135,646 research outputs found

    Evaluating XMPP Communication in IEC 61499-based Distributed Energy Applications

    Full text link
    The IEC 61499 reference model provides an international standard developed specifically for supporting the creation of distributed event-based automation systems. Functionality is abstracted into function blocks which can be coded graphically as well as via a text-based method. As one of the design goals was the ability to support distributed control applications, communication plays a central role in the IEC 61499 specification. In order to enable the deployment of functionality to distributed platforms, these platforms need to exchange data in a variety of protocols. IEC 61499 realizes the support of these protocols via "Service Interface Function Blocks" (SIFBs). In the context of smart grids and energy applications, IEC 61499 could play an important role, as these applications require coordinating several distributed control logics. Yet, the support of grid-related protocols is a pre-condition for a wide-spread utilization of IEC 61499. The eXtensible Messaging and Presence Protocol (XMPP) on the other hand is a well-established protocol for messaging, which has recently been adopted for smart grid communication. Thus, SIFBs for XMPP facilitate distributed control applications, which use XMPP for exchanging all control relevant data, being realized with the help of IEC 61499. This paper introduces the idea of integrating XMPP into SIFBs, demonstrates the prototypical implementation in an open source IEC 61499 platform and provides an evaluation of the feasibility of the result.Comment: 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA

    Mobile support in CSCW applications and groupware development frameworks

    No full text
    Computer Supported Cooperative Work (CSCW) is an established subset of the field of Human Computer Interaction that deals with the how people use computing technology to enhance group interaction and collaboration. Mobile CSCW has emerged as a result of the progression from personal desktop computing to the mobile device platforms that are ubiquitous today. CSCW aims to not only connect people and facilitate communication through using computers; it aims to provide conceptual models coupled with technology to manage, mediate, and assist collaborative processes. Mobile CSCW research looks to fulfil these aims through the adoption of mobile technology and consideration for the mobile user. Facilitating collaboration using mobile devices brings new challenges. Some of these challenges are inherent to the nature of the device hardware, while others focus on the understanding of how to engineer software to maximize effectiveness for the end-users. This paper reviews seminal and state-of-the-art cooperative software applications and development frameworks, and their support for mobile devices

    Fine Grained Component Engineering of Adaptive Overlays: Experiences and Perspectives

    Get PDF
    Recent years have seen significant research being carried out into peer-to-peer (P2P) systems. This work has focused on the styles and applications of P2P computing, from grid computation to content distribution; however, little investigation has been performed into how these systems are built. Component based engineering is an approach that has seen successful deployment in the field of middleware development; functionality is encapsulated in ‘building blocks’ that can be dynamically plugged together to form complete systems. This allows efficient, flexible and adaptable systems to be built with lower overhead and development complexity. This paper presents an investigation into the potential of using component based engineering in the design and construction of peer-to-peer overlays. It is highlighted that the quality of these properties is dictated by the component architecture used to implement the system. Three reusable decomposition architectures are designed and evaluated using Chord and Pastry case studies. These demonstrate that significant improvements can be made over traditional design approaches resulting in much more reusable, (re)configurable and extensible systems

    The Repast Simulation/Modelling System for Geospatial Simulation

    Get PDF
    The use of simulation/modelling systems can simplify the implementation of agent-based models. Repast is one of the few simulation/modelling software systems that supports the integration of geospatial data especially that of vector-based geometries. This paper provides details about Repast specifically an overview, including its different development languages available to develop agent-based models. Before describing Repast’s core functionality and how models can be developed within it, specific emphasis will be placed on its ability to represent dynamics and incorporate geographical information. Once these elements of the system have been covered, a diverse list of Agent-Based Modelling (ABM) applications using Repast will be presented with particular emphasis on spatial applications utilizing Repast, in particular, those that utilize geospatial data

    Reducing risky security behaviours:utilising affective feedback to educate users

    Get PDF
    Despite the number of tools created to help end-users reduce risky security behaviours, users are still falling victim to online attacks. This paper proposes a browser extension utilising affective feedback to provide warnings on detection of risky behaviour. The paper provides an overview of behaviour considered to be risky, explaining potential threats users may face online. Existing tools developed to reduce risky security behaviours in end-users have been compared, discussing the success rate of various methodologies. Ongoing research is described which attempts to educate users regarding the risks and consequences of poor security behaviour by providing the appropriate feedback on the automatic recognition of risky behaviour. The paper concludes that a solution utilising a browser extension is a suitable method of monitoring potentially risky security behaviour. Ultimately, future work seeks to implement an affective feedback mechanism within the browser extension with the aim of improving security awareness

    Financing Rural Energy Services in the Philippines: Global Environment and People-Centered Development as Public Goods

    Get PDF
    Access to energy is a means to achieve economic development. Both environmental concerns and the global privatization trends have fueled the worldwide need to develop new and renewable sources of energy such as solar, hydro, biomass and wind. In the Philippines, where these new and renewable sources of energy abound but are not yet fully exploited, the national power development through grid extension has not reached most of the country’s rural areas. Hence, a new financing scheme called Financing Energy Services for Small-scale End-users (FINESSE) has been established in the Philippines by several multilateral organizations. This paper discusses its merits and traces how it actually lends help to several rural-energy services.demand

    ERIGrid Holistic Test Description for Validating Cyber-Physical Energy Systems

    Get PDF
    Smart energy solutions aim to modify and optimise the operation of existing energy infrastructure. Such cyber-physical technology must be mature before deployment to the actual infrastructure, and competitive solutions will have to be compliant to standards still under development. Achieving this technology readiness and harmonisation requires reproducible experiments and appropriately realistic testing environments. Such testbeds for multi-domain cyber-physical experiments are complex in and of themselves. This work addresses a method for the scoping and design of experiments where both testbed and solution each require detailed expertise. This empirical work first revisited present test description approaches, developed a newdescription method for cyber-physical energy systems testing, and matured it by means of user involvement. The new Holistic Test Description (HTD) method facilitates the conception, deconstruction and reproduction of complex experimental designs in the domains of cyber-physical energy systems. This work develops the background and motivation, offers a guideline and examples to the proposed approach, and summarises experience from three years of its application.This work received funding in the European Community’s Horizon 2020 Program (H2020/2014–2020) under project “ERIGrid” (Grant Agreement No. 654113)
    • 

    corecore