter describes the benefits of VPNs feature as an infrequent-key envi-

ronment in order to design efficient and high speed AES-GCM. As the targeted

platform is FPGA, FPGA-specific properties are considered for performance

37

Chapter 3. High Speed Authenticated Encryption for Slow Changing Key
Applications Using FPGAs 38

improvement such as programmability, BRAMs, and LUT technology. The

main contributions of this chapter are as follows:

1. As a first step towards an efficient high speed AES-GCM for VPNs,

which are considered as an infrequent-key application, the key used

for encryption and authentication is synthesized into the module struc-

ture of AES-GCM. This is achieved by combining the proposed key-

synthesized AES (encryption) with the GF(2128) multiplier (authenti-

cation) proposed by [1] in order to improve the hardware performance

(Thr./Slice) of AES-GCM compared to [3, 30, 32].

2. We propose an efficient method for implementing parallel AES-GCM

cores. The proposed method improves the performance (Thr./Slice) of

the parallel hardware architectures compared to [31].

3. Because of being key-synthesized architectures, we present a protocol to

secure the reconfiguration of the proposed architectures on FPGAs.

3.2 High Speed AES-GCM Architectures Us-

ing FPGAs

AES has a key expansion or key schedule operation, which takes the main key

and derives from it subkeys Kr (10, 12, and 14 for AES-128, AES-192, and

AES-256, respectively), where r denotes the corresponding round number.

For our case, we concentrate on AES-128.

VPNs are considered as a slow key changing application. Therefore, imple-

menting the key expansion is particularly expensive in terms of hardware cost

in case of using FPGAs. By getting the benefit of being programmable devices,

the key used for encryption in synthesized into the architecture in order to

obtain better performance regarding the consumed area and the throughput.

In the proposed hardware architecture, constant key specialization in the

FPGA is used. The precomputed keys are generated using a C code as shown

in Table 3.1. After, these keys are synthesized into the architecture of AES.

Chapter 3. High Speed Authenticated Encryption for Slow Changing Key
Applications Using FPGAs 39

As a result, the key expansion scheme is reduced from the architecture of AES.

Because of the high throughput target, pipelined AES is used to obtain high

throughput. Fig. 3.1 shows the proposed key-synthesized AES, where all keys

are precomputed and synthesized into the architecture.

Table 3.1: Precomputed round keys

Main Key 000102030405060708090a0b0c0d0e0f

Precomputed k0 000102030405060708090a0b0c0d0e0f

Precomputed k1 d6aa74fdd2af72fadaa678f1d6ab76fe

Precomputed k2 b692cf0b643dbdf1be9bc5006830b3fe

Precomputed k3 b6ff744ed2c2c9bf6c590cbf0469bf41

Precomputed k4 47f7f7bc95353e03f96c32bcfd058dfd

Precomputed k5 3caaa3e8a99f9deb50f3af57adf622aa

Precomputed k6 5e390f7df7a69296a7553dc10aa31f6b

Precomputed k7 14f9701ae35fe28c440adf4d4ea9c026

Precomputed k8 47438735a41c65b9e016baf4aebf7ad2

Precomputed k9 549932d1f08557681093ed9cbe2c974e

Precomputed k10 13111d7fe3944a17f307a78b4d2b30c5

Precomputed H c6a13b37878f5b826f4f8162a1c8d879

The SubBytes transformation can be implemented either by BRAMs, com-

posite field or direct Look Up Tables (LUT). Modern FPGAs contain Block-

RAMs. Therefore, implementing SubBytes using BRAMs decreases the con-

sumed slices of the FPGA. The LUT approach is especially interesting on

Virtex-5 devices because 6-input Look-Up-Tables (LUT) combined with mul-

tiplexors allow an efficient implementation of the AES SubBytes stage. Com-

posite field approach uses the multiplicative inverse of GF(28) and it is efficient

for memoryless platforms (see Fig. 3.2).

As a result of using key-synthesized AES, the operand H of the GHASH

function (GF (2128) multiplier) is also fixed because it is generated by applying

the block cipher to the zero block. Therefore, the proposed multiplier by [1] is

very suitable because it is a fixed operand multiplier. In [1], the multiplication

was performed as follows (Fig. 3.3) :

1. Algorithm 1 is divided into Algorithm 2 and Algorithm 3.

Chapter 3. High Speed Authenticated Encryption for Slow Changing Key
Applications Using FPGAs 40

 AES

Synthesized Key

Plaintext

Ciphertext(C)

Add Round Key

Round 1

Round 2

Round 10

Ciphertext(C)

Plaintext

Precomputed K0

Precomputed K1

Precomputed K2

Precomputed K10
Add Round Key

MixColumns

ShiftRows

SubBytes

Figure 3.1: Key-synthesized AES

2. Algorithm 2 is used to precompute the lookup table (T) which is based

on a fixed H.

3. Performing the multiplication using the lookup table (T) (see Algo-

rithm 3).

The lookup table generated by Algorithm 2 contains 128 vectors of 128 bits.

This table is synthesized into the architecture of the multiplier by Algorithm

3 to compute the GF(2128) multiplication. Synthesizing binary 1 values of

table T directly perform logic and binary 0 values do not perform logic because

of XOR operation as shown in Algorithm 3. Therefore, the consumed area

and the datapath are reduced.

Chapter 3. High Speed Authenticated Encryption for Slow Changing Key
Applications Using FPGAs 41

+

+ X
−1

2
X

2
X

X
−1

Block

RAM

8 8

(a)

8
LUT

(b)

8

−1

−1

Isomorphic mapping to composite fields

Squarer in GF(2)
4

Multiplication with constant

Multiplicative inversion in GF(2)
4

Multiplication operation in GF(2)
4

Inverse Isomorphic mapping to GF(2)
8

8

4

4
4

4

4

4

4

4

8
88

(c)

X

X

Figure 3.2: SubBytes implementation with BlockRAMs (a), with LUTs
(b), with composite field approach (c)

The overall architecture of AES-GCM is presented in Fig. 3.4. The value of

CTR[0] is encrypted and stored because it will be used for MAC generation.

After that, the encryption process is performed using CTR mode, where the

CTR values are encrypted and XORed with the Plaintext (P). Encrypted

frames are then processed by the H-synthesized GHASH till the end of the

data. After processing all the data frames, the last output of the GHASH is

XORed with E(CTR[0]) in order to generate the MAC.

From Fig. 3.4, it is clear that the encryption and the authentication in GCM

are performed using the AES in CTR mode and the H-synthesized GHASH,

respectively. Therefore, the proposed architecture could also be tuned to

handle the decryption and the authentication. Precisely, Ciphertext (C) is

XORed with the output of the pipelined AES for performing the decryption

and also is passed to the H-synthesized GHASH for MAC generation.

Chapter 3. High Speed Authenticated Encryption for Slow Changing Key
Applications Using FPGAs 42

+

X
 0

In
p

u
t

A
,T

IF
 A

=

 1

 T
h

en

F
o

r
i=

0
 t

o
 1

2
7

 d
o

X
=

X

E
n

d
 I

f

E
n

d
 F

o
r

R
et

u
rn

 X

T
[i

]

i

A
lg

o
ri

th
m

 3
 :

G

F
(2

)

 m
u
lt

ip
li

er
 u

si
n
g
 f

ix
ed

 H

2

1
2
8

+
V

 =
 r

ig
h

ts
h

if
t

(V
)

F
(x

)

T
[i

]
 V

F
(x

)
 1

1
1

0
0

0
0

1
0

1
2
0

V
 H

 1
2
7

IF
 V

 =
 0

T

h
en

V
 =

 r
ig

h
ts

h
if

t
(V

)

F
o

r
i=

0
 t

o
 1

2
7

 d
o

E
n

d
 I

f

E
n

d
 F

o
r

E
ls

e

A
lg

o
ri

th
m

 2
 :

1

P
re

co
m

p
u
ta

ti
o
n
 o

f
lo

o
k
u
p
 t

ab
le

 (
T

)

(A
)

A
 =

 r
ig

h
ts

h
if

t

(A
)

A
 =

 r
ig

h
ts

h
if

t
+

+
C

C

A

 1
2
7

1
2

8
A

lg
o
ri

th
m

 1
 :

 G
F

(2

)

M
u
lt

ip
li

er

E
n

d
 I

f

E
n

d
 F

o
r

R
et

u
rn

 C

E
ls

e

E
n

d
 I

F

IF
 A

 =
 0

T

h
en

O
u

tp
u

t
C

F
o

r
i=

0
 t

o
 1

2
7

 d
o

i
IF

 H

=
1

 T
h

en

P
(x

)

In
p

u
t

A
,

H
,

 P
(x

)
F

ie
ld

 P
o

ly
n

o
m

ia
l

F
ig
u
r
e
3
.3
:

G
F

(2
1
2
8
)

m
u

lt
ip

li
er

p
ro

p
os

ed
b
y

[1
]

Chapter 3. High Speed Authenticated Encryption for Slow Changing Key
Applications Using FPGAs 43

E
(C

T
R

[0
])

E
(C

T
R

[0
])

Add Round Key

Round 1

Round 2

Round 10

Precomputed K0

Precomputed K1

Precomputed K2

Precomputed K10

Add Round Key

Round 1

Round 2

Round 10

Precomputed K0

Precomputed K1

Precomputed K2

Precomputed K10

P
la

in
te

x
t

C
ip

h
er

te
x

t(
C

)
M

A
C

H
−

S
y

n
th

es
iz

ed

G
H

A
S

H

CTR

E
n

cr
y

p
ti

o
n

A
u

th
en

ti
ca

ti
o

n

F
ig
u
r
e
3
.4
:

P
ro

p
os

ed
ke

y
-s

y
n
th

es
iz

ed
A

E
S

-G
C

M

Chapter 3. High Speed Authenticated Encryption for Slow Changing Key
Applications Using FPGAs 44

The proposed architecture limits the logic utilization by specializing the core

of AES-GCM on a per key. VPNs infrastructure can benefit from our key-

synthesized AES-GCM implementation due to the nature of slow changing

key operation.

3.2.1 Efficient Parallel AES-GCM cores

In order to implement parallel architectures of AES-GCM using key-synthesized

method, parallel GHASHs must be constructed to meet the requirement of the

key-synthesized nature (i.e, one of the two operands of each GHASH must be

fixed).

Previous parallel schemes of GHASH [31, 34] are not suitable because the

two operands of each GHASH are varied during the running time operation.

As a result, their architectures are not suitable for key-synthesized approach.

Also, they have the same common problem in the throughput reduction factor

(described in Chapter 2). Therefore, constructing parallel GHASHs which

have a fixed operand for each GHASH multiplier is very important for high

speed applications.

H

 GHASH

+

C
i

iX (Output)

Figure 3.5: GHASH operation

Chapter 3. High Speed Authenticated Encryption for Slow Changing Key
Applications Using FPGAs 45

Fig. 3.5 shows the GF(2128) multiplication (GHASH) between H and a 128-bit

input value Ci. GHASHH function for block i is defined in Equation 3.1.

Xi = (Ci ⊕Xi−1)×H (3.1)

In order to construct parallel GHASHs which have a fixed operand for each

GHASH multiplier, we have to first analyze the processing equation of the

GHASH. As shown in Equation 3.1, the the GHASH output is calculated by

the multiplication between H and the result of XORing the input Ci with the

previous output Xi−1. We propose writing Equation 3.1 as follows:

Xi = (Ci ⊕Xi−1)×H

= (Ci ×H)⊕ (Xi−1 ×H)

= (Ci ×H)⊕ [(Ci−1 ⊕Xi−2)×H2]

= (Ci ×H)⊕ (Ci−1 ×H2)⊕ [(Ci−2 ⊕Xi−3)×H3]

= (Ci ×H)⊕ (Ci−1 ×H2)⊕ (Ci−2 ×H3)

⊕[(Ci−3 ⊕Xi−4)×H4]

= ((Ci ×H)︸ ︷︷ ︸⊕ (Ci−1 ×H2)︸ ︷︷ ︸⊕ (Ci−2 ×H3)︸ ︷︷ ︸
⊕ (Ci−3 ×H4)︸ ︷︷ ︸⊕ (C2 ×H i−1)︸ ︷︷ ︸⊕ (C1 ×H i).︸ ︷︷ ︸

(3.2)

It is clear from Equation 3.2 that each input from C1 to Ci is multiplied with

a fixed value from H i to H. For example (see Fig. 3.6), GHASHi has H as

an operand, GHASHi−1 has H2,, and GHASH1 has H i .

Unlike previous work, this method makes the parallel architecture of GHASHs

suitable for the key-synthesized approach as we can get these values (H i, H i−1,

...., H) synthesized into the parallel architecture.

In terms of the throughput, from Fig. 3.6, it is obvious that only one clock cy-

cle is needed for performing the parallel GHASHs output (there is no pipeline).

Therefore, the throughput is calculated as follows:

Throughput(Mbps) = Fmax(MHz) × 128× i (3.3)

Chapter 3. High Speed Authenticated Encryption for Slow Changing Key
Applications Using FPGAs 46

+

+

C
1

H
H

H
H

H
C

C
C

C
i

i−
1

i−
2

2

2
3

i−
1

i

G

H
A

S
H

G

H
A

S
H

X

(O
u

tp
u

t)
i

1
2

G

H
A

S
H

G

H
A

S
H

i−
1

G

H
A

S
H

i
i−

2

F
ig
u
r
e
3
.6
:

P
ro

p
os

ed
p

ar
al

le
l

G
H

A
S

H
s

w
it

h
fi

x
ed

op
er

an
d

d
u

ri
n

g
ru

n
n

in
g

ti
m

e
op

er
at

io
n

Chapter 3. High Speed Authenticated Encryption for Slow Changing Key
Applications Using FPGAs 47

where i is the number of the parallel GHASHs.

From Equation 3.3, it is clear that there is no reduction factor in the through-

put calculation compared to [31, 34].

In order to support high speed requirements up to 100 Gbps, we are forced to

construct 4-parallel AES-GCM cores. Fig. 3.7 shows the presented 4-parallel

AES-GCM using key-synthesized method.

In terms of the parallel pipelined AES, we instantiated four parallel AES

cores which have the same key. Therefore, the round keys are precomputed

and synthesized into the four cores. The resulting multi-core design is thus

able to process a 512-bit block (4128 bits) of plaintext every clock cycle. The

ciphertext is generated directly by XORing the four 128-bit blocks (P4i+1,

P4i+2, P4i+3, and P4i+4) with the output strings resulting from encrypting the

counter values.

In order to combine the authentication core with the multi-core AES, a design

solution based on four parallel GHASHs has been investigated. From Equa-

tion 3.2, in order to construct 4-parallel GHASHs, the operands (H, H2, H3,

H4) are precomputed and synthesized into the architecture. The multi-core

GHASH is able to process a 512-bit block (4128 bits) every clock cycle. There-

fore the final overall throughput of the 4-parallel AES-GCM is as follows:

Throughput(Mbps) = Fmax(MHz) × 128× 4. (3.4)

The presented architecture does not contain any reduction factor compared to

[31, 34]. Also, it could be tuned to handle the decryption and authentication

as we described before in the single architecture.

All the previous proposed architectures in this chapter are considered as

FPGA-based architectures because of using the programmability of FPGAs

in order to change the key. More precisely, in case of changing the key, a

new bitstream is uploaded on the FPGA with the new key-synthesized spe-

cialization. Therefore, it is important to present how these architectures are

uploaded on the FPGA in a secure manner in case of changing the key because

the bitstream is considered a key-based bitstream.

Chapter 3. High Speed Authenticated Encryption for Slow Changing Key
Applications Using FPGAs 48

A
d

d
 R

o
u

n
d

 K
ey

R
o

u
n

d
 1

R
o

u
n

d
 2

R
o

u
n

d
 1

0

P
re

co
m

p
u
te

d
 K

0

P
re

co
m

p
u
te

d
 K

1

P
re

co
m

p
u
te

d
 K

2

P
re

co
m

p
u
te

d
 K

1
0

A
d

d
 R

o
u

n
d

 K
ey

R
o

u
n

d
 1

R
o

u
n

d
 2

R
o

u
n

d
 1

0

P
re

co
m

p
u
te

d
 K

0

P
re

co
m

p
u
te

d
 K

1

P
re

co
m

p
u
te

d
 K

2

P
re

co
m

p
u
te

d
 K

1
0

A
d

d
 R

o
u

n
d

 K
ey

R
o

u
n

d
 1

R
o

u
n

d
 2

R
o

u
n

d
 1

0

P
re

co
m

p
u
te

d
 K

0

P
re

co
m

p
u
te

d
 K

1

P
re

co
m

p
u
te

d
 K

2

P
re

co
m

p
u
te

d
 K

1
0

E
(C

T
R

[0
])

E
(C

T
R

[0
])

A
d

d
 R

o
u

n
d

 K
ey

R
o

u
n

d
 1

R
o

u
n

d
 2

R
o

u
n

d
 1

0

P
re

co
m

p
u
te

d
 K

0

P
re

co
m

p
u
te

d
 K

1

P
re

co
m

p
u
te

d
 K

2

P
re

co
m

p
u
te

d
 K

1
0

G
H

A
S

H

H
−

S
y

n
th

es
iz

ed
H

 −
S

y
n

th
es

iz
ed

 4
H

 −
S

y
n

th
es

iz
ed

H
 −

S
y

n
th

es
iz

ed
3

2

G
H

A
S

H
G

H
A

S
H

G
H

A
S

H

4
i+

1
P

P
P

P
4

i+
2

4
i+

3
4

i+
4

C
C

C
C

4
i+

1
4

i+
2

4
i+

3
4

i+
4

C
T

R
C

T
R

C
T

R
C

T
R

4
i+

1
4

i+
2

4
i+

3
4

i+
4

M
A

C

F
ig
u
r
e
3
.7
:

4
-p

ar
al

le
l

A
E

S
-G

C
M

u
si

n
g

ke
y
-s

y
n
th

es
iz

ed
m

et
h

o
d

Chapter 3. High Speed Authenticated Encryption for Slow Changing Key
Applications Using FPGAs 49

3.3 Bitstream security of the proposed archi-

tectures

As a result of synthesizing the key into the architecture, the generated bit-

stream is a key-dependent. Hence, the bitstream must be sent in a secure way

to the FPGA in case of changing the key. Our analysis focuses on securing

the key exchange and the implementation of the key-dependent bitstream on

the FPGA.

Fig. 3.8 shows the proposed protocol which is used to perform the key ex-

change and the reconfiguration process between two FPGAs in a secure way.

Our scheme assumes that two FPGAs in two different networks are involved

in a communication and the proposed AES-GCM is implemented. In case of

changing the key to be k1, the protocol will be as follows:

1. The two servers are communicating in order to initialize the key (k1) of

AES-GCM. This initialization is performed using public key cryptogra-

phy.

2. The two servers generate the bitstream file which is k1-synthesized.

3. Server1 shares k3 with FPGA1 for secure reconfiguration. This key (k3)

is used to encrypt the k1-synthesized bitstream. The same will be with

server2 which shares k2 with FPGA2. Thanks to Xilinx because Virtex-5

and Virtex-4 contain an AES engine for supporting secure reconfigura-

tion, in case of Virtex-6, the bitstram can be also authenticated because

Virtex-6 has an on chip MAC for supporting authentication.

4. The two FPGAs decrypt the encrypted bitstream.

5. The k1-synthesized bitstream which defines the new key-based AES-

GCM is implemented on the user logic.

6. The communication between the two FPGAs is achieved with the new

key k1.

Chapter 3. High Speed Authenticated Encryption for Slow Changing Key
Applications Using FPGAs 50

2

3

4

2

3

4

5

5

6

0
0
0
0
1
0
0
1

1
1
0
0
1
1
0
1

0
1
1
0
1
0
0
1

A
E

S
+

M
A

C

0
0
0
0
1
0
0
1

1
1
0
0
1
1
0
1

0
1
1
0
1
0
0
1

1

S
ta

rt
 r

ec
o

n
fi

g
u

ra
ti

o
n

S
ta

rt
 r

ec
o
n
fi

g
u
ra

ti
o
n

A
E

S
k
2

S
ta

rt
 c

o
m

m
u
n
ic

at
io

n

b
y
 p

u
b
li

c
k
ey

 p
ro

to
co

l
In

it
ia

li
zi

n
g
 t

h
e

u
se

d
 k

ey
 i

n
 A

E
S

−
G

C
M

 (
K

1
)

k
3

SRAM Memory

Cells

SRAM Memory

Cells

S
ta

ti
c

P
ar

t
S

ta
ti

c
P

ar
t

U
se

r
L

o
g
ic

U
se

r
L

o
g
ic

A
E

S
A

E
S

P
ro

p
o

se
d

A
E

S
−

G
C

M
P

ro
p

o
se

d
A

E
S

−
G

C
M

K
3

k
2

A
E

S

G
en

er
at

io
n
 o

f
b
it

st
re

am

th
e

k
ey

 s
h
ar

ed
 b

et
w

ee
n
 t

h
e

F
P

G
A

E
n
cr

y
p
ti

o
n
 o

f
b
it

st
re

am
 u

si
n
g

th
e

k
ey

 s
h
ar

ed
 b

et
w

ee
n
 t

h
e

F
P

G
A

an
d
 t

h
e

se
rv

er
 (

k
2
)

E
n
cr

y
p
ti

o
n
 o

f
b
it

st
re

am
 u

si
n
g

th
e

k
ey

 s
h
ar

ed
 b

et
w

ee
n
 t

h
e

F
P

G
A

D
ec

ry
p
ti

o
n
 o

f
b
it

st
re

am
 u

si
n
g

th
e

k
ey

 s
h
ar

ed
 b

et
w

ee
n
 t

h
e

F
P

G
A

an
d
 t

h
e

se
rv

er
 (

k
2
)

D
ec

ry
p
ti

o
n
 o

f
b
it

st
re

am
 u

si
n
g

Key−dependent

Key−dependent

S
er

v
er

2
S

er
v
er

1

F
P

G
A

1
F

P
G

A
2

Bitstream

Bitstream

G
en

er
at

io
n
 o

f
b
it

st
re

am

w
h
ic

h
 i

s
b
as

ed
 o

n
 K

1
−

sy
n
th

es
iz

ed
 A

E
S

−
G

C
M

w
h
ic

h
 i

s
b
as

ed
 o

n
 K

1
−

sy
n
th

es
iz

ed
 A

E
S

−
G

C
M

an
d
 t

h
e

se
rv

er
 (

k
3
)

an
d
 t

h
e

se
rv

er
 (

k
3
)

F
ig
u
r
e
3
.8
:

S
ec

u
re

b
it

st
re

am
co

m
m

u
n

ic
at

io
n

Chapter 3. High Speed Authenticated Encryption for Slow Changing Key
Applications Using FPGAs 51

3.4 Hardware comparison

We coded our proposed schemes (AES-GCM and 4-parallel AES-GCM) in

VHDL and targeted to Virtex-4 (V4LX60ff668-11) and Virtex-5 (XC5VLX220).

ModelSim 6.5c was used for simulation. Xilinx Synthesize Technology (XST)

is used to perform the synthesize and ISE9.2 was adopted to run the Place

And Route (PAR).

Table 3.2 shows the hardware comparison between our results and previous

work. Note the filled dots in the ”Key” column. Key is synthesized into the

architecture when denoted by ◦, otherwise, the key schedule is implemented

when denoted by •.

On Virtex-4 platform, our key-synthesized AES-GCM core reaches the through-

put of 27.7 Gbps with the area consumption of 4652 slices and 80 BRAMs. In

case of using composite field SubBytes, it consumes twice more slices, how-

ever no BRAMs are required. On Virtex5, the most efficient implementation

reaches the throughput 30.9 Gbps with 2478 slices and 40 BRAMs. Our im-

plementations are technology independent and can be implemented to other

FPGA devices.

By comparing our results of AES-GCM to the previous work, the compari-

son shows that our performance (Thr./Slice) is better than [30],[3],[32]. The

operating frequency presented by [3] is better than ours because they used

pipelined KOA but the overall throughput is lower than ours because their

GHASH performed the multiplication of 8 frames of 128-bits in 19 clock cy-

cles. Therefore, their throughput is calculated as follows (highlighted before

in Chapter 2):

Throughput(Mbps) = Fmax(MHz) × 128× 8

19
. (3.5)

We motivate using LUT method for parallel AES-GCM in case of using Virtex-

5 to avoid the limit of BRAMs, especially the AES-GCM is always considered

as a part of the system. The proposed 4-parallel AES-GCM module operates

at 200 MHz on Virtex-5. In total, it consumes 12152 Slices. This implemen-

tation achieves throughput that reaches to 102.4 Gbps. Henzen et al. [31]

Chapter 3. High Speed Authenticated Encryption for Slow Changing Key
Applications Using FPGAs 52

T
a
b
l
e
3
.2
:

H
ar

d
w

ar
e

co
m

p
ar

is
on

F
P

G
A

ty
p

e
D

es
ig

n
K

ey
S
u
b
B

y
te

s
S
li
ce

s
B

R
A

M
M

ax
-F

re
q

T
h
r.

T
h
r.

/S
li
ce

M
H

z
G

b
it

/s
M

b
p
s/

S
li
ce

T
h
is

w
or

k
V

ir
te

x
4

A
E

S
-G

C
M

◦
B

R
A

M
46

52
80

21
6.

3
27

.7
5.

95
T

h
is

w
or

k
V

ir
te

x
4

A
E

S
-G

C
M

◦
C

om
p
.

10
31

6
0

23
9

30
.6

2.
96

T
h
is

w
or

k
V

ir
te

x
5

A
E

S
-G

C
M

◦
B

R
A

M
24

78
40

24
2

30
.9

1
2
.5

T
h
is

w
or

k
V

ir
te

x
5

A
E

S
-G

C
M

◦
C

om
p
.

55
12

0
23

2
29

.7
5.

38
T

h
is

w
or

k
V

ir
te

x
5

A
E

S
-G

C
M

◦
L

U
T

32
11

0
21

6.
3

27
.7

8.
62

T
h
is

w
or

k
V

ir
te

x
5

4-
p
ar

al
le

l
A

E
S
-G

C
M

◦
L

U
T

12
15

2
0

20
0

10
2.

4
8.

42
[3

]
V

ir
te

x
4

A
E

S
-G

C
M

•
B

R
A

M
77

12
82

28
5

15
.4

1.
99

[3
]

V
ir

te
x
4

A
E

S
-G

C
M

•
C

om
p
.

14
34

9
0

27
7

14
.9

1.
04

[3
]

V
ir

te
x
5

A
E

S
-G

C
M

•
B

R
A

M
35

33
41

31
4

16
.9

4.
78

[3
]

V
ir

te
x
5

A
E

S
-G

C
M

•
C

om
p

64
92

0
31

4
16

.9
2.

60
[3

]
V

ir
te

x
5

A
E

S
-G

C
M

•
L

U
T

46
28

0
32

4
17

.5
3.

77
[3

0]
V

ir
te

x
4

A
E

S
-G

C
M

•
C

om
p
.

16
37

8
0

16
1

20
.6

1
1.

26
[3

2]
V

ir
te

x
4

A
E

S
-G

C
M

•
B

R
A

M
13

20
0

11
4

11
0

14
1.

07
[3

2]
V

ir
te

x
4

A
E

S
-G

C
M

•
C

om
p
.

21
60

0
0

90
11

.5
2

0.
53

[3
1]

V
ir

te
x
5

4-
p
ar

al
le

l
A

E
S
-G

C
M

•
L

U
T

14
79

9
0

23
3

48
.8

3.
29

Chapter 3. High Speed Authenticated Encryption for Slow Changing Key
Applications Using FPGAs 53

Ours
(BRAM)

Ours
(Comp)

[3]
(BRAM)

[3]
(Comp)

[30]
(Comp)

[32]
(BRAM)

[32]
(Comp)

[32]
(LUT)

5

10

15

20

25

30
C

on
su

m
ed

ar
ea

No. of slices (Kslice)
No. of BRAMs (BRAMs/100)

Ours
(BRAM)

Ours
(Comp)

[3]
(BRAM)

[3]
(Comp)

[30]
(Comp)

[32]
(BRAM)

[32]
(Comp)

[32]
(LUT)

10

15

20

25

30

27.7

30.6

15.4 14.9

20.6

14

11.5

15.4

S
p

ee
d

p
er

fo
rm

an
ce

(G
b
p
s)

Figure 3.9: Hardware comparison on Virtex4

proposed 4-parallel AES-GCM using pipelined KOA. Their design achieved

the authentication of 18 frames of 128-bits in 11 clock cycles because of the

latency resulting from the pipelined KOA. As a result, their throughput is

calculated as follows (highlighted before in Chapter 2):

Throughput(Mbps) = Fmax(MHz) × 128× 18

11
. (3.6)

Fig. 3.9 presents the comparison between our proposed architectures and

previous work on Virtex-4. It is clear that our work outperforms the previously

reported ones. Therefore, proposed architectures can be used efficiently for

slow changing key applications like VPNs and embedded memory protection.

Chapter 3. High Speed Authenticated Encryption for Slow Changing Key
Applications Using FPGAs 54

3.5 Conclusion

In this chapter, we presented the performance improvement of AES-GCM by

key-synthesized method. We integrated this concept using three methods of

SubBytes implementation in order to increase the flexibility of the presented

work. With our proposed parallel AES-GCM, each multiplier has a fixed

operand. Therefore, the presented parallel AES-GCM is suitable for key-

synthesized method with higher throughput compared to the previous work.

The bitstream of the proposed architectures contains information related to

the used key. Hence, we presented a protocol to protect the bitstream of

the proposed architectures. Our presented AES-GCM architectures can be

used for slow changing key applications like VPNs and they outperform the

previous architectures regarding the hardware performance.

Chapter 4

Efficient and High Speed

Key-Independent AES-Based

Authenticated Encryption

Architectures Using FPGAs

4.1 Introduction

AES-GCM has been utilized in various security applications as a solution for

achieving both confidentiality and integrity. As we described before, it consists

of two components: an AES engine and a GHASH core. The performance of

the system is always determined by the GHASH architecture because of the

inherent computation feedback.

The previous chapter invested the slow changing key applications like VPNs

in order to design efficient and high speed architectures of AES-GCM by syn-

thesizing the used key for encryption and authentication into the architecture

(single and parallel). A new reconfiguration is loaded on the FPGA in case

of changing the key. However, this solution presented in Chapter 3 is only for

slow changing key applications.

55

Chapter 4. Efficient and High Speed Key-Independent AES-Based
Authenticated Encryption Architectures Using FPGAs 56

By mid-December 2017, CAESAR, which is funded by NIST, will define a

portfolio of AE algorithms that offer advantages over AES-GCM. The due date

of the first-round submission for CAESAR was January 15th, 2014. AEGIS

is considered one of the candidates to the first round. First, it was presented

in SAC-2013 (Selected Area of Cryptography) and then becomes one of the

candidates of CAESAR.

In this chapter we are involved in designing high speed architectures of AES-

GCM in order to overcome the current challenges regarding the GHASH ar-

chitecture. Also, we focus on the hardware implementation of AEGIS-128.

The contributions of this chapter are as follows:

1. This chapter introduces an efficient method for implementing the pipelined

Karatsuba Ofman Algorithm (KOA)-based GHASH on FPGAs to sup-

port high speed applications. In particular, the computation feedback

is removed by analyzing the complexity of the computation process.

2. The proposed GHASH core is evaluated with three different implemen-

tations of AES (BRAMs-based SubBytes, composite field-based Sub-

Bytes, and LUT-based SubBytes) in order to perform the encryption

and the authentication.

3. Because of being involved in designing high speed AE architectures,

an efficient AEGIS-128 architecture is presented using only five AES

rounds.

4.2 Efficient KOA-Based GHASH

Four different architectures of FPGAs-based AES-GCM were presented in

the open literature ([32],[30],[3],[31]). It is clear that these contributions

do generally have a common challenge related to the hardware performance

(Thr./Slice) as follows:

• In [32], the authors used the parallel method for implementing the

GHASH (GF (2128)) and the hardware performance is not sufficient to

support high speed applications because of using the parallel method.

Chapter 4. Efficient and High Speed Key-Independent AES-Based
Authenticated Encryption Architectures Using FPGAs 57

• Because of the poor results of the hardware performance, the authors of

[30] proposed using KOA-based GHASH in order to reduce the hardware

complexity and improve the overall performance and their throughput

was as follows:

Throughput(Mbps) = Fmax(MHz) × 128. (4.1)

• For better throughput, [3] claimed the throughput improvement to their

previous KOA-based GHASH by using the pipelining concept (described

before in detail (see Equation 4.2)).

Throughput(Mbps) = Fmax(MHz) × 128× 8

19
(4.2)

• The same happened with the parallel architecture proposed by [31] (see

Equation 4.3).

Throughput(Mbps) = Fmax(MHz) × 128× 18

11
(4.3)

Also, in our previous architectures in Chapter 3, all the presented architectures

were key-dependent architectures because they are only for slow changing key

applications.

In this section, in order to improve the performance of AES-GCM, an efficient

pipelined KOA-based GHASH is presented to obtain key-independent AES-

GCM. The target is to present an efficient method that solves the problems

of the previous work.

In order to reduce the complexity (consumed area), KOA is selected to per-

form the multiplication process in the GHASH. In terms of the throughput

challenge, we present a new method to obtain a feedback-free multiplier. As

the targeted platform is FPGA, FPGA-specific properties are considered for

performance improvement.

In order to solve the problem of the inherent computation feedback in the

multiplier, we have to first analyze the processing equation of the GHASH

(Equation 4.4).

Chapter 4. Efficient and High Speed Key-Independent AES-Based
Authenticated Encryption Architectures Using FPGAs 58

Output(Zi) = (Ci ⊕ Zi−1)×H (4.4)

As shown in Equation 4.4, the generation of the GHASH output is calculated

by the multiplication between H and the result of XORing the input Ci and

the previous output Zi−1. We propose writing Equation 4.4 as follows:

Output = (Ci ⊕ Zi−1)×H

= (Ci ×H)⊕ (Zi−1 ×H)

= (Ci ×H)⊕ [(Ci−1 ⊕ Zi−2)×H2]

= (Ci ×H)⊕ (Ci−1 ×H2)⊕ [(Ci−2 ⊕ Zi−3)×H3]

= (Ci ×H)⊕ (Ci−1 ×H2)⊕ (Ci−2 ×H3)

⊕[(Ci−3 ⊕ Zi−4)×H4]

= ((Ci ×H)︸ ︷︷ ︸⊕ (Ci−1 ×H2)︸ ︷︷ ︸⊕ (Ci−2 ×H3)︸ ︷︷ ︸
⊕ (Ci−3 ×H4)︸ ︷︷ ︸⊕ (C2 ×H i−1)︸ ︷︷ ︸⊕ (C1 ×H i)︸ ︷︷ ︸ .

(4.5)

According to Equation 4.5, the feedback resulting from XORing the input

Ci and the previous output Zi−1 could be removed because the final output

is calculated from the last two lines of the equation. More precisely, if the

values from H to H i exist, the feedback which affects the performance of the

multiplier will be removed.

Assume that there is a packet of data which contains 64 frames of 128-bit

(i=64, 1024 bytes) and the generation of the output (MAC) is required. There-

fore, Equation 4.5 will be as follows:

Output = ((C64 ×H)︸ ︷︷ ︸⊕ (C63 ×H2)︸ ︷︷ ︸⊕ (C62 ×H3)︸ ︷︷ ︸
⊕ (C61 ×H4)︸ ︷︷ ︸⊕ (C2 ×H63)︸ ︷︷ ︸⊕ (C1 ×H64).︸ ︷︷ ︸ (4.6)

If the values form H to H64 are stored and multiplied to the input Ci as

shown in Equation 4.6, the pipelined architecture can be simply performed.

The architecture proposed for the pipelined KOA-based GHASH is shown

in Fig. 4.1. The architecture shown in Fig. 4.1 is presented according to

calculating the output (MAC) of 64 frames of 128-bit. For area reduction,

Chapter 4. Efficient and High Speed Key-Independent AES-Based
Authenticated Encryption Architectures Using FPGAs 59

Up/Down
 Counter

2
nd

(64 to 32)

2
nd

(64 to 32)

2
nd

(64 to 32)

splitting
stage

splitting
stage

splitting
stage

Sub−mult
stage

Sub−multSub−mult
stagestage

Alignment
2

stage
Alignment

stage
Alignment

stage

22
nd nd nd

stageAlignment1
st

1
st

mod (P)

Z

Mux2Mux1

XY

Memory

H

H

2

64

 Splitting stage (128 to 64)

H

A
d

d
re

ss

C
i

Output

128

128

128128

128

128

128

128

6

255

128

Figure 4.1: Proposed pipelined KOA-based GHASH

we propose using 2-step KOA. The two 128-bit inputs (Ci and H) are split

two times in order to use 32-bit multipliers. Each sub-mult stage has three

32-bit multipliers. As a result, the complexity of the multiplier is reduced.

Additionally, Pipelining approach is used for reducing the datapath of the

multiplier. In total, the proposed architecture combines the following parts:

Chapter 4. Efficient and High Speed Key-Independent AES-Based
Authenticated Encryption Architectures Using FPGAs 60

• 2-step pipelined KOA for performing the GF multiplication.

• A memory for storing the values from H2 to H64.

• 6-bit Up/Down counter for addressing the memory.

• Mux1 and Mux2 are used for switching between H, ci, Z, and the mem-

ory output.

We divide the process of the output (MAC) generation into two steps:

1. Initialization stage:

The first step includes storing the H values in the memory. At the

beginning, H is passed to X and Y ports. The counter counts up and

H2 will appear on port Z after 4 clock cycles because we use 4-stage

pipelined KOA. After, the memory stores H2 and H2 is passed to port

Y and H to port X in order to generate H3 and store it in the memory.

This process is repeated till filling the memory with the values from H2

to H64. Filling the memory takes 63 × 4 = 252 clock cycles. This is

called the initialization stage.

2. Output generation:

After initializing the memory, the second step concerns with the output

generation as presented in Equation 4.6. The counter starts counting

down with the first input. The first input C1 is passed to port Y and

the memory passes H64 to port X. After one clock cycle, the second

input C2 is passed to port Y and the memory passes H63 to port X.

This scenario is completed by passing C64 to port Y and H to port

X. The output is calculated by XORing Z values (Equation 4.6). In

terms of the time taken to generate the output, it is 64 clock cycles

with 5 additional clock cycles as a latency (4 clock cycles because of

the 4-stage pipelined KOA and one cycle because of the last register).

Therefore, the throughput of the proposed architecture is as follows:

Throughput(Mbps) = Fmax(MHz) × 128× 64

69
. (4.7)

Chapter 4. Efficient and High Speed Key-Independent AES-Based
Authenticated Encryption Architectures Using FPGAs 61

Because of targeting our architecture on Xilinx Virtex-5 FPGAs, we recom-

mend using CLBs for memory implementation because of 6-input Look-Up-

Tables (LUT). Otherwise, using BRAMs is another solution.

The proposed architecture offers the following advantages over the previous

designs:

• It reduces the reduction factor compared to [3] from 8
19

to 64
69

(see Equa-

tion 4.7). Therefore, the developed architecture presents the throughput

improvement compared to [3].

• In case of changing the key, 252 clock cycles are needed to initialize the

memory. Hence, no new reconfiguration is needed in case of changing

the key unlike our previous architectures in Chapter 3.

4.3 High speed AES-GCM

This section describes adding the proposed GHASH to the pipelined AES in

order to perform the encryption and the authentication of the input message.

Fig. 4.2 shows the proposed high throughput architecture for AES-GCM. In

contrast to the previously presented AES-GCM architectures in Chapter 3, we

use the key-independent pipelined AES core which has the key schedule that

generates the sub-keys (k0 to k10) during the running time (no new FPGA

reconfiguration). Three SubBytes implementations (BRAMs-based SubBytes,

composite field-based SubBytes, and LUT-based SubBytes) are used in order

to increase the flexibility of the proposed architecture.

The proposed core performs both encryption and authentication as follows:

1. The pipelined AES engine generates H by encrypting ”00..00” frame.

2. The first value of the counter CTR[0] is encrypted.

3. The proposed GHASH needs 252 clock cycles in order to initialize the

memory after the generation of H.

Chapter 4. Efficient and High Speed Key-Independent AES-Based
Authenticated Encryption Architectures Using FPGAs 62

Add Round Key

Round 1

Round 2

Round 10

K
ey

 s
ch

ed
u
le

P
la

in
te

x
t

H

C
ip

h
er

te
x
t(

C
)

H

M
A

C

C
T

R

0
0
..
0
0
0

K
ey

E
n
cr

y
p
ti

o
n

A
u
th

en
ti

ca
ti

o
n

K
O

A
−

b
as

ed

E
(C

T
R

[0
])

E
(C

T
R

[0
])

P
ro

p
o
se

d

G
H

A
S

H

k
0

k
1

k
2

k
1
0

F
ig
u
r
e
4
.2
:

P
ro

p
os

ed
A

E
S

-G
C

M
ar

ch
it

ec
tu

re

Chapter 4. Efficient and High Speed Key-Independent AES-Based
Authenticated Encryption Architectures Using FPGAs 63

4. The AES engine changes its mode to be in CTR mode for performing

encryption and delivering Ci to the proposed GHASH.

5. The last value resulting from the proposed GHASH is XORed with

E(CTR[0]) in order to achieve the final MAC.

The presented architecture of AES-GCM perfectly suits the needs of GCM

mode which performs the encryption and the authentication of the input

message. As we described before, the encryption and the authentication in

GCM are performed using the pipelined AES in CTR mode and the pro-

posed GHASH, respectively. Therefore, the proposed architecture could also

be tuned to handle the decryption and the authentication. Indeed, Ci is

XORed with the output of the pipelined AES for performing the decryption

and also is passed to the proposed GHASH for MAC generation.

4.4 Efficient hardware implementation for AEGIS-

128

The goal of this section is to present our efficient and high speed architecture

of AEGIS-128. As shown in Equations 4.8, 4.9, and 4.10, encryption, au-

thentication and decryption tasks are performed by the five values of S (from

Si,0 to Si,4). In case of using one AES-round, the values from Si,0 to Si,4 are

updated every five clock cycles.

Ci = Pi ⊕ Si,1 ⊕ Si,4 ⊕ (Si,2&Si,3) (4.8)

MAC = ⊕4
i=0(S(msglen

128
+7),i) (4.9)

Pi = Ci ⊕ Si,1 ⊕ Si,4 ⊕ (Si,2&Si,3) (4.10)

In our proposed architecture shown in Fig. 4.3, five AES-rounds are used in

order to generate the values from Si+1,0 to Si+1,4 in one clock cycle. In terms

Chapter 4. Efficient and High Speed Key-Independent AES-Based
Authenticated Encryption Architectures Using FPGAs 64

of the hardware implementation, 80 s-boxes and 20 Mixcolumns are used.

SubBytes stage is implemented by using LUT and composite field methods

because using BRAMs adds a register (see Fig. 3.2) which is not be suitable

with the iterative nature of AEGIS. Multiplexers from M1 to M5 are used to

switch between the initialization mode to the encryption and the finalization

modes. M6 is to support mi to the state update function where:

mi =



K128 Initialization(i = even)

K128 ⊕ IV128 Initialization(i = odd)

P Encryption

Smsglen
128

,3 ⊕ tmp Finalization.

1. The initialization of AEGIS-128:

As we described before, the initialization of AEGIS-128 consists of load-

ing the key and IV into the state in 10 steps (i=-10 to -1). The initial-

ization stage is performed as follows:

• The used multiplexers (M1 to M5) pass the values Sinit,0, Sinit,1,

Sinit,2, Sinit,3, and Sinit,4 to the five AES-rounds during the first

step.

• During the next 9 steps, the values Si+1,0, Si+1,1, Si+1,2, Si+1,3, Si+1,4

are fed to the multiplexers (M1 to M5). Also, M6 passes the values

m2i = K128 or m2i+1 = K128 ⊕ IV128 according to the step number

(even or odd). This takes 10 clock cycles as an initialization stage.

2. The encryption of AEGIS-128:

After completing the initialization stage, the encryption is performed as

shown in Equation 4.8 when M6 passes the plaintext (P) to be mixed

with Si,0. Encrypting 128-bit input takes only one clock cycle because

of using five AES-rounds.

3. The finalization of AEGIS-128:

After processing all the input message encryption, the finalization starts

Chapter 4. Efficient and High Speed Key-Independent AES-Based
Authenticated Encryption Architectures Using FPGAs 65

m
sg

le
n

1
2
8

,3

S
S

S
S

S
in

it
,0

in
it

,1
in

it
,2

in
it

,3
in

it
,4

S
S

S
S

i+
1
,1

i+
1
,2

i+
1
,3

i+
1
,4

S
S

S
S

S
i,

0
i,

1
i,

2
i,

3
i,

4

S
i+

1
,0

S
S

S
S

S
S

i+
1
,1

i+
1
,3

S
i+

1
,4

C
ip

h
er

te
x

t
(C

)
T

ag

S
i+

1
,0

S
i+

1
,2

2
i

m

2
i+

1
m

i+
1
,1

i+
1
,4

i+
1
,2

i+
1
,3

P

S

M
1

M
2

M
3

M
4

M
5

M6

A
E

S
 R

o
u

n
d

A
E

S
 R

o
u

n
d

A
E

S
 R

o
u

n
d

A
E

S
 R

o
u

n
d

A
E

S
 R

o
u

n
d

F
ig
u
r
e
4
.3
:

P
ro

p
os

ed
h

ig
h

sp
ee

d
A

E
G

IS
-1

28
ar

ch
it

ec
tu

re

Chapter 4. Efficient and High Speed Key-Independent AES-Based
Authenticated Encryption Architectures Using FPGAs 66

in order to achieve the authentication task. M6 passes the value Smsglen
128

,3⊕
tmp. This starts from i= (msglen

128
) to (msglen

128
+ 6). As a result, the final-

ization stage takes 6 clock cycles.

It is clear that any process of AEGIS-128 (encryption, decryption, or authen-

tication) depends on the generation of the values from Si+1,0 to Si+1,4 which

takes only one clock cycle. Hence, the overall throughput is calculated as

follows:

Throughput(Mbps) = Fmax(MHz) × 128 (4.11)

The proposed architecture of AEGIS-128 could also be tuned to handle the

decryption and the authentication by processing Ci into Equation 4.10 for per-

forming the decryption and there is no change in terms of the authentication

stage.

4.5 Hardware comparison

We coded our proposed schemes in VHDL and targeted to Virtex-5 (XC5VLX220).

ModelSim 6.5c was used for simulation. Xilinx Synthesize Technology (XST)

is used to perform the synthesize and ISE9.2 was adopted to run the Place

And Route (PAR).

Table 4.1 shows the hardware comparison between our results and

previous work. Note the filled dots in the ”Key” column. The

key is synthesized into the architecture when denoted by ◦ which

requires a new reconfiguration in case of changing the key. Other-

wise, the key schedule is implemented when denoted by • and no

new reconfiguration is needed in case of changing the key.

On Virtex-5 platform, our proposed AES-GCM core reaches the throughput of

32.46 Gbps with the area consumption of 3836 slices and 50 BRAMs. In case of

using composite field SubBytes, it consumes 7475 slices, however no BRAMs

are required. In terms of using LUT SubBytes, the proposed architecture

Chapter 4. Efficient and High Speed Key-Independent AES-Based
Authenticated Encryption Architectures Using FPGAs 67

T
a
b
l
e
4
.1
:

H
ar

d
w

ar
e

co
m

p
ar

is
on

F
P

G
A

D
es

ig
n

ke
y

S
u
b
B

y
te

s
S
li
ce

s
B

R
A

M
s

M
ax

-F
re

q
T

h
r.

T
h
r.

/S
li
ce

M
H

z
G

b
it

/s
M

b
p
s/

S
li
ce

T
h
is

w
or

k
V

ir
te

x
5

A
E

S
-G

C
M

•
B

R
A

M
38

36
50

27
3.

4
32

.4
6

8
.4

6
T

h
is

w
or

k
V

ir
te

x
5

A
E

S
-G

C
M

•
C

om
p
.

74
75

0
26

4.
2

31
.3

6
4
.1

9
T

h
is

w
or

k
V

ir
te

x
5

A
E

S
-G

C
M

•
L

U
T

47
70

0
31

1
36

.9
2

7
.7

4
T

h
is

w
or

k
V

ir
te

x
5

A
E

G
IS

-1
28

•
C

om
p
.

27
29

0
84

.9
10

.8
7

3.
98

T
h
is

w
or

k
V

ir
te

x
5

A
E

G
IS

-1
28

•
L

U
T

13
91

0
15

6.
5

20
.0

3
14

.3
9

[3
]

V
ir

te
x
5

A
E

S
-G

C
M

•
B

R
A

M
35

33
41

31
4

16
.9

4.
78

[3
]

V
ir

te
x
5

A
E

S
-G

C
M

•
C

om
p

64
92

0
31

4
16

.9
2.

60
[3

]
V

ir
te

x
5

A
E

S
-G

C
M

•
L

U
T

46
28

0
32

4
17

.5
3.

77
[3

1]
V

ir
te

x
5

A
E

S
-G

C
M

•
B

R
A

M
95

61
45

0
23

3
48

.8
5.

1
[3

1]
V

ir
te

x
5

A
E

S
-G

C
M

•
C

om
p

18
50

5
0

23
3

48
.8

2.
64

[3
1]

V
ir

te
x
5

A
E

S
-G

C
M

•
L

U
T

14
79

9
0

23
3

48
.8

3.
29

T
h
is

w
or

k
(C

h
ap

te
r

3)
V

ir
te

x
5

A
E

S
-G

C
M

◦
B

R
A

M
24

78
40

24
2

30
.9

12
.5

T
h
is

w
or

k
(C

h
ap

te
r

3)
V

ir
te

x
5

A
E

S
-G

C
M

◦
C

om
p
.

55
12

0
23

2
29

.7
5.

38
T

h
is

w
or

k
(C

h
ap

te
r

3)
V

ir
te

x
5

A
E

S
-G

C
M

◦
L

U
T

32
11

0
21

6.
3

27
.7

8.
62

Chapter 4. Efficient and High Speed Key-Independent AES-Based
Authenticated Encryption Architectures Using FPGAs 68

occupies 4770 and reaches the throughput of 36.92 Gbps. Also, by using using

LUT, our presented AEGIS-128 architecture consumes 1391 and reaches the

throughput of 20.03 Gbps. Regarding composite field, it consumes 2729 with

10.87 Gbps as a throughput.

By comparing our results of AES-GCM to [3], the comparison shows that our

performance (Thr./Slice) is better. This improvement results from reducing

the reduction factor in the equation of throughput as shown in Equation 4.2

and Equation 4.7. Also, our presented AEGIS-128 architectures performance

is better than [3].

In terms of the 4-parallel AES-GCM by [31], our area consumption of AES-

GCM and AEGIS-128 is smaller compared to them. Also, our performance

is better because the throughput presented by [31] is calculated as shown in

Equation 4.3.

Our previous chapter presented architectures for slow changing key applica-

tions like VPNs and the FPGA needs a new reconfiguration when the key

changes. Therefore, the proposed architectures in this chapter present bet-

ter performance compared to our previous AES-GCM (Chapter 3) because

the FPGA does not need a new reconfiguration when the key changes but it

needs 252 clock cycles for the memory initialization or 10 clock cycles in case

of AES-GCM and AEGIS-128, respectively.

We believe that the design presented by [3] is the closest one to our specifi-

cations, performance goals, technology and methodology. It is not a parallel

design like [31]. Also, it supports the key variation without any new recon-

figuration unlike our previous architectures in Chapter 3. Therefore, Fig 4.4

shows the overall comparison between our architectures and [3]. In terms

of the consumed area, our designs are slightly more than [3]. However, It

clear that the presented throughput is better than [3]. In general, the overall

performance of our architectures is always better than [3].

Chapter 4. Efficient and High Speed Key-Independent AES-Based
Authenticated Encryption Architectures Using FPGAs 69

Ours
(BRAM)

Ours
(Comp)

Ours
(LUT)

[3]
(BRAM)

[3]
(Comp)

[3]
(LUT)

4

5

6

7

C
on

su
m

ed
ar

ea

No. of slices (Kslice)
No. of BRAMs (BRAMs/100)

Ours
(BRAM)

Ours
(Comp)

Ours
(LUT)

[3]
(BRAM)

[3]
(Comp)

[3]
(LUT)

15

20

25

30

35

32.64
31.36

36.92

16.9 16.9 17.5S
p

ee
d

p
er

fo
rm

an
ce

(G
b
p
s)

Ours
(BRAM)

Ours
(Comp)

Ours
(LUT)

[3]
(BRAM)

[3]
(Comp)

[3]
(LUT)

4

6

8
8.46

4.19

7.74

4.78

2.6

3.77

H
ar

d
w

ar
e

p
er

fo
rm

an
ce

(T
h
r.

/S
li
ce

)

Figure 4.4: Hardware comparison on Virtex-5

Chapter 4. Efficient and High Speed Key-Independent AES-Based
Authenticated Encryption Architectures Using FPGAs 70

4.6 Conclusion

In this chapter, we presented the performance improvement of AES-GCM

(Thr./Slice). This was achieved by proposing an efficient pipelined KOA-

based GHASH. With our proposed GHASH, the throughput reduction factor

is decreased because of the feedback-free design. The presented multiplier

was evaluated with three different AES implementations (BRAMs-based Sub-

Bytes, composite field-based SubBytes, and LUT-based SubBytes) in order to

increase the flexibility of the presented AES-GCM. Furthermore, we designed

an efficient architecture for AEGIS-128 which is considered one of the candi-

dates of CAESAR by only five AES rounds with better performance compared

to the previous work. The throughput of the presented cores ranges from 10.87

to 36.92 using Xilinx Virtex-5 FPGAs. It is shown that the performance of

the presented architectures outperforms the previously reported ones.

Part II

Low Cost Solutions for Secure

FPGA Reconfiguration

71

Chapter 5

Low Cost Solutions for Secure

FPGA Reconfiguration

5.1 Introduction

When FPGAs were first introduced in the 1980s, this was a revolutionary step

from static ASIC and VLSI solutions to flexible and maintainable hardware

applications. With FPAGs, it has become possible to avoid the static designs

of standard VLSI technology, and instead to compile electrical circuits for

arbitrary hardware functions into configuration bitstreams which are used to

program a fabric of reconfigurable logic.

Designing using FPGAs allows faster design cycles than ASICs because they

enabled early functionality testing. Therefore, the use of FPGAs has been

expanding from its traditional role in prototyping to mainstream production.

The reconfiguration of FPGAs includes downloading the bitstream file which

contains the new design on the FPGA. Reconfiguration of FPGAs is becoming

increasingly popular particularly in networking applications. The option to

reconfigure the FPGAs dynamically opens up the threat of stealing the Intel-

lectual Property (IP) of the design. Since the configuration is usually stored in

external memory, this can be easily tapped and read out by an eavesdropper.

72

Chapter 5. Low Cost Solutions for Secure FPGA Reconfiguration 73

The main goals and achievements of this chapter are as follows:

1. Giving an overview of security issues used in the reconfiguration of FP-

GAs.

2. Analyzing how well encryption and authentication are very important

for trusted designs on FPGAs.

3. Proposing low cost hardware implementations to support and authenti-

cate the encrypted bitstreams.

5.2 FPGA reconfiguration

Programmability manages the user to modify the functionality of a device

outside of the founder. By applying this concept on gate arrays gives us Field

programmable Gate Arrays (FPGAs). As we described before, the function-

ality of the FPGA is modified when the new bitstream is uploaded into the

FPGA. The static part processes the bitstream and delivers it to the SRAM

cells which reload the reconfigurable part with the new design.

Networked FPGA-based systems gain particular flexibility if remote reconfig-

uration updates are possible. It is attractive as it is used in such systems to

offer new multimedia features or to repair eventual security issues remotely. It

requires transmitting the bitstream file which contains the hardware IP from

the development location over public (insecure) channels and thus introduces

new security issues (see Fig. 5.1) .

The developer is faced with several problems resulting from sending the bit-

stream file through insecure network. An adversary attacker can detect the

hardware IP to sell illegal copies or leak it to the public domain. There are

several types of attacks could be occurred to the bitstream file:

Chapter 5. Low Cost Solutions for Secure FPGA Reconfiguration 74

Application

FPGA

User Logic

S
R

A
M

 M
em

o
ry

C

el
ls

Static Part

Public Network

Bitstream

Bitstream

Development

 Location

Bitstream

Non Volatile

Memory (NVM)

Figure 5.1: Remote reconfiguration

1. Cloning attack:

The bitstream generated for one FPGA can be implemented on other of

the same family and size. Therefore, attackers can clone the bitstream

by copying it during sending it to the FPGA in order to sell the IP

illegally (see Fig. 5.2).

Bitsream Extract copy

010110010

110100100

010101010

010110010

111010100

110100100

010101010

111010100

Figure 5.2: Cloning attack

Chapter 5. Low Cost Solutions for Secure FPGA Reconfiguration 75

2. Reverse engineering attack:

It is the transformation of an encoded bistream into a logical functional

description which is equivalent to the original design as shown in Fig.

5.3. The attacker extracts data from the bitstream such as keys and

BRAMs content. An example of how the original design is recovered

from the bitstream is shown in [40].

Bitsream

010110010

111010100

110100100

010101010

Figure 5.3: Reverse engineering attack

3. Tampering attack:

In this type of attack, the attacker changes the design and sends it to

the FPGA (see Fig. 5.4). In [41], the authors presented how an FPGA

is damaged by malicious tampering of bitstreams.

1
1110

110100100

Tampered copyBitsream

010110010

111010100

110100100

010101010

10110010
01011

101010101

Figure 5.4: Tampering attack

5.3 Previous work

This section describes the previous methods used to secure the bitstream file

during the reconfiguration process.

Chapter 5. Low Cost Solutions for Secure FPGA Reconfiguration 76

• Bitstream confidentiality:

Encrypting the bistream by the developer and decrypting it within the

FPGA protects against cloning and reverse engineering attacks. En-

crypting the reconfiguration of the programmable devices was first in-

troduced by [42]. Kean [2] proposed encrypting and decrypting the

bitstream using embedded keys (programmed by the FPGA developer).

Both encryption and decryption are performed within the FPGA itself.

As shown in Fig. 5.5, the first step is performed in a trusted facil-

ity where the bitstream is encrypted by the FPGA using its embedded

key K, and then stored in NVM. While the system is deployed in the

field, the bitstream is decrypted with the same embedded key using a

hard-core decryptor which is part of the static logic. The advantage of

this method is that the key is embedded in the static part and it never

leaves the FPGA. The disadvantage is that the need for a trusted envi-

ronment in case of encrypting a new bitstream. Also, both encryptors

and decryptors must be used because the authors used AES-128 in CBC

mode, prohibitive cost. In [43], the authors proposed using the partial

reconfiguration to encrypt and decrypt the bitsream. This means that

the encryption and decryption circuits leave the static logic to be in the

user logic. As a result, the static area is free. However, the key used for

encryption and decryption is accessible to the user logic, where any one

can read it out and decrypt the bitstream.

Current FPGAs include hardwired mechanisms that ensure bitstream

confidentiality [44]. Bitstream encryption, introduced by Xilinx on a

production level with Virtex II FPGAs to prevent device cloning and

to protect the confidentiality of the design data. Each Virtex-4, Virtex-

5, and Virtex-6 device have an on-chip advanced encryption standard

(AES) [45] decryption engine to support encrypted bitstreams.

Chapter 5. Low Cost Solutions for Secure FPGA Reconfiguration 77

User Logic

S
R

A
M

 M
em

o
ry

C

el
ls

Static Part

FPGA

Application
HMAC

Non Volatile

Memory (NVM)

Encrypted
bitstream

Encrypted Bitstream

ENC

DEC

K

K

User Logic

S
R

A
M

 M
em

o
ry

C

el
ls

Static Part

FPGA

Application
HMAC

Non Volatile

Memory (NVM)

Encrypted
bitstream

Encrypted Bitstream

ENC

DEC

K

K

HMACHMAC

User Logic

S
R

A
M

 M
em

o
ry

C

el
ls

Static Part

FPGA

Application
HMAC

Non Volatile

Memory (NVM)

Encrypted
bitstream

Encrypted Bitstream

ENC

DEC

K

K

User Logic

S
R

A
M

 M
em

o
ry

C

el
ls

Static Part

FPGA

Application
HMAC

Non Volatile

Memory (NVM)

Encrypted
bitstream

Encrypted Bitstream

ENC

DEC

K

K

Bitstream

Step 2

Step 1

Figure 5.5: Bitstream encryption/decryption by [2]

The Xilinx bitstream encryption system consists of two parts:

– Software-based bitstream encryption.

– On-chip bitstream decryption.

Chapter 5. Low Cost Solutions for Secure FPGA Reconfiguration 78

By using the Xilinx ISE software, the user generates both the encryp-

tion key and the encrypted bitstream. The encryption key can only

be programmed into the device via the JTAG port by the developer.

These devices store the encryption key internally in either dedicated

RAM, backed up by a small externally connected battery, or in one-

time-programmable (OTP) fuses.

After programming the FPGA with the key which is used for encryp-

tion and decryption, as outlined in Fig. 5.6, the bitstream is delivered

securely to the FPGA as follow:

1. The bitstream is encrypted by developer using the assigned key K.

2. The encrypted bitstream is sent to the NVM.

3. The NVM supports the FPGA with the encrypted bitstream in

order to be decrypted using the static logic which contains the

AES core.

4. The decrypted bitstream is passed to the SRAM cells to implement

the new design.

Although this mechanism allows for protection of the system designer’s

IP against cloning as well as reverse engineering, it does not ensure the

authenticity of the bitstream. Therefore, this solution is not enough

to prevent attackers from destroying the FPGA using certain malicious

bitstreams. As a result, the FPGA should accept only bitstreams from

an authenticated source.

• Bitstream integrity:

Tampering attack is based on the modification of the bitstream. The

authors of [41] showed the effect of malicious tampering of bitstreams.

They presented how an FPGA is damaged due to shorts caused by ma-

nipulating configuration bits that control pass gates. Therefore, the

FPGA must be smart enough to detect the concept of Who is the

sender?, to accept the correct bitstream sent by the trusted sender.

Some FPGA vendors implement Cyclic Redundancy Checks (CRC) [46].

However, the purpose of CRC is to detect transmission errors, not to

check the integrity of data in the cryptographic sense. This is why Xilinx

Chapter 5. Low Cost Solutions for Secure FPGA Reconfiguration 79

User Logic

S
R

A
M

 M
em

o
ry

C

el
ls

Static Part

FPGA

AES Application

KEncrypted Bitstream

Non Volatile

Memory (NVM)

Bitstream

K

AES

Encrypted Bitstream

Figure 5.6: Bitstream encryption

[47] suggested using Message Authentication Code (MAC) function to

ensure the integrity of the bitstream. Virtex-6 FPGAs are an example of

the programmable devices that offer cryptographically strong bitstream

authentication.

An on-chip bitstream keyed-MAC algorithm implemented in hardware

provides additional security beyond that of using AES bitstream encryp-

tion alone [47]. Without knowledge of the AES and HMAC keys, the

bitstream cannot be loaded, modified, or cloned.

As shown in Fig. 5.7, the developer sends the bitstream securely to the

FPGA as follows:

1. The developer processes the bitstream via the AES and HMAC

using k1 and k2 respectively in order to encrypt and authenticate

the bitstream.

2. The encrypted bitsream and the MAC are sento to the NVM.

Chapter 5. Low Cost Solutions for Secure FPGA Reconfiguration 80

User Logic

S
R

A
M

 M
em

o
ry

C

el
ls

Static Part

FPGA

Application

AES

k2K1

Match?

bitstream

MAC

Encrypted

Y/N

HMAC

Developer

Bitstream

HMACAES

Encrypted Bitstream

M
A

C

k2K1

Encrypted Bitstream

M
A

C

Memory (NVM)

Non Volatile

Figure 5.7: Bitstream encryption and authentication in Virtex6

3. The NVM is used to store the encrypted bitstream with its MAC

and send them to the FPGA.

4. The FPGA static part is responsible for decrypting and authenti-

cating the contents of the NVM.

5. The computed MAC is compared to the bitstream’s MAC. If they

are equal, the FPGA will continue to the start-up sequence. Oth-

erwise, configuration will abort and the cells be cleared.

Drimer [48] proposed an FPGA bitstream encryption-authentication

mechanism based on two parallel AES engines, in CTR and CBC modes,

for performing both encryption and authentication. His solution used

the architectures presented by Parelkar [25] who noted that generic com-

position of authentication and encryption (AES+HMAC) required more

circuit area than AE algorithms. Therefore, Parelkar [25] presented

CCM mode for achieving both authentication and encryption. Table

5.1 shows the difference between the hardware implementation of CCM

mode and AES+HMAC. It is clear that CCM needs smaller area than

AES combined with HMAC. In [49], the authors proposed using ALE

Chapter 5. Low Cost Solutions for Secure FPGA Reconfiguration 81

algorithm for performing both decryption and authentication but this

algorithm was attacked by [50, 51].

Table 5.1: Hardware comparison

Design architecture Technology Area Frequency Throughput

mm2 MHz Mbps

Parelkar et al.[25] AES-CCM 90 nm 0.057 148 434

Parelkar et al.[25] AES+HMAC 90 nm 0.183 101.2 1293

As mentioned above, most of the previous work used the static part in order

to perform only decryption or both decryption and authentication of the en-

crypted bitstream [2, 48, 52]. However, in order to leave the static part free for

the developed application, Bossuet et al. [43] used the user part to decrypt

the encrypted bitstream. Table 5.2 summarizes and compares between the

previous work.

Our presented approach in the following section utilizes the static part in order

to perform both decryption and authentication by an embedded key in the

static part. As a result, the used key will never leave the static part (more

secure). In order to reduce the area of the proposed solution in the static part,

low cost AE algorithms will be implemented.

5.4 Low cost AE architecture for secure re-

configuration

Our goal is to design low cost solutions to be used for decryption and authenti-

cation of the encrypted bitstream. The reason of the low cost implementation

is to reduce the used area of the static part which performs the security task.

The used key is always embedded in the static part to avoid any user access.

Efficient hardware implementations for AE are presented and compared with

previous work. Presented architectures include AES-CCM, AES-GCM, and

AEGIS-128 which can be used efficiently for secure reconfiguration of FPGAs.

Chapter 5. Low Cost Solutions for Secure FPGA Reconfiguration 82

T
a
b
l
e
5
.2
:

P
re

v
io

u
s

w
or

k
su

m
m

er
y

D
es

ig
n

B
it

st
re

am
B

it
st

re
am

K
ey

ac
ce

ss
C

or
e

ex
is

te
n
ce

T
ru

st
ed

en
v
ir

on
m

en
t

A
re

a
re

q
u
ir

em
en

t

co
n
fi
d
en

ti
al

it
y

in
te

gr
it

y
st

or
ag

e
fo

r
re

co
n
fi
gu

ra
ti

on

[2
]

Y
es

N
o

S
ta

ti
c

p
ar

t
S
ta

ti
c

p
ar

t
Y

es
A

E
S
-b

as
ed

en
cr

y
p
to

r
an

d
d
ec

ry
p
to

r

[4
3]

Y
es

N
o

U
se

r
P

ar
t

U
se

r
P

ar
t

N
o

A
E

S
-b

as
ed

en
cr

y
p
to

r
an

d
d
ec

ry
p
to

r
[5

2]
Y

es
N

o
S
ta

ti
c

p
ar

t
S
ta

ti
c

p
ar

t
N

o
A

E
S
-b

as
ed

d
ec

ry
p
to

r
[4

7]
Y

es
Y

es
S
ta

ti
c

p
ar

t
S
ta

ti
c

p
ar

t
N

o
A

E
S
-b

as
ed

d
ec

ry
p
to

r
+

H
M

A
C

[4
8]

Y
es

Y
es

S
ta

ti
c

p
ar

t
S
ta

ti
c

p
ar

t
N

o
A

E
S
-C

C
M

Chapter 5. Low Cost Solutions for Secure FPGA Reconfiguration 83

The ASIC implementation is the main target, since the bitstream decryption

and authentication modules are meant to be implemented as an independent

IP in the static part (FPGA silicon).

User Logic

S
R

A
M

 M
em

o
ry

C

el
ls

Static Part

Match?

Low Cost AE

Y/N

FPGA

Encrypted Bitstream

MAC

Computed
MAC

Key

Application

Encrypted Bitstream

M
A

C

Non Volatile

Memory (NVM)

Bitstream

Key
AE

M
A

C

D
ev

el
o
p
er

Encrypted Bitstream

Figure 5.8: our Proposed approach

As shown in Fig. 5.8, the developer encrypt and authenticate the bitstream

using AE (AES-CCM, AES-GCM, or AEGIS-128). After, the encrypted bit-

sream and the MAC are sent to the NVM. The NVM sends the encrypted

bitstream with its MAC at the power-up. The low cost AE inserted in the

static part decrypts and verifies the MAC for performing the secure reconfig-

uration.

5.4.1 Proposed AES-CCM

In the implementation of our AES-CCM core, we have focused on minimizing

the area. Since AES-CCM uses two blocks of AES in CTR and CBC modes

for performing both encryption and authentication, the proposed architecture

uses only one AES block for both encryption/decryption and authentication

in order to obtain an area-efficient architecture.

Chapter 5. Low Cost Solutions for Secure FPGA Reconfiguration 84

In [48], the authors motivated using the presented AES-CCM proposed by

[25] in order to secure the reconfiguration process. In [25], one round-based

AES (iterative design) was used to implement AES-CCM. As a result, the

complexity of their design was sixteen SubBytes with four Mixcolumns.

+

MixColumns

32323232

32323232

Shift

key

128

Plaintext (P)

SSSS

32

32

32

32

32

32

128

128

128

128

8888

8888

32323232
32

32323232

32

Key Schedule

Ciphertext (C)128

32323232

Figure 5.9: 1/4 round-based AES

In the proposed AES-CCM, we use 1/4 round-based AES that has an advan-

tage of reducing the consumed area with a suitable throughput which is able

to support applications lower than 1Gbps. Fig. 5.9 shows the architecture

of 1/4 round-based AES. The data path is reduced from 128-bit to 32-bit.

Hence, only four SubBytes (s-boxes) and one MixClolumn are used. The key

schedule shares the four s-boxes stage with the main data path to avoid using

another four s-boxes. Additionally, the SubBytes stage is implemented using

composite field for reducing the consumed area.

Chapter 5. Low Cost Solutions for Secure FPGA Reconfiguration 85

Each round processes the 128-bit frame in five clock cycles (four clock cycle

for the main frame + one clock cycle because the key schedule shares the

s-boxes with the main data path). Because of using AES-128, 10 rounds

must be computed to achieve the encryption/decryption process. In order to

encrypt/decrypt a 128-bit frame, 50 clock cycles are needed (5×10). Therefore

the throughput of the 1/4 round-based AES is as follows:

Throughput(Mbps) =
Fmax(MHz) × 128

50
. (5.1)

Our AES-CCM architecture uses one 1/4 round-based AES for both encryp-

tion and authentication as shown in Fig. 5.10. Encryption and authentication

are computed as follows:

+

+

Counter

Plaintext (P)

Memory

+

Key

128

128

128

128 1281/4 round−based

AES

Ciphertext (C)

Direction of encryption using CTR mode

Direction of authentication using CBC mode

128

128

Y

S[0]

MAC

Figure 5.10: Proposed AES-CCM (encryption and authentication)

1. The plaintext (P), which is stored in a memory (not online), is processed

by 1/4 round-based AES in CBC mode in order to generate Y.

Chapter 5. Low Cost Solutions for Secure FPGA Reconfiguration 86

2. CTR[0] is encrypted to achieve S[0] which is XORed with Y to generate

the MAC.

3. Encryption is then performed by 1/4 round-based AES in CTR mode.

The same architecture could be tuned to handle both decryption and authen-

tication as follows (see Fig. 5.11):

1. CTR[0] is encrypted to obtain S[0].

2. Decryption is computed by XORing the encrypted counter values with

the ciphertext (C) to obtain the plaintext (P).

3. The plaintext (P) is processed by 1/4 round-based AES in CBC mode

to perform the authentication by the generation of Y which is XORed

with S[0] to obtain the MAC.

+

+

Counter

Memory

Plaintext (P)

+
Memory

Plaintext (P)

Key

128

128

128

128

128 1281/4 round−based

AES

Ciphertext (C)

Direction of decryption using CTR mode

Direction of authentication using CBC mode

Y

MAC

S[0]

128

Figure 5.11: Proposed AES-CCM (decryption and authentication)

Chapter 5. Low Cost Solutions for Secure FPGA Reconfiguration 87

Compared to the solution of [48], the proposed architecture consumes only four

s-boxes and one MixColumn instead of sixteen s-boxes and four MixColumns.

A 128-bit frame takes 50 clock cycles to be encrypted/decrypted or added to

MAC queue. Therefore, the achieved throughput of our presented AES-CCM

is calculated as follows:

Throughput(Mbps) =
128× Fmax(MHz)

50× 2
. (5.2)

5.4.2 Proposed AES-GCM

AES-GCM uses two components: an AES engine and a GF(2128) multiplier.

The target is directed to optimize the overall architecture which includes the

encryption/decryption part (AES) and the authentication part (GF(2128)).

Our proposed architecture uses the 1/4 round-based AES for area optimiza-

tion. Previous architectures of GF(2128) such as [30, 34] were used for high

speed applications. In terms of the hardware implementation, they are expen-

sive. Hence, it is important to design a multiplier which can be used efficiently

with the 1/4 round-based AES.

Serial GF(2128) multiplier is described in Algorithm 1 [12], where A,H are

inputs to the multiplier and F(x) is the field polynomial, F (x) = x128 + x7 +

x2 + x + 1. The output C needs 128 clock cycles to be ready in case of using

serial multiplier.

As shown in Algorithm 1, it is possible to design one round for achieving the

multiplication in 128 clock cycles. Four rounds are used together to reduce

the number of clock cycles needed to perform the multiplication from 128 to

32 (128/4) clock cycles in order to be suitable for the 1/4 round-based AES

architecture as shown in Fig. 5.12.

Our proposed AES-GCM architecture shown in Fig. 5.13 uses 1/4 round-

based AES with the hybrid GF(2128) multiplier to accomplish the task of

encryption and authentication. In case of performing both encryption and

authentication, the sequence is as follows:

Chapter 5. Low Cost Solutions for Secure FPGA Reconfiguration 88

(A)A = rightshift

+C C A

 127

128
Algorithm 1 : GF(2) Multiplier

Input A,H, F(x) Field Polynomial

For i=0 to 127 do

i
IF H =1 Then

Output C

End IF

IF A = 0 Then

Else

+(A)A = rightshift

End If

F(x)

End For

Return C

One Round

AH

A1C1H1

A2C2H2

H3 C3 A3

A4C4H4

C="00..00"

C

Round

Round

Round

Round

Figure 5.12: Proposed GF(2128) multiplier

Chapter 5. Low Cost Solutions for Secure FPGA Reconfiguration 89

+

C
o
u
n
te

r

"0
0
..
.0

0
0
"

+
+

E
 (

C
T

R
[0

])

E
 (

C
T

R
[0

])

1
2

8

1
2

8

1
2

8

H
y
b
ri

d
 G

F

M
u
lt

ip
li

er

H

H

M
A

C

P
la

in
te

x
t

(P
)

C
ip

h
er

te
x
t

(C
)

1
2

8

1
2

8

1
2

8

1
2

8

1
2

8
1

2
8

1
2

8

1
/4

 R
o
u
n
d
−

b
as

ed

A
E

S

F
ig
u
r
e
5
.1
3
:

P
ro

p
os

ed
A

E
S

-G
C

M
(e

n
cr

y
p

ti
on

an
d

au
th

en
ti

ca
ti

on
)

Chapter 5. Low Cost Solutions for Secure FPGA Reconfiguration 90

1. ”00..00” frame is encrypted to obtain H.

2. CTR[0] is encrypted (it is used later for authentication).

3. Encryption is performed by 1/4 round-based AES in CTR mode.

4. Encrypted frames are passed to the hybrid multiplier for performing the

authentication.

The presented architecture could be also tuned for performing both decryption

and authentication as follows (see Fig. 5.14):

1. ”00..00” frame is encrypted to obtain H.

2. CTR[0] is encrypted (it is used later for authentication).

3. Decryption is computed by the 1/4 round-based AES in CTR mode,

where the ciphertext (C) is XORed with the encrypted counter values

to obtain the plaintext (P).

4. The ciphetext (C) is passed to the hybrid multiplier for performing the

authentication.

It is clear from Fig. 5.13 and Fig. 5.14 that each frame is encrypted/decrypted

in 50 clock cycles and added to MAC queue in 32 clock cycles for authentica-

tion. As a result, the throughput of the proposed AES-GCM is calculated as

follows:

Throughput(Mbps) =
128× Fmax

50
. (5.3)

The advantage of AES-GCM over AES-CCM is that AES-GCM supports on-

line applications because of the external hashing using the GF(2128). Hence,

there is no need for the memory to store the plaintext (P). Also, the through-

put is higher (see Equations 5.2 and 5.3).

Chapter 5. Low Cost Solutions for Secure FPGA Reconfiguration 91

+

C
o
u
n
te

r

"0
0
..
.0

0
0
"

+
+

E
 (

C
T

R
[0

])

E
 (

C
T

R
[0

])

1
2

8

1
2

8

1
2

8

H
y
b
ri

d
 G

F

M
u
lt

ip
li

er

H

H

M
A

C

1
2

8

1
2

8

1
2

8

1
2

8
1

2
8

1
2

8

1
/4

 R
o
u
n
d
−

b
as

ed

A
E

S

C
ip

h
er

te
x
t

(C
)

P
la

in
te

x
t

(P
)

C
ip

h
er

te
x
t

(C
)

F
ig
u
r
e
5
.1
4
:

P
ro

p
os

ed
A

E
S

-G
C

M
(d

ec
ry

p
ti

on
an

d
au

th
en

ti
ca

ti
on

)

Chapter 5. Low Cost Solutions for Secure FPGA Reconfiguration 92

5.4.3 Proposed AEGIS-128

As shown in the following Equations (5.4, 5.5, and 5.6), encryption, authen-

tication, and decryption tasks are performed by Si,0, Si,1, Si,2, Si,3, and Si,4.

The values from Si,0 to Si,4 are generated by five AES-rounds. This means

that using five AES-rounds generates the values from Si,0 to Si,4 in only one

clock cycle. In case of using one AES-round, the values from Si,0 to Si,4 are

updated every five clock cycles.

Ci = Pi ⊕ Si,1 ⊕ Si,4 ⊕ (Si,2&Si,3) (5.4)

MAC = ⊕4
i=0(S(msglen

128
+7),i) (5.5)

Pi = Ci ⊕ Si,1 ⊕ Si,4 ⊕ (Si,2&Si,3) (5.6)

One AES-round (Fig. 5.15 (a)) contains ShiftRows stage, SubBytes (16 s-

boxes) stage, and MixColumns (4 Mixcolumns). In terms of the hardware

implementation, the most consuming parts are SubBytes and MixColumns.

Therefore, we propose using only four s-boxes followed by only one MixColumn

stage in order to reduce the consumed area. As a result, the round complexity

is reduced to be 1/4 round (Fig. 5.15 (b)) by using a full ShiftRows mod-

ule, 4-input multiplexer, four s-boxes, one MixColumn and First-In-First-Out

(FIFO) register. The data path becomes 32-bit instead of 128-bit because

of using four s-boxes and one MixColumn. Four clock cycles are needed to

update each state Si. Therefore, updating values from Si,0 to Si,4 takes 20

clock cycles (4× 5).

The overall architecture of the proposed AEGIS-128 is shown in Fig. 5.16.

The 1/4 AES-round (Fig. 5.15 (b)) is used to reduce the hardware complexity

of the proposed architecture. Multiplexers from M1 to M9 switch between the

initialization mode to the encryption and the finalization modes. M10 is to

support mi to the state update function where:

Chapter 5. Low Cost Solutions for Secure FPGA Reconfiguration 93

0
1

2
3

4
5

6
7

8
9

1

0
1

1
1

2
1

4
1

3
1

5
0

1
2

3
4

5
6

7
8

9

1
0

1
1

1
2

1
4

1
3

1
5

Mix Columns

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S0

1
2

3
4

5
6

7
8

9

1
0

1
1

1
2

1
4

1
3

1
5

0
1

2
3

4
5

6
7

8
9

1

0
1

1
1

2
1

4
1

3
1

5

S S S S
cl

ck

T
o

 k
ey

 a
d

d
in

g
 s

ta
g

e

8
−

b
it

 d
at

ap
at

h

3
2

−
b

it
 d

at
ap

at
hS
u

b
B

y
te

s

T
o

 k
ey

 a
d

d
in

g
 s

ta
g

e

(a
)

(b
)

In
p

u
t

(1
2

8
−

b
it

s)
In

p
u

t
(1

2
8

−
b

it
s)

M
ix

 C
o

lu
m

n
s

M
ix

 C
o

lu
m

n
s

M
ix

 C
o

lu
m

n
s

M
ix

 C
o

lu
m

n
s

M
ix

 C
o

lu
m

n
s

M
ix

 C
o

lu
m

n
s

M
ix

 C
o

lu
m

n
s

M
ix

 C
o

lu
m

n
s

S
h

if
tR

o
w

s
S

h
if

tR
o

w
s

F
ig
u
r
e
5
.1
5
:

(a
)

F
u

ll
A

E
S

-r
ou

n
d

.
(b

)
(1
/4

)
A

E
S

-r
ou

n
d

Chapter 5. Low Cost Solutions for Secure FPGA Reconfiguration 94

mi =



K128 Initialization(i = even)

K128 ⊕ IV128 Initialization(i = odd)

P Encryption

Smsglen
128

,3 ⊕ tmp Finalization

Both encryption and authentication are performed as follows:

1. The initialization of AEGIS-128:

As we described before, the initialization of AEGIS-128 consists of load-

ing the key and IV into the state in 10 steps (i=-10 to -1). Therefore,

the used multiplexers (M1 to M9) pass the values Sinit,0, Sinit,1, Sinit,2,

Sinit,3, and Sinit,4 to the 1/4 AES-round sequentially during the first

step. During the next 9 steps, the values Si+1,0 , Si+1,1, Si+1,2, Si+1,3,

and Si+1,4 are fed to the multiplexers (M1 to M9). Also, M10 passes the

values m2i = K128 or m2i+1 = K128⊕IV128 according to the step number

(even or odd).

2. The encryption of AEGIS-128:

After completing the initialization stage, the encryption is performed as

shown in Equation 5.4 when M10 passes the plaintext (P) to be mixed

with Si,0.

3. The finalization of AEGIS-128:

After processing all the input message encryption, the finalization starts

in order to achieve the authentication task. M10 passes the value Smsglen
128

,3⊕
tmp. This starts from i= (msglen

128
) to (msglen

128
+ 6).

With the same scenario, both decryption and authentication are performed

as outlined in Fig. 5.17. The plaintext (P) is obtained according to Equation

5.6. It is passed by M10 to calculate Si,0, which will be used later for the

authentication as shown in Equation 5.5.

Chapter 5. Low Cost Solutions for Secure FPGA Reconfiguration 95

x
4

x
3

x
2x 1x 0

+

+

+

+

+

S
i,

1

S
i,

3

S
i,

4

S
i,

0

S
i,

2

S
i,

0

S
i,

1

S
i,

2

S
i,

3

S
i,

4

S
i+

1
,0

i+
1

,4
SS

i+
1

,3

S
i+

1
,2

S
i+

1
,1

+

+

+
m

sg
le

n

1
2

8
,3

S

1
2

8

1
/4

 A
E

S
 R

o
u

n
d

S
in

it
,0

S

S

SS

in
it

,1

in
it

,2

in
it

,3

in
it

,4

2
i

m

2
i

m
+

1

T
ag

1
2
8 1
2
8 1

2
8

1
2
8

1
2
8

1
2
8

1
2
8

1
2
8

1
2
8

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M10

tm
p

m
i

P
la

in
te

x
t

(P
)

P
la

in
te

x
t

(P
)

C
ip

h
er

te
x

t
(C

)

F
ig
u
r
e
5
.1
6
:

P
ro

p
os

ed
A

E
G

IS
-1

28
ar

ch
it

ec
tu

re
(e

n
cr

y
p

ti
on

a
n

d
a
u

th
en

ti
ca

ti
o
n

)

Chapter 5. Low Cost Solutions for Secure FPGA Reconfiguration 96

x
4

x
3

x
2x 1x 0

+

+

+

+

+

S
i,

1

S
i,

3

S
i,

4

S
i,

0

S
i,

2

S
i,

0

S
i,

1

S
i,

2

S
i,

3

S
i,

4

S
i+

1
,0

i+
1

,4
SS

i+
1

,3

S
i+

1
,2

S
i+

1
,1

+

+

+
m

sg
le

n

1
2

8
,3

S

1
2

8

1
/4

 A
E

S
 R

o
u

n
d

S
in

it
,0

S

S

SS

in
it

,1

in
it

,2

in
it

,3

in
it

,4

2
i

m

2
i

m
+

1

T
ag

1
2
8 1
2
8 1

2
8

1
2
8

1
2
8

1
2
8

1
2
8

1
2
8

1
2
8

1
2
8

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M10

tm
p

m
i

C
ip

h
er

te
x

t
(C

) P
la

in
te

x
t

(P
)

P
la

in
te

x
t

(P
)

F
ig
u
r
e
5
.1
7
:

P
ro

p
os

ed
A

E
G

IS
-1

28
ar

ch
it

ec
tu

re
(d

ec
ry

p
ti

on
a
n

d
a
u

th
en

ti
ca

ti
o
n

)

Chapter 5. Low Cost Solutions for Secure FPGA Reconfiguration 97

Because of using (1/4) AES-round, four clock cycles are needed to process

each of Si+1,0, Si+1,1, Si+1,2, Si+1,3, or Si+1,4. Therefore, the time needed to

update the overall state (achieving all Si+1) is 20 clock cycles (4× 5).

The initialization stage is performed from i=-10 to -1. Each stage needs the

generation of five states (from Si+1,0 to Si+1,4). Hence, the time taken in the

initialization stage is 200 clock cycles (10 × 20). The encryption/decryption

stage requires only the generation of all Si+1 values (five values). As a result,

20 clock cycles are needed for encrypting 128-bit input. Authentication process

requires 120 clock cycles (6 × 20). It is clear that any process (encryption,

decryption, or authentication) depends on the generation of the values from

Si+1,0 to Si+1,4 which takes 20 clock cycles. Hence, the overall throughput is

calculated as follows:

Throughput(Mbps) =
Fmax(MHz) × 128

20
. (5.7)

Because of supporting online applications, no memory is needed compared to

AES-CCM. In comparison to AES-GCM and AES-CCM, the throughput is

higher according to Equations 5.2, 5.3, and 5.7.

5.5 Hardware comparison

This section compares our presented architectures with the previous work.

The ASIC implementation is the target, since the proposed architectures are

implemented as an independent IP on the FPGA silicon. Presented architec-

tures (decryption and authentication) have been implemented using 90 and

65 nm CMOS standard cell library and its performances are compared with

the prior art in Table 5.3. The reason of using two different libraries (90 and

65 nm) in the evaluation of our proposed architectures is to present different

estimations for the consumed area using different technologies.

In case of using 90nm technology, the proposed AES-CCM occupies 0.045

mm2. GCM needs 0.063 mm2 and AEGIS-128 takes 0.062 mm2. Regarding

65 nm technology, AES-CCM occupies 0.023 mm2, GCM needs 0.034 mm2,

Chapter 5. Low Cost Solutions for Secure FPGA Reconfiguration 98

T
a
b
l
e
5
.3
:

H
ar

d
w

ar
e

co
m

p
ar

is
on

D
es

ig
n

A
rc

h
it

ec
tu

re
T

ec
h
n
ol

og
y

A
re

a
M

em
or

y
F

re
q
u
en

cy
T

h
ro

u
gh

p
u
t

F
u
n
ct

io
n

m
m

2
M

H
z

M
b
p
s

T
h
is

w
or

k
A

E
S
-C

C
M

90
n
m

0.
04

5
Y

es
15

0
19

2
D

ec
ry

p
ti

on
an

d
au

th
en

ti
ca

ti
on

T
h
is

w
or

k
A

E
S
-G

C
M

90
n
m

0.
06

6
N

o
15

0
38

4
D

ec
ry

p
ti

on
an

d
au

th
en

ti
ca

ti
on

T
h
is

w
or

k
A

E
G

IS
-1

28
90

n
m

0.
06

2
N

o
15

0
96

0
D

ec
ry

p
ti

on
an

d
au

th
en

ti
ca

ti
on

T
h
is

w
or

k
A

E
S
-C

C
M

65
n
m

0.
02

3
Y

es
15

0
19

2
D

ec
ry

p
ti

on
an

d
au

th
en

ti
ca

ti
on

T
h
is

w
or

k
A

E
S
-G

C
M

65
n
m

0.
03

4
N

o
15

0
38

4
D

ec
ry

p
ti

on
an

d
au

th
en

ti
ca

ti
on

T
h
is

w
or

k
A

E
G

IS
-1

28
65

n
m

0.
03

2
N

o
15

0
96

0
D

ec
ry

p
ti

on
an

d
au

th
en

ti
ca

ti
on

[5
3]

A
E

S
11

0
n
m

0.
09

9
N

o
22

2.
2

52
6.

7
E

n
cr

y
p
ti

on
/D

ec
ry

p
ti

on

[2
5]

A
E

S
-C

C
M

90
n
m

0.
05

7
Y

es
14

8
43

4
E

n
cr

y
p
ti

on
an

d
au

th
en

ti
ca

ti
on

[2
5]

A
E

S
+

H
M

A
C

90
n
m

0.
18

3
N

o
10

1.
2

12
93

E
n
cr

y
p
ti

on
an

d
au

th
en

ti
ca

ti
on

[5
4]

S
ke

in
-1

c
90

n
m

0.
06

4
N

o
28

6
10

18
A

u
th

en
ti

ca
ti

on
[5

4]
B

la
ke

90
n
m

0.
19

1
N

o
96

44
75

A
u
th

en
ti

ca
ti

on

Chapter 5. Low Cost Solutions for Secure FPGA Reconfiguration 99

and AEGIS-128 takes 0.032 mm2. Although AES-CCM presents the smallest

architecture, it does not support online applications. Therefore, it is always

combined with a memory in order to store the bitstream after the decryption

process and deliver it again to the core for performing the authentication.

However Parelkar et al. [25] presented one round-based AES for both encryp-

tion and authentication, the area consumption of our AES-CCM is smaller

because we used 1/4 round-based AES.

In contrast to AES-CCM, AES-GCM and AEGIS-128 support online appli-

cations. Therefore, no memory is needed to support the data flow. It is clear

that AES-GCM and AEGIS-128 are very close regarding the consumed area.

However, the throughput of AEGIS-128 is 2.5 times faster than AES-GCM

(see Equations 5.3 and 5.7). Although the AES-HMAC by [25] presented

higher throughput, it consumed more area compared to ours (2.95 times of

AEGIS-128 and 2.77 times of AES-GCM).

In order to enhance the comparison, we considered SHA-3 candidates like

Skein and Blake. These architectures are used to support only the authen-

tication stage. Hence, a decryption engine must be added to perform the

decryption and the authentication. Our presented architectures of AES-GCM

and AEGIS-128 present both decryption and authentication and their area

consumption is close to Skein candidate which supports only the authentica-

tion. In case of Blake, it is clear that the consumed area of AES-GCM and

AEGIS-128 is smaller.

The target of our architectures is to present a low cost solution which is added

in the static part for performing the decryption and the authentication. Fig.

5.16 shows the area comparison between the proposed low cost solutions and

the previous work. The hardware complexity of our presented area-efficient

architectures ranges from 0.045 to 0.066 mm2 using 90 nm technology and

from 0.023 to 0.034 mm2 using 65 nm technology.

By using the proposed architectures, the encrypted bitstream is decrypted

using AE. Also, it is used to compute the MAC and compare it with the

bitstream’s MAC. If they are equal, the FPGA will continue to the startup

sequence. Otherwise, configuration will abort and the cells be cleared. The

Chapter 5. Low Cost Solutions for Secure FPGA Reconfiguration 100

O
ur

s

(C
C
M

)
O
ur

s

(G
C
M

)
O
ur

s

(A
EG

IS
)

[2
5]

(C
C
M

) [2
5]

(A
ES+

H
M

A
C
) [5

4]

(S
ke

in
e)

[5
4]

(B
la
ke

)

5 · 10−2

0.1

0.15

0.2
C

on
su

m
ed

ar
ea

(m
m

2
)

Figure 5.18: Area Comparison using 90 nm technology

adopted solutions meet the current configuration throughput. Table 5.4 shows

the maximum throughput of the largest family members of recent FPGAs.

Table 5.4: Configuration throughput of some FPGA family members

FPGA device Technology Throughput

Virtex-5[55] LX330T 65-nm 800 Mbps

Stratix-III [56] L340 65-nm 200 Mbps

Spartan-3 [57] 5000 90-nm 400 Mbps

5.6 Conclusion

This chapter proposes low cost solutions for bitstream security. This is achieved

by proposing compact architectures for AE algorithms, AES-CCM, AES-

GCM, and AEGIS-128. In order to reduce the hardware complexity of CCM

mode, one 1/4 round-based AES is used for both decryption and authentica-

tion. Also, GCM mode uses the 1/4 round-based AES for decryption and the

Chapter 5. Low Cost Solutions for Secure FPGA Reconfiguration 101

hybrid GF(2128) multiplier for authentication. In terms of AEGIS-128, 1/4

round is used for performing both decryption and authentication. Presented

architectures were evaluated through ASIC implementation. Our comparison

to the previous work reveals that the proposed designs are more resource-

efficient.

Chapter 6

Summary and Future Work

6.1 Thesis Summary

The integration of security and privacy into embedded systems is an active

research area that needs to keep track of technological developments.

In this thesis, we have proposed efficient hardware implementations of cryp-

tographic algorithms for encryption and authentication. We presented FPGA

and ASIC implementations that target a wide range of different applications.

More precisely, we focused on the hardware design of current AE algorithms,

AES-CCM, AES-GCM, and AEGIS. We investigated efficient and high speed

FPGA-based architectures for these AE algorithms which were implemented

in the user part (reconfigurable part) of the FPGA. In addition, we defined

a framework to present different ranges of low cost ASIC architecture of AE

algorithms which are inserted in the static part in order to protect the In-

tellectual Property (IP) of FPGA Bitstreams. The following summarizes the

contributions of this work.

1. In chapter 3, we presented the performance improvement of AES-GCM

by the key-synthesized method in order to support slow changing key

applications like VPNs. We presented this concept using three methods

of SubBytes implementation. By our proposed parallel AES-GCM, each

multiplier has a fixed operand. Therefore, presented parallel AES-GCM

102

Summary and Future Work. 103

is suitable for key-synthesized method with higher throughput compared

to the previous work. In addition, we proposed a protocol to protect

the bitstream of the proposed architectures. Our presented AES-GCM

architectures can be used for slow changing key applications like VPNs

and they outperform the previous architectures regarding the hardware

performance.

2. In chapter 4, an efficient and high speed independent-key AES-GCM was

proposed. This was achieved by presenting an efficient pipelined KOA-

based GHASH. The throughput reduction factor is decreased because of

the feedback-free design. The presented multiplier was evaluated with

three different AES implementations (BRAMs-based SubBytes, compos-

ite field-based SubBytes, and LUT-based SubBytes) in order to increase

the flexibility of the presented AES-GCM. Furthermore, we designed

an efficient architecture for AEGIS-128 which is considered one of the

candidates of CAESAR by only five AES rounds. It is shown that the

hardware performance of the presented architectures are better than the

previously reported ones.

3. In chapter 5, We proposed low cost solutions for bitstream security. This

is achieved by compact architectures for AE algorithms (AES-CCM,

AES-GCM, and AEGIS-128). In order to minimize the hardware size

of CCM mode, one 1/4 round-based AES is used for both decryption

and authentication. Also, AES-GCM mode uses the 1/4 round-based

AES for decryption and the hybrid GF(2128) multiplier for authentica-

tion. In terms of AEGIS-128, 1/4 round is used for performing both

decryption and authentication. Presented architectures were evaluated

through ASIC implementation. Our comparison to the previous work

reveals that the proposed designs are more resource-efficient.

6.2 Future work

As a future work for this thesis, the followings can be pursued.

Summary and Future Work. 104

1. Side-channel attacks are a class of physical attacks in which an adversary

tries to exploit physical information leakages such as timing information,

power consumption, or electromagnetic radiation. As a future work for

this thesis, we propose studying such attacks on the proposed architec-

tures and presenting countermeasures for these attacks.

2. Another future work for AE research area can be explored by following

the final portfolio of CAESAR competition.

3. As an extension for this thesis, one can integrate a public key cryptog-

raphy into the static part of the FPGA in order to change the key used

for decryption and authentication of the bitstream remotely.

List of Publication

International Journals

• Karim M. Abdellatif, R. Chotin-Avot, and H. Mehrez ”Ecient and High

Speed AES-Based Authenticated Encryption Architectures Using FP-

GAs”, under review in ACM Transactions on Recongurable Technology

and Systems (TRETS) (Invited Paper).

• Karim M. Abdellatif, R. Chotin-Avot, and H. Mehrez ”Authenticated

Encryption on FPGAs from the Static Part to the Recongurable Part”,

Journal of Microprocessors and Microsystems: Embedded Hardware De-

sign (MICPRO), Elsevier, 2014.

• Karim M. Abdellatif, R. Chotin-Avot, and H. Mehrez ”Low cost Solu-

tions for Secure Remote Reconguration of FPGAs”, International Jour-

nal of Embedded Systems, 2013.

International Conferences

• Karim M. Abdellatif, R. Chotin-Avot, and H. Mehrez ”FPGA-Based

High Performance AES-GCM Using Ecient Karatsuba Ofman Algo-

rithm”, Recongurable Computing: Architectures, Tools and Applica-

tionProceedings of the International Symposium on Applied Recongurable

Computing (ARC 2014), Springer Lecture Notes in Computer Science

(LNCS), Portugal, 2014.

• Karim M. Abdellatif, R. Chotin-Avot, and H. Mehrez ”Efficient Parallel

AESGCM Architectures Using FPGAs”, IEEE International Conference

on Reconfigurable Computing and FPGAs (ReConFig), Mexico, 2013.

105

International Conferences

• Karim M. Abdellatif, R. Chotin-Avot, and H. Mehrez ”Lightweight and

Compact Solutions for Secure Reconguration of FPGAs”, IEEE Inter-

national Conference on Reconfigurable Computing and FPGAs (ReCon-

Fig), Mexico, 2013.

• Karim M. Abdellatif, R. Chotin-Avot, and H. Mehrez ”High Speed Au-

thenticated Encryption for Slow Changing Key Applications Using Re-

congurable Devices”, IEEE Wireless Days, Spain, 2013.

• Karim M. Abdellatif, R. Chotin-Avot, and H. Mehrez ”Protecting FPGA

Bitstreams Using Authenticated Encryption”, IEEE International Con-

ference of New Circuits and Systems (NEWCAS), Paris, 2013.

• Karim M. Abdellatif, R. Chotin-Avot, and H. Mehrez ”Efficient Parallel-

Pipelined GHASH for Message Authentication”, IEEE International

Conference on Reconfigurable Computing and FPGAs (ReConFig), Mex-

ico, 2012.

Posters

• Karim M. Abdellatif, R. Chotin-Avot, and H. Mehrez ”Towards High

Performance GHASH for Pipelined AES-GCM Using FPGAs”, accepted

in ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays (FPGA), USA, 2014.

• Karim M. Abdellatif, R. Chotin-Avot, and H. Mehrez, ” The Effect of

S-box Design on Pipelined AES Using FPGA ”, GDR SOC-SIP, Paris,

2012.

106

Presentations

• Karim M. Abdellatif, R. Chotin-Avot, and H. Mehrez ”High Perfor-

mance AES-GCM Using Feedback-Free Karatsuba Ofman Algorithm”,

Directions in Authenticated Ciphers (DIAC) 1, USA, 2014.

1The purpose of DIAC 2014 is to evaluate the state of the art in authenticated encryption
and gather community input regarding desired future directions.

107

Bibliography

[1] J. Crenne, P. Cotret, G. Gogniat, R. Tessier, and J.P. Diguet. Efficient

Key-Dependent Message Authentication in Reconfigurable Hardware. In-

ternational Conference on Field-Programmable Technology (FPT), pages

1–6, 2011.

[2] Tom Kean. Secure Configuration of Field Programmable Gate Arrays.

In Field-Programmable Logic and Applications, pages 142–151. Springer,

2001.

[3] G. Zhou, H. Michalik, and L. Hinsenkamp. Improving Throughput of

AES-GCM with Pipelined Karatsuba Multipliers on FPGAs. Reconfig-

urable Computing: Architectures, Tools and Applications, pages 193–203,

2009.

[4] National Institute of Standards and Technology. 197: Advanced encryp-

tion standard (AES). Federal Information Processing Standards Publica-

tion, 197:441–0311, 2001.

[5] Joan Daemen and Vincent Rijmen. The Pelican MAC Function. IACR

Cryptology ePrint Archive, page 88, 2005.

[6] National Institute of Standards and Technology. The Keyed-Hash Mes-

sage Authentication Code (HMAC). FIPS PUB.

[7] Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. Authen-

ticated Encryption in SSH: Provably Fixing the SSH Binary Packet Pro-

tocol. pages 1–11, 2002.

[8] Tim Dierks. The Transport Layer Security (TLS) Protocol Version 1.2.

2008.

108

Bibliography 109

[9] Russell Housley. Using Advanced Encryption Standard (AES) CCM

Mode with IPsec Encapsulating Security Payload (ESP). 2005.

[10] Sheila Frankel, Bernard Eydt, Les Owens, and Karen Scarfone. Estab-

lishing Wireless Robust Security Networks: A Guide to IEEE 802.11 i.

National Institute of Standards and Technology, 2007.

[11] Morris J Dworkin. SP 800-38C. Recommendation for Block Cipher Modes

of Operation: the CCM Mode for Authentication and Confidentiality.

2004.

[12] David McGrew and John Viega. The Galois/Counter Mode of Operation

(GCM). Submission to NIST, 2004.

[13] Hongjun Wu and Bart Preneel. AEGIS: A Fast Authenticated Encryption

Algorithm. 2013. http://eprint.iacr.org/.

[14] Xilinx. Virtex-5 Family Overview. 2009. URL http://www.xilinx.com/

support/documentation/data_sheets/ds100.pdf.

[15] Cisco Corporation. Cisco ASA 5500 Series Adaptive Security Appli-

ances. 2011. URL http://www.cisco.com/en/US/prod/collateral/

vpndevc/ps6032/\ps6094/ps6120/prod-brochure0900aecd80285492.

pdf.

[16] Stonesoft. Security Engine Firewall/VPN. 2011. URL http://www.

stonesoft.com/export/download/pdf/datasheet-stonesoft-3206.

pdf.

[17] Sheila Frankel, Bernard Eydt, Les Owens, and Karen Scarfone. Estab-

lishing Wireless Robust Security Networks: A Guide to IEEE 802.11 i.

National Institute of Standards and Technology, 2007.

[18] Tim Good and Mohammed Benaissa. AES on FPGA from the Fastest to

the Smallest. pages 427–440, 2005.

[19] Solmaz Ghaznavi, Catherine Gebotys, and Reouven Elbaz. Efficient Tech-

nique for the FPGA implementation of the AES MixColumns Transfor-

mation. pages 219–224, 2009.

http://eprint.iacr.org/
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
http://www.cisco.com/en/US/prod/collateral/vpndevc/ps6032/\ps6094/ps6120/prod-brochure0900aecd80285492.pdf.
http://www.cisco.com/en/US/prod/collateral/vpndevc/ps6032/\ps6094/ps6120/prod-brochure0900aecd80285492.pdf.
http://www.cisco.com/en/US/prod/collateral/vpndevc/ps6032/\ps6094/ps6120/prod-brochure0900aecd80285492.pdf.
http://www.stonesoft.com/export/download/pdf/datasheet-stonesoft-3206.pdf
http://www.stonesoft.com/export/download/pdf/datasheet-stonesoft-3206.pdf
http://www.stonesoft.com/export/download/pdf/datasheet-stonesoft-3206.pdf

Bibliography 110

[20] Chi-Jeng Chang, Chi-Wu Huang, Hung-Yun Tai, Mao-Yuan Lin, and

Teng-Kuei Hu. 8-bit AES FPGA Implementation Using Block RAM. In

Industrial Electronics Society, 2007. IECON 2007. 33rd Annual Confer-

ence of the IEEE, pages 2654–2659. IEEE, 2007.

[21] Xinmiao Zhang and Keshab K Parhi. High-Speed VLSI Architectures for

the AES Algorithm. Very Large Scale Integration (VLSI) Systems, IEEE

Transactions on, 12(9):957–967, 2004.

[22] Francois-Xavier Standaert, Gael Rouvroy, Jean-Jacques Quisquater, and

Jean-Didier Legat. Efficient Implementation of Rijndael Encryption in

Reconfigurable Hardware: Improvements and Design Tradeoffs. In Cryp-

tographic Hardware and Embedded Systems-CHES 2003, pages 334–350.

Springer, 2003.

[23] Morris Dworkin. Recommendation for Block Cipher Modes of Operation.

Methods and Techniques. Technical report, DTIC Document, 2001.

[24] Morris J Dworkin. SP 800-38C. Recommendation for Block Cipher Modes

of Operation: the CCM Mode for Authentication and Confidentiality.

2004.

[25] Milind M Parelkar. Authenticated Encryption in Hardware. PhD thesis,

George Mason University, 2005.

[26] Emmanuel Lopez-Trejo, F Rodrıguez Henrıquez, and Arturo Dıaz-Pérez.

An Efficient FPGA Implementation of CCM mode using AES. In In-

ternational Conference on Information Security and Cryptology, volume

3935, pages 208–215, 2005.

[27] Arshad Aziz and Nassar Ikram. An FPGA-based AES-CCM Crypto Core

For IEEE 802.11 i Architecture. IJ Network Security, 5(2):224–232, 2007.

[28] David McGrew and John Viega. The Galois/Counter Mode of Operation

(GCM). 2004.

[29] IEEE Standard for Local and Metropolitan Area Networks–Media Access

Control (MAC) Security Amendment 1: Galois Counter Mode–Advanced

Encryption Standard– 256 (GCM-AES-256) Cipher Suite. IEEE.

Bibliography 111

[30] G. Zhou, H. Michalik, and L. Hinsenkamp. Efficient and High-

Throughput Implementations of AES-GCM on FPGAs. International

Conference on Field-Programmable Technology (FPT), pages 185–192,

2007.

[31] L. Henzen and W. Fichtner. FPGA Parallel-Pipelined AES-GCM Core

for 100G Ethernet Applications. Proceedings of the ESSCIRC, pages 202–

205, 2010.

[32] S. Lemsitzer, J. Wolkerstorfer, N. Felber, and M. Braendli. Multi-Gigabit

GCM-AES Architecture Optimized for FPGAs. Cryptographic Hardware

and Embedded Systems-CHES, pages 227–238, 2007.

[33] A. Satoh. High-Speed Hardware Architectures for Authenticated En-

cryption Mode GCM. IEEE International Symposium on Circuits and

Systems (ISCAS), pages 4–pp, 2006.

[34] A. Satoh. High-Speed Hardware Architectures for Authenticated En-

cryption Mode GCM. IEEE International Symposium on Circuits and

Systems (ISCAS), pages 4–pp, 2006.

[35] Anatolii Karatsuba and Yu Ofman. Multiplication of Multidigit Numbers

on Automata. 7:595, 1963.

[36] Hongjun Wu and Bart Preneel. Aegis: A fast authenticated encryption

algorithm. 2013. http://eprint.iacr.org/.

[37] Cisco Corporation. Cisco ASA 5500 Series Adaptive Security Appli-

ances. 2011. URL http://www.cisco.com/en/US/prod/collateral/

vpndevc/ps6032/ps6094/ps6120/prod-brochure0900aecd80285492.

pdf.

[38] Stonesoft. Security Engine Firewall/VPN, 2011. URL http://www.

stonesoft.com/export/download/pdf/datasheet-stonesoft-3206.

pdf.

[39] Cisco Corporation. Cisco ASR 1000 Series Embedded Services Processor,

2013. URL http://www.cisco.com/c/en/us/products/collateral/

routers/asr-1000-series-aggregation-services-routers/data_

sheet_c78-450070.html.

http://eprint.iacr.org/
http://www.cisco.com/en/US/prod/collateral/vpndevc/ps6032/ps6094/ps6120/prod-brochure0900aecd80285492.pdf.
http://www.cisco.com/en/US/prod/collateral/vpndevc/ps6032/ps6094/ps6120/prod-brochure0900aecd80285492.pdf.
http://www.cisco.com/en/US/prod/collateral/vpndevc/ps6032/ps6094/ps6120/prod-brochure0900aecd80285492.pdf.
http://www.stonesoft.com/export/download/pdf/datasheet-stonesoft-3206.pdf
http://www.stonesoft.com/export/download/pdf/datasheet-stonesoft-3206.pdf
http://www.stonesoft.com/export/download/pdf/datasheet-stonesoft-3206.pdf
http://www.cisco.com/c/en/us/products/collateral/routers/asr-1000-series-aggregation-services-routers/data_sheet_c78-450070.html
http://www.cisco.com/c/en/us/products/collateral/routers/asr-1000-series-aggregation-services-routers/data_sheet_c78-450070.html
http://www.cisco.com/c/en/us/products/collateral/routers/asr-1000-series-aggregation-services-routers/data_sheet_c78-450070.html

Bibliography 112

[40] Jean-Baptiste Note and Éric Rannaud. From the Bitstream to the Netlist.

In FPGA, volume 8, pages 264–264, 2008.

[41] Ilija Hadžić, Sanjay Udani, and Jonathan M Smith. Fpga viruses. In Field

Programmable Logic and Applications, pages 291–300. Springer, 1999.

[42] Kenneth Austin. Data Security Arrangements for Semiconductor Pro-

grammable Devices, February 7 1995. US Patent 5,388,157.

[43] Lilian Bossuet, Guy Gogniat, and Wayne Burleson. Dynamically Config-

urable Security for SRAM FPGA Bitstreams. International Journal of

Embedded Systems, 2(1):73–85, 2006.

[44] A. Lesea. IP security in FPGAs. Xilinx

http://direct.xilinx.com/bvdocs/whitepapers/wp261.pdf, 2007.

[45] N.F. Pub. 197: Advanced encryption standard (AES). Federal Informa-

tion Processing Standards Publication, 197:441–0311, 2001.

[46] C.W. Tseng. Lock your designs with the virtex-4 security solution. XCell

Journal, XILINX, Spring, 2005.

[47] Xilinx. Virtex-6 FPGA Configuration User Guide. URL http://www.

xilinx.com/support/documentation/user_guides/ug360.pdf.

[48] Saar Drimer. Authentication of FPGA Bitstreams: Why and how. In

Reconfigurable Computing: Architectures, Tools and Applications, pages

73–84. Springer, 2007.

[49] Andrey Bogdanov, Amir Moradi, and Tolga Yalcin. Efficient and side-

channel resistant authenticated encryption of fpga bitstreams. In ReCon-

Fig, pages 1–6, 2012.

[50] Shengbao Wu, Hongjun Wu, Tao Huang, Mingsheng Wang, and Wenling

Wu. Leaked-State-Forgery Attack Against the Authenticated Encryption

Algorithm ALE. pages 377–404, 2013.

[51] Dmitry Khovratovich and Christian Rechberger. The LOCAL attack:

Cryptanalysis of the authenticated encryption scheme ALE. pages 174–

184, 2014.

http://www.xilinx.com/support/documentation/user_guides/ug360.pdf
http://www.xilinx.com/support/documentation/user_guides/ug360.pdf

Bibliography 113

[52] Xilinx. Virtex-4 FPGA Configuration User Guide. 2009. URL http://

www.xilinx.com/support/documentation/user_guides/ug071.pdf.

[53] Akashi Satoh, Sumio Morioka, Kohji Takano, and Seiji Munetoh. A Com-

pact Rijndael Hardware Architecture with S-box Optimization. In Ad-

vances in CryptologyASIACRYPT 2001, pages 239–254. Springer, 2001.

[54] AH Namin and MA Hasan. Hardware Implementation of the Compression

Function for Selected SHA-3 Candidates. CACR, 28:2009, 2009.

[55] Xilinx. Virtex-5 FPGA Data Sheet:DC and Switching Characteris-

tics. URL http://www.xilinx.com/support/documentation/data$_

$sheets/ds202.pdf.

[56] Altera. Stratix III Device Handbook. URL http://www.altera.com/

literature/hb/stx3/stratix3_handbook.pdf.

[57] Xilinx1. Spartan-3 FPGA family:Complete data sheet. URL

http://www.xilinx.com/support/documentation/data$_$sheets/

ds099.pdf.

http://www.xilinx.com/support/documentation/user_guides/ug071.pdf
http://www.xilinx.com/support/documentation/user_guides/ug071.pdf
http://www.xilinx.com/support/documentation/data$_$sheets/ds202.pdf
http://www.xilinx.com/support/documentation/data$_$sheets/ds202.pdf
http://www.altera.com/literature/hb/stx3/stratix3_handbook.pdf
http://www.altera.com/literature/hb/stx3/stratix3_handbook.pdf
http://www.xilinx.com/support/documentation/data$_$sheets/ds099.pdf
http://www.xilinx.com/support/documentation/data$_$sheets/ds099.pdf

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.1.1 Authenticated Encryption
	1.1.2 FPGAs

	1.2 Contributions
	1.3 Thesis organization

	I High Speed FPGA-based AE Architectures
	2 Authenticated Encryption
	2.1 Introduction
	2.2 Advanced Encryption Standard (AES)
	2.2.1 Algorithm specifications
	2.2.2 Hardware implementation

	2.3 AES-CCM
	2.3.1 Algorithm specifications
	2.3.2 Hardware implementation

	2.4 AES-GCM
	2.4.1 Algorithm specifications
	2.4.2 Hardware implementation

	2.5 AEGIS
	2.5.1 Algorithm specifications

	2.6 Conclusion

	3 High Speed Authenticated Encryption for Slow Changing Key Applications Using FPGAs
	3.1 Introduction
	3.2 High Speed AES-GCM Architectures Using FPGAs
	3.2.1 Efficient Parallel AES-GCM cores

	3.3 Bitstream security of the proposed architectures
	3.4 Hardware comparison
	3.5 Conclusion

	4 Efficient and High Speed Key-Independent AES-Based Authenticated Encryption Architectures Using FPGAs
	4.1 Introduction
	4.2 Efficient KOA-Based GHASH
	4.3 High speed AES-GCM
	4.4 Efficient hardware implementation for AEGIS-128
	4.5 Hardware comparison
	4.6 Conclusion

	II Low Cost Solutions for Secure FPGA Reconfiguration
	5 Low Cost Solutions for Secure FPGA Reconfiguration
	5.1 Introduction
	5.2 FPGA reconfiguration
	5.3 Previous work
	5.4 Low cost AE architecture for secure reconfiguration
	5.4.1 Proposed AES-CCM
	5.4.2 Proposed AES-GCM
	5.4.3 Proposed AEGIS-128

	5.5 Hardware comparison
	5.6 Conclusion

	6 Summary and Future Work
	6.1 Thesis Summary
	6.2 Future work

