3,140 research outputs found

    FPGA-based operational concept and payload data processing for the Flying Laptop satellite

    Get PDF
    Flying Laptop is the first small satellite developed by the Institute of Space Systems at the Universität Stuttgart. It is a test bed for an on-board computer with a reconfigurable, redundant and self-controlling high computational ability based on the field pro- grammable gate arrays (FPGAs). This Technical Note presents the operational concept and the on-board payload data processing of the satellite. The designed operational concept of Flying Laptop enables the achievement of mission goals such as technical demonstration, scientific Earth observation, and the payload data processing methods. All these capabilities expand its scientific usage and enable new possibilities for real-time applications. Its hierarchical architecture of the operational modes of subsys- tems and modules are developed in a state-machine diagram and tested by means of MathWorks Simulink-/Stateflow Toolbox. Furthermore, the concept of the on-board payload data processing and its implementation and possible applications are described

    Real-time Foreground Object Detection Combining the PBAS Background Modelling Algorithm and Feedback from Scene Analysis Module

    Get PDF
    The article presents a hardware implementation of the foreground object detection algorithm PBAS (Pixel-Based Adaptive Segmenter) with a scene analysis module. A mechanism for static object detection is proposed, which is based on consecutive frame differencing. The method allows to distinguish stopped foreground objects (e.g. a car at the intersection, abandoned luggage) from false detections (so-called ghosts) using edge similarity. The improved algorithm was compared with the original version on popular test sequences from the changedetection.net dataset. The obtained results indicate that the proposed approach allows to improve the performance of the method for sequences with the stopped objects. The algorithm has been implemented and successfully verified on a hardware platform with Virtex 7 FPGA device. The PBAS segmentation, consecutive frame differencing, Sobel edge detection and advanced one-pass connected component analysis modules were designed. The system is capable of processing 50 frames with a resolution of 720 × 576 pixels per second.

    A Survey on FPGA-Based Sensor Systems: Towards Intelligent and Reconfigurable Low-Power Sensors for Computer Vision, Control and Signal Processing

    Get PDF
    The current trend in the evolution of sensor systems seeks ways to provide more accuracy and resolution, while at the same time decreasing the size and power consumption. The use of Field Programmable Gate Arrays (FPGAs) provides specific reprogrammable hardware technology that can be properly exploited to obtain a reconfigurable sensor system. This adaptation capability enables the implementation of complex applications using the partial reconfigurability at a very low-power consumption. For highly demanding tasks FPGAs have been favored due to the high efficiency provided by their architectural flexibility (parallelism, on-chip memory, etc.), reconfigurability and superb performance in the development of algorithms. FPGAs have improved the performance of sensor systems and have triggered a clear increase in their use in new fields of application. A new generation of smarter, reconfigurable and lower power consumption sensors is being developed in Spain based on FPGAs. In this paper, a review of these developments is presented, describing as well the FPGA technologies employed by the different research groups and providing an overview of future research within this field.The research leading to these results has received funding from the Spanish Government and European FEDER funds (DPI2012-32390), the Valencia Regional Government (PROMETEO/2013/085) and the University of Alicante (GRE12-17)

    Performance Improvement of Electro Optic Search and Track System for Maritime Surveillance

    Get PDF
    Surveillance of maritime domain is absolutely vital to ensure an appropriate response against any adverse situation relating to maritime safety or security. Electro-optic search and track (EOST) system plays a vital role by providing independent search and track of potential targets in marine environment. EOST provides real-time images of objects with details, required to neutralise threats. At long range, detection and tracking capability of EOST degrades due to uncertainty in target signatures under cluttered scenario. Image quality can be improved by using suitable sensors and enhancement using the target/background signature knowledge. Robust tracking of object can be achieved by optimising the performance parameters of tracker. In the present work, improvement in the performance of EOST subsystems such as sensor, video processor and video tracker are discussed. To improve EOST performance in terms of detection and tracking, sensor selection criterion and various real time image processing techniques and their selection criteria for maritime applications have been also discussed. Resultant improvement in the quality of image recorded under marine environment has been presented

    Efficient Embedded Hardware Architecture for Stabilised Tracking Sighting System of Armoured Fighting Vehicles

    Get PDF
    A line-of-sight stabilised sighting system, capable of target tracking and video stabilisation is a prime requirement of any armoured fighting tank vehicle for military surveillance and weapon firing. Typically, such sighting systems have three prime electro-optical sensors i.e. day camera for viewing in day conditions, thermal camera for night viewing and eye-safe laser range finder for obtaining the target range. For laser guided missile firing, additional laser target designator may be a part of sighting system. This sighting system provides necessary parameters for the fire control computer to compute ballistic offsets to fire conventional ammunition or fire missile. System demands simultaneous interactions with electro-optical sensors, servo sensors, actuators, multi-function display for man-machine interface, fire control computer, logic controller and other sub-systems of tank. Therefore, a complex embedded electronics hardware is needed to respond in real time for such system. An efficient electronics embedded hardware architecture is presented here for the development of this type of sighting system. This hardware has been developed around SHARC 21369 processor and FPGA. A performance evaluation scheme is also presented for this sighting system based on the developed hardware

    Real Time Pedestrian Detection Using an Infrared Camera with a FPGA

    Get PDF
    This project focuses on using Infrared technology in partnership with various filtering algorithms to implement a pedestrian detection system on a Field Programmable Gate Array (FPGA). Currently pedestrians are the most vulnerable users of the road. Every day there are millions of vehicles on the road and conditions such as inclement weather, poor lighting, traffic and other road hazards restrict the visibility of drivers which increases the risk to pedestrians. In addition, human error is known to be one of the leading causes of accidents. With the use of a pedestrian detection system which utilizes infrared technology, we are able to remove some of the hazards and provide an additional sense of awareness to the driver to reduce the occurrence of accidents and save lives

    Vision Sensors and Edge Detection

    Get PDF
    Vision Sensors and Edge Detection book reflects a selection of recent developments within the area of vision sensors and edge detection. There are two sections in this book. The first section presents vision sensors with applications to panoramic vision sensors, wireless vision sensors, and automated vision sensor inspection, and the second one shows image processing techniques, such as, image measurements, image transformations, filtering, and parallel computing
    corecore