38 research outputs found

    Managing tail latency in large scale information retrieval systems

    Get PDF
    As both the availability of internet access and the prominence of smart devices continue to increase, data is being generated at a rate faster than ever before. This massive increase in data production comes with many challenges, including efficiency concerns for the storage and retrieval of such large-scale data. However, users have grown to expect the sub-second response times that are common in most modern search engines, creating a problem - how can such large amounts of data continue to be served efficiently enough to satisfy end users? This dissertation investigates several issues regarding tail latency in large-scale information retrieval systems. Tail latency corresponds to the high percentile latency that is observed from a system - in the case of search, this latency typically corresponds to how long it takes for a query to be processed. In particular, keeping tail latency as low as possible translates to a good experience for all users, as tail latency is directly related to the worst-case latency and hence, the worst possible user experience. The key idea in targeting tail latency is to move from questions such as "what is the median latency of our search engine?" to questions which more accurately capture user experience such as "how many queries take more than 200ms to return answers?" or "what is the worst case latency that a user may be subject to, and how often might it occur?" While various strategies exist for efficiently processing queries over large textual corpora, prior research has focused almost entirely on improvements to the average processing time or cost of search systems. As a first contribution, we examine some state-of-the-art retrieval algorithms for two popular index organizations, and discuss the trade-offs between them, paying special attention to the notion of tail latency. This research uncovers a number of observations that are subsequently leveraged for improved search efficiency and effectiveness. We then propose and solve a new problem, which involves processing a number of related queries together, known as multi-queries, to yield higher quality search results. We experiment with a number of algorithmic approaches to efficiently process these multi-queries, and report on the cost, efficiency, and effectiveness trade-offs present with each. Ultimately, we find that some solutions yield a low tail latency, and are hence suitable for use in real-time search environments. Finally, we examine how predictive models can be used to improve the tail latency and end-to-end cost of a commonly used multi-stage retrieval architecture without impacting result effectiveness. By combining ideas from numerous areas of information retrieval, we propose a prediction framework which can be used for training and evaluating several efficiency/effectiveness trade-off parameters, resulting in improved trade-offs between cost, result quality, and tail latency

    MWAND: A New Early Termination Algorithm for Fast and Efficient Query Evaluation

    Get PDF
    Nowadays, current information systems are so large and maintain huge amount of data. At every time, they process millions of documents and millions of queries. In order to choose the most important responses from this amount of data, it is well to apply what is so called early termination algorithms. These ones attempt to extract the Top-K documents according to a specified increasing monotone function. The principal idea behind is to reach and score the most significant less number of documents. So, they avoid fully processing the whole documents. WAND algorithm is at the state of the art in this area. Despite it is efficient, it is missing effectiveness and precision. In this paper, we propose two contributions, the principal proposal is a new early termination algorithm based on WAND approach, we call it MWAND (Modified WAND). This one is faster and more precise than the first. It has the ability to avoid unnecessary WAND steps. In this work, we integrate a tree structure as an index into WAND and we add new levels in query processing. In the second contribution, we define new fine metrics to ameliorate the evaluation of the retrieved information. The experimental results on real datasets show that MWAND is more efficient than the WAND approach

    Efficient query processing for scalable web search

    Get PDF
    Search engines are exceptionally important tools for accessing information in today’s world. In satisfying the information needs of millions of users, the effectiveness (the quality of the search results) and the efficiency (the speed at which the results are returned to the users) of a search engine are two goals that form a natural trade-off, as techniques that improve the effectiveness of the search engine can also make it less efficient. Meanwhile, search engines continue to rapidly evolve, with larger indexes, more complex retrieval strategies and growing query volumes. Hence, there is a need for the development of efficient query processing infrastructures that make appropriate sacrifices in effectiveness in order to make gains in efficiency. This survey comprehensively reviews the foundations of search engines, from index layouts to basic term-at-a-time (TAAT) and document-at-a-time (DAAT) query processing strategies, while also providing the latest trends in the literature in efficient query processing, including the coherent and systematic reviews of techniques such as dynamic pruning and impact-sorted posting lists as well as their variants and optimisations. Our explanations of query processing strategies, for instance the WAND and BMW dynamic pruning algorithms, are presented with illustrative figures showing how the processing state changes as the algorithms progress. Moreover, acknowledging the recent trends in applying a cascading infrastructure within search systems, this survey describes techniques for efficiently integrating effective learned models, such as those obtained from learning-to-rank techniques. The survey also covers the selective application of query processing techniques, often achieved by predicting the response times of the search engine (known as query efficiency prediction), and making per-query tradeoffs between efficiency and effectiveness to ensure that the required retrieval speed targets can be met. Finally, the survey concludes with a summary of open directions in efficient search infrastructures, namely the use of signatures, real-time, energy-efficient and modern hardware and software architectures

    On inverted index compression for search engine efficiency

    Get PDF
    Efficient access to the inverted index data structure is a key aspect for a search engine to achieve fast response times to users’ queries . While the performance of an information retrieval (IR) system can be enhanced through the compression of its posting lists, there is little recent work in the literature that thoroughly compares and analyses the performance of modern integer compression schemes across different types of posting information (document ids, frequencies, positions). In this paper, we experiment with different modern integer compression algorithms, integrating these into a modern IR system. Through comprehensive experiments conducted on two large, widely used document corpora and large query sets, our results show the benefit of compression for different types of posting information to the space- and time-efficiency of the search engine. Overall, we find that the simple Frame of Reference compression scheme results in the best query response times for all types of posting information. Moreover, we observe that the frequency and position posting information in Web corpora that have large volumes of anchor text are more challenging to compress, yet compression is beneficial in reducing average query response times

    SparkIR: a Scalable Distributed Information Retrieval Engine over Spark

    Get PDF
    Search engines have to deal with a huge amount of data (e.g., billions of documents in the case of the Web) and find scalable and efficient ways to produce effective search results. In this thesis, we propose to use Spark framework, an in memory distributed big data processing framework, and leverage its powerful capabilities of handling large amount of data to build an efficient and scalable experimental search engine over textual documents. The proposed system, SparkIR, can serve as a research framework for conducting information retrieval (IR) experiments. SparkIR supports two indexing schemes, document-based partitioning and term-based partitioning, to adopt document-at-a-time (DAAT) and term-at-a-time (TAAT) query evaluation methods. Moreover, it offers static and dynamic pruning to improve the retrieval efficiency. For static pruning, it employs champion list and tiering, while for dynamic pruning, it uses MaxScore top k retrieval. We evaluated the performance of SparkIR using ClueWeb12-B13 collection that contains about 50M English Web pages. Experiments over different subsets of the collection and compared the Elasticsearch baseline show that SparkIR exhibits reasonable efficiency and scalability performance overall for both indexing and retrieval. Implemented as an open-source library over Spark, users of SparkIR can also benefit from other Spark libraries (e.g., MLlib and GraphX), which, therefore, eliminates the need of usin

    Flexible and efficient IR using array databases

    Get PDF
    textabstractThe Matrix Framework is a recent proposal by IR researchers to flexibly represent all important information retrieval models in a single multi-dimensional array framework. Computational support for exactly this framework is provided by the array database system SRAM (Sparse Relational Array Mapping) that works on top of a DBMS. Information retrieval models can be specified in its comprehension-based array query language, in a way that directly corresponds to the underlying mathematical formulas. SRAM efficiently stores sparse arrays in (compressed) relational tables and translates and optimizes array queries into relational queries. In this work, we describe a number of array query optimization rules and demonstrate their effect on text retrieval in the TREC TeraByte track (TREC-TB) efficiency task, using the Okapi BM25 model as our example. It turns out that these optimization rules enable SRAM to automatically translate the BM25 array queries into the relational equivalent of inverted list processing including compression, score materialization and quantization, such as employed by custom-built IR systems. The use of the high-performance MonetDB/X100 relational backend, that provides transparent database compression, allows the system to achieve very fast response times with good precision and low resource usage

    Flexible and efficient IR using array databases

    Get PDF
    The Matrix Framework is a recent proposal by IR researchers to flexibly represent all important information retrieval models in a single multi-dimensional array framework. Computational support for exactly this framework is provided by the array database system SRAM (Sparse Relational Array Mapping) that works on top of a DBMS. Information retrieval models can be specified in its comprehension-based array query language, in a way that directly corresponds to the underlying mathematical formulas. SRAM efficiently stores sparse arrays in (compressed) relational tables and translates and optimizes array queries into relational queries. In this work, we describe a number of array query optimization rules and demonstrate their effect on text retrieval in the TREC TeraByte track (TREC-TB) efficiency task, using the Okapi BM25 model as our example. It turns out that these optimization rules enable SRAM to automatically translate the BM25 array queries into the relational equivalent of inverted list processing including compression, score materialization and quantization, such as employed by custom-built IR systems. The use of the high-performance MonetDB/X100 relational backend, that provides transparent database compression, allows the system to achieve very fast response times with good precision and low resource usage

    Scalable succinct indexing for large text collections

    Get PDF
    Self-indexes save space by emulating operations of traditional data structures using basic operations on bitvectors. Succinct text indexes provide full-text search functionality which is traditionally provided by suffix trees and suffix arrays for a given text, while using space equivalent to the compressed representation of the text. Succinct text indexes can therefore provide full-text search functionality over inputs much larger than what is viable using traditional uncompressed suffix-based data structures. Fields such as Information Retrieval involve the processing of massive text collections. However, the in-memory space requirements of succinct text indexes during construction have hampered their adoption for large text collections. One promising approach to support larger data sets is to avoid constructing the full suffix array by using alternative indexing representations. This thesis focuses on several aspects related to the scalability of text indexes to larger data sets. We identify practical improvements in the core building blocks of all succinct text indexing algorithms, and subsequently improve the index performance on large data sets. We evaluate our findings using several standard text collections and demonstrate: (1) the practical applications of our improved indexing techniques; and (2) that succinct text indexes are a practical alternative to inverted indexes for a variety of top-k ranked document retrieval problems

    Index ordering by query-independent measures

    Get PDF
    Conventional approaches to information retrieval search through all applicable entries in an inverted file for a particular collection in order to find those documents with the highest scores. For particularly large collections this may be extremely time consuming. A solution to this problem is to only search a limited amount of the collection at query-time, in order to speed up the retrieval process. In doing this we can also limit the loss in retrieval efficacy (in terms of accuracy of results). The way we achieve this is to firstly identify the most “important” documents within the collection, and sort documents within inverted file lists in order of this “importance”. In this way we limit the amount of information to be searched at query time by eliminating documents of lesser importance, which not only makes the search more efficient, but also limits loss in retrieval accuracy. Our experiments, carried out on the TREC Terabyte collection, report significant savings, in terms of number of postings examined, without significant loss of effectiveness when based on several measures of importance used in isolation, and in combination. Our results point to several ways in which the computation cost of searching large collections of documents can be significantly reduced
    corecore