
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

March 2016

Real Time Pedestrian Detection Using an Infrared
Camera with a FPGA
Adam Victor Karcs
Worcester Polytechnic Institute

Arsene Numbem Tchatchoua
Worcester Polytechnic Institute

Damani George Walder
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Karcs, A. V., Tchatchoua, A. N., & Walder, D. G. (2016). Real Time Pedestrian Detection Using an Infrared Camera with a FPGA.
Retrieved from https://digitalcommons.wpi.edu/mqp-all/3502

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3502&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3502&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3502&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3502&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/3502?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3502&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

Real Time Pedestrian Detection Using an
Infrared Camera with a FPGA

A Major Qualifying Project Report

Submitted to the faculty of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements of the

Degree of Bachelor of Science

By:

Adam Karcs, Electrical and Computer Engineering

Arsene Tchatchoua, Electrical and Computer Engineering

Damani Walder, Electrical and Computer Engineering

Submitted to:

Project Advisor: Professor Xinming Huang,

Department of Electrical and Computer Engineering

Submitted on: March 7, 2016

Abstract

This project focuses on using Infrared technology in partnership with various filtering

algorithms to implement a pedestrian detection system on a Field Programmable Gate Array

(FPGA). Currently pedestrians are the most vulnerable users of the road. Every day there are

millions of vehicles on the road and conditions such as inclement weather, poor lighting, traffic

and other road hazards restrict the visibility of drivers which increases the risk to pedestrians. In

addition, human error is known to be one of the leading causes of accidents. With the use of a

pedestrian detection system which utilizes infrared technology, we are able to remove some of

the hazards and provide an additional sense of awareness to the driver to reduce the occurrence

of accidents and save lives.

1

Acknowledgements

On behalf of our Major Qualifying Project team, we would like to acknowledge everyone

that helped to provide this opportunity for us to work on this project and the great success that

resulted from it.

Our deepest gratitude to our advisor, Dr. Xinming Huang for his guidance, advice and

motivation throughout this project. Without his encouraging words and motivating talks during

our weekly meetings, this project would not have been successful.

Furthermore, we would like to thank the graduate students in the Embedded Computing

Lab at Worcester Polytechnic Institute for their support, particularly Roy Sun without whom this

project would not have been possible.

We would like to sincerely thank Worcester Polytechnic Institute (WPI) for providing the

facilities and equipment for this research

Without the assistance of these individuals, this project would not have been the success

that it was. Thank you!

2

Authorship

This report was developed through a collaborative effort by all three members of the

project team: Adam Karcs, Arsene Tchatchoua and Damani Walder. All sections were created

and edited as a team, with equal contributions made by each member.

3

Table of Contents
Abstract ... 0

Acknowledgements ... 1

Authorship... 2

Executive Summary .. 2

Chapter 1 ... 3

1.1 Pedestrian Detection ... 3

1.2 Future of Pedestrian Detection ... 5

Chapter 2 – Hardware Design ... 6

2.1 FPGAs .. 6

2.1.1 Introduction to FPGAs .. 6

2.1.2 Why we chose FPGAs .. 7

2.1.2 Nexys 3 Spartan 6 Board .. 8

2.2 Infrared Technology ... 9

2.2.1 Infrared (IR) Background ... 9

2.2.2 Infrared Camera over a Visible Light Camera .. 10

2.2.3 FLIR Lepton Module Camera .. 10

Chapter 3 - Implementation .. 13

3.1 Overview of Dataflow ... 13

3.2 System Integration... 14

3.2.1 Input Camera and Clocking .. 14

3.2.2 Read Packets State .. 15

3.2.3 Check Packets State .. 16

3.2.4 True Dual Port RAM .. 18

3.2.5 VGA Module .. 19

3.2.6 Nearest Neighbor Interpolation .. 22

3.2.7 VGA Address Generator .. 24

3.2.8 Alarm Output .. 25

3.3 Image Processing... 27

3.3.1 Thresholding ... 28

3.3.2 Spatial Filtering for Noise Removal ... 30

3.3.3 Temporal Filtering .. 31

4

3.3.4 Centroid Calculations ... 32

Chapter 4 – Conclusions and Plans for Future Work ... 35

4.1 Conclusions ... 35

4.2 System Constraints .. 36

4.3 Future Improvements .. 36

Glossary .. 38

Appendix A – Verilog Code ... 41

5

Table of Figures

Figure 1 - Simple Representation of FPGA .. 6

Figure 2 - Nexys 3 - Spartan 6 Board [10].. 8

Figure 3- IR Spectrum .. 9

Figure 4 FLIR Camera Module Size Comparison [11] .. 10

Figure 5 Lepton Camera with Breakout Board [11] ... 11

Figure 6 - Representation of how data is passed in from the camera [12].................................... 11

Figure 7 - Flowchart of the dataflow of our system.. 13

Figure 8 - SPI Modes - Waveform Comparison ... 14

Figure 9 – ISE Clocking Wizard IP core .. 15

Figure 10 - ISE IP core showing generation of the RAM block ... 18

Figure 11 – Video Controller .. 20

Figure 12 - Timing Diagram of the Horizontal Scan .. 21

Figure 13- Timing Diagram of the Vertical Scan ... 22

Figure 14 - Native 80 x 60 Display ... 23

Figure 15 - Interpolated 640 x 480 Display .. 24

Figure 16 - Visual Representation of our Alarm Circuit .. 26

Figure 17 – Image Processing Filters.. 27

Figure 18 - Result of the Threshold filter with a single subject in the frame 29

Figure 19 - Result of the Threshold Filter with two subjects in the frame 29

Figure 20 - Shift Register Data Flow .. 31

Figure 21 - Centroid (Whole Frame) .. 33

Figure 22 - Centroid (Half Frame) .. 33

Figure 23 - Result of the centroid detection.. 34

https://d.docs.live.net/2417d08964fb51b2/Documents/Report.docx#_Toc446685581
https://d.docs.live.net/2417d08964fb51b2/Documents/Report.docx#_Toc446685598

Executive Summary

There are about 2 billion vehicles in the world today. Millions on them are on the road at

any given time. In many areas, conditions such as weather, time of day, traffic, and others makes

it difficult to keep up visibility and therefore awareness of pedestrians amongst drivers.

Human error is one of the leading causes of accidents. There are always various details in

any given environment that a driver must always be aware of. For example, distance between

vehicles, lights changing, signs, and pedestrians. Over time, this usually develops into an

unconscious skill, but that very fact makes it easier to be surprised by unusual and sudden events.

By using technology to enhance pedestrian detection within vehicles, we are able to

remove some of the errors in judgment and thus possibly reduce the number of accidents. With

thermal vision, we are able to reduce interfering conditions such as snow, rain, darkness and

hazards which may have hindered a driver’s visibility. When thermal vision is used in

conjunction with pedestrian detection algorithms, it can provide an additional sense of awareness

to the driver and help reduce the number of accidents.

To accomplish this, our project team used an FPGA in accordance with the FLIR Lepton

Infrared Camera module to implement a real-time pedestrian detection system.

3

Chapter 1

1.1 Pedestrian Detection

Among all road users, pedestrians are the most vulnerable [1]. This vulnerability can be

attributed to many different factors when compared to other road users. One such factor is that

pedestrians are the most difficult road users to observe during both ideal and non-ideal

conditions. Another factor which can be observed is that, unlike motorists or cyclists, the

common pedestrian has no means to lesson or absorb any impact if they are struck in a collision.

As a result, pedestrians involved in collisions are often in danger of suffering severe injuries or

being the victim of a road fatality. The danger of pedestrian collisions not only affect the

pedestrians, as sometimes the occupants of the vehicle also suffer injuries, either due to the

impact or during a maneuver whilst trying to avoid the collision.

According to a recent study by the Governors Highway Safety Association, there was

4,735 reported pedestrian fatalities in the United States in 2013, a 15 percent increase to the

number of incidents reported in 2009, when there were 4,109 incidents [2]. This increase in the

amount of pedestrian fatalities line up with the growing number of vehicles on the road today.

Studies show that most traffic accidents are related to human errors. Carelessness and

erroneous decisions by the driver are the two main factors that cause traffic accidents. Although

these types of errors are nearly impossible to eliminate, efforts can be made to decrease them [3].

Many states employ a variety of methods to try to curb the incidents of pedestrian

fatalities each year through educational programs, different engineering practices (such as

pedestrian overpasses), high-intensity crosswalk (HAWK signals), and enforcement strategies

[2].

4

Recent research in the field of Intelligent Vehicles (IV) has focused on using advances in

information technologies to prevent human error. Advanced Driver Assistance Systems (ADAS)

try to warn and prepare the driver in the event of possibly hazardous situations [3]. Among

ADAS, pedestrian detection is an important issue due to the vulnerability of pedestrians in the

event of accidents [3].

In recent years, many auto manufacturers along with other tech companies have done

extensive research on pedestrian detection systems, integrating output signals into the control

system of cars, as a way to further curb pedestrian fatalities. Most pedestrian detection systems

use sensors, which are integrated into the vehicle or attached with an after-market kit, in order to

‘sense’ pedestrians in the nearby vicinity of the vehicle and alert the driver with warnings. Some

modern built-in sensor systems are able to output warning signals directly to the car’s control

system and apply automatic braking to help avoid or mitigate a crash [4]. Modern pedestrian

detection systems use a variety of techniques to ‘sense’ the presence and proximity of

pedestrians, such as infrared sensors, visible light cameras, laser and radar technologies. In order

to process the data from these sensors, FPGAs, microcontrollers and microprocessors are often

used.

In a concerted effort to encourage progress in the field of pedestrian detection, multiple

datasets have been created which contain real life video/images of pedestrians in different

scenarios. These datasets are updated regularly. One of the largest and commonly used datasets

in the computer vision research community is the Caltech Benchmark Dataset. The Caltech

Pedestrian Dataset consists of approximately 10 hours of 640x480 30Hz video taken from a

vehicle driving through regular traffic in an urban environment [5].

5

1.2 Future of Pedestrian Detection

Autonomous cars or self-driving cars is a concept of the future which seems closer to

being a reality as more strides are made in automobile technology. With the combination of

current ADAS such as lane departure warning, blind spot detection, adaptive headlights, park

assist, GPS among others, commercial autonomous cars could become a reality within the next 5

years.

Companies such as Google and Tesla are currently leading the charge in the field of

autonomous cars. Google is currently testing their autonomous cars on the streets in California,

Texas and Washington while Tesla recently added a ‘Summon’ feature to their line of vehicles

which will allow a driver to remotely summon their car, and in response, their car will

autonomously drive itself to the location of the owner. Though both ventures are in their early

stages, it hints at how close commercial fully autonomous cars are to being a reality.

6

Chapter 2 – Hardware Design

2.1 FPGAs

2.1.1 Introduction to FPGAs

FPGAs, or Field Programmable Gate Arrays, are devices comprised of many logic

blocks, most of which can be configured for any number of applications. Configurable logic

blocks (CLBs) are the basic building elements of an FPGA, and are usually referred to as slices.

These slices, in turn, are mainly made up of flip-flops and lookup tables (LUTs) [6].

Flip-flops are the basic memory blocks which can hold a logic state from one clock cycle

to the next. LUTs are the physical representation of a truth table in digital logic, essentially a set

of relations stored in small amounts of memory. An FPGA also contains other function blocks,

e.g. multipliers, block RAM, etc., which are used to optimize the overall application [6].

These FPGA boards differ from Application-Specific Integrated Circuits (ASICs)

because they can be reprogrammed after manufacturing, whereas ASICs are given their

Figure 1 - Simple Representation of FPGA

7

configuration, and then usually mass-produced that way. In addition, they differ from

microcontrollers because they give you control of the software implemented on the board

whereas an FPGA gives you control over the hardware itself [7].

FPGAs are used by writing in a Hardware Description Language (HDL), two most

common of which are VHDL and Verilog. For this project, we decide to go with Verilog due to

the familiarity throughout the group as well as simplicity in the coding scheme.

2.1.2 Why we chose FPGAs

For specialized purposes and applications which would be intended to be mass-produced,

FPGAs have many advantages over PCs in terms of image processing. Because PC processors

are general purpose, a gate array configured for a certain function will operate at a much faster

rate without background processes weighing it down. In the field of digital image processing

(DIP), FPGAs are becoming increasingly more common due to these facts [8].

When using FPGA applications, there is relatively little boot-up time compared to a PC

because the program is saved on the flash memory on the board. When the board is powered, the

FPGA automatically starts the program to process the input and generate output. In addition to

the built-in security features of the Xilinx FPGAS (such as JTAG Monitoring and AES 256

encryption), this lack of an operating system can actually be beneficial in various ways [9].

Having custom code instead of a brand name operating system attributes to the security

of the FPGA program. Development boards like the Raspberry Pi work a bit more like personal

computers, where the file system is usually directly accessible with a simple login. Alternatively,

the Nexys does not work the same way. Although it does have non-volatile code programmed

8

onto it, it would not be reconfigured easily. Any malicious efforts would require disconnecting

the board, hooking it up to a PC with Xilinx software installed (which requires a license to

Synthesize) and the project itself which would not be obtainable directly from the board.

2.1.2 Nexys 3 Spartan 6 Board

Figure 2 - Nexys 3 - Spartan 6 Board [10]

As the specific FPGA board used for this project, the Nexys 3 Spartan-6 FPGA Board is

optimized for lowest-cost logic, which provides many unique I/O ports on a single board, and

different types of RAM for the developer to use. Delving further into the resources on the board,

the most important components for this project are detailed below:

 Spartan-6 XC6SLX16 capable of 500 MHz clock speed

 48 MB memory

o 16 MB Cellular RAM

o 16 MB SPI PCM (phase-change mem) non-volatile memory

o 16 MB parallel PCM non-volatile memory

9

 USB2 port (for programming/power)

 8-bit VGA port

 8 slide switches

 4 Banks of 12 PMOD connectors

The stats shown above are from the Nexys 3 ™ FPGA Board Reference Manual by Digilent

[10].

Due to the highly configurable nature of FPGAs, there are such a vast range of

applications that these boards can be targeted for, including but not limited to: Security,

Communications, Medical Electronics, and Smarter Vision. For this last category, the boards can

be used in areas such as Real-Time Analytics, Intelligent Transport, and Product Differentiation

[7].

2.2 Infrared Technology

2.2.1 Infrared (IR) Background

Figure 3- IR Spectrum

10

Infrared (IR) technology involves/refers to devices which utilize infrared waves in many

different ways. So let's take a step back and look at how that works. In a data collection sense of

IR technology, referred to in the field as IR wireless, a device emits IR light (in this case, Long

Wave IR), and compares the reflection as it bounces off objects in its view. Infrared light borders

visible light on the EM spectrum, with frequencies lower and wavelengths longer than that of

visible light.

2.2.2 Infrared Camera over a Visible Light Camera

With the help of infrared cameras, we can utilize the ability to see an environment in any

light conditions, as well as extract heat signature information in these conditions. Most current

pedestrian detection modules and techniques use only a visual light camera, but by using an

infrared camera, we can see pedestrians during the day and during the night. In addition, filtering

for organic beings is easier to be implemented with a thermal camera, because it is a contrast

between the object and the background.

2.2.3 FLIR Lepton Module Camera

Figure 4 FLIR Camera Module Size Comparison [11]

In this project, we use the FLIR LEPTON© Long Wave Infrared Camera, which is a

"passive thermal imaging module for mobile equipment". This camera delivers video data

serially of the thermal representation of the environment in an 80x60 resolution. To operate like

11

this, the board must have MOSI and MISO pins, to send data to and from the breakout board

[11].

Figure 5 Lepton Camera with Breakout Board [11]

The board shown above requires a VIN of 3.3 V and a clock frequency (CLK) of 20

MHz. Controlling both the Chip Select (CS) and Master In Slave Out (MISO) pins is essential

for collecting data from the camera module. More on this is detailed in Chapter 3.

Figure 6 - Representation of how data is passed in from the camera [12]

12

The data coming in from the camera arrives in packets of 164 bytes. The first 4 bytes are

split evenly between the ID and CRC fields (see Figure 6). The remaining 160 bytes are the

payload. For a regular packet, the ID field looks like xNNN, meaning the first bit is ignored and

the remaining 3 determine the ID. If there is ever to be a packet starting with xFxx, this is a

discard packet and does not get used in the processing or display. For our purposes, we are not

implementing the CRC checksum calculations due to the timeline of the project.

Each packet refers to a line/row of data in the video feed. Therefore, one frame of video

contains 60 packets of 80 pixels. This camera is capable of delivering frames of data at a flexible

clock rate between 2.2 MHz and 20 MHz. To keep a valid frame timing and maintain

synchronization with the display, one frame must be read within 1/27 of a second [12].

Currently, small thermal cameras such as the Lepton FLIR module are being used in

many different fields. Our purpose is to detect pedestrians in any given light conditions on an

embedded platform, which can be installed on a car or even an autonomous vehicle. Often, they

are being used by both law enforcement and consumers to detect unwanted persons outside a

facility at night. They are also being used to detect leaks in the piping of homes, operate

automatic doors, and for many other applications [9].

13

Chapter 3 - Implementation

3.1 Overview of Dataflow

Figure 7 - Flowchart of the dataflow of our system

The lepton camera module is connected to the PMOD pins of the Nexys 3 board and

synchronized for video transmission through an SPI interface. This interface is implemented

using a Finite State Machine (FSM) design method. The SPI Verilog code can be seen in the

appendix. The Nexys 3 FPGA produces the serial clock and chip select signals needed to

synchronize with the camera. Since the Nexys 3 board only reads video packets transmitted by

14

the camera, only the MISO breakout pin is asserted. Hence the only SPI pins used in this SPI

interface are the Serial clock (SLCK), chip select (CS) and Master In Slave Out (MISO).

3.2 System Integration

3.2.1 Input Camera and Clocking

The camera uses the SPI mode 3 protocol; Clock Polarity (CPOL) is 1 and Clock Phase is

(CPHA) is 1. CPOL with 1 means the idle level of the Serial clock (SLCK) should be high (1)

and CPHA with 1 means data must be sampled from the camera at the positive edge of the clock.

Figure 8 shows diagrams of the appropriate SLCK waveforms for each SPI mode. It is very

important to identify the SPI mode of each device before building an SPI interface because not

all devices work with the intuitive SPI mode 0.

Figure 8 - SPI Modes - Waveform Comparison

15

The camera is clocked at a rate of 20 MHz to enable correct synchronization with the

board, hence our state machine serial clock rate is also 20MHz. This clock output was generated

using the ISE Clocking Wizard Intellectual Property (IP) core. This is shown below:

Figure 9 – ISE Clocking Wizard IP core

3.2.2 Read Packets State

The camera transmits video information as packets of data in Big Endian (Most

Significant Bytes first). There are two kinds of packets sent by the camera: video packets and

discard packets. Each packet is 1312 bits in length so a 1312-bit shift register is declared to

capture each packet. This also means it took 1312 clock cycles to read each packet. The SLCK

and CS signals are initially set to 1 which kept the camera in Idle mode. A delay state of 30

clock cycles is added to enable the camera to boot up properly. After the delay, the SLCK signal

is toggled to 0 and the camera loads data on the MISO pin. On the next clock edge which is the

16

sampling edge, the SLCK signal is reset to 1 (which produced a positive edge) and the CS signal

is toggled to 0. Hence the data at the MISO pin is read into the shift register. The SLCK signal is

then toggled to 0 and the same process repeated for 1312 cycles.

3.2.3 Check Packets State

In the check packets state, the line numbers are verified. The line number for each packet

is its first two Most Significant Bytes (MSB). Occasionally the camera sends a discard packet

for camera synchronization. In this case, line number is sent as xFxx (values are in Hex as line

number is 16 bits). The x bits are "don't cares" so discard packets are tested for by applying a

bitmask of 0x0F00 to the first byte and testing that it is equal to 0x0F. When the camera sends a

video packet, the line number is sent as xxNN where NN is the packet ID. The packet ID indexes

each packet in a video frame. The camera has a video resolution of 80 by 60. So 60 packets have

to be sent for each frame. Hence for correct frame synchronization, the packets have to be

transmitted by the camera in ascending packet ID; 0, 1, 2, 3, 4 till 59. This is why a 20 MHz

clock rate (maximum rate for the camera) was used as the serial clock frequency. Lower clock

frequencies could not keep up with the camera transmission rate and packets are transmitted out

of order; 0, 1, 2, 3, 4, 0, 20, 10. With this understanding, for each packet line number, the first

byte is checked to not be equal to 0x0F (discard packet check) and the second byte, is checked to

be less than 59 (Packet ID check).

 If a packet satisfies these checks, it is flagged as being valid and its respective pixels are

sent to RAM. If a packet is not valid, the state machine branches to the delay state, then moves to

the read state to get another packet.

17

The next 160 bytes of each packet are its payload. The payload is the set of all of the

pixels for each packet. Since each pixel is 16 bits in length, a payload of 160 bytes corresponds

to 80 pixels per packet and this satisfies the 80 by 60 video resolution of the camera. For each

packet, the payload is sampled into 80 pixels and the packet ID is used to generate the RAM

write address for each respective pixel. This process is shown in the pseudo code below.

The pixels are sent to RAM and aligned at their respective addresses. This is the last

stage of our SPI state machine.

reg [1279:0] Payload ; // 1280 bits correspond to 160 bytes which are 80 pixels

reg [6:0] P_count = 0 ; // Counter is initialized to zero, 7 bit register can handle

80 counts.

wire [7:0] Packet_ID // Packet ID number is a byte (8 bit) in length

 always@ (posedge clk) //

 if(signal) // Signal is active for 80 clock cycles

 begin

 Pixel <= Payload[(16*P_count) +: 16]; // Each pixel sampled from

payload

 Pixel_addr <= 80*(Packet_ID) + P_count ; // Each pixel RAM write

address P_count <= P_count + 1'b1 ; // Counter increments from 0 to 79

 Write_enable <= 1 ; // RAM write enable is always 1

 end

 else

 P_count <= 0; // Counter is reset to 0 and is ready for the next

payload sampling.

18

3.2.4 True Dual Port RAM

A true dual port RAM of write depth 4800 and width of 16 bits is instantiated using the

ISE IP core to buffer the pixels sent from the state machine. This instantiation is shown in Figure

10.

Figure 10 - ISE IP core showing generation of the RAM block

The write depth is the actual memory size of the RAM and the write width is the data size

of each element stored in the RAM. For our design, the RAM write depth is 4800 since we have

to buffer 80 by 60 video frames from the camera, hence 80 * 60 = 4800 pixels. The write width

is 16 because each pixel in a video packet is 16 bits in length.

19

3.2.5 VGA Module

While the pixels are being written to block RAM by the SPI state machine, the pixels are

being read by the VGA Module for display. The VGA module consists of the VGA controller

and the image processing algorithm (Image processing is depicted in a separate block in the Data

flow Diagram in Figure 7 for convenience). The VGA controller generates the vertical and

horizontal synchronization signal needed for the VGA monitor and outputs the pixel coordinates,

pixel_x and pixel_y to the VGA address Generator module for pixel localization in RAM. A

video controller diagram is depicted in Figure 11.

 The video controller generates the synchronization signals and outputted data pixels

serially through the VGA port of the FPGA board. The synchronization signals generator circuit

(vga_sync) generates the timing and control signals. The hsync and vsync signals control the

horizontal and vertical scans. The pixel_x and pixel_y signals specifies the current location of

the pixel. The vga_sync circuit generates the video_on signal to indicate whether to enable or

disable the display.

The pixels in each RAM position are read by the VGA module. The VGA horizontal and

vertical signal counters are used to build an address for each VGA read from RAM.

20

Figure 11 – Video Controller

The timing diagram of one horizontal scan is shown in Figure 12 and the timing diagram

of one vertical scan is shown in Figure 13. The refresh rate for the VGA display is fixed at 60Hz.

In order to achieve this refresh rate on a 640x480 pixel screen, the pixel rate calculation was

done as follows:

 Pixel Rate = (Total Horizontal Pixels * Total Vertical Lines *Number of
screens / second)

 = 800 * 525 * 60 = 25 MHz

21

Figure 12 - Timing Diagram of the Horizontal Scan

22

Figure 13- Timing Diagram of the Vertical Scan

3.2.6 Nearest Neighbor Interpolation

The image interpolation algorithm is actually implemented in the VGA module but for

convenience, it is depicted as a separate module in the Data flow Diagram (Figure 7). Our VGA

monitor has a resolution of 640 by 480 but our camera has a resolution of 80 by 60. This is a

great visual limitation because only 1/64th of the monitor total area of display has to be used.

To solve this problem, the vertical and horizontal pixel coordinates are outputted 8 times

by the VGA controller before being incremented. Hence each pixel in RAM is displayed 8 times

horizontally and vertically. This technique enables us to scale the display from the native 80x60

given by the camera to a 640x480 VGA resolution without needing extra memory. Nevertheless,

the quality of each frame is decreased and the display became blockier. Hence we trade image

quality for larger frame display. Figures 14 and 15 show the comparison of the native 80x60

23

display when compared to the interpolated 640x480 display. Though there are noticeable

blocky edges in the 640x480 display, these discrepancies do not affect the object detection

algorithm.

Figure 14 - Native 80 x 60 Display

24

Figure 15 - Interpolated 640 x 480 Display

3.2.7 VGA Address Generator

The pixel coordinates from the VGA controller are sent to the address generator module

where, the read address for each pixel is computed. The addresses are computed using the

following pseudo code:

25

Since the VGA controller generates the VGA signals and coordinates at 25 MHz, the

VGA address generator module is also clocked at this rate. Hence the SPI state machine writes

pixels to the RAM at 20 MHz using the Packet ID for write addressing while the VGA Module

reads the pixels at 25 MHz using the VGA display coordinates for read addressing.

3.2.8 Alarm Output

In a real world application, having a visual display by itself would detract from our

original goal of relieving some of the burden on the driver's visual attention. So, in addition to

having a display of the filtered thermal camera with centroid features, we add an analog alarm

circuit, as shown below. This circuit was driven by an output signal from the FPGA whenever a

reg [6:0] hcnt, // interpolated pixel coordinate from VGA controller

reg [12:0] vcnt // interpolated pixel coordinate from VGA controller

reg [12:0] hcount // pixel coordinate from VGA controller

reg [12:0] vcount // pixel coordinate from VGA controller

reg [12:0] Addr // pixel Read address used by VGA

reg enable // read enable is always set to 0

always@ (posedge clk)

begin

 if (hcount >= 0 && hcount < 639 && vcount >=0 && vcount < 479 &&

enable==0)

 begin

 if (Addr < 4800)

 Addr <= ((vcnt*80) + hcnt) ; // Address is used by VGA to read

pixel in RAM

 else

 Addr <= 0;

 end

26

centroid was triggered. What followed was a short sequence of sound driven by a 555 timer to a

buzzer.

Figure 16 - Visual Representation of our Alarm Circuit

27

3.3 Image Processing

The Nexys 3 Spartan 6 board had an 8-bit VGA port. This means that the only 8-bit RGB

(Red, Green, Blue) color signals could be outputted from board. The color order is 3 Red, 3

Green, 2 Blue. The Camera sends its video frame in Grayscale format but since we have to use

only 8 bits out of the 16 bits available for each pixel, false color variations are obtained for

display. Hence we have to convert each 16-bit pixel into 8 bit before processing and display. We

make this conversion in Verilog using the following equation where scale is obtained as 1000 by

experiments and simulations.

8bit_pixel = (16bit_pixel) * (scale)/ (32768);

Our Pedestrian Detection algorithm is based from the project “Real Time Face Detection”

(see References for more information of this project) [13].

Figure 17 – Image Processing Filters

28

3.3.1 Thresholding

We convert each frame with 8-bit pixels into a binary image using a constant threshold

value. Since we are using an infrared camera, we take advantage of the heat signature produced

by the hot objects like the human skin and face. In a YUV color space, the U values (chroma

values) of the skin value between a certain range. Hence we subtract the Red pixels from the

Green pixels and obtain a threshold range after multiple experiments. The pseudo code for this

filter is shown below.

Our binary image is then passed to the spatial filter. Figures 18 and 19 show the results of

the threshold filter.

wire [2:0] mgreen , mred, diff ;

 assign diff = mred - mgreen ; // U value = Red pixels – Green pixels

 if (diff <= 3'b010 && diff <= 3'b111) begin // threshold range

 bwrgb[7:0] <= 8’b00000001; // color for detected pixels

 end

else begin

 bwrgb[7:0] <= 8'b00000000; // black color for invalid pixels

 end

29

Figure 19 - Result of the Threshold Filter with two subjects in the frame

Figure 18 - Result of the Threshold filter with a single subject in the frame

30

3.3.2 Spatial Filtering for Noise Removal

The spatial filter is a low pass Gaussian filter that blurs an image by attenuating the high

frequency components at its edges. In order to implement this filter, for every pixel p, its

neighboring pixels in a 9x4 neighborhood are checked. If more than 75% of its neighbors are

valid binary pixels (binary value 1), p is also a valid pixel. Otherwise p is a non-skin pixel. This

allows most background noise to be removed because usually noise scatters randomly through

space.

To examine the neighbors around a pixel, their values need to be stored. Therefore, 10

shift registers are created to buffer the values of 10 consecutive rows in each frame. As shown in

Figure 20, each register is 640-bit long to hold the binary values of 640 pixels in a row. Each bit

in data_reg1 is updated according to the X coordinate. For instance, when the X coordinate is 2,

data_reg1 [2] is updated according to the result of thresholding from the previous stage. Thus,

data_reg1 is updated every clock cycle. After all the bits of data_reg1 are updated, its entire

value is shifted to data_reg2. Thus, other registers (from data_reg2 to data_reg10) are only

updated when the X coordinate was 0. Values of data_reg2 to data_reg10 are used to examine a

pixel’s neighborhood.

31

Figure 20 - Shift Register Data Flow

3.3.3 Temporal Filtering

A temporal filter is a high pass Gaussian filter applied on a sequence of images, this will

blur the sequence evolution, smoothing out the temporal variation. The temporal filter is based

on the following equation:

avg_out = (3/4) avg_in + (1/4) data

where data is the filtered result obtained from the previous stage of a pixel, namely p, in current

frame, avg_in is the average value of p from previous frame, and avg_out is the average value of

p in current frame

This is approximately equal to averaging four consecutive frames over time. To ease the

computational effort, the equation above can be re-written as:

avg_out = avg_in – (1/4) avg_in + (1/4) data

avg_out = avg_in – avg_in >> 2 + data >> 2

32

3.3.4 Centroid Calculations

After applying the spatial and temporal filters to each pixel, we compute the centroid of

each frame. We do not implement a blob labelling algorithm so we could not identify and label

different objects in a single frame. Instead, we calculate the centroid of all the detected pixels in

a frame. This works fine when only one object was in the camera frame, but if two or more

objects are in the frame, the centroid and bounding box do not accurately describe each object. In

order to ease this limitation, we extend our centroid calculations to the detection of two objects

in a frame. The two objects have to be placed side by side relative to the camera. We compute

the centroid for as shown in the pseudo code below.

always@(posedge iclk_25M) begin

 if (Beginning of Frame) begin // At the start of frame, where both

pixel coordinates are 0

 sumX <= 30'b0;

 sumY <= 30'b0;

 Area <= 12'b0;

 end

 else if ((Valid Display range)) begin // While the VGA signals are in the

display range

 if(Pixel_valid) begin // For every valid pixel ->

 sumX <= sumX + hcount; // 1) its horizontal pixel

coordinates is added

 sumY <= sumY + vcount; // 2) its vertical pixel

coordinates is added

 Area <= Area + 19'b1; // 3) the pixel count is

incremented

 end

 end

 else begin

 centroid_x <= (sumX)/Area; // centroid x position is

computed

 centroid_y <= (sumY)/Area; // centroid y postion is

computed

 end

end

33

In order to calculate the centroid for two objects the video frame is split into two

according to where the centroid was, as represented in the figures below.

Figure 21 - Centroid (Whole Frame)

As shown in Figure 21, the frame is split into two according to the centroid position of

the whole frame.

Figure 22 - Centroid (Half Frame)

As seen in Figure 22, the centroids of the objects in each half of the frame are computed

independently.

34

Obtaining the centroid of each face region allows us to locate the face of each person

present in a two-person video frame. Figure 23 shows the result of the centroid detection of a

single person in a frame.

Figure 23 - Result of the centroid detection

35

Chapter 4 – Conclusions and Plans for Future Work

4.1 Conclusions

 In conclusion, through the use of the FLIR Lepton Camera module and the Nexys 3

FPGA Board, our project team was able to successfully create a pedestrian detection module

capable of detecting two pedestrians simultaneously and positively identify their position in the

frame. Our current system had a detection range of approximately 15 feet, limited by the

resolution of the thermal camera.

Though many camera-based pedestrian detection systems are available on the

commercial market, they often use visible light cameras which are susceptible to interference

from external conditions such as snow, rain or lack of lighting. An example of such a product is

Subaru Eyesight, which places 3 separate cameras near the top of the user’s windshield. Not only

is this bulky, but it does not deal with pedestrian detection or use anything other than visible

cameras. Its various features, like other products, include things such as Adaptive Cruise

Control, Lane Detection, and others just to deal with other cars [13]. Our solution is a

streamlined way to detect living things and warn the driver about hitting them. Through the use

of an infrared camera, we were able to eliminate lighting and weather as potential interference.

 The infrared camera-based pedestrian detection systems that are commercially available

such as the FLIR PathfindIR are often very expensive for the common driver. The FLIR

PathfindIR after-market kit for example cost in excess of $3000. This cost breaks down to $2500

for the camera module and around $750 for the Installation kit (which contains the LCD Display

and the processing unit) [13]. The pedestrian detection module created during this project cost

just under $500 total ($39 for the breakout board, $175 for the Lepton Camera module and $270

36

for the Nexys 3 board). As such this product can be seen as a cheaper alternative to the products

already available.

4.2 System Constraints

Though our system is able to detect two pedestrians, there are constraints on our device

when put in a real world scenario. The pedestrian detection algorithm which was implemented

was only able to differentiate two people who are separately located on two sides of the image.

This can be seen as a major constraint because objects will not always be positioned ideally in

this setup.

Our algorithm also identified inorganic objects such as monitors and light bulbs as

pedestrians because they emit heat signatures similar to that of the human body. In a real world

scenario, this would not be ideal as many false positives may be incorrectly identified.

4.3 Future Improvements

 For future improvements to our pedestrian detection module, we plan to use a higher

resolution camera. With the use of a higher resolution camera, we would be able to detect people

from farther distances as we would ascertain a larger native pixel count from the camera. We

also plan to upgrade from the Nexys 3 board to a more powerful FPGA board, possibly the

Zynq-7000 FPGA, as to handle the increased amount of processing that would be necessary for

the larger data input. With the use of the higher resolution camera, we would also switch from

using a VGA port to HDMI as this is more appropriate for video signals with high resolution.

 In order to solve the second constraint of our current product, we plan to superimpose the

output from a visible light camera with the output from the infrared camera. By doing this, we

37

could use the additional pixel validity offered by the regular camera, to reduce the number of

false positives (monitors, light bulbs, smart phones) detected by the algorithm. This would solve

the limitations of our current product as the visual light camera would be able to distinguish

pixels representing skin from other non-organic pixels, hence reducing the occurrences of false

positvies which have heat signatures similar to the skin.

We also plan to implement a connected labelled algorithm in order to label valid pixels,

buffer their labels in blob tables, merge similar labels, and calculate object properties of each

merged object (area, centroid) and draw bounding boxes around valid pixels on the VGA

display. We could not implement this due to the time constraints of our project. The

development time of the SPI driver and VGA modules for the camera took a considerable

portion of our project time and this confirmed the difficulty of FPGA programming and image

processing in hardware.

As for the output signal from the module, in addition to the visual display, we are

currently using a simple alarm circuit whenever the centroid is triggered. For future iterations,

we plan to format it in a way that current control systems of cars could interpret it and act

appropriately. One such way is through the use of a CAN (Controller Area Network) which

would be ideal since this is one of the standards commonly used by microcontrollers in vehicles

to communicate with other on-board devices.

38

Glossary

ADAS - Advanced Driver Assistance Systems

ASIC – Application-Specific Integrated Circuit

BRAM – Block Random Access Memory

CAN – Controller Area Network

CLB – Configurable Logic Block

FPGA – Field Programmable Gate Array

IP – Intellectual Property

IR - Infrared

LUT – Lookup Table

MSB - Most Significant Bit

39

Bibliography

[1] Mobile Eye, "mobileye.com - Pedestrian Detection," [Online]. Available:

http://www.mobileye.com/technology/applications/pedestrian-detection/. [Accessed 1

March 2016].

[2] G. H. S. Association, "Pedestrian Trafic Fatalities by State- Prelim Report," 2014.

[3] [Online]. Available: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3821298/ .

[4] Insurance Institute for Highway Safety - Highway Loss Data Institute, "Crash Avoidance

Technologies," [Online]. Available: http://www.iihs.org/iihs/topics/t/crash-avoidance-

technologies/topicoverview. [Accessed 1 March 2016].

[5] Caltech, "Caltech.edu - Caltech Pedestrian Detection Benchmark," [Online]. Available:

http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/. [Accessed 2 March

2016].

[6] National Instruments, "FPGA Fundamentals," 3 May 2012. [Online]. Available:

http://www.ni.com/white-paper/6983/en/.

[7] Xilinx, Inc., "Xilinx: What is an FPGA?," [Online]. Available:

http://www.xilinx.com/training/fpga/fpga-field-programmable-gate-array.htm.

[8] S. Mittal, S. Gupta and S. Dasgupta, "FPGA: An Efficient and Promising Platform for Real-

Time Image Processing Applications," Proceedings of the National Conference on

Research and Development in Hardware & Systems, 2008.

[9] Xilinx, Inc., "Design Security," [Online]. Available:

http://www.xilinx.com/products/technology/design-security.html.

[10] Digilent, Inc., "Nexys 3 FPGA Board Reference Manual," 10 April 2013. [Online].

Available: https://reference.digilentinc.com/_media/nexys:nexys3:nexys3_rm.pdf.

[11] SparkFun Electronics, "FLiR Dev Kit," [Online]. Available:

https://www.sparkfun.com/products/13233.

[12] FLIR Systems, Inc., "Resources for FLIR Systems Cores & Components," 15 October

2014. [Online]. Available: http://www.flir.com/cores/display/?id=51878.

[13] "Real Time Face Detection and Tracking," [Online]. Available:

http://people.ece.cornell.edu/land/courses/eceprojectsland/STUDENTPROJ/2012to2013/tnn

7/tnn7_report_201212141110.pdf.

[14] Subaru, "Subaru Eyesight," [Online]. Available:

http://www.subaru.com/engineering/eyesight.html.

40

[15] "FlIR.com," [Online]. Available: http://www.flir-

direct.com/products/search?search=pathfindir&gclid=CjwKEAiAmNW2BRDL4KqS3vmq

gUESJABiiwDTQZB_pBAC3Sk-0I0Yhz96YJ4F7Ta8p-qBv90EFxYIVhoCLUnw_wcB.

[Accessed 6 March 2016].

41

Appendix A – Verilog Code

Main Module
`timescale 1ns / 1ps

//
// Company: Worcester Polytechnic Institute
// Engineer: Adam Karcs
// Arsene Tchatchoua

// Damani Walder
//
// Create Date: 14:36:38 03/25/2016
// Design Name:

// Module Name: Main
// Project Name:

// Target Devices: Nexys 3

// Revision:
// Revision 0.01 - File Created
// Additional Comments:

//
///

module Main(
input idata,
input iCLK,
input ireset,

input iswitch,
input iswitch_2,
input Creset,
output odcm,

output CS,
output Cam_clk,
output oHS,
output oVS,

output [7:0] orgb,
output sclk,
output led1,
output led2,

output led3,
output led4

);

 wire clk_100M, clk_25M, clk_20M ;

 wire [12:0] Addr ,iaddr ;

42

 wire [15:0] dina , doutb ;

 wire [12:0] hcount ;
 wire [12:0] vcount ;

 wire blank = 0;
 wire wr, wr2 ;

 wire [6:0] hcnt;
 wire [12:0] vcnt ;

// Clock generator
SPI_dcm_2MHz B1 (
 .CLK_IN1(iCLK), // IN
 .CLK_OUT2(clk_100M), // OUT

 .CLK_OUT3(clk_25M), // OUT
 .CLK_OUT4(clk_20M), // OUT
 .RESET(Creset),// IN
 .LOCKED(odcm) // OUT

);

// Address generator module for VGA read addresses
Address_generator U2 (
 .clk(clk_25M),
 .vcount(vcount),

 .hcount(hcount),
 .enable(wr2),
 .Addr(Addr),
 .hcnt(hcnt),

 .vcnt(vcnt)
);

 // SPI State Machine module

SPI_module U1 (

 .clk(clk_20M),
 .reset(ireset),
 .data(idata),
 .Cam_CS(CS),

 .Cam_clk(Cam_clk),
 .ipixel(dina),
 .write(wr),
 .addr(iaddr),

43

 .fail(led1),
 .success(led2),

 .led3(led3),
 .led4(led4)
);

 // true dual port ram
 RAM_IP_block R1 (
 .clka(clk_20M), // input clka
 .wea(wr), // input [0 : 0] wea

 .addra(iaddr), // input [12 : 0] addra
 .dina(dina), // input [15 : 0] dina
 .clkb(clk_25M), // input clkb
 .web(wr2), // input [0 : 0] web

 .addrb(Addr), // input [12 : 0] addrb
 .doutb(doutb) // output [15 : 0] doutb
);

VGA_thermo U4 (

 .irgb_1(doutb),
 .iclk_25M(clk_25M),
 .switch_mode(iswitch),
 .switch_mode_2(iswitch_2),

 .ireset(ireset),
 .oHS(oHS),
 .oVS(oVS),
 .orgb(orgb),

 .hcount(hcount),
 .vcount(vcount),
 .hcnt(hcnt),
 .vcnt(vcnt)

);

endmodule

44

Address Generator module

module Address_generator(

 input clk ,

 input [12:0] vcount,

 input [12:0] hcount,

 input enable,

 output reg [12:0] Addr,

 output reg [12:0] Addr2,

 input [6:0] hcnt,

 input [12:0] vcnt

);

always@ (posedge clk)

begin

 if (hcount >= 0 && hcount < 640 && vcount >=0 && vcount < 480 &&

enable==0)

 begin

 if (Addr < 4800)

 Addr <= ((vcnt*80) + hcnt) ;

 else

 Addr <= 0;

 end

end

endmodule

45

SPI Module

module SPI_module(

input clk,

input reset,

input data,

output reg Cam_CS,

output reg Cam_clk,

output [15:0] ipixel,

output write,

output [12:0] addr,

output fail, // lights up the led U16 when a packet is a

// discard or line number is not correct.

output success // lights up the led V16. So when V16 is lighting

//more, it means there are more success and the

//display will be good and vice versa.

);

// The clk was changed from 3.1Mhz to 2Mhz

// Variables for State machine sensitivity list

parameter S0 = 3'b000;

parameter S1 = 3'b001;

parameter S2 = 3'b010;

parameter S3 = 3'b011;

parameter S4 = 3'b100;

parameter S5 = 3'b101;

parameter S6 = 3'b110;

parameter S7 = 3'b111;

46

reg [2:0] next, current ;

 // variables for Camera_shift

wire Run, Go, Full ;

wire [1311:0] packet;

wire [7:0] ID, line_num ;

 wire [1279:0] pay_L;

Camera_shift M2 (

 .clk(clk),

 .reset(reset),

 .data(data),

 .Run(Run),

 .ID_bits(ID),

 .Line_num(line_num),

 .payload(pay_L)

);

// variables for Check_packet

 wire check ;

Check_packet M3 (

 .clk(clk),

 .check(check),

 .ID_bits(ID),

 .line_num(line_num),

 .fail(fail),

 .success(success)

);

// variables for Frame_buffers

47

wire signal, line_complete;

Frame_buffers M4 (

 .clk(clk),

 .image(pay_L),

 .signal(signal),

 .ipixel(ipixel), // image pixel for RAM 1

 .write(write), // write enable for RAM 1

 .addr(addr), // pixel address for RAM 1

 .complete(line_complete),

 .line(line_num)

);

 reg [7:0] cs_delay ;

reg [10:0] counter= 0;

// Next_state Logic Implementation

 always@(posedge clk)

begin

 case(next)

 S0 : begin

 Cam_clk = 1 ;

Cam_CS = 1 ;

next = S1;

end

 S1 : begin

48

 Cam_clk = 1;

Cam_CS = 0 ;

next = S2;

 end

 S2 : begin

 Cam_clk = 0;

Cam_CS = 0 ;

 if (cs_delay == 30)

 begin

 next = S3 ;

 cs_delay = 0;

 end

 else

 begin

 cs_delay = cs_delay + 1'b1 ;

 next = S2 ;

 end

end

S3 : begin

 Cam_clk = 1;

 Cam_CS = 0 ;

 if(counter == 1311) begin

 counter = 0;

 next = S5;

 end

49

 else begin

 counter = counter + 1'b1 ;

 next = S4;

 end

 end

 S4 : begin

 Cam_clk = 0;

 Cam_CS = 0 ;

 next = S3 ;

 end

S5 : begin

// at S4 if the packet is a discard packet or the line number is

//wrong, it fails the check so the state goes back to S0 to read //the

next packet.

 Cam_clk = 1;

 Cam_CS = 1 ;

 if(fail)

 next = S7;

// if fail go to the fix packet state

 else if (success)

// if the packet is an image packet, then the state goes to S5.At,S5,

//the packet will be sent to the frame buffer. Then the State goes

//back to S0.

 next = S6;

 else

 next = S7; // condition for bad packet

// i.e CRC Error

 end

 S6 : begin

50

 Cam_clk = 1;

 Cam_CS = 1 ;

 if(line_complete)

 next = S0;

 else

 next = S6 ;

 end

S7 : begin

 Cam_clk = 1;

 Cam_CS = 1 ;

 if (cs_delay == 30)

 begin

 next = S0;

 cs_delay = 0;

 end

 else

 begin

 cs_delay = cs_delay + 1'b1;

 next = S7;

 end

 end

endcase

end

 // Output Logic Implementation

assign Run = (next == S3);

assign check = (next == S5);

51

assign signal = (next == S6);

endmodule

Module Camera_shift

module Camera_shift(

input clk,

input reset,

input data,

input Run,

output[7:0] ID_bits,

output[7:0] Line_num,

output [1279:0] payload

);

///////////////

// Camera data are read and fed into the shift register

reg [10:0] counter= 0;

reg [1311:0] shift_register = 0;

wire [15:0] CRC_bits;

// the first byte of each packet is its ID number, the second byte is

its line number

always@(posedge clk)

if(Run)

 begin

 shift_register <= {shift_register[1310:0], data};

// we are right shifting since we are reading the MSB first // and

shift_register is of form [1311:0]

52

 end

assign CRC_bits = shift_register[1295:1280]; // not used only

identified

assign ID_bits = shift_register[1311:1304];

 // assign ID_bits to ID of packet

assign Line_num = shift_register[1303:1296];

 // assign Linenum to line number of packet

assign payload = shift_register[1279:0];

endmodule

Module Check_packet

module Check_packet(

input clk,

input check,

input [7:0] ID_bits,

input [7:0] line_num,

output reg fail,

output reg success,

input [11 :0] l_num

);

reg i = 0 ;

/// Since each packet has a 2 byte ID, ID_bits represents the ID of

the packet and line_num represents the line number of the packet.

always@(posedge clk)

if (check) // if the state is S5, check will be high

 begin

53

 if(ID_bits == 8'h0F)

 // if the ID is a discard (i.e == 8'h0F) or the line number is not

//equal to the expected line value, then signal a fail and do not

//change the value of the expected line value. line value goes from

//0 to 59.

 begin

 fail <= 1;

 success <= 0;

 end

 else if (ID_bits == 8'h00 && line_num < 8'd60)

// if ID is not discard and the line number is corresponding (e.g at

//the first packet should have line number 0, so i starts at 0

 begin

 fail <= 0 ;

 success <= 1;

 end

 else

 i <= 0 ;

 end

endmodule

Frame Buffer Module

module Frame_buffers(

input clk,

input [1279:0] image,

input signal,

input [7:0] line,

output [15:0] ipixel,

output write,

54

output [12:0] addr,

output complete

);

reg [6:0] p_count ;

reg [15:0] p_val ;

reg wr ;

reg [12:0] p_addr = 0;

always@ (posedge clk)

 if(signal)

 begin

 p_val <= image[(16*p_count) +: 16];

 p_addr <= 80*line + p_count ;

 p_count <= p_count + 1'b1 ;

 wr <= 1 ;

 end

 else

 p_count <= 0;

assign complete = (p_count == 79);

assign ipixel = p_val ; // read the pixel output from the p_val

// register

assign write = wr ;

assign addr = p_addr;

endmodule

VGA Thermo Module

55

module VGA_thermo(

input [15:0] irgb_1,

input iclk_25M,

input switch_mode,

input switch_mode_2,

input ireset,

output oHS,

output oVS,

output reg [7:0] orgb,

output reg [12:0] hcount,

output reg [12:0] vcount,

output reg [6:0] hcnt,

output reg [12:0] vcnt

);

reg [10:0] lobound = 11'd125; //0

reg [10:0] upbound = 11'd425; //16

reg blank = 0;

parameter red = 8'b00000111; //red

parameter blue = 8'b11000000; //blue

parameter green = 8'b00111000; //green

parameter yellow = 8'b00111111; //yellow

parameter cyan = 8'b11111000; //cyan

wire [15:0] irgb ;

assign irgb = irgb_1 ;

56

vga_controller_640_60 U2 (

.rst(ireset),

.pixel_clk(iclk_25M),

.HS(oHS),

.VS(oVS),

.hcount(hcount),

.vcount(vcount),

.hcnt(hcnt),

 .vcnt(vcnt),

.blank(blank)

);

reg [6:0] h_cnt;

reg [6:0] v_cnt ;

reg [7:0] bwrgb , fltr3 ;

// STEP 1 : BACKGROUND SUBTRACTION BY USING THRESHOLD RANGE

wire [2:0] mgreen , mred, diff ;

assign mred = new[7:5] ;// {irgb[15],irgb[14],irgb[13]} ;

assign mgreen = new[4:2]; //{irgb[12],irgb[11],irgb[10]} ;

assign diff = mred - mgreen ;

always@(posedge iclk_25M)

 begin

if (diff <= 3'b010 && diff <= 3'b111) begin //(diff <= 3'b010 &&

diff <= 3'b111) begin

 bwrgb[7:0] <= cyan;

 data_reg1[hcount] <= 1'b1;;

57

 end

else begin

 bwrgb[7:0] <= 8'b00000000;

 data_reg1[hcount] <= 1'b0;

 end

 end

//// STEP 2 : SPATIAL FILTERING

reg [639:0] data_reg1, data_reg2, data_reg3;

reg [7:0] sprgb ;

always@(posedge iclk_25M)

 begin

 if (hcount == 12'b0) begin

 data_reg2 [639:0] <= data_reg1 [639:0];

 data_reg3 [639:0] <= data_reg2 [639:0];

 End

// We only used three registers to build the spatial filter because of

flip flop limitations on the Nexys 3 FPGA. With a more powerful

board, more registers can be used, ideally ten registers.

else if

((data_reg2[hcount'd4]+data_reg2[hcount'd3]+data_reg2[hcount'd2]

+data_reg2[hcount'd1]+data_reg2[hcount]+data_reg2[hcount+'d1]

+data_reg2[hcount+'d2]+data_reg2[hcount+'d3]+data_reg2[hcount+'d4]

+data_reg3[hcount'd4]+data_reg3[hcount'd3]+data_reg3[hcount'd2]

+data_reg3[hcount'd1]+data_reg3[hcount]+data_reg3[hcount+'d1]

+data_reg3[hcount+'d2]+data_reg3[hcount+'d3]+data_reg3[hcount+'d4]

) > 7'd15) begin

sprgb[7:0] <= cyan ;

else begin

sprgb [7:0] <= 8'b0 ;

 end

58

end

//// Step 3: TEMPORAL FILTERING

reg [7:0] previous_avg ,current_avg ;

wire[7:0] temp_in, temp_out ,temp_DQ , hold ;

wire [9:0] temp2 ;

 assign temp_DQ = hcount[0] ? temp_out : temp_in;

 assign temp_in = temp_DQ; // 10 bits

 assign temp_out = temp_in - (temp_in >> 2) + (sprgb >> 2);

 assign temp2 = temp_out << 4;

 always@(posedge iclk_25M)

 begin

 if (temp2 > 10'b1110111111) begin

 fltr3 <= 8'hff;

// Draw centroid

 if (Area > 19'd500) begin

if ((hcount < avg_centroid_x + 19'd20) && (hcount > avg_centroid_x -

19'd20) && (vcount < avg_centroid_y + 19'd20)&&

(vcount> avg_centroid_y - 19'd20))

 begin

 fltr3 <= red;

 end

 end

 end

 else begin

 fltr3 <= 8'h0;

 if (Area > 19'd500) begin

59

if ((hcount < avg_centroid_x + 19'd20) && (hcount > avg_centroid_x

- 19'd20) && (vcount < avg_centroid_y + 19'd20) &&(vcount >

avg_centroid_y - 19'd20)) begin

 fltr3 <= red;

 end

 end

 end

 end

reg [29:0] sumX = 0 ;

reg [29:0] sumY = 0;

reg [18:0] Area = 0 ;

reg [29:0] centroid_x, centroid_y ;

reg [29:0] avg_centroid_x, avg_centroid_y ;

always@(posedge iclk_25M) begin

if ((hcount >= 20 && hcount < 620 && vcount >= 20 && vcount < 460

)) begin

 if (fltr3 == 8'hff) begin

 sumX <= sumX + hcount;

 sumY <= sumY + vcount;

 Area <= Area + 19'b1;

 end

 end

else if ((hcount == 2) && (vcount == 478))

 begin

 centroid_x <= (sumX)/Area;

 centroid_y <= (sumY)/Area;

 avg_centroid_x <= avg_centroid_x - (avg_centroid_x >> 2) +

 (centroid_x >> 2);

60

 avg_centroid_y <= avg_centroid_y - (avg_centroid_y >> 2) +

(centroid_y >> 2);

 sumX <= 0;

 sumY <= 0;

 Area <= 0;

 end

 end

wire [7:0] new ;

assign new = (irgb)*(1000)/(32768);

always @ (posedge iclk_25M)

 begin

if (hcount >= 0 && hcount < 640 && vcount >= 0 && vcount < 480

&& !blank)

 begin

 if(switch_mode_2)

 orgb[7:0] <= fltr3[7:0];

 else if (switch_mode)

 orgb[7:0] <= bwrgb[7:0] ;

 else if (~switch_mode && ~switch_mode_2)

 orgb[7:0] <= {irgb[2],irgb[4],irgb[6],irgb[8],

 irgb[10],irgb[11],irgb[12],irgb[14]};

 end

else if (!blank)

 orgb <= 8'b00000000;

end

endmodule

61

VGA Controller Module

/*This controller includes the code for the nearest neighbor

interpolation. Each pixel is repeated 8 times vertically and

horizontally and that gives us a 640 by 480 display out of our native

80 by 60 display without the need for extra memory. */

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- simulation library

library UNISIM;

use UNISIM.VComponents.all;

-- the vga_controller_640_60 entity declaration

-- read above for behavioral description and port definitions.

entity vga_controller_640_60 is

port(

 rst : in std_logic;

 pixel_clk : in std_logic;

 HS : out std_logic;

 VS : out std_logic;

 hcount : out std_logic_vector(12 downto 0);

62

 vcount : out std_logic_vector(12 downto 0);

 hcnt : out std_logic_vector(6 downto 0);

 vcnt : out std_logic_vector(12 downto 0);

 blank : out std_logic

);

end vga_controller_640_60;

architecture Behavioral of vga_controller_640_60 is

--

--

-- CONSTANTS

--

--

-- maximum value for the horizontal pixel counter

constant HMAX : std_logic_vector(10 downto 0) := "01100100000"; --

800

-- maximum value for the vertical pixel counter

constant VMAX : std_logic_vector(10 downto 0) := "01000001101"; --

525

-- total number of visible columns

constant HLINES: std_logic_vector(10 downto 0) := "01010000000"; --

640

-- value for the horizontal counter where front porch ends

constant HFP : std_logic_vector(10 downto 0) := "01010001000"; --

648

-- value for the horizontal counter where the synch pulse ends

constant HSP : std_logic_vector(10 downto 0) := "01011101000"; --

744

63

-- total number of visible lines

constant VLINES: std_logic_vector(10 downto 0) := "00111100000"; --

480

-- value for the vertical counter where the front porch ends

constant VFP : std_logic_vector(10 downto 0) := "00111100010"; --

482

-- value for the vertical counter where the synch pulse ends

constant VSP : std_logic_vector(10 downto 0) := "00111100100"; --

484

-- polarity of the horizontal and vertical synch pulse

-- only one polarity used, because for this resolution they coincide.

constant SPP : std_logic := '0';

--

--

-- SIGNALS

--

--

-- horizontal and vertical counters

signal hcounter : std_logic_vector(12 downto 0) := -"0000000000000";

--125// 0 (others => '0');-

signal vcounter : std_logic_vector(12 downto 0) := "0000000000000";

-- 240 /0

signal i : std_logic_vector(3 downto 0) := "0000"; -- 240 /0

signal k : std_logic_vector(6 downto 0) := "0000000"; -- 240 /0

64

signal j : std_logic_vector(3 downto 0) := "0000"; -- 240 /0

signal m : std_logic_vector(12 downto 0) := "0000000000000"; -- 240

/0

-- active when inside visible screen area.

signal video_enable: std_logic;

begin

 -- output horizontal and vertical counters

 hcount <= hcounter;

 vcount <= vcounter;

 --cnt <= counter ;

 -- blank is active when outside screen visible area

 -- color output should be blacked (put on 0) when blank in active

 -- blank is delayed one pixel clock period from the video_enable

 -- signal to account for the pixel pipeline delay.

 blank <= not video_enable when rising_edge(pixel_clk);

 -- increment horizontal counter at pixel_clk rate

 -- until HMAX is reached, then reset and keep counting

 h_count: process(pixel_clk)

 begin

 if(rising_edge(pixel_clk)) then

 if(rst = '1') then

 hcounter <= (others => '0');

65

 elsif(hcounter = HMAX) then

 hcounter <= (others => '0');

i <= (others => '0');

k <= (others => '0');

 elsif (hcounter /= HMAX) then

 if(i /= 8) then

 hcounter <= hcounter + 1;

hcnt <= k ;

i <= i + 1 ;

else

 hcounter <= hcounter + 1;

i <= (others => '0');

k <= k + 1 ;

hcnt <= k + 1;

 end if;

 end if;

 end if;

 end process h_count;

 -- increment vertical counter when one line is finished

 -- (horizontal counter reached HMAX)

 -- until VMAX is reached, then reset and keep counting

 v_count: process(pixel_clk)

 begin

 if(rising_edge(pixel_clk)) then

 if(rst = '1') then

 vcounter <= (others => '0');

 elsif(hcounter = HMAX) then

66

 if(vcounter = VMAX) then

 vcounter <= (others => '0');

 j <= (others => '0');

 m <= (others => '0');

 elsif (vcounter /= VMAX) then

 if(j /= 8) then

 vcounter <= vcounter + 1;

 vcnt <= m ;

 j <= j + 1 ;

 else

 vcounter <= vcounter + 1;

 j <= (others => '0');

 m <= m + 1 ;

 vcnt <= m + 1;

 end if;

 end if;

 end if;

 end if;

 end process v_count;

 -- generate horizontal synch pulse

 -- when horizontal counter is between where the

 -- front porch ends and the synch pulse ends.

 -- The HS is active (with polarity SPP) for a total of 96 pixels.

 do_hs: process(pixel_clk)

 begin

 if(rising_edge(pixel_clk)) then

 if(hcounter >= HFP and hcounter < HSP) then

 HS <= SPP;

67

 else

 HS <= not SPP;

 end if;

 end if;

 end process do_hs;

 -- generate vertical synch pulse

 -- when vertical counter is between where the

 -- front porch ends and the synch pulse ends.

 -- The VS is active (with polarity SPP) for a total of 2 video

lines

 -- = 2*HMAX = 1600 pixels.

 do_vs: process(pixel_clk)

 begin

 if(rising_edge(pixel_clk)) then

 if(vcounter >= VFP and vcounter < VSP) then

 VS <= SPP;

 else

 VS <= not SPP;

 end if;

 end if;

 end process do_vs;

 -- enable video output when pixel is in visible area

 video_enable <= '1' when (hcounter < HLINES and vcounter < VLINES)

else '0';

end Behavioral;

68

User Constraints File

// fpga 100 Mhz clock

NET "iclk" LOC = V10;

NET "Cam_clk" LOC = E11;

NET "CS" LOC = G11;

NET "idata" LOC = F11;

NET "ireset" LOC = T10;

NET "iswitch" LOC = T9;

NET "iswitch_2" LOC = V9;

NET "orgb(0)" LOC = U7; //RED0

NET "orgb[1]" LOC = V7; //RED1

NET "orgb[2]" LOC = N7; //RED2

NET "orgb[3]" LOC = P8; //GRN0

NET "orgb[4]" LOC = T6; //GRN1

NET "orgb[5]" LOC = V6; //GRN2

NET "orgb[6]" LOC = R7; //BLU1

NET "orgb[7]" LOC = T7; //BLU2

NET "oHS" LOC = N6;

NET "oVS" LOC = P7;

69

NET "led1" LOC = U16;

NET "led2" LOC = V16;

NET "led3" LOC = T11;

NET "led4" LOC = R11;

	Worcester Polytechnic Institute
	Digital WPI
	March 2016

	Real Time Pedestrian Detection Using an Infrared Camera with a FPGA
	Adam Victor Karcs
	Arsene Numbem Tchatchoua
	Damani George Walder
	Repository Citation

	Smart vision using fpgas

