
UCL CENTRE FOR ADVANCED SPATIAL ANALYSIS

Centre for Advanced Spatial Analysis University College London 1 - 19 Torrington Place Gower St London WC1E 7HB
Tel: +44 (0)20 7679 1782 casa@ucl.ac.uk www.casa.ucl.ac.uk

WORKING
PAPERS
SERIES
The Repast Simulation/
Modelling System for
Geospatial Simulation

ISSN 1467-1298

Paper 123 - Sept 07

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/1683969?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Repast Simulation/Modelling System for

Geospatial Simulation

Andrew T Crooks1

Email: andrew.crooks@ucl.ac.uk

Abstract

The use of simulation/modelling systems can simplify the implementation
of agent-based models. Repast is one of the few simulation/modelling
software systems that supports the integration of geospatial data
especially that of vector-based geometries. This paper provides details
about Repast specifically an overview, including its different development
languages available to develop agent-based models. Before describing
Repast’s core functionality and how models can be developed within it,
specific emphasis will be placed on its ability to represent dynamics and
incorporate geographical information. Once these elements of the system
have been covered, a diverse list of Agent-Based Modelling (ABM)
applications using Repast will be presented with particular emphasis on
spatial applications utilizing Repast, in particular, those that utilize
geospatial data.

1.1: Introduction

The development of agent-based models can be greatly facilitated by the utilisation of

simulation/modelling toolkits. They provide reliable templates for the design,

implementation and visualisation of agent-based models, allowing modellers to focus on

research (i.e. building models), rather than building fundamental tools necessary to run a

computer simulation (Tobias and Hofmann, 2004; Railsback et al., 2006; Castle and

Crooks, 2006). In particular, the use of toolkits can reduce the burden modellers face

programming parts of a simulation that are not content-specific (e.g. a Graphical User

Interface, (GUI), data import-export, visualisation/display of the model). It also increases

1 This paper was first presented at the Agent-Based Models for Spatial Systems in Social Sciences &
Economic Science with Heterogeneous Interacting Agents (ABM–S4–ESHIA) workshop in Agelonde, La
Londe les Maures (France), September 17-22, 2007.

mailto:andrew.crooks@ucl.ac.uk

the reliability and efficiency of the model, because complex parts have been created and

optimised by professional developers, as standardised simulation/modelling functions.

Unsurprisingly, there are limitations of using simulation/modelling systems to develop

agent-based models, for example: a substantial amount of effort is required to understand

how to design and implement a model in some toolkits; the programming code of

demonstration models or models produced by other researchers can be difficult to

understand or apply to another purpose; a modeller will have to learn or already have an

understanding of the programming language required to use the toolkit; and finally the

desired/required functionality may not be present, although additional tools might be

available from the user community or from other software libraries (Castle and Crooks,

2006). Benenson et al. (2005) also note that toolkit users are accompanied by the fear of

discovering that a particular function cannot be used, will conflict, or is incompatible

with another part of the model late in the development process.

There are numerous simulation/modelling systems available for creating agent-based

models which support the direct integration of geospatial data, for example Swarm,

Repast, OBEUS, NetLogo and StarLogo (see Castle and Crooks, 2006 for a recent

review). This paper will explore one of these simulation/modelling systems in greater

detail: the Repast toolkit which supports the integration of both raster and vector datasets

into an agent-based model.

It is not the intention of this paper to provide a beginner’s guide to using Repast, or a

tutorial of how to create a Repast model from scratch for these resources are already

available (refer to Appendix 1). Nor is it the intention to compare Repast to other

simulation/modelling systems as this has been done by numerous other authors (see, for

example, Najlis et al., 2001; Parker, 2001; Tobias and Hofmann, 2004; Castle and

Crooks, 2006). The intention is to combine the diverse literature relating to Repast and

models utilizing the toolkit and relating it to ABM in general and geospatial ABM in

particular. Literature serving these purposes is not plentiful, but the author feels that

literature documenting the conceptualisation the development of a model using Repast is

sparse. This paper therefore provides a good supplement to the ‘how-to’ documents

provided with Repast. Where the ‘how-to’ documentation explains what is required to

implement some aspect of Repast functionality, this paper provides the reader with a

discussion about what else should be considered before implementing this functionality

and how it links to ABM in general, for instance which environment to choose: raster vs.

vector, and what type of spatial representation, discrete or continuous, to use.

Section 1.2 provides an overview of Repast, including its different development

languages available to develop agent-based models. Before describing Repast’s core

functionality and how models can be developed within it, specific emphasis will be

placed on its ability to represent dynamics and incorporate geographical information

(Section 1.3). Once these elements of the system have been covered, a diverse list of

ABM applications using Repast will be presented (Section 1.4). The paper concludes

with a brief summary of what has been presented (Section 1.5).

1.2: Repast Overview

Originally developed at the University of Chicago’s Department of Social Science

Research Computing Laboratory and subsequently maintained by Argonne National

Laboratory and now managed by Repast Organisation for Architecture and Development

(ROAD), the REcursive Porous Agent Simulation Toolkit (Repast) is a free open source

application for creating agent-based models. Specifically, Repast abstracts key

conceptual requirements of ABM (see Castle and Crooks, 2006 for such requirements),

providing functionality to create, run, display, and collect data from agent-based models2.

For instance, a typical Repast model will comprise agents with different attributes (from

totally homogenous to completely heterogeneous) and varying behaviours that interact

across an environment. Essentially, modellers are interested in the exploration of

outcomes related to the interaction of these agents given a particular scenario. Template

components for constructing representational elements such as the environment in which

an agent interacts are provided (e.g. grid, torus, network, etc.). The aforementioned

2 Repast comprises a core (i.e. scheduling of events, base/template models, agent classes, spaces, GUI
model manipulation and simulation control, data collection, batch simulation, etc) and non-core (i.e.
charting, snapshots of a display, data recording, visual display of agents, models and spaces, etc)
functionality.

agent-based capabilities allow modellers to spend more time developing the specifics of

their model (e.g. agent interactions, behaviours, etc) rather than setting up the basics of a

simulation (e.g. scheduling events to occur, developing a visual display, etc). Figure 1

illustrates a typical selection of Repast toolbars and displays generated for a typical

simulation run. These include toolbars for controlling and manipulating the simulation

(A) and for setting parameters of the simulation (B), as well as displays for visualising

agents interacting within the model environment (C) and charting output data (D); this is

a histogram in this instance, but it could be a line graph, scatter graph, etc.

Figure 1: A typical selection of Repast toolbars and displays used during a run of the Sugarscape model.

1.2.1: Repast Implementation Languages

Repast is a derivative of the Swarm simulation toolkit3. Initially conceived as a library of

Java classes that could interface with the Swarm simulation framework, this concept was

abandoned when, amongst other reasons, a Java implementation version of Swarm was

released (Collier, 2002). Consequently, the creators of Repast developed an independent

framework completely written in Java, thus completely object-oriented but borrowing

several key abstractions present within Swarm. Repast has matured considerably since

its inception with many enhancements included with every new version. However, to

3 Refer to the Swarm website: http://www.swarm.org/wiki/Swarm_main_page.

http://www.swarm.org/wiki/Swarm_main_page

accommodate a growing number of researchers interested in developing simulations with

the toolkit, Repast was developed for implementation in alternative programming

languages/frameworks. Currently Repast can be implemented in three different

programming languages/frameworks: Java (RepastJ and RepastS), Microsoft.NET

(Repast.NET), and Python (RepastPy). The following four subsections will explore these

further different implementations.

1.2.1.1: Python - RepastPy

RepastPy was specifically developed for rapidly developing a basic agent-based model,

offering the most graphical way to create a model via a point-and-click GUI (Figure 2),

thus, allowing modellers with limited programming experience to create basic models.

Collier and North (2004; 2005) identify three model types permissible within RepastPy:

1) a GIS-based model where agents are GIS features with topology interacting within a

landscape; 2) a network based model where agents are nodes in a network that can

manipulate the network topology; and 3) a grid-based model where agents with topology

reside and interact. RepastPy is also the basis of Agent Analyst, an ABM extension for

ArcGIS that allows users to create, edit, and run Repast models from within the GIS

(Redlands Institute, 2006) although this is not a requirement for using RepastPy.

Within RepastPy, template agents can be created to populate each model type, but a user

must develop behaviours for agents using a subset of the Python programming language.

A subset is used because the entire Python language is not necessary to develop agent

behaviours (see Collier and North, 2004 and North et al., 2006 for further details).

Python is particularly useful because it integrates with Java, thus permitting access to the

Repast framework, as well as other extensions and packages available in the Java

programming language. Furthermore, models developed in RepastPy can be exported

into Java, allowing users to subsequently work with the traditional RepastJ framework.

Collier and North (2004; 2005) provide a more detailed overview of RepastPy, and how

to develop a model with this implementation of Repast. Further documentation, tutorials,

and demonstration models for RepastPy and Agent Analyst are available in their

retrospective installation folders. The Agent Analysts website4 also provides some useful

resources.

Figure 2: RepastPy GUI for model development (source: Repast, 2007).

1.2.1.2: Java - RepastJ

Object-oriented languages such as Java, easily lend themselves to the creation of

extensible frameworks through the use of inheritance and composition5. Thus, Repast

benefits from the extensibility offered by Java. For instance, a large library of classes

originally constructed for alternative means can be used by an agent-based modeller to

extend the Repast’s generic functionality. For example, the ability to import data from a

GIS (GeoTools library), and to display data in a GIS viewer (OpenMap library). Collier

(2002) and North et al. (2006) provide more details about RepastJ, and show how it is

possible to develop a model with this implementation. ‘How-to’ documentation and

demonstration models for RepastJ are available in the installation folder. Tobias and

Hofmann (2004) when reviewing several Java based simulation/modelling systems,

commented that the RepastJ environment was the “clear winner” with extensive technical

4 http://www.institute.redlands.edu/agentanalyst.
5 For further details about object-oriented concepts the author recommends Booch, 1994 for a seminal
discussion in object-orientated design and analysis, Hathaway, 2003 for a non-technical discussion of
object-oriented principles, and Armstrong, 2006 for a useful evaluation and clarification of key object-
oriented notions.

http://www.institute.redlands.edu/agentanalyst/

documentation and ‘how-to’ documents that make it easy to become familiar with the

software, along with its applications through an active mailing list.

1.2.1.3: Microsoft.NET - Repast.NET

Any programming language compatible with the Microsoft.NET framework (e.g. Visual

Basic.NET, C++, J#, C#, etc) can be used to develop a model with Repast.NET. The

majority of core and non-core functionality within RepastJ (see Section 1.3) is available

in Repast.NET. However, a notable omission is GIS functionality (e.g. ESRI’s ArcGIS,

OpenMap, etc). Vos and North (2004) explain that the GIS packages available within

RepastJ were not converted into C# for inclusion within Repast.NET because of both

time constraints and issues with the integration of the necessary external libraries.

Nevertheless, the majority of packages included within RepastJ (both native and

external), were converted into C#, or similar replacement libraries have been included.

This continuity in packages provides a modeller with a similar development experience in

Repast.NET or RepastJ. Similarly, modellers are able to leverage any Repast related

knowledge they have (in Repast.NET or RepastJ) and apply it to the alternative

implementation of Repast. In the majority of cases the same package names, class

names, method names in RepastJ are include in Repast.NET (Vos, 2005). Even though

Repast.NET is developed in C#, the interoperability of the .NET framework does not

impose any restrictions on the compatible language a modeller can use to develop a

model (Vos, 2005). Vos and North (2004) and Vos (2005) provide more details about

Repast.NET, and how to develop a model with this implementation. ‘How-to’

documentation and demonstration models for Repast.NET are available in the installation

folder.

1.2.1.4: Repast Simphony

Whilst still being maintained, RepastJ, Repast.NET and RepastPy have now reached

maturity and are no longer being developed. They have been superseded by Repast

Simphony (RepastS) which provides all the core functionality of RepastJ or Repast.NET,

although this is limited to implementation in Java (Version 1.5). RepastS provides a

more point-and-click interface for developing certain parts of the model; for example,

when creating graphs, less code needs to be written than that for RepastJ and .NET. The

Repast development team have provided a series of articles regarding RepastS. The

architecture and core functionality are introduced by North et al. (2005a), and the

development environment is discussed by Howe et al. (2006). The storage, display and

behaviour/interaction of agents, as well as features for data analysis (i.e. via the

integration of the R statistics package) and presentation of models within RepastS are

outlined by North et al. (2005b). Tatara et al. (2006) provide a detailed discussion

outlining how-to develop a “simple wolf-sheep predation” model which illustrates

RepastS modelling capabilities (Figure 3), specifically the ability to create and display 2

and 3D. RepastS was released as a Beta version in October 2006 and therefore there is

little detail about all its core functionality at present or example models. In relation to

GIS functionality, there is no support for GIS integration at current.

1.2.1.5: Choosing an Implementation Language

The developers of Repast recommend that basic models are created in RepastPy, due to

its visual interface, and advanced models be written with RepastJ or Repast.NET (see

North et al., 2004) (and more recently RepastS). Since RepastPy will export into Java, it

provides a logical starting point for beginners to develop basic models, or for more

experienced users to develop an initial model for further development in Java (RepastJ).

For the development of geospatial simulations only RepastPy and RepastJ support the

integration of GIS through third party libraries.

RepastJ has several advantages over the other Repast implementations. Firstly, Java is a

popular programming language due to its platform independence (i.e. a simulation

written in RepastJ can be run on a computer using several different operating systems e.g.

Windows™, Unix™, Linux™, Mac™, etc), opposed to a simulation written in

Repast.NET. Secondly Java has a much larger set of third-party libraries than

Microsoft.NET, particularly in the free and open source arena. This allows for Java

development to be much faster, since existing code can be reused in many cases (North et

al., 2006). Finally, as Java is the original implementation language of Repast, there are

considerably more demonstration models, tutorials, and help facilities via the user

community available for RepastJ. Nevertheless, Repast.NET offers a range of languages

in which to develop Repast models. While RepastS is seen as the end goal of Repast by

the Repast development team, there are no example models available apart from those in

the download. There is little in the way of user documentation and transforming existing

RepastJ models to RepastS in the immediate future will require a substantial effort.

Figure 3: 3D display of a typical model grid. Sheep are light and wolves are dark. Light and dark squares
represent living and dead grass, respectively (source: Tatara et al., 2006).

1.3: Developing an Agent-Based Model with Repast

All three development versions (RepastJ, Repast.NET, and RepastPy) are based upon the

Repast framework template for agent-based simulation (see North et al., 2004; North et

al., 2006 for further details). Conceptually, the Repast toolkit comprises two interacting

layers. The core layer runs background/general-purpose simulation code. The external

layer which Repast users work with, runs user-specific simulation code written in one of

the implementation languages (Java, .NET or Python). The following subsections will

therefore explore Repast’s core functionality relating it where appropriate to ABM more

generally, before presenting how users have added to this core layer to develop their own

agent-based simulations (Section 1.4).

However, a few caveats are required at this point. Firstly while examples of models

developed in .NET and Python will be given, the majority of this section is focussed on

model development in RepastJ. However, many of the design decisions for all three of

these Repast implementation languages are very similar. Secondly, RepastS has a

slightly different architecture than RepastJ, Repast.NET and RepastPy (see North et al.,

2005b; 2005a for specific details), but at the time of writing this was still in development

and RepastJ remains the predominant Repast implementation language for the

development of agent-based models.

1.3.1: Time in Repast

Time is what drives the simulation forward. Time within agent-based models is designed

to be either synchronous or asynchronous. In synchronous models, all agents are

assumed to change simultaneously. The calling order of the objects has no influence in

this mode but conflicts can arise when agents compete over limited resources. With

asynchronous updating, agents change in turn, each observing the reality left by the

previous agent. Conflicts between agents are therefore resolved. In fact, the order of

updating (often, but not necessarily, random) is critical as it may influence model results

(Benenson and Torrens, 2004). Repast adopts the asynchronous method of time and is

classed as a discrete event simulator whose quantum unit of time is known as a ‘tick’.

The tick exists only as a hook on which the execution of events can be hung, ordering the

execution of the events (Collier, 2002). For example, if event x is scheduled for tick one,

event y for tick two, and event z for tick three, then event y will execute after x and

before z. Ticks are merely a way to order the execution of events relative to each other.

An example could be that a firm only moves when its office lease is over, say twenty-five

years, while one tick represents one year. Therefore the firm has to wait for twenty-five

ticks before it has the option to move again. However, the Repast scheduling mechanism

additionally allows for more sophisticated dynamic schedules to be created such that the

execution of one event can itself schedule over events for the execution in the future (i.e.

event driven processes). For example a car only needs to be filled up with petrol after it

has been driven. The ability to schedule events at different times using a variety of

automata clocks allows one to mimic the temporal attributes of the specific urban process

under study (Torrens, 2003).

1.3.1.1: The Scheduling Mechanism

Repast’s scheduling mechanism6 is responsible for all the user-defined state changes

within a Repast simulation. Scheduling consists of setting up and executing actions (e.g.

agents’ behaviour and so forth) at some specific time relative to other actions, thus

representing dynamics within the agent-based model. Within Repast, as with any agent-

based model, scheduled events may be implemented in three ways (Brown et al., 2005):

1. Events may be sequenced in a synchronous step-wise fashion. For example, each

agent, set of agents or non-agent object is signalled to perform its tasks once at

each time step or once every n time steps.

2. An event may be scheduled to occur only once at some time step n. Any number

of different events may be scheduled to occur in this fashion providing a

predetermined history of events to take place.

3. The model may encapsulate ‘event-driven’ processes whereby model agents may

trigger events to occur or may add events to the schedule or queue of events to

take place (Ropella et al., 2002).

When the schedule has finished iterating over the execution queue (e.g. a list of agents),

the tick count is incremented (e.g. from tick one to tick two). It is this tick count against

which actions are scheduled for execution. The ability to easily schedule events is of

great value, not only to actions within the model such as updating the display, recording

information and so forth but also to agents’ states. It is the scheduling of events which

alters the agents’ state based on the agents’ behaviour that has been programmed by the

6 For more information on Scheduling see
http://repast.sourceforge.net/api/uchicago/src/sim/engine/Schedule.html.

http://repast.sourceforge.net/api/uchicago/src/sim/engine/Schedule.html

modeller. It is the execution of these behaviours according to some schedule that alters

the agents’ state. It should be stressed that Repast does not specify any particular state

composition, nor does it specify any mechanism for interaction between the environment

and the agents that make up that state. All changes are needed to be specified by the

modeller. Additionally, Repast provides no set formula for creating a model; it is a mater

of deciding what is required and linking to the appropriate classes. The modeller is still

required to write the model, deciding what space to use and how the agents interact etc.

This therefore requires a substantial amount of effort to understand how to design and

implement a model.

1.3.2: Displaying, Running and Recording Change

One of Repast’s key features is that it provides a series of classes for displaying a running

simulation in real time, thus freeing the modeller to spend more time on model

development rather than developing the GUI. Displays can range from simple graphs and

scatter graphs, to visualising the agents interacting in space. Displays, like agents can be

scheduled to update whenever it is deemed necessary by the modeller. The ability to

display and schedule events are two of most useful features of Repast.

Once a model has been created, Repast provides the modeller with two ways for running

a simulation: batch-run, and non-batch run. A batch-run simulation reads in a specially

formatted parameter file detailing the starting and ending values of a model's parameters,

how to increment these parameters and the number of runs to complete. The simulation

then begins to run. This provides a method for determining whether the conclusion from

a simulation run is typical by comparing it to multiple simulation runs therefore helping

with validation of the model.

A non-batch run requires a user to start and stop a run through a GUI, and allows the user

to graphically set starting parameters. Additionally it allows a user to graphically display

both the model and manipulate (i.e. probe) an agent's state during the course of a run,

therefore providing a way to visualise change and gain an understanding of how

phenomena of interest develops. Both batch and non-batch runs allow the modeller to

see if initial starting conditions affect the outcome of the model and chart this change

over time.

While being able to create and run models is important, so is the ability to capture this

change. Repast has a number of inbuilt functions for storing results from simulations and

individual time-steps. These include the ability to write information to text files,

recording displays (charts, grids etc) as movies or images. The latter allows for visual

inspection of the simulation run, for example, how the system evolves. The former

allows for data to be integrated into statistical packages for further investigation. Both

aid in verification and validation of the model.

1.3.3: The Representation of Space in Repast

Within Repast, three types of space representations are available to the modeller; that of

network space7, cellular space and vector/continuous space. It is Repast’s direct support

for both raster8 and vector9, geospatial data using cellular and vector space classes

respectively, that makes it stand out amongst other open source simulation/modelling

systems. However, as stated above (see Section 1.2.1), this is only possible in RepastJ

and RepastPy. Space within agent-based models serves two purposes; firstly it contains

the agents and secondly it defines the spatial relationships between the agents and

controls their movement. The following subsections will outline the spaces that allow the

modeller to create spatially explicit agent-based models within Repast, that of cellular

and vector space. However, it is important to note that while it is possible to create these

spaces, the modeller still needs to program/define spatial relationships between agents

and their environment and define how the agents move within the space.

1.3.3.1: Cellular Space

Cellular space models are by far the most widely used environment for the creation of

spatially explicit agent-based models in the social sciences. Repast has numerous cellular

7See the Repast’s Network Model Tutorial for more information: http://repast.sourceforge.net/how-
to/network.html.
8 Raster: A spatial data model in which features are represented by pixels. Each pixel is assigned a value
that corresponds to a feature.
9 Vector: A spatial data model in which features are represented by points, lines and polygons.

http://repast.sourceforge.net/how-to/network.html
http://repast.sourceforge.net/how-to/network.html

space options from regular to hexagonal grids, and a full list can be seen at Repast’s

‘How-to’ Spaces Overview10. Cells can contain single and multiple agents or objects.

Of interest here is Repast’s ability to import raster datasets to build the environment

which the agents occupy. Repast provides a set of classes that can read in and which

interpret the ESRI ASCII11 raster file format12, thus providing the ability to import and

export data directly to and from a GIS such as ESRI’s ArcGIS or GRASS.

The raster image is treated as a continuous system of coordinates with cells that hold

values. The cell size and other attributes can all be set by the user and allows space to be

traversed like a landscape. For example, Figure 4A is the original ASCII file from the

GIS which contains details of a number of rows and columns. In each row and column

there is a cell, and each cell has a size and a value associated with it. Figure 4B shows

the display created in Repast using its inbuilt display classes, whereby the different cell

values are shaded different colours. Multiple layers can also be added to the model to

represent different characteristics of a landscape such as land-use, elevation etc.

Agents can either be the cells imported into the model or sit on top of the cells and

interact with the surface generated using raster data. Each agent has an x and y

coordinate and the space contains the agent. Agent movement is therefore is a matter of

changing the agent's internal x and y coordinates, removing it from its previously

occupied cell and adding it to the new one.

The advantage of using raster data is that it uses Repast’s standard display functions

which the author believes to be more efficient than the vector space option. Additionally

the modeller can use Moore and von Neumann neighbourhoods or a variation of either to

define neighbourhoods which are not possible in vector space. However, the

disadvantage of using raster-based data is that to create a landscape, numerous layers are

needed as cells can only contain one value. Furthermore, while the linkage of agent-

based models and cellular space allows the modeller to capture geographic detail and

10 Repast’s Space Overview ‘How-To’ document: http://repast.sourceforge.net/how-to/spaces.html.
11 ASCII: American Standard Code for Information Interchange.
12 Alternatively called ESRI’s grid format.

http://repast.sourceforge.net/how-to/spaces.html

have provided valuable insights into urban phenomena, it misses geometric detail (Batty,

2005). The ability to represent the world as a series of points, lines and polygons allows

the inclusion of geometry into the modelling process, therefore allowing for different

sizes of features such as houses, roads etc. to be portrayed. It is to this we now turn.

A

ncols 30
nrows 30
xllcorner 528000.00
yllcorner 500000.00
cellsize 30
NODATA_value -9999
1 2 3 4 5 6 7 6 5 4 3 2 1 0 0 0 0 1 2 3 4 5 6 7 6 5 4 3 2 1
1 2 3 4 5 6 7 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 7 6 5 4 3 2 1
1 2 3 4 5 6 7 6 5 4 3 2 1 0 0 0 0 1 2 3 4 5 6 7 6 5 4 3 2 1
1 2 3 4 5 6 7 6 5 4 3 2 1 0 0 0 0 1 2 3 4 5 6 7 6 5 4 3 2 1
1 2 3 4 5 6 7 6 5 4 3 2 1 0 0 0 0 1 2 3 4 5 6 7 6 5 4 3 2 1
1 2 3 4 5 6 7 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 7 6 5 4 3 2 1
1 2 3 4 5 6 7 6 5 4 3 2 1 0 0 0 0 1 2 3 4 5 6 7 6 5 4 3 2 1
1 2 3 4 5 6 7 6 5 4 3 2 1 0 0 0 0 1 2 3 4 5 6 7 6 5 4 3 2 1
1 2 3 4 5 6 7 6 5 4 3 2 1 0 0 0 0 1 2 3 4 5 6 7 6 5 4 3 2 1
1 2 3 4 5 6 7 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 7 6 5 4 3 2 1
1 2 3 4 5 6 7 6 5 4 3 2 1 0 0 0 0 1 2 3 4 5 6 7 6 5 4 3 2 1
1 2 3 4 5 6 7 6 5 4 3 2 1 0 0 0 0 1 2 3 4 5 6 7 6 5 4 3 2 1

B

Figure 4: Reading in a raster data and creating a landscape (ESRI ASCII file) A: the original file from a
GIS. B: the resulting space created in Repast.

1.3.3.2: Vector Space

Repast provides a set of classes that allow users to work directly with vector GIS data in

their models. However, before this integration is discussed, there needs to be a

discussion on how vector geospatial data can be represented in an agent-based model, due

to it having close analogies with both object-orientated programming and how one

represents reality within models.

A typical GIS contains multiple layers of data. A layer is made up a number of elements.

For example, a layer might contain a number of houses that represents a part of an area

(Table 1). While other layers might include data on environmental factors such as parks.

Each house in the layer would be a GIS feature (with an associated feature ID). Each

feature in the layer has two aspects to it, its geographical coordinates and the data

associated with it (its attributes). A common format for storing this information is

ESRI’s shapefile13. A number of files are associated with the shapefile format: (1) the

shapefile (.shp), which stores the geographical information needed to display the feature

(x, y, z coordinates of vertexes and edges of the geometric shapes); (2) the database file

(.dbf), which stores the data records for the feature; and (3) the index file (.shx) which

links the database file to the shapefile (via the feature ID).

Table 1: Sample of GIS type data, represneting a layer of data in a GIS.

House Layer

Feature ID Geographical Coordinate Type Age
1 22,22 Detached 23
2 23,12 Flat 51
3 23,32 Semi-detached 100

While a GIS stores data about layers in database files, with each record in the file

referring to a feature in the GIS (e.g. Feature ID 1 in Table 1 is of type detached), agent-

based models handle data differently. While a GIS is layer-centric, an agent-based model

is agent-centric. Thus, each agent stores data about itself individually. However, there is

a degree of overlap. For instance, each agent type has the same types of data, just as each

13 ESRI Vector Shapefile format.

layer type in a GIS has the same types of data. Thus, an agent type in an agent-based

model can be seen as similar to a layer in a GIS, and each agent in the agent-based model

is similar to a feature in GIS (Najlis and North, 2004).

GIS data can be translated directly into agents or into other data objects that the agents

use or know about (e.g. the locations of train stations or a street network). To highlight

this, a short example will be presented. Given a model where agents are householders,

the GIS data might relate to the houses that the agents own. The house data would then

be read into the agent-based model for use by householders. The support vector-based

geospatial data therefore makes it is possible to create an agent description from a

shapefile such that features specified in the shapefile become fields in the produced

agent. For example, if the shapefile contains a feature called ‘Type’, then the produced

agent will have a ‘Type’ field. When the actual agents are created, each record in the

shapefile provides the data for an agent. So, if the shapefile has 600 records pertaining to

houses, then 600 household agents are created (see Figure 5). Similarly, in order to

update the GIS data based on the agents, a corresponding function has to be specified in

the agent class relating the agents field to the same field in the shapefile.

Repast integrates vector data directly into an agent-based model as described above by

providing a set of classes that allow users to work directly with vector GIS data in their

models, be they points, lines or polygons14. In Repast, agents represented as polygons

are referred to as ‘vector agents’ which can act in the same way as irregular CA models

where their states can change but their boundaries are fixed. Points can either be fixed or

mobile and Repast refers to them as ‘generic agents’

The current implementation of GIS functionality within Repast is focused on two

systems: ESRI’s ArcGIS via the Agent Analyst extension and the open source software

OpenMap15. While both rely on ESRI shapefiles, the type of integration between the

14 For further information on working with vector data in Repast see: How to use GIS data with Repast
(http://repast.sourceforge.net/how-to/Gis_How_To.html) and Najlis and North (2004; 2005).
15 OpenMapTM: http://openmap.bbn.com/.

http://repast.sourceforge.net/how-to/Gis_How_To.html
http://openmap.bbn.com/

agent-based model and the GIS are different. Repast has shapefile integration with

ArcGIS and native Java integration with OpenMap (Najlis and North, 2004).

Figure 5: GIS data in an agent-based model: House Agent is the agent type and is akin to a housing layer
in GIS (after Najlis and North 2004).

Shapefile integration refers to fact that while the model is created using one of Repast’s

implementation libraries and that Repast and the GIS use the same shapefile, they have

very limited interaction with each other. The shapefile is loaded into the GIS, the model

then reads in the data and agents are created using the shapefile data. The model is then

run. However, before the GIS display can be updated, the shapefile must first be written

out to file and then the GIS is notified to update its display by reading the newly written

(or updated) shapefile. With shapefile integration, only the GIS display can be updated.

It does not provide a means for the model to interact with the Application Programming

Interface (API) of the GIS. Therefore, for topologic calculations, the user has to link the

agent-based model to the Java Topology Suite (JTS)16.

16 Java Topology Suite: http://www.vividsolutions.com/jts/jtshome.htm.

http://www.vividsolutions.com/jts/jtshome.htm

Java integration on the other hand allows the model to have full interaction with the GIS

using OpenMap’s native Java libraries which can be used for both topologic calculations

and for display. Alternatively the modeller can use OpenMap for the display of the

model and JTS for topology calculations. In either case, the shapefile needs to be

projected in World Geodetic System 84 (WGS84)17 unlike shapefile integration which

can use any coordinate system. Java integration works by loading the shapefile into

model, the GIS is then launched from within model, and the shapefile data is added to the

GIS from model. Agents are created from and written to shapefiles in the same manner

as with shapefile integration.

Both types of integration allow the model users full access to the GIS being used for

display, allowing for information retrieval about agents, such as location, distance from

other geographic objects (including geographically represented agents) once programmed

by the modeller. Both provide the same functionality relating to reading and writing of

data to shapefiles, and agents and models created in one can easily be converted into the

other. However, Najlis and North (2004) suggest that the choice of integration type and

GIS to use depends on the needs of the project. For example, if the project requires

analysis on data during the run of the model, it might be appropriate to use ArcGIS’s

extensive analytical capabilities. For example the model could be paused, and ArcGIS

could be used to analyze the data as needed. On the other hand, if what is needed is the

ability to update data quickly, query the GIS about an agent’s spatial characteristics

during the run of the model, and use that information from within the model itself, then it

might be more appropriate to choose Java integration. Additionally Java integration has

no reliance on ArcGIS. Therefore people who do not have ArcGIS can still create

geospatial agent-based models and distribute them freely once created.

1.3.3.3: Discussion of Space

This section has highlighted Repast’s ability to import and export geospatial data in both

raster and vector formats. Both types of spaces have their advantages and disadvantages.

For cellular space, it is much easier conceptually and computationally as one can use

17 World Geodetic System defines a geographical reference frame for the earth.

Moore and von Neumann neighbourhoods. Additionally one can use Repast’s inbuilt

display surfaces rather than using some other third party software. Secondly much data

comes in raster formats such as remote sensing data. However, using cellular space,

there is no way of representing complex geometries.

The advantages of using vector space include the ability of giving realism to models by

allowing the representation of any geographical shape and thus represents a movement

away from treating the world as a series of square objects. Secondly, most demographic

data comes in this format, thus the data does not have to be transformed to a series of

cells. However, these advantages come at a price. Topological calculations (such as

neighbourhood calculations, distance between two points, and point in polygon

operations) are expensive in terms of execution speed, thus limiting the performance of a

vector-based model.

Which space to use for geospatial models, specifically for urban applications, depends on

the purpose of the model. Benenson et al. (2005) comment that while vector GIS can

represent urban objects in spatially explicit models, for theoretical models, the points of a

regular grid will usually suffice.

1.4: Applications that have Utilized Repast to Create Agent-

Based Models

The previous section has presented the core concepts for creating an agent-based model

using the Repast toolkit, specifically how Repast manages time and how events can be

scheduled, its ability to display and record information, and its ability to represent

geospatial information. It was noted that models created using the Repast have no set

formula for what to include and not include in a model. This flexibility allows a whole

host of models to be created, some of which will be explored in this section.

As with ABM in general, to compile a fully comprehensive list of models utilizing

Repast is impractical and beyond the scope of this paper. Agent-based models utilizing

Repast have been developed for a diverse range of subject areas such as business

strategies (Robertson, 2003; López-Sánchez et al., 2005), revenue management policies

(Faber, 2005), the evolution of firms and the dynamics between firms (Padgett et al.,

2003; Tivnan, 2004), electricity markets (North et al., 2002), effects of road user

charging (Takama, 2005), kinship networks in Australian rangeland landscapes

(McAllister et al., 2005), the rise and fall of nation-states (Cederman, 2003; Cioffi-

Revilla and Gotts, 2003), segregation (Bruch and Mare, 2005), battlefield simulation

(Baker et al., 2005), individual co-operation (Galan and Izquierdo, 2005), car injury

prevention (Kobti et al., 2005), the growth of hydrogen transportation infrastructure

(Stephan and Sullivan, 2004), and stone assembly by ancient peoples (Brantingham,

2003). Most of these applications treat space abstractly if at all. The remainder of this

section will focus on specific spatial applications utilizing Repast, in particular, those that

utilize geospatial data. These include house price evaluation, residential segregation,

disaster management applications, land-use models and work from my own research

group at the Centre of Advanced Spatial Analysis (CASA).

Bossomaier et al. (2007) used Repast to study house price evolution in Bathurst,

Australia specifically vendor/buyer behaviour. The agent’s decisions/behaviour of where

to locate is affected by spatial attributes of actual land-parcels. Geospatial data is used to

determine a range of attributes for each property including distance from amenities such

as parks, area, elevation, orientation and environmental factors such as flood risk. These

spatial factors combined with an agent’s perceptions about the economy, interest rates,

new developments such as factories and roads, plus social trends in the desirability of

house ownership and property investment then influence how buyers and sellers modify

the price relative to the neighbourhood. Additionally Bossomaier et al. (2007) highlight

how Repast’s flexible architecture allows other Java libraries to easily be incorporated

into the model; for example, they integrated the NRC FuzzyJ toolbox18 into their model

simulation where each agent (buyer or seller) had a number of attributes that are fuzzy

variables (such as eagerness to buy or sell and the agent’s perception of the market which

the authors claimed had the advantage of realistically capturing the nature of human

decision making).

18NRC FuzzyJ toolbox: http://iit-iti.nrc-cnrc.gc.ca/license/info_e/6.

http://iit-iti.nrc-cnrc.gc.ca/license/info_e/6

O’Sullivan et al. (2003) used Repast to present a variation on Schelling’s (1971) model

of residential location dynamics that combines two concepts of neighbourhood,

continuous and bounded within a regular lattice structure (Figure 6). The small grid cells

represent residential locations with a continuous neighbourhood structure. Residential

locations are contained in bounded neighbourhoods, whose aggregate state is also

considered by agents in the residential decision making behaviour. The arrows represent

relations of influence on decision making. Two geospatial datasets were used one to

represent residential locations in the continuous layer and a second to represent bounded

neighbourhoods.

Figure 6: Structure of the hierarchical Schelling model (source: O'Sullivan et al., 2003).

Repast has additionally been used to examine disaster management such as a Sarin attack

in Manhattan (Mysore et al., 2006), the spread of infectious diseases among students at

the University of Southampton (Yang and Atkinson, 2005), and a food poisoning

outbreak that occurred in Brazil (Mysore et al., 2005). These applications allow for the

testing of different scenarios, thus aiding planning efforts for similar events in the future.

Additionally they allow modellers to integrate geospatial phenomena both in time and

space.

Specific models utilizing components from Repast to study land-use change include the

SLUCE (Spatial Land-use Change and Ecological Effects at the Rural-Urban Interface)

Project which examines land-use change at the urban-rural fringe (see Brown et al.,

2005). In the context of how individual decision-making drives land-use decisions, the

model lets the user formulate and test alternative policies and interventions that could

reduce environmental costs and enhance environmental benefits. A similar model has

also been developed by Yin and Muller (2007) who examine land-use-land-cover change

at the urban-rural fringe incorporating households decision making in terms of

preferences for accessibility, amenities, and scenic views, all of which are calculated in a

GIS before being fed into the model. Deadman et al. (2004) have built a model to

understand and explore spatial, social and environmental issues related to land-use/cover

change within the Brazilian Amazon, specifically focusing on the behaviour of

heterogeneous agricultural land owners. Other models that utilize Repast to explore land-

use/land-use change include: Xie et al. (2005) who developed a model to simulate the

rapid urbanisation of densely populated areas in China, and Su and Duggin (2003) who

have developed a model to study the succession of vegetation after open-cut mining.

Researchers at CASA have utilized Repast (specifically RepastJ) to study a range of

applications (Figure 7): pedestrian modelling both in retail (Zachariadis, 2005) and

emergency evacuation (Castle 2006), urban dynamics in Latin American Cities (Barros,

2004), and segregation, residential and business location (Crooks, 2006).

These models as with other models presented in this section use the core Repast

functionality, extending it further to meet their own specific needs, specifically the ability

to import geospatial data to build the environment and to create agents to explore

different types of phenomena. Additionally the applications developed at CASA

highlight how different scales of phenomena can be modelled at different temporal

resolutions (Figure 8), and demonstrate how agent-based models provide a suitable

means for exploring many aspects of urban phenomena19.

19 Further information pertaining to these applications can be found at http://www.casa.ucl.ac.uk/repast/.

http://www.casa.ucl.ac.uk/repast/

Pedestrian Modelling (Emergency evacuation) (Castle 2006)

Urban Dynamics in Latin American Cities (Barros, 2004)

Pedestrian Modelling (Retail) (Zachariadis, 2005)

Segregation Modelling (Crooks, 2006)

Figure 7: Screen shots of some Repast applications that are being developed at CASA.

Figure 8: Applications at CASA - comparison of time against space.

Other modellers have extended Repast to meet their own simulation needs. These

include GeoGraph (3D extensions) and AgentCell (biochemical reactions 3D) and its use

in parallel processing. Dibble and Feldman (2004) extended Repast using GeoGraph 3D,

and their extension supports models in which mobile agents travel and interact on rugged

terrain or on network landscapes at any scale from rooms within buildings to urban

neighbourhoods to large geographic networks of cities. Interactive 3D visualizations

allow researchers to zoom and pan within the simulation landscape as the model runs.

Model-specific 3D representations of agents flock together on terrain landscapes and

teleport or travel along links on network landscapes. Agents may be displayed on

network nodes either as individual agents or as dynamic 3D bar charts that reflect the

composition of each node's population. GeoGraph has been applied to the dynamics of

civil violence, controlling epidemics of infectious diseases, and social networks

connecting geographically mobile team members, for example, command, control, and

communication structures for effective peacekeeping teams facing riots and related

dynamic and distributed problems of civil unrest.

A second example of where Repast has been extended is for a basis in parallel

processing. Minson and Theodoropoulos (2004) note that while agent-toolkits provide

reliable templates for the design of even the largest agent-based simulations, they do not

offer a solution to their computational limitations. Conversely, distributed simulation

architectures offer performance benefits but the introduction of parallel logic can

complicate the design process significantly. To overcome this dilemma, Minson and

Theodoropoulos (2004) designed and implemented a system capable of harnessing the

computational power of a distributed simulation infrastructure with the design efficiency

of an agent-toolkit.

A third extension is that of AgentCell20 a model using agent-based technology to study

the relationship between stochastic intracellular processes and behaviour of individual

cells in a 3D environment. AgentCell is an open source project licensed under the

20 AgentCell: http://www.agentcell.org/.

http://www.agentcell.org/

General Public License (GNU, 2007) and is built on top of Repast and uses StochSim21

to implement the Network class that simulates the biochemical reactions. AgentCell is

an open source project licensed under the General Public License and is freely

downloadable22. AgentCell's design and some initial results are discussed in the Emonet

et al. (2005).

1.4.1: Discussion of Models Created Utilizing Repast

This section has highlighted a diverse range of applications utilizing the Repast

framework to build agent-based models. These examples as with ABM in general, can be

constructed as lying on a continuum from minimalist academic models based upon ideal

assumptions, to large scale decision support systems based upon real-world data. Much

of the work has been carried out by researchers in fields outside (although related to)

geography, public policy, economics, environmental studies, and city and regional

planning. The role of space and spatial mechanisms in exploring the phenomena are not

of utmost importance in these contexts. Secondly it is also partly due to initial versions

of Repast being particularly strong in its support for network (social and otherwise)

simulations (see Collier, 2002) and this is reflected in many of the earlier applications.

Applications however are being developed that focus on spatial phenomena, specifically

those that utilize geospatial data. The majority of the models presented here do so by

utilizing Repast’s ability to import ASCII data (e.g. Brown et al., 2005; Castle, 2006; Yin

and Muller, 2007), while some do not make this clear (e.g. O’Sullivan et al., 2003). Few

utilize Repast’s ability to import vector-based datasets (e.g. Mysore et al., 2006, Crooks,

2006 are notable exceptions). This possibly reflects the high computational burden of

representing an area using a vector space (e.g. as a series of points, line and polygons). It

also reflects the trend in the social sciences for representing agents as cells. Additionally

the models designed to explore spatial phenomena can be seen considered as either being

loosely coupled or modelling-centric (see Castle and Crooks, 2006 for discussion on the

linkage between GIS and simulation/modelling systems), thus highlighting that a variety

21 StochSim: http://www.anat.cam.ac.uk/pages/comp-cell/StochSim.html.
22 AgentCell download: http://sourceforge.net/projects/agentcell.

http://www.anat.cam.ac.uk/pages/comp-cell/StochSim.html
http://sourceforge.net/projects/agentcell

of integration approaches can be used to match the purpose of the model to explain or

explore different types of phenomena.

1.5: Summary

This paper has introduced the reader to Repast, described its different implementation

languages, before presenting Repast’s core functionality, specifically its ability to handle

time and its ability to incorporate both raster and vector data directly into the model. It

thus allows geographers and urban modellers the ability to deal with space in both raster

and vector formats. It was stressed that the ability to build models using vector data

allows the modeller to represent any geographical shape and how this is moves models

away from treating the world as a series of square objects or grid cells.

A range of models were then presented, specifically focussing on ones which utilise

geospatial data to build environments and agents. It was highlighted that the majority of

these models were based on Repast’s ability to import raster data and it is suggested this

resulted from the high computational resources to represent an area as a series of points,

line and polygons. Throughout the paper it was stressed that Repast is only a toolkit to

facilitate the creation of agent-based models. One still needs to write code linking the

model components together as Repast has no set formula for creating an agent-based

model. The modeller can thus add as much functionality provided by Repast into their

own model as desired.

References

Armstrong, D.J. (2006), 'The Quarks of Object-Oriented Development', Communication

of the ACM, 49(2): 123-128.

Baker, T.J.A., Botting, M., Berryman, M.J., Ryan, A., Grisogon, A.M. and Abbott,

D. (2005), 'Adaptive Battle Agents: Emergence in Artificial Life Combat Models',

Proceedings of the SPIE, Smart Structures, Devices, and Systems II, Bellingham, WA,

pp. 574-585.

Barros, J. (2004), Urban Growth in Latin American Cities: Exploring Urban Dynamics

through Agent-Based Simulation, Ph.D. Thesis, University College London, London, UK.

Batty, M. (2005), Cities and Complexity: Understanding Cities with Cellular Automata,

Agent-Based Models, and Fractals, The MIT Press, Cambridge, MA.

Benenson, I., Aronovich, S. and Noam, S. (2005), 'Let’s Talk Objects: Generic

Methodology for Urban High-Resolution Simulation', Computers, Environment and

Urban Systems, 29(4): 425–453.

Benenson, I. and Torrens, P.M. (2004), Geosimulation: Automata-Based Modelling of

Urban Phenomena, John Wiley & Sons, London, UK.

Booch, G. (1994), Object-Oriented Analysis and Design with Applications,

Benjamin/Cummings, Redwood City, CA.

Bossomaier, T., Amri, S. and Thompson, J. (2007), 'Agent-Based Modelling of House

Price Evolution', Proceedings of the 2007 IEEE Symposium on Artificial Life (CI-ALife

2007), Honolulu, HI, pp. 463 - 467.

Brantingham, P. (2003), 'A Neutral Model of Stone Raw Material Procurement',

American Antiquity, 68(3): 487–509.

Brown, D.G., Riolo, R., Robinson, D.T., North, M.J. and Rand, W. (2005), 'Spatial

Process and Data Models: Toward Integration of Agent-Based Models and GIS', Journal

of Geographical Systems, 7(1): 25-47.

Bruch, E. and Mare, R.D. (2005), Neighbourhood Choice and Neighbourhood Change,

California Centre for Population Research University of California – Los Angeles, Los

Angeles, CA, Available at http://www.stat.ucla.edu/~bruch/NCNC.pdf.

Castle, C.J.E. (2006), 'Using Repast to Develop a Prototype Agent-Based Pedestrian

Evacuation Model', in Sallach, D., Macal, C.M., and North, M.J. (eds.), Proceedings of

the Agent 2006 Conference on Social Agents: Results and Prospects, University of

Chicago and Argonne National Laboratory, Chicago, IL, Available at

 http://agent2007.anl.gov/2006procpdf/Agent_2006.pdf.

Castle, C.J.E. and Crooks, A.T. (2006), Principles and Concepts of Agent-Based

Modelling for Developing Geospatial Simulations, Centre for Advanced Spatial Analysis

(University College London): Working Paper 110, London, UK.

Cederman, L.E. (2003), 'Modelling the Size of Wars: From Billiard Balls to Sand Piles',

American Political Science Review, 97(1): 135-150.

Cioffi-Revilla, C. and Gotts, N. (2003), 'Comparative Analysis of Agent-Based Social

Simulations: GeoSim and FEARLUS Models', Journal of Artificial Societies and Social

Simulation, 6(4), Available at http://jasss.soc.surrey.ac.uk/6/4/10.html.

Collier, N.T. (2002), Repast: An Extensible Framework for Agent Simulation, Available

at http://www.econ.iastate.edu/tesfatsi/RepastTutorial.Collier.pdf [Accessed on June 16th,

2006].

http://www.stat.ucla.edu/%7Ebruch/NCNC.pdf
http://agent2007.anl.gov/2006procpdf/Agent_2006.pdf
http://jasss.soc.surrey.ac.uk/6/4/10.html
http://www.econ.iastate.edu/tesfatsi/RepastTutorial.Collier.pdf

Collier, N.T. and North, M.J. (2004), 'Repast for Python Scripting', in Macal, C.M.,

Sallach, D. and North, M.J. (eds.), Proceedings of the Agent 2004 Conference on Social

Dynamics: Interaction, Reflexivity and Emergence, Chicago, IL, pp. 231-237, Available

at http://www.agent2005.anl.gov/Agent2004.pdf.

Collier, N.T and North, M.J. (2005), 'Repast for Python Scripting', Annual Conference

of the North American Association for Computational Social and Organizational Science

(NAACSOS) Notre Dame, IN, Available at

http://www.casos.cs.cmu.edu/events/conferences/2005/2005_proceedings/Collier.pdf.

Crooks, A.T. (2006), 'Exploring Cities using Agent-Based Models and GIS', in Sallach,

D., Macal, C.M., and North, M.J. (eds.), Proceedings of the Agent 2006 Conference on

Social Agents: Results and Prospects, University of Chicago and Argonne National

Laboratory, Chicago, IL, Available at

http://agent2007.anl.gov/2006procpdf/Agent_2006.pdf.

Deadman, P.J., Robinson, D.T., Moran, E. and Brondizio, E. (2004), 'Effects of

Colonist Household Structure on Land Use Change in the Amazon Rainforest: An Agent

Based Simulation Approach', Environment and Planning B, 31(5): 693-709.

Dibble, C. and Feldman, P.G. (2004), 'The GeoGraph 3D Computational Laboratory:

Network and Terrain Landscapes for Repast', Journal of Artificial Societies and Social

Simulation, 7(1), Available at http://jasss.soc.surrey.ac.uk/7/1/7.html.

Emonet, T., Macal, C.M., North, M.J., Wickersham, C.E. and Cluzel, P. (2005),

'AgentCell: A Digital Single-Cell Assay for Bacterial Chemotaxis', Bioinfomatics,

21(11): 2714-2721.

Faber, F.J. (2005), An Extensible Order Promising and Revenue Management Test-Bed,

MSc. Thesis, University of Maryland, MD, Available at

http://www.agent2005.anl.gov/Agent2004.pdf
http://www.casos.cs.cmu.edu/events/conferences/2005/2005_proceedings/Collier.pdf
http://agent2007.anl.gov/2006procpdf/Agent_2006.pdf
http://jasss.soc.surrey.ac.uk/7/1/7.html

https://drum.umd.edu/dspace/handle/1903/2666.

Galan, J.M. and Izquierdo, L.R. (2005), 'Appearances can be Deceiving: Lessons

Learned Re-Implementing Axelrod's "Evolutionary Approach to Norms"', Journal of

Artificial Societies and Social Simulation, 8(3), Available at

http://jasss.soc.surrey.ac.uk/8/3/2.html.

GNU. (2007), GNU General Public License, Available at

http://www.gnu.org/copyleft/gpl.html [Accessed on 27th July, 2007].

Hathaway, R.J. (2003), Basics of Object-Orientation, Available at

 http://www.objectfaq.com/oofaq2/index.html [Accessed on August 20th, 2006].

Howe, T.R., Collier, N.T., North, M.J., Parker, M.T. and Vos, J.R. (2006),

'Containing Agents: Contexts, Projections, and Agents', in Sallach, D., Macal, C.M., and

North, M.J. (eds.), Proceedings of the Agent 2006 Conference on Social Agents: Results

and Prospects, University of Chicago and Argonne National Laboratory, Chicago, IL,

Available at http://agent2007.anl.gov/2006procpdf/Agent_2006.pdf.

Kobti, Z., Rahaman, S., Kent, R.D., A.W., S. and Dunlop, T. (2005), 'Multi-Agent

Model Prototype For Child Vehicle Safety Injury Prevention', in Macal, C.M., North,

M.J. and Sallach, D. (eds.), Proceedings of the Agent 2005 Conference on Generative

Social Processes, Models, and Mechanisms, Chicago, IL, Available at

http://agent2007.anl.gov/2005procpdf/%20Agent_2005.pdf.

López-Sánchez, M., Noria, X., Rodríguez, J.A. and Gilbert, N. (2005), 'Multi-Agent

Based Simulation of News Digital Markets', International Journal of Computer Science

& Applications 2(1): 7 – 14.

McAllister, R.R.J., Gordon, I.J. and Stokes, C.J. (2005), 'KinModel: An Agent-Based

Model of Rangeland Kinship Networks', in Zerger, A., and Argent, R.M. (ed.),

https://drum.umd.edu/dspace/handle/1903/2666
http://jasss.soc.surrey.ac.uk/8/3/2.html
http://www.gnu.org/copyleft/gpl.html
http://www.objectfaq.com/oofaq2/index.html
http://agent2007.anl.gov/2006procpdf/Agent_2006.pdf
http://agent2007.anl.gov/2005procpdf/%20Agent_2005.pdf

International Congress on Modelling and Simulation (Modelling and Simulation Society

of Australia and New Zealand, MODSIM), pp. 170-176, Available at

http://www.mssanz.org.au/modsim05/papers/mcallister_1.pdf.

Minson, R. and Theodoropoulos, G. (2004), 'Distributing Repast Agent Based

Simulations with HLA', Proceedings of the 2004 European Simulation Interoperability

Workshop, Edinburgh, UK, Available at

http://www.cs.bham.ac.uk/~rzm/research/papers/siw04.pdf .

Mysore, V., Gill, O., Daruwala, R.S., Antoniotti, M., Mishra, B. and Saraswat, V.

(2005), 'Multi-Agent Modelling and Analysis of the Brazilian Food Poisoning Scenario',

in Macal, C. M., North, M.J. and Sallach, D. (eds.), Proceedings of the Agent 2005

Conference on Generative Social Processes, Models, and Mechanisms, Chicago, IL,

Available at http://www.agent2005.anl.gov/2005pdf/Mysore%20et%20al.pdf.

Mysore, V., Narzisi, G. and Mishra, B. (2006), 'Agent Modelling of a Sarin Attack in

Manhattan', in Jennings, N.R., Tambe, M., Ishida, T. and Ramchurn, S.D. (eds.), First

International Workshop on Agent Technology for Disaster Management, Future

University, Hakodate, Japan.

Najlis, R., Janssen, M.A. and Parker, D.C. (2001), 'Software Tools and

Communication Issues', in Parker, D.C., Berger, T. and Manson, S.M. (eds.), Meeting the

Challenge of Complexity: Proceedings of a Special Workshop on Land-Use/Land-Cover

Change, Irvine, CA, Available at

http://www.csiss.org/resources/maslucc/ABM-LUCC.pdf.

Najlis, R. and North, M.J. (2004), 'Repast for GIS', in Macal, C. M., Sallach, D. and

North, M.J. (eds.), Proceedings of the Agent 2004 Conference on Social Dynamics:

Interaction, Reflexivity and Emergence, Chicago, IL, pp. 255-260, Available at

 http://www.agent2005.anl.gov/Agent2004.pdf.

http://www.mssanz.org.au/modsim05/papers/mcallister_1.pdf
http://www.cs.bham.ac.uk/%7Erzm/research/papers/siw04.pdf
http://www.agent2005.anl.gov/2005pdf/Mysore%20et%20al.pdf
http://www.csiss.org/resources/maslucc/ABM-LUCC.pdf
http://www.agent2005.anl.gov/Agent2004.pdf

Najlis, R. and North, M.J. (2005), 'Repast Vector GIS Integration', Annual Conference

of the North American Association for Computational Social and Organizational Science

(NAACSOS) Notre Dame, IN, Available at

http://www.casos.cs.cmu.edu/events/conferences/2005/2005_proceedings/Najlis.pdf.

North, M.J., Collier, N.T., Vos, J.R., Najlis, R. and Maciorowski, W. (2004), 'The

Repast Revolution: An Overview of New Repast Developments', in Macal, C. M.,

Sallach, D. and North, M.J. (eds.), Proceedings of the Agent 2004 Conference on Social

Dynamics: Interaction, Reflexivity and Emergence, Chicago, IL, pp. 223-230, Available

at http://www.agent2005.anl.gov/Agent2004.pdf.

North, M.J, Macal, C. M., Cirillo, R., Conzelmann, G., Koritarov, V.,

Thimmapuram, P. and Veselka, T. (2002), 'Multi-Agent Modelling of Electricity

Markets', Proceedings of the Agent 2002 Conference on Social Agents: Ecology

Exchange and Evolution, University of Chicago and Argonne National Laboratory,

Chicago, IL, Available at http://www.agent2003.anl.gov/proceedings/2002.pdf.

North, M.J., Collier, N.T. and Vos, J.R. (2006), 'Experiences Creating Three

Implementations of the Repast Agent Modelling Toolkit', ACM Transactions on

Modelling and Computer Simulation, 16(1): 1-25.

North, M.J., Howe, T.R., Collier, N.T. and Vos, J.R. (2005a), 'The Repast Simphony

Development Environment', in Macal, C.M., North, M.J. and Sallach, D. (eds.),

Proceedings of the Agent 2005 Conference on Generative Social Processes, Models, and

Mechanisms, Chicago, IL, Available at

http://www.agent2005.anl.gov/2005pdf/Mysore%20et%20al.pdf.

North, M.J., Howe, T.R., Collier, N.T. and Vos, J.R. (2005b), 'The Repast Simphony

Runtime System', in Macal, C.M., North, M.J. and Sallach, D. (eds.), Proceedings of the

Agent 2005 Conference on Generative Social Processes, Models, and Mechanisms,

Chicago, IL, Available at

http://www.casos.cs.cmu.edu/events/conferences/2005/2005_proceedings/Najlis.pdf
http://www.agent2005.anl.gov/Agent2004.pdf
http://www.agent2003.anl.gov/proceedings/2002.pdf
http://www.agent2005.anl.gov/2005pdf/Mysore%20et%20al.pdf

http://www.agent2005.anl.gov/2005pdf/Mysore%20et%20al.pdf.

O'Sullivan, D., MacGill, J. and Yu, C. (2003), 'Agent-Based Residential Segregation: A

Hierarchically Structured Spatial Model', in Macal, C.M., North, M.J. and Sallach, D.

(eds.), Proceedings of Agent 2003 Conference on Challenges in Social Simulation, The

University of Chicago, IL, pp. 493-507 Available at

http://www.agent2004.anl.gov/Agent2003.pdf.

Padgett, J.F., Lee, D. and Collier, N.T. (2003), 'Economic Production as Chemistry',

Industrial and Corporate Change, 12(4): 843-877.

Parker, D.C. (2001), Object-Orientated Packages for Agent-Based Modelling, Available

at http://mason.gmu.edu/~dparker3/spat_abm/lectures/lecture2_tables.pdf [Accessed on

October 27th, 2005].

Redlands Institute (2006), What is Agent Analyst?, Available at

http://www.institute.redlands.edu/agentanalyst/AgentAnalyst.html [Accessed on May

31st, 2006].

Repast (2007), RepastPy, Available at

http://repast.sourceforge.net/repastpy/tutorials.html [Accessed on 10th July, 2007].

Robertson, D.A. (2003), 'Agent-Based Models of a Banking Network as an Example of a

Turbulent Environment: The Deliberate vs. Emergent Strategy Debate Revisited',

Emergence, 5(2): 56-71.

Ropella, G.E., Railsback, S.F. and Jackson, S.K. (2002), 'Software Engineering

Considerations for Individual-Based Models', Natural Resource Modelling, 15(1): 5-22.

Schelling, T.C. (1971), 'Dynamic Models of Segregation', Journal of Mathematical

Sociology 1: 143-186.

http://www.agent2005.anl.gov/2005pdf/Mysore%20et%20al.pdf
http://www.agent2004.anl.gov/Agent2003.pdf
http://mason.gmu.edu/%7Edparker3/spat_abm/lectures/lecture2_tables.pdf
http://www.institute.redlands.edu/agentanalyst/AgentAnalyst.html
http://repast.sourceforge.net/repastpy/tutorials.html

Stephan, C. and Sullivan, J. (2004), 'Growth of a Hydrogen Transportation

Infrastructure', in Macal, C.M., Sallach, D. and North, M.J. (eds.), Proceedings of the

Agent 2004 Conference on Social Dynamics: Interaction, Reflexivity and Emergence,

Chicago, IL, pp. 731-742, Available at http://www.agent2005.anl.gov/Agent2004.pdf

Su, X.F. and Duggin (2003), 'Agent-Based Modelling for Vegetation Succession after

Open-Cut Mining: Stage 1, A Study in Progress', in Macal, C.M., North, M.J. and

Sallach, D. (eds.), Proceedings of Agent 2003 Conference on Challenges in Social

Simulation, The University of Chicago, IL, pp. 557-568, Available at

 http://www.agent2004.anl.gov/Agent2003.pdf.

Takama, T. (2005), Stochastic Agent-Based Modelling for Reality: Dynamic Discrete

Choice Analysis with Interaction, University of Oxford, Oxford, UK, Available at

http://www.tri.napier.ac.uk/Events/TDM/prestonpaper.pdf.

Tatara, E., North, M.J., Howe, T.R., Collier, N.T. and Vos, J.R. (2006), 'An

Introduction to Repast Simphony Modelling Using a Simple Predator-Prey Example', in

Sallach, D., Macal, C.M., and North, M.J. (eds.), Proceedings of the Agent 2006

Conference on Social Agents: Results and Prospects, University of Chicago and Argonne

National Laboratory, Chicago, IL, Available at

http://agent2007.anl.gov/2006procpdf/Agent_2006.pdf.

Tivnan, B.F. (2004), 'Data Farming Co-evolutionary Dynamics in Repast', in Ingalls,

R.G., Rossetti, M.D., Smith, J.S. and Peters, B.A. (eds.), Proceedings of the 2004 Winter

Simulation Conference, Washington DC, Available at

 http://ieeexplore.ieee.org/iel5/9441/29988/01371395.pdf.

Tobias, R. and Hofmann, C. (2004), 'Evaluation of Free Java-Libraries for Social-

Scientific Agent Based Simulation', Journal of Artificial Societies and Social Simulation,

7(1), Available at http://jasss.soc.surrey.ac.uk/7/1/6.html.

http://www.agent2005.anl.gov/Agent2004.pdf
http://www.agent2004.anl.gov/Agent2003.pdf
http://www.tri.napier.ac.uk/Events/TDM/prestonpaper.pdf
http://agent2007.anl.gov/2006procpdf/Agent_2006.pdf
http://ieeexplore.ieee.org/iel5/9441/29988/01371395.pdf
http://jasss.soc.surrey.ac.uk/7/1/6.html

Torrens, P.M. (2003), 'Automata-Based Models of Urban Systems', in Longley, P.A. and

Batty, M. (ed.), Advanced Spatial Analysis: The CASA Book of GIS, ESRI Press,

Redlands, CA, pp. 61-81.

Vos, J.R. (2005), 'Repast .NET: The Repast Framework Implemented in the .NET',

Annual Conference of the North American Association for Computational Social and

Organizational Science (NAACSOS) Notre Dame, IN, Available at

http://www.casos.cs.cmu.edu/events/conferences/2005/2005_proceedings/Vos.pdf.

Vos, J.R. and North, M.J (2004), 'Repast .NET', in Macal, C.M., Sallach, D. and North,

M.J. (eds.), Proceedings of the Agent 2004 Conference on Social Dynamics: Interaction,

Reflexivity and Emergence, Chicago, IL, pp. 239-254, Available at

http://www.agent2005.anl.gov/Agent2004.pdf.

Xie, Y., Batty, M. and Zhao, K. (2005), Simulating Emergent Urban Form: Desakota in

China, Centre for Advanced Spatial Analysis (University College London): Working

Paper 95, London, UK.

Yang, Y. and Atkinson, P.M. (2005), ' An Integrated ABM and GIS Model of Infectious

Disease Transmission.' in Batty, S. (ed.), Computers in Urban Planning and Urban

Management (CUPUM), London, UK.

Yin, L. and Muller, B. (2007), 'Residential Location and the Biophysical Environment:

Exurban Development Agents in a Heterogeneous Landscape', Environment and

Planning B, 34(2): 279-295.

Zachariadis, V. (2005), 'An Agent-Based Approach to the Simulation of Pedestrian

Movement and Factors that Control it', in Batty, S. (ed.), Computers in Urban Planning

and Urban Management (CUPUM), London, UK.

http://www.casos.cs.cmu.edu/events/conferences/2005/2005_proceedings/Vos.pdf
http://www.agent2005.anl.gov/Agent2004.pdf

Appendix 1: Resources for Repast

The Repast website (http://repast.sourceforge.net/) provides a good introduction to the

modelling tool kit along with ‘how-to’ documents, example models, and references to

key Repast publications.

A second source of information is the Agent X conference series, organised jointly

between Argonne National Laboratory and the University of Chicago. All proceedings

from the conferences are available online which highlight the diverse range of modellers

utilizing Repast for simulation projects (http://www.agent2005.anl.gov/).

Another valuable resource is the author’s web-log (Blog): GIS and Agent-Based

Modelling (www.gisagents.blogspot.com) which provides a host of example models from

various sources.

Further information pertaining to writing and running RepastJ models is Murphy’s ‘How

to Create a Repast Model’ tutorial (http://www.u.arizona.Edu/~jtmurphy

/H2R/HowTo01.htm) and Tesfatsion’s ‘Self-Study Guide for RepastJ’

(http://www.econ.iastate.edu/tesfatsi/repastsg.htm).

http://repast.sourceforge.net/
http://www.agent2005.anl.gov/
http://www.gisagents.blogspot.com/
http://www.u.arizona.edu/%7Ejtmurphy%20/H2R/HowTo01.htm
http://www.u.arizona.edu/%7Ejtmurphy%20/H2R/HowTo01.htm
http://www.econ.iastate.edu/tesfatsi/repastsg.htm

	The Repast Simulation/Modelling System for Geospatial Simulation
	1.1: Introduction
	1.2: Repast Overview
	1.2.1: Repast Implementation Languages
	1.2.1.1: Python - RepastPy
	1.2.1.2: Java - RepastJ
	1.2.1.3: Microsoft.NET - Repast.NET
	1.2.1.4: Repast Simphony
	1.2.1.5: Choosing an Implementation Language

	1.3: Developing an Agent-Based Model with Repast
	1.3.1: Time in Repast
	1.3.1.1: The Scheduling Mechanism

	1.3.2: Displaying, Running and Recording Change
	1.3.3: The Representation of Space in Repast
	1.3.3.1: Cellular Space
	1.3.3.2: Vector Space
	1.3.3.3: Discussion of Space

	1.4: Applications that have Utilized Repast to Create Agent-Based Models
	1.4.1: Discussion of Models Created Utilizing Repast

	1.5: Summary
	References
	Appendix 1: Resources for Repast

