16 research outputs found

    Informatics opportunities and challenges in medical imaging : a journey

    Get PDF
    The role of the field of informatics in medical imaging is vital; novel or adapted informatics’ core methods can be employed to realise innovative information processing and engineering of medical images. As such, imaging informatics can assist in the interpretation of image-based, clinically recorded evidence. This, in turn, leads to the generation of associated actionable knowledge to achieve precision medicine practice. The discipline of informatics has the power to transform data to useful clinical information patterns of observable evidence and, subsequently to generate actionable knowledge in terms of diagnosis, prognosis, and disease management. This paper presents the author’s personal viewpoint and distinct contributions to innovations in the acquisition and collection of imaging data; storage, retrieval, and management of imaging information objects; quantitative analysis, classification, and dissemination of imaging observable evidence

    Boost your career opportunities with the ESSR diploma

    No full text

    A formal architecture-centric and model driven approach for the engineering of science gateways

    Get PDF
    From n-Tier client/server applications, to more complex academic Grids, or even the most recent and promising industrial Clouds, the last decade has witnessed significant developments in distributed computing. In spite of this conceptual heterogeneity, Service-Oriented Architecture (SOA) seems to have emerged as the common and underlying abstraction paradigm, even though different standards and technologies are applied across application domains. Suitable access to data and algorithms resident in SOAs via so-called ‘Science Gateways’ has thus become a pressing need in order to realize the benefits of distributed computing infrastructures.In an attempt to inform service-oriented systems design and developments in Grid-based biomedical research infrastructures, the applicant has consolidated work from three complementary experiences in European projects, which have developed and deployed large-scale production quality infrastructures and more recently Science Gateways to support research in breast cancer, pediatric diseases and neurodegenerative pathologies respectively. In analyzing the requirements from these biomedical applications the applicant was able to elaborate on commonly faced issues in Grid development and deployment, while proposing an adapted and extensible engineering framework. Grids implement a number of protocols, applications, standards and attempt to virtualize and harmonize accesses to them. Most Grid implementations therefore are instantiated as superposed software layers, often resulting in a low quality of services and quality of applications, thus making design and development increasingly complex, and rendering classical software engineering approaches unsuitable for Grid developments.The applicant proposes the application of a formal Model-Driven Engineering (MDE) approach to service-oriented developments, making it possible to define Grid-based architectures and Science Gateways that satisfy quality of service requirements, execution platform and distribution criteria at design time. An novel investigation is thus presented on the applicability of the resulting grid MDE (gMDE) to specific examples and conclusions are drawn on the benefits of this approach and its possible application to other areas, in particular that of Distributed Computing Infrastructures (DCI) interoperability, Science Gateways and Cloud architectures developments

    Interictal Network Dynamics in Paediatric Epilepsy Surgery

    Get PDF
    Epilepsy is an archetypal brain network disorder. Despite two decades of research elucidating network mechanisms of disease and correlating these with outcomes, the clinical management of children with epilepsy does not readily integrate network concepts. For example, network measures are not used in presurgical evaluation to guide decision making or surgical management plans. The aim of this thesis was to investigate novel network frameworks from the perspective of a clinician, with the explicit aim of finding measures that may be clinically useful and translatable to directly benefit patient care. We examined networks at three different scales, namely macro (whole brain diffusion MRI), meso (subnetworks from SEEG recordings) and micro (single unit networks) scales, consistently finding network abnormalities in children being evaluated for or undergoing epilepsy surgery. This work also provides a path to clinical translation, using frameworks such as IDEAL to robustly assess the impact of these new technologies on management and outcomes. The thesis sets up a platform from which promising computational technology, that utilises brain network analyses, can be readily translated to benefit patient care

    Use of Software Tools to Implement Quality Control of Ultrasound Images in a Large Clinical Trial

    Get PDF
    Research Question This thesis aims to answer the question as to whether software tools might be developed for automating the analysis of images used to measure ovaries in transvaginal sonography (TVS) exams. Such tools would allow the routine collection of independent and objective metrics at low cost and might be used to drive a programme of continuous Quality Improvement (QI) in TVS scanning. The tools will be assessed by processing images from thousands of TVS exams performed by the United Kingdom Collaborative Trial of Ovarian Cancer Screening (UKCTOCS). Background This research is important because TVS is core to any ovarian cancer (OC) screening strategy yet independent and objective quality control (QC) metrics for this procedure are not routinely obtained due to the high cost of manual image inspection. Improving the quality of TVS in the National Health Service (NHS) would assist in the early diagnosis of the disease and result in improved outcome for some women. Therefore, the research has clear translational potential for the >1.2 million scans performed annually by the NHS. Research Findings A study performed to process images from 1,000 TVS exams has shown the tool produces accurate and reliable QC metrics. A further study revealed that over half of these exams should have been classified as unsatisfactory as an expert review of the images showed that that the sonographer had mistakenly measured a structure that was not an ovary. It also reported a correlation between such ovary visualisation and a novel metric (DCR) measured by the tools from the examination images. Conclusion The research results suggest both a need to improve the quality of TVS scanning and the viability of achieving this objective by introducing a QI programme driven by metrics gathered by software tools able to analyze the images used to measure ovaries

    The impact of arterial input function determination variations on prostate dynamic contrast-enhanced magnetic resonance imaging pharmacokinetic modeling: a multicenter data analysis challenge, part II

    Get PDF
    This multicenter study evaluated the effect of variations in arterial input function (AIF) determination on pharmacokinetic (PK) analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data using the shutter-speed model (SSM). Data acquired from eleven prostate cancer patients were shared among nine centers. Each center used a site-specific method to measure the individual AIF from each data set and submitted the results to the managing center. These AIFs, their reference tissue-adjusted variants, and a literature population-averaged AIF, were used by the managing center to perform SSM PK analysis to estimate Ktrans (volume transfer rate constant), ve (extravascular, extracellular volume fraction), kep (efflux rate constant), and Ï„i (mean intracellular water lifetime). All other variables, including the definition of the tumor region of interest and precontrast T1 values, were kept the same to evaluate parameter variations caused by variations in only the AIF. Considerable PK parameter variations were observed with within-subject coefficient of variation (wCV) values of 0.58, 0.27, 0.42, and 0.24 for Ktrans, ve, kep, and Ï„i, respectively, using the unadjusted AIFs. Use of the reference tissue-adjusted AIFs reduced variations in Ktrans and ve (wCV = 0.50 and 0.10, respectively), but had smaller effects on kep and Ï„i (wCV = 0.39 and 0.22, respectively). kep is less sensitive to AIF variation than Ktrans, suggesting it may be a more robust imaging biomarker of prostate microvasculature. With low sensitivity to AIF uncertainty, the SSM-unique Ï„i parameter may have advantages over the conventional PK parameters in a longitudinal study

    Brain tumors: preclinical imaging and novel therapies

    Get PDF
    Vandertop, W.P. [Promotor]Würdinger, T. [Promotor]Noske, D.P. [Copromotor]Hulleman, E. [Copromotor
    corecore