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ABSTRACT 

Al-Rasbi, Sara Y., Masters : January : 2020:, Masters of Science in Computing Title: 

SparkIR: a Scalable Distributed Information Retrieval Engine over Spark. Supervisor 

of Thesis: Tamer M. Elsayed. 

Search engines have to deal with a huge amount of data (e.g., billions of 

documents in the case of the Web) and find scalable and efficient ways to produce 

effective search results. In this thesis, we propose to use Spark framework, an in-

memory distributed big data processing framework, and leverage its powerful 

capabilities of handling large amount of data to build an efficient and scalable 

experimental search engine over textual documents. The proposed system, SparkIR, 

can serve as a research framework for conducting information retrieval (IR) 

experiments. SparkIR supports two indexing schemes, document-based partitioning 

and term-based partitioning, to adopt document-at-a-time (DAAT) and term-at-a-time 

(TAAT) query evaluation methods. Moreover, it offers static and dynamic pruning to 

improve the retrieval efficiency. For static pruning, it employs champion list and 

tiering, while for dynamic pruning, it uses MaxScore top k retrieval. We evaluated the 

performance of SparkIR using ClueWeb12-B13 collection that contains about 50M 

English Web pages. Experiments over different subsets of the collection and 

compared the Elasticsearch baseline show that SparkIR exhibits reasonable efficiency 

and scalability performance overall for both indexing and retrieval. Implemented as 

an open-source library over Spark, users of SparkIR can also benefit from other Spark 

libraries (e.g., MLlib and GraphX), which, therefore, eliminates the need of using 
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other big data frameworks (e.g., Elasticsearch) for the search applications and 

experimental research. 
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 : Introduction 

In recent years, a large volume of data has been generated daily at a variable 

rate, especially with the existence of social media. For instance, on Twitter alone, 

approximately 6000 tweets are posted in a second1; by the end of the day, the number 

of posts can easily exceed a million. This vast amount of data is commonly known as 

Big Data. Big data is defined as large data that can be structured, semi-structured or 

unstructured, and traditional data science techniques fail to process it due to its huge 

volume. Big data is generated from many sources, especially from mobile devices; 

such as smartphones and sensors. Also, it exists in many sectors like healthcare, 

businesses, the government sector, and more. 

Data scientists usually characterize big data by the 3 V’s: Volume, Variety, and 

Velocity. Volume refers to the size of the data. Variety refers to the different forms of 

the data, and velocity describes how fast the data is generated. For a long time, 

volume, variety, and velocity were used to describe big data and were known as the 

three main characteristics of big data. However, as big data got more and more 

popular, and further studies and research were conducted in this field, two new 

characteristics were added: value and veracity [1]. The value indicates if the data is 

worth analyzing and could potentially lead to exciting discoveries, while veracity 

represents if the data can be trusted or not. 

As mentioned previously, the size and sometimes complexity of big data makes 

it extremely difficult for traditional data science techniques to process it; therefore, 

designated frameworks were developed for processing big data [2]. Google was one 

                                                 

1 https://www.internetlivestats.com/twitter-statistics/  
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of the pioneers of big data processing frameworks with the introduction of 

MapReduce. After that, more and more frameworks and technologies were developed 

to process different types of big data; such as, Hadoop, Hive, HBase, and others that 

can be integrated to process big data and extract value from it. These technologies are 

used in different sectors to build different applications that process big data, such as; 

healthcare analysis software, recommendation systems, search engines, and more. 

Search engines are one of the most trivial reasons for the need for big data 

processing frameworks. For example, the estimated size of the indexed web is 

approximately 5.03 billion pages2; moreover, these webpages are stored in a 

distributed environment. Thus, to index them a system must be able to work in a 

distributed environment and handle extensive data processing. Google originally built 

MapReduce to index the web, and the open-source version of MapReduce, Hadoop, 

is also used for indexing and other big data analytics purposes. However, since then, 

more technologies became available. For instance, Spark is an in-memory data 

analytics processing engine that outperformed Hadoop in the big data field in terms 

of speed[3]. 

Other than indexing, a standard Search engine has another stage called retrieval 

as shown in Figure 1. Indexing is an offline process that takes a collection of webpages 

as input and builds an index of words. In information retrieval, each record in a 

collection is referred to as a document. The system starts by reading the collection 

from disk. Then each document goes through a pipeline of preprocessing. The output 

of the preprocessing, are the words after applying text operations on them like 

                                                 

2 https://www.worldwidewebsize.com 
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tokenizing, stemming, lowercasing, and more. In IR these are referred to as terms. 

Then, the indexer will create an inverted index for the collection. 

 

 

Figure 1. The architecture of an IR system 

 

 

 An inverted index - known merely as the index - has two parts: a dictionary and 

postings list. The dictionary is the terms that appear in the collection, while the postings 

list is a list of document ids that contain the associated term. Refer to Figure 2 for an 

illustration of the indexing process and an example of an inverted index. Usually, the 

webpage collection is distributed across many nodes; therefore, the indexer must work 

on parallel on a distributed environment to build the index in an efficient way that is 

both fast and guarantees the correctness of the built index. 

 



  

4 

 

 

Figure 2. The indexing process 

 

 

Once the index is built and saved to disk, the retrieval stage is ready to begin.  

In this stage, the user issues a query to the system; then, the query will go through a 

parser where it is reprocessed in the same pipeline as the collection. After that, the 

system will look up the query terms in the index. If the terms exist in the index, they 

are retrieved with their associated postings lists. Each document in the postings lists 

of the terms is given a score using a scoring method. This score indicates how relevant 

the document is to the user query. If the score is high, then the document is highly 

relevant; otherwise, it is not if the document score is low. Finally, the system will 

display the top ranking documents to the user. Retrieval is a real-time process, as 

results are returned to the users in a split of a second; thus, it is essential to have a 

model that is both efficient and accurate. 

Search engines are meant to be fast, interactive, and handle a large number of 

webpages efficiently. A massive collection of documents needs first to be indexed, 
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and the retrieval is done in real-time. Therefore, it has to be able to get the relevant 

information to the user's needs while meeting the user expectation of the speed of the 

retrieval. Thus, in this thesis, we propose to use Spark framework and make use of its 

capabilities and efficiency of handling distributed big data to build an efficient and 

scalable search engine over textual documents. Spark is an in-memory big data 

analytics engine. Unlike Hadoop, Spark can keep the data in memory between jobs, 

whereas Hadoop has to read and write the data from disk. This property can be 

leveraged in building a retrieval system on Spark by loading the collection in memory 

and create the index from it. Moreover, the index can be loaded in memory in the 

retrieval and issue queries on it. The proposed system can be used as a library over 

Spark for Ad-hoc retrieval.  

The proposed solution consists of an indexer that can index and partition the 

index by term or document. Moreover, to enhance the efficiency of the system, we 

employ different efficiency techniques. The techniques are classified as static pruning 

and dynamic pruning. 

Static pruning techniques are done during the indexing phase, while dynamic 

pruning occurs in real-time while scoring. For the static pruning, we choose two 

techniques that are commonly used in retrieval systems which are Champion list and 

Tiering. In Champion list, the postings list is reduced to the top N postings with the 

highest term frequency (tf). In tiering, the index is divided into separate tiers; such 

that, the tf of a term in a document is decreasing in each tier. As for the dynamic 

pruning, we included MaxScore, where postings are skipped during scoring if they 

are not promising enough to appear in the final results.  

The system was compared against Elasticsearch, a distributed IR system built 

over Lucene. Both systems were evaluated using a subset of ClueWeb12; a collection 
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of 733,019,372 English webpages collected in 2012. Although SparkIR did not 

outperform Elasticsearch in terms of effectiveness, where Elasticsearch achieved a 

precision of 0.2. While our proposed system scored 0.18, it did perform better than 

Elasticsearch in terms of response time after applying the efficiency methods. In 

SparkIR, by applying the efficiency methods reduced the response time but had a 

slight effect on the system's overall effectiveness. 

We offer a research framework for conducting information retrieval (IR) 

experiments for researchers to conduct their experiments on Spark. To the best of our 

knowledge, no such system has been proposed over Spark within the information 

retrieval research community. Moreover, our distributed IR system offers efficiency 

techniques that distributed search engines like Solr and Elastisearch do not support. 

This work would address the following research questions:  

RQ1: Is Spark framework suitable for web search?  

RQ2: Which partitioning technique is better suited for Spark?  

RQ3: How does Spark perform with and without efficiency techniques?   

RQ4: How does Spark compare to other distributed IR engines? 

The following sections are as follows; first, we will discuss Spark and how it is 

used in recent research, as well as, a description of Hadoop, Solr, and Elasticsearch in 

chapter 2. Then in chapter 3, we will discuss in depth our proposed system. After that, 

in the next chapter, we will evaluate the proposed system against Elasticsearch. 

Finally, we end by concluding the significant lessons from this work and possible 

future plans in chapter 5. 
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Chapter 2 : Background and related work  

2.1 Background 

2.1.1 Hadoop 

Although when Google revealed MapReduce, it was a huge step for big data 

analytics. Google did not release it for the public. A few years later, after publishing 

[4], Hadoop was publicly released as an open-source Java implementation of 

MapReduce that is now licensed by Apache. 

The framework adopts a divide-and-conquer approach [2], the three main 

phases of MapReduce are: Map Phase, Shuffling Phase, and Reduce Phase. In the map 

phase, the data is read by multiple mappers at the same time, and the same 

programming code is used on all of them. The purpose of the map phase is to extract 

a common knowledge from the input data; for instance, if the programmer wanted to 

count the occurrences of the words in each input file, then the output of the mappers 

would be the word and the number of times it appeared in that input file. As implied 

from the example, the output of a single mapper is a list of key/value pairs. In the 

shuffling phase, these pairs are shuffled across the network and grouped by key, such 

that each key will have a list of all the different values it was assigned to by different 

mappers. After that, the reduce phase will reduce that list to at least one value per key. 

In the case of counting the word appearances, the goal of the reducer is to count the 

values assigned to the key to get the total occurrences across all data.  

Aside from the MapReduce programming model, the Hadoop project licensed 

by Apache contains Hadoop commons, Hadoop HDFS, and Hadoop YARN [2].  

1. Hadoop Commons: common utilities used to support Hadoop modules 
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2. Hadoop HDFS:  A storage file system used by Hadoop. It provides 

reliable and distributed data access over a cluster of nodes. 

3. Hadoop YARN: A cluster management framework that handles job 

scheduling and cluster resources management. 

 

 

Figure 3. Hadoop Architecture 

 

 

Hadoop was initially designed as a batch processing framework with the 

components defined earlier, and as shown in  

Figure 3, but more and more tools have been developed by researchers that 

can be used on top of Hadoop. These tools are what makes Hadoop one of the most 

used framework for big data analytics. For instance, HBase [5] is a column-oriented 

NoSQL database. It is an open source project built to replicate BigTable, a distributed 

storage system for structured data developed by Google [6]. Mahout [2] is a machine 

learning library that includes most of the well-known algorithms for clustering, 

classification, data mining and more. 
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2.1.2 Spark 

For many years Hadoop was the most popular framework for handling big 

data; however, it suffers from many limitations. Due to the nature of MapReduce, it 

does not support iterative nor interactive algorithms. Between MapReduce jobs, 

Hadoop has to write the data to disk. Thus, if the input of a job depends on the output 

of a previous job, the framework must write the output of the first job to disk so that 

the second job can read it and execute its processing. Moreover, Hadoop provides 

only the MapReduce framework; in order to perform other data analytics, external 

libraries that are compatible with Hadoop must be imported, such as Hive, Mahout, 

and HBase. 

These issues led to the development of a new framework called Spark. Similar 

to Hadoop, Spark is also a framework to process big data, but Spark supports in-

memory processing; as a result, Spark outperforms Hadoop in terms of speed. Zahiera 

et al. [3] proposed Spark with the intent to overcome Hadoop limitations. Firstly, 

Spark takes into consideration iterative algorithms; thus, in between jobs, the 

intermediate output is kept in memory for further processing, which allows Spark to 

be faster than Hadoop at accessing the data. Also, Spark comes with four components: 

SparkSQL, Spark MLlib, Spark Streaming, and GraphX. Considering Spark comes 

with these various libraries, Spark provides developers with a platform to perform and 

build different applications without any hassle and compatibility issues. 

The primary abstraction of Spark is Resilient Distributed Datasets (RDD). 

They were proposed by Zaharia et al. [3] to overcome the weaknesses and 

shortcomings of current cluster computing frameworks. RDDs allow the reuse of data 

efficiently in a distributed environment. The authors argue that data reuse is very 
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common in machine learning and graph algorithms, where the intermediate data is 

reused in many iterations. In addition to data reusability, RDDs provide more benefits 

for the programmer. For example, they promise better fault tolerance in case of 

failures. Furthermore, the level of persistence is controlled by the programmer, as an 

RDD can be persisted in three different ways: 

1. In memory as deserialized Java objects, which is the fastest of the three modes. 

2. In memory as serialized data, less efficient in terms of time but a better solution 

if storage is limited. 

3. On disk storage is better used when the RDDs are too big to be kept in RAM, 

and recomputing them from the start is costly, so they are stored to save the time 

needed to compute them. 

In Spark, two kinds of operations are executed on RDDs, transformations, and 

actions [7]. Transformations are operations performed on RDDs to produce RDDs. 

and actions are used to materialize the transformations, compute a value and return it 

In Spark, transformations are computed lazily, and spark will keep track of all 

the instructed transformation until an action triggers the computation. This allows 

Spark to optimize the transformations to achieve the action in the most efficient way 

possible. For example, if the programmer pipeline of transformations were map, group 

by key, then filter, it would be more efficient first to filter, then perform the map and 

grouping or performing the filtering before the grouping. This decision is made by 

Spark smartly, depending on the data and the transformation pipeline. Furthermore, 

unlike Hadoop, which provides two functions - map and reduce-, Spark includes more 

than 80 operations that give the user the freedom to build their applications easily. 

Some of the primary transformation used in this work are shown in Table 1. 
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Table 1. Some of Spark Transformations and Actions 

 Method signature Description 

Transformations flatMap[U](f:  (T)⇒Seq[U]): RDD[U] 

 

 

 

filter(f:(T)⇒Boolean):  RDD[T] 

 

 

map[U](f:(T)⇒U):RDD[U] 

 

 

mapPartitions[U](f: (Iterator[T])⇒Iterator[U]): 

RDD[U] 

 

aggregateByKey[U](zeroValue:U)(seqOp:(U,V)⇒U, 

combOp:(U, U)⇒U): RDD[(K, U)] 

 

groupByKey(numPartitions:Int):  

RDD[(K,Iterable[V])] 

 

join[W](other:    RDD[(K,  W)],  numPartitions:  

Int):  RDD[(K, (V, W))] 

 

reduceByKey(f:  (V, V)⇒V): RDD[(K, V)] 

Return a new RDD by first 

applying a function to all 

elements of this RDD, and then 

flattening the results. 

Return a new RDD containing 

only the elements that satisfy a 

predicate. 

Return a new RDD by applying a 

function to all elements of this 

RDD. 

Return a new RDD by applying a 

function to each partition of this 

RDD. 

Aggregate the values of each key, 

using given combine functions 

and a neutral  ”zero value”. 

Group the values for each key in 

the RDD into a single sequence. 

Return an RDD containing all 

pairs of elements with matching 

keys in this and other. 

Merge the values for each key 

using an associative and 

commutative reduce function 

Actions count(): Long 

 

collect(): Array[T] 

 

 

Return the number of elements in 

the RDD. 

Return an array that contains all of 

the elements in this RDD. 
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 Method signature Description 

reduce(f:  (T, T)⇒T): T 

 

 

saveAsTextFile(path:  String):  Unit 

 

saveAsObjectFile(path:  String):  Unit 

Reduces the elements of this RDD 

using the specified com-mutative 

and associative binary operator. 

Save this RDD as a compressed 

text file 

Save this RDD as a compressed 

text file 

 

 

 

What has been discussed thus far is known as Spark Core, on top of it are four 

libraries that serve different purposes. The first library is SparkSQL, a library that 

provides structured data processing. The second library in Spark is MLlib, that adds 

machine learning functionalities to Spark. Furthermore, real-time data streaming is 

possible with Spark streaming, and finally, GraphX is a library for graph processing. 

Having these libraries on top of Spark Core gives the programmer most of what he 

needs under one platform relieving him from seeking external libraries. Together with 

Spark core, these libraries define Spark as a unified data analytical distributed system. 

2.2 Distributed IR Systems 

Elasticsearch and Solr are two existing tools that support distributed 

information retrieval. In the following section, we will discuss these frameworks in 

depth and explore any research conducted on them. 

2.2.1 Solr 

 Solr is an enterprise distributed search platform provided by Apache and built 

on Apache Lucene [8].  Since it was publicly released as an open-source platform in 
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2006, Solr has now become a reliable platform that provides many out of the box 

features that are needed by the community. At heart, Solr uses Lucene and enriches it 

with extra features, as well as; wraps it as a RESTful service accessed over HTTP. 

Like Lucene, Solr is written in Java. 

With Solr users can build an inverted index for a collection and query it to find 

some matching documents. The collection goes through a series of analyzers and 

tokenizers to process the documents and produce tokens to prepare the collection for 

indexing. Moreover, Solr provides a full-text search that supports phrase queries, 

fuzzy search, wildcards, spell checking, and autocomplete.  As for the document 

matching, Solr uses the vector space model (VSM) and the Boolean model to 

determine the relevancy of documents.  

Initially, Solr did not support distributed search. It was then possible after 

adding SolrCloud in Solr 4.x and later. SolrCloud made Solr the distributed highly 

scalable, fault tolerance search platform that we know now. Solr provides the ability 

to add and remove computing nodes as needed. In addition, the index is replicated 

across instances to protect the data against nodes' failure. Furthermore, SolrCloud 

saves the user a lot of trouble by handling how the data is distributed, and other 

processes like sharding and load balancing.  

Solr has five major components. Request Handler that processes all the 

requests received by Solr. Search Component that defines the logic and the 

implemented Solr feature and provided by the search. Full-text search features like 

autocomplete and spell checking need to be registered in the search handler to work. 

Another component that needs to be registered in the search Component is the Query 

Parser component; this component maps the user query to instructions that lucence 

understands. The next component is the similarity component; it defines Lucene 
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weights and how it scores the documents.  Lastly, the Response writer formats the 

response to the user as different response types have different response writer. The 

response types could be JSON, XML, CSV, and binary formats. 

2.2.2 Elasticsearch 

Elastic Search is an open source real-time distributed search engine built on 

Lucene [9]. It hides the complexity of Lucene indexing and searching mechanisms 

behind HTTP/JSON APIs.  By doing so, the founders of Elasticsearch aimed to scale 

Lucene beyond its single machine limitation.  Unlike Solr, Elasticsearch was built 

distributed, and it can be scaled horizontally. Other features include high availability 

by data replication. In Elasticsearch, the index is sharded and replicated across the 

cluster, and the shards are flagged as primary or secondary. If a node that contains 

primary shards fails, the secondary shards are promoted to primary.  

Moreover, as implied earlier, Elasticsearch is based on REST architecture, 

where the users are provided with APIs to interact with the service. Also, Elasticsearch 

provides a JSON interface that enables the users to write queries even if they are not 

aware of Lucene query syntaxes. This is possible thanks to the Query DSL (domain-

specific-language) feature. Lastly, Elasticsearch is schemaless. So, it does not need 

any fields or data types to be declared beforehand. 

2.2.3 Ivory 

The closest work to our proposed system is the work done by Lin et al. [10]. 

The work of the authors revolves around the idea of building a search engine using 

Hadoop framework. The proposed engine utilizes Hadoop’s distributed architecture 

to build a full search engine that can index and search a large set of documents. The 

proposed system of the authors employs different design strategies to make the 

system. For example, they utilized Hadoop ability to automatically sorting the data 
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while shuffling to minimize the need to sort document ids manually in the reduce 

phase.  

In addition, Lin et al attempted to use the same cluster for both indexing and 

search rather than having two separate architectures for each task. This approach 

successfully employed the available hardware and simplified the workflow and 

management of data; however, it led to a degradation in query processing. For 

evaluation, clueWeb09 was used for indexing and retrieval. The indexing took 145 

minutes on average; meanwhile, the retrieval of relevant web pages for a query took 

5.45s. 

Aside from the work by Lin et al., Indexing is one of the popular uses of 

Hadoop, and many algorithms were implemented to index large collections. For 

instance, McCredie et al. [11] have explored different indexing strategies over 

MapReduce, including per term and per document. Each strategy has its advantages 

and disadvantages concerning scalability and efficiency, so it is based on the 

application and programmer to decide the best way to use MapReduce to benefit from 

what it has to offer. 

2.2.4 Terrier 

Terrier is a retrieval platform for the development of large scale retrieval 

systems [12].  Terrier is built after exploring many efficient and effective search 

techniques that lead to implementing new methods, such as hyperlink structure 

analysis, document length normalization methods, query expansion, and 

reformulation techniques. Moreover, Terrier supports powerful compression methods 

to enable Terrier the ability to process large collections. Lastly, Terrier was expanded 

by adding distributed architecture that allowed Terrier to be used in both a single and 

a distributed environment.  Aside from that, an open-source version of Terrier is 
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available to the public. This version allows the developers to test their IR system in a 

robust, flexible, and transparent test-bed platform. 

The indexing in Terrier has four stages; at each stage, developers can add 

plugins to customize the process. The four stages are Collection, Documents, Terms 

pipelines, and indexer.  The collection stage is responsible for generating a stream of 

documents. Then, the document stage will parse each document using the different 

parsers supported by Terrier to produce a stream of terms. After that, the terms will 

go through the Term pipelines. Terrier provides some pipelines like Porter's stemming 

algorithm and stopword removal. New pipelines can be added as plugins if needed. 

Lastly, the terms after the pipeline are passed to the indexer where it writes the index 

using the data structures supported by Terrier. Terrier has four main structures: 

Lexicon, inverted index, document index, and direct index. 

As for the retrieval, Terrier is so flexible that it allows the developers to choose 

from different weighting models, such as, BM25, TF-IDF, and the divergence from 

randomness framework (DFR) that offers parameter free probabilistic models. 

Moreover, in Terrier, users can use different defined modifiers to change how the 

documents are scores. Furthermore, Terrier uses an advanced query language that 

allows the user to define additional operations, as well as automatic query expansion.  

Recently, the team behind Terrier released a new adaptation of Terrier using 

Spark [13]. This adaptation is built to make use of Spark pipeline feature and Spark 

machine learning MLlib fit and transformation. Initially, these functions are used to 

fit and train models in a machine learning setting.; however, in Terrier-Spark, the 

author builds on Spark MLlib to define his own version of fit and transformation. This 

adaptation overcame Terrier command line limitation. 
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Furthermore, Terrier-spark offers an agile experimental platform for IR, and 

using Terrier-Spark with Jupyter notebooks will make reproducibility of the 

experiments a lot easier by sharing the notebook, as well as aids at teaching 

information retrieval experiments in universities if needed.  

2.3 Spark in IR 

Ma et al.  [14] use spark to build a media retrieval system. They utilize Search 

tress and caching the index in memory to achieve fast and cost effective retrieval. The 

system reduced the time of search; also, their system allows the user to choose the 

weights they want to increase the importance of a feature or more to customize their 

ranking results. The system is built with four components.  The input for a system is 

a feature file where each file contains many instances of images.The first component 

partitions these feature files into an equal sized feature sets called chunks. Each feature 

file results in N or multiple of N chunks where N is the number of compute nodes.  

The second component builds a local index from its chunks on each node. 

These indexes are saved in HDFS. The third component is responsible for retrieving 

the top k results for each feature group. Then the last component merges the top k 

results based on the weights set by the user to generate the final results. The authors 

use a tree structure index to increase the similarity matching processes within the 

nodes. Then the top hits are aggregated to the driver node to find the top of the top 

matches found on each node. The authors employ different transformations from 

Spark, more notably MapPartitions to work on a per-partition fashion and 

ReduceBykey.  

This work has many things in common with our proposed solution, as both are 

retrieval systems built on Spark. However, our work is focused on Text and webpages 
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rather than images. Furthermore, this work also uses the per-partition approach that 

we are aiming to utilize in our work. 

2.4 Spark in the Literature 

Spark has been gaining much attention from researchers because of its speed 

and support for iterative algorithms and data reusability. The uses of Spark in the 

literature varied as some researchers used it for machine learning while others used it 

for graph processing. In this section, we explore how spark is used in different fields 

to build efficient and scalable systems.  

Koliopoulos et al. [15] proposed extending the WEKA tool to be a distributed 

tool. WEKA [16] is a data mining tool that is widely used by data scientists. However, 

the authors argue that WEKA only supports single-node execution; thus, it is not 

suitable for Big data. Therefore, the authors propose to leverage from Spark to design 

a distributed version of WEKA called “DistributedWekaSpark.” The proposed 

extends the WEKA framework while making use of Spark RDDs and their operations 

to make WEKA's processes run on a distributed environment rather than a single node 

allowing WEKA to be able to handle Big Data. 

DNA sequences are another example of big data. NGS technology (Next 

generation Sequencing) is a technology used in the health field on DNA sequences 

that generates data in order of hundreds of gigabytes per experiment. This data has to 

be analyzed as quickly as possible to extract meaningful results from it. Thus, in [17] 

the authors propose a pipeline for DNA analysis using SPARK. SparkGA, the system 

proposed by the authors utilizes spark capabilities to produce a system that is scalable 

and supports parallel analysis. The proposed system managed to be 71% faster than 

the current state-of-the-art technology. Moreover, the authors experimented heavily 
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to reduce the cost of analysis while maintaining an impressive accuracy of 99.9981% 

by using a load balancer to optimize the solution memory requirements. 

Han et al. [18] proposed turning DBCAN - a clustering algorithm - into an 

algorithm that can support parallelism using Spark. They were the first to use Spark; 

although, other implementations existed on Hadoop. One of the challenges they faced 

was how to design a scalable DBCAN that avoids shuffling since it is expensive as 

data is being written to disk and moved across the network. In Spark, results from 

each worker are propagated and merged in a module called Spark driver. Therefore, 

they assign each worker to create partial clusters locally for the data assigned to it; 

then, the partial clusters will be propagated to the Spark driver, where the merging 

happens between the partial clusters. 

This approach is also adapted by [14], as the results are aggregated per node 

and then propagated to the driver node. As we can see, both systems are trying to 

avoid shuffling as it is very expensive. Similar to these solutions, our proposed 

architecture takes into consideration the shuffling issue, and we have employed Spark 

transformations to avoid it as much as we can.  

Similarly to [18], Yang et al. [19] enhanced ZhihuRank, a topic sensitive 

expert finding algorithm that is based on Latent Dirichlet Allocation (LDA) and 

PageRank, by employing Spark MLlib’s LDA and GraphX PageRank and made it a 

scalable method. The road to achieving this goal was not straightforward, as the 

operations in LDA and PageRank are of a high-order nature and require intensive and 

time-consuming computations.  

Given that Databases by nature hold a vast amount of data, a system such as 

Spark could also demonstrate its potential in such environments. Using SparkSQL, 
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Sun et al. [20] built an in-memory distributed query processing system that achieved 

fast and efficient results. For Spark Streaming component, Chen et al. [21] built a 

distributed rule engine by converting a rule-based system and adapting it in Spark 

environment in addition to real-time streaming using Spark Stream. 
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Chapter 3 : SparkIR Architecture 

The goal of this work is to build an efficient and scalable distributed search 

engine using Spark. In this chapter, we will discuss the four phases of the proposed 

system and the different decisions to consider when building such a system. The four 

phases are: preprocessing, pre-indexing, indexing, and retrieval. 

The first phase of the proposed solution is preprocessing in which the data is 

cleaned and tokenized for the pre-indexing phase. In the pre-indexing phase, global 

statistics about the collection are generated. The statistics include document and term 

statistics. Next, the indexing phase will build an inverted index for the preprocessed 

documents. The created index could either be a document-based index or a term-based 

index. After that, the index is ready to be queried in the search phase using the 

provided API. The following subsections explain each phase in depth. 

3.1 Preprocessing 

The goal of the preprocessing stage is to clean the webpages from HTML tags 

and unnecessary characters to prepare them for indexing. The preprocessing 

component takes webpages as input. After that, each webpage will go through a 

pipeline to clean and extract the text from it. The preprocessing pipeline, shown in 

Figure 4, starts with removing the HTML tags; then, lowercasing the characters. After 

that, it removes digits, punctuation, and non-English characters. Then, the stopwords 

will be removed after tokenizing the text. Finally, the tokens will be stemmed using 

Porter stemmer. 
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Figure 4. Preprocessing pipeline 

 

 

Once the pipeline is completed, the preprocessed tokens are concatenated into 

a single string of text. We opt to save the content of the webpages in the preprocessed 

collection as a single string rather than tokens to save space when the collection is 

persisted in memory. So, the output of this stage is a key-value pair RDD where the 

key is the webpageID of the webpage and the value preprocessed content.  From this 

point forward, the webpages will be referred to as documents. 

3.2 Pre-indexing 

Before building the index, we compute term and document statistics needed 

for scoring and reducing the size of the index. Figure 5 presents the steps of this stage 

that we refer to as the pre-indexing stage. 
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Figure 5. Pre-indexing stage 

 

 

The process starts with assigning a sequence number - starting from 0 to N, 

where N is the size for the collection - to each document. Initially, the webpages are 

identified with a string ID; therefore, we assign an integer id, called docid, to each 

document to use in the postings to reduce the size of the index as much as possible. 

Then we save this mapping to disk as a key-value pair <docid, webpageId>. 

As shown in the figure, a new RDD CollectionWithDocid is generated and 

persisted in memory. In the new RDD, the sequence of the docids will be used to 
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identify the documents throughout the system. Also, this RDD is the parent RDD for 

the later RDDs; thus, it is persisted in memory to avoid recomputing it. 

Similarly, in our system, we map the terms to integer ids, called termids, to 

further reduce the size of the index. To create this mapping, first, we make a pass over 

the collection to get the unique terms with their document frequencies (df) and sort 

them. When the terms are sorted in alphabetical order,  later when this mapping is 

read from disk into an array, the ids of the terms will match the index of an array; 

therefore, we only need to store the list of terms without the ids. 

After sorting, we filter terms based on their df. The df of a term indicates how 

many documents contain this term or simply how popular the term is in the collection. 

We use df to filter out terms with very low df or high df. The values for the minimum 

df and maximum df are specified by the user in a configuration file with other 

parameters. We remove these terms because if they have low df then they are probably 

typos, while high df means they frequently appear like stopwords, so removing these 

terms will not have a significant effect on the documents' scores. Finally, we compute 

the document lengths from the collection; likewise, this mapping is stored on disk 

without the docids. 

3.3 Indexing 

The indexing component of the proposed solution is responsible for building 

the inverted index of the collection. The index can be distributed over a cluster of 

nodes using two different schemes: document-based partitioning or term-based 

partitioning. In document-based partitioning, each node has a local index for a subset 

of the collection. In this case, each node has an independent index. In term-based 

partitioning, each node has an index of a subset of terms of the collection [22]. Figure 
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6 illustrates the difference between the two schemes, and how a collection of nine 

documents would be partitioned across the nodes in each scheme. 

 

 

Figure 6. Index partitioning schemas 

 

 

In the literature, document-based partitioning is preferred because it provides 

more benefits over term-based partitioning [23]. With document-based partitioning, 

the system can scale better with the increase of collection size and nodes. Moreover, 

fault tolerance is handled better in document-based partitioning because the quality of 

the results is hardly affected by the failure of some nodes. SparkIR supports both 

document-based and term-based partitioning schemes, and both schemes are possible 

thanks to Spark transformation and partitioning handling. 

3.3.1 Document partitioning 

In document-based partitioning, the documents are indexed per partition; 

therefore, using Spark, we must not shuffle the RDD of the collection and work on a 

per partition fashion. Figure 7 shows an overview of the document partitioning 

process, the RDDs created, and the dependencies between RDDs. 
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Figure 7. Document partitioning indexing process 

 

 

The indexing starts immediately after computing the global statistics. All 

transformations are performed on the <docid, text> RDD that contains the 

preprocessed collection. First, we start creating the local index using 

mapPartition. MapPartition is a transformation that allows working per 

partition; thus, avoiding any shuffling through the network. Using this transformation, 

we create an inverted index in two steps. First, we get the tokens and their associated 

frequencies, then we create an index locally on each partition. 

As shown in Algorithm 1, we start by tokenizing each document. For each 

token, we create a pair where the key is the term, and the value is one; then, we group 

on terms. After grouping, the output represents each term with its term frequency (tf) 

and docid. Term Frequency indicates how many times a term appeared within a 
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document. Once we grouped the terms, we map each term to its id using the terms to 

ids array we created in the pre-indexing phase. This step – lines 3 to 7 – is performed 

on all documents within the same partition. Once done, the output will be a list of 

pairs that has <term, <docid,  tf>> from all documents within the partition. 
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After that, we group the terms and create the index. In line 12, when we group 

by terms, we get a map of terms as keys and a list of values that are the pair < docid, 

tf>. Then, we convert the list of pairs of a term into two arrays; an array that holds the 

tfs and another to store the term's postings. We uses different arrays for tf and docids 

to reduce the size of the index. In Scala, each pair is known as a tuple, and a tuple is 

an object. After grouping the pairs by terms, we produce a list of tuples that share the 

same term. The length of this list might be long, and each element of this list is an 

object. Eventually, we will load the index to memory in the retrieval phase; so, we 

choose to use arrays to reduce the size of the index and object creation overhead. 

Aside from the docid and tf arrays, we also store the collection frequency (cf) 

and document frequency (df) for each term. cf counts how many times a term appears 

in the whole collection, and df – as explained earlier – shows how many documents 

has the term. These two values are usually computed from the collection and used 

while creating the index; however, it does not work in our case. 

If we compute them while building the index, we will face two issues. If we 

compute them after building the local index, the df and cf values will be local to the 

partition and do not reflect the true value of df and cf for the term across the collection. 

Moreover, global df and cf cannot be calculated easily across partitions. Also, before 

creating the index, the collection was already partitioned by docid; then, each local 

index was built independently of the other partitions. So, in each partition, the RDD 

creation starts with a pair RDD < docid, text> and ends with a pair RDD <Term, 

Postings list>. As a result, the original key that partitioned the data – the docid – is 

lost, and the new key term does not contribute to locating its partition. Usually, in 

Spark joins are used to combine RDDs with similar information. However, if we tried 

to join a Pair RDD <Term, <df, cf>> with the index, it will trigger a shuffling that will 
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shuffle the data based on the term; which will lead to losing the document partitioning 

of the index.  

To solve this problem, we computed the cf and df a step before building the 

index using the collection. We hold the cf and df of each term in a key-value pair 

sorted by the term id. Then we broadcast this RDD as an array of <df, cf>, where the 

index of the array is the term id. This array is broadcasted to the workers and used 

while indexing the retrieve the cf and df for a term. This step is not part of the pre-

indexing phase because it is only needed in document-based partitioning. As we will 

see later, this array will not be necessary for the term based partitioning. 

The index created so far, is an index of the entire collection without pruning. 

To enhance the efficiency of the retrieval in the proposed system, we added two 

efficiency techniques that the user can select to use in the indexing stage. The user 

can choose one of the following static pruning techniques: champion list or tiering. 

Champion List. The champion list is a static index pruning technique where 

the postings list is pruned during the indexing phase [24]. The indexer will take the 

top n postings list of each term according to their tf and prune the rest of the postings. 

The champion list aims to focus on the top contributing documents of a term rather 

than the full list. Although it does decrease the number of scored postings, this 

technique might harm the effectiveness of the system. 

Tiering. On the other hand, tiering will divide the postings list into tiers [23]. 

The criteria can be tf, inverse document frequency (idf), or any weight according to 

the user. In our system, we use the tf to divide the postings list into three tiers given 

the tf cut-off values for each tier by the user.  When tiering is used, the 1st tier is 

considered the main index, and the other tiers are only visited if the results retrieved 
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from the 1st tier does not reach the number of results (k) the user specifies. With 

tiering, we reduce the size of the index loaded into the memory by using only the 

highest contributing documents to avoid scoring documents that might not be in the 

final results for that term. 

3.3.2 Term partitioning 

In term-based partitioning, all postings of the same term must be in the same 

partition. As a consequence, the data will be shuffled across the network, so we need 

to minimize the size of the shuffled data to build the index efficiently and reduce the 

side effects of the shuffling process. Figure 8 shows the process of building a term 

partitioned index. Similar to document-based partitioning, the input to the term-based 

partitioning indexer is the preprocessed collection from the preprocessing stage. To 

create the index, we produce a key-value pair <Term, <docid, tf>> for each document. 

Then, we group similar terms across the partitions. Spark offers many transformations 

to accomplish this goal, such as groupByKey, combineByKey, reduceByKey, 

and aggregateByKey. Each transformation has different advantages and 

disadvantages. For our system, we choose aggregateByKey.  

This transformation combines similar keys efficiently by aggregating the 

results within the partition first to create an intermediate result. Then, it will combine 

similar keys of the intermediate results across the partitions. This approach will reduce 

the amount of data shuffled across the network. Whereas groupByKey, for 

example, will combine on the cluster level by shuffling all the key-value pairs, so 

similar keys end up on the same partition. However, both transformations will output 

a key-value pair, where the value is a list of values that share the same key. The 

transformation signature was mentioned shown earlier in Table 1. For more details, 
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refer to lines 1-16 in Algorithm 2 to see the functions aggregateByKey uses to 

achieve its goal. The first parameter initlalList is an empty postings list that holds df, 

cf, and the docid and the tf arrays. AddToList is the function used to aggregate the 

postings list within the partition. Each pair is being added to the postings list of a term, 

and the values of the postings list are updated accordingly. Then, 

mergePartitionList decides how postings list across partitions are merged and 

updated.  

 

 

Figure 8. Term partitioning indexing process. 

 

 

The structure of the index RDD created in term-based partitioning is the same 

as document-based partitioning; therefore, the same design decisions made earlier are 

also applicable here. The only information we need from the pre-indexing stage is the 
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term to id mapping. Other term statistics; such as cf and df are computed directly after 

creating the index. Therefore, we do not need to compute them from the collection 

like the document-based partitioned index. In other words, the length of the postings 

list is the df, while the sum of tfs is the cf. Lastly, both the champion list and tiering 

can be used during indexing if the user chooses to use them, and both are built 

similarly to how they are built-in document-based partitioning. 
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3.4 Retrieval 

In the retrieval phase, the user can search the index by loading the index in 

memory, issuing queries, and receiving the results efficiently. Both efficiency and 

effectiveness are important in the retrieval stage; therefore, we focused on exploiting 

Spark efficiency to support our system. To meet this goal, we employ both static and 

dynamic pruning techniques to enhance the retrieval process. 

Figure 9 shows the process of retrieval in the proposed system. First, the user 

provides the path to the index and its related files saved in the indexing stage, such as 

the global statistics, and the mappings of webpageIDs and terms. As mentioned in 

chapter 2, Spark computes RDDs lazily; so, it will not load the RDD until the first 

query is issued. To avoid reissuing queries, we force the index to be loaded using the 

count() action. As for the global statistics, they are read into arrays and broadcasted 

to the workers, except for the webpageIDs mapping. By broadcasting these arrays, 

each worker will have a copy of this data locally, and it will not need for the driver to 

ship them each time they are needed. As for the webpageID to docid mapping, we 

read it into an RDD. Unlike the previous arrays that hold int numbers, this array will 

have String objects. Therefore, as the collection grows, the size of this mapping will 

grow larger into GBs. In an effort to avoid storing all this mapping into an executor, 

we save it as an RDD to distribute it in the cluster. 

Preprocessing. When the user issues a query, the query will be preprocessed 

with the same pipeline used for the documents. Then the processed query tokens are 

mapped to their ids from the terms to ids array using binary search, which will return 

the index of the term if it is found, and -1 if it is not. Recall that terms to ids mapping 

has initially been sorted alphabetically; so, the ids will be the indices of the terms in 
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the array. Then, a map that holds the termId and the tf of each term is broadcasted to 

the workers, so each worker has a copy of the query.  

Query evaluation. The next stage is query evaluation, where the documents 

are scored. The query evaluation process depends on the schema the user chooses in 

the indexing. Depending on the partitioning, the query evaluation can be done 

document at a time (DAAT) or term at a time (TAAT). In DAAT, the postings lists of 

the query terms are processed in parallel by advancing one docid at a time; thus, 

assigning a score for each docid as it processed. This approach is suitable for a 

document-based partitioning because all the document terms are within the same 

partition; so, a full score of a document can be computed within a partition. On the 

other hand, TAAT is more suitable for term-based partitioning, where it processes 

each query term sequentially, going through its postings list and keeping track of the 

partial scores of the docids in accumulators. 

Scoring. When a map of query terms reaches the worker, it will first load and 

persist the index to memory if it was the first query; then, it will filter the query terms 

from the index to get their postings list (Line 11 in Algorithm 3). A filter 

transformation in Spark does not trigger shuffling. So, the system works per partition 

to get the scores by performing either a TAAT or DAAT. The score of a document is 

computed using BM25. Within each partition, the system keeps track of the top k 

scores. Once the scoring of a partition is completed, the results are collected at the 

driver node – the master node in Spark that is responsible for communicating with the 

cluster nodes and collecting the results – where the top k of the local top k  from the 

partitions is collected and the docid is replaced with the webpageID. Since the 

webageID is an RDD with docid as the key, we efficiently join this RDD with the 
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collected results using map side join by broadcasting the results to the workers and 

joining with docid as key. After that, the results are presented to the user (Lines 28-

31). 

 

 

Figure 9. Retrieval process. 
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3.4.1 Dynamic Pruning 

Although these query processing techniques are state of the art, they are not 

efficient. For example, TAAT consumes memory as it must keep track of seen docids 

so far. Whereas DAAT is slower compared to TAAT [24]. Therefore, in our proposed 

system, we add efficiency methods aiming to enhance the retrieval phase. In addition 
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to tiering and the champion list used in the indexing stage, we included MaxScore in 

the retrieval. 

MaxScore is a dynamic pruning algorithm that skips postings as the evaluation 

is ongoing [26]. By adding MaxScore, we can reduce the time needed for scoring the 

postings list. 

The main point of MaxScore is to make use of terms contribution to compute 

an upper bound for each postings list of the query term. While scoring a document, 

the sum of the current document score and the contribution of the next unseen terms 

is used to decide if the document should be skipped or not. A threshold – which is the 

lowest score of a document in the current top k – is used to determine if a document 

can be considered a candidate for the final results list. If the sum of the current score 

and the contribution of the unseen terms exceeds the threshold, it means the document 

is a candidate for the final top k, but if it fails to surpass the threshold, then the 

document is skipped from all terms as there is no expectation for it to be in the top 

scoring documents.  

In a distributed environment, it was challenging to implement MaxScore for 

term-based partitioning because some information like the current top k has to be 

known between nodes, and in Spark, it is not possible to communicate within nodes 

with a variable that allows both reading and writing. Therefore, TAAT 

implementation does not include MaxScore. However, in document-based 

partitioning, each partition has a local index; so, we can implement MaxScore per 

partition and then propagate the final results to the driver to get the final ranking. 
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3.5 Implementation Issues 

3.5.1 API 

The created library has two main APIs, an indexing API and a retrieval API. For the 

Indexing API, the available methods include:  

 setPartitioningSchema(partitionSchema, 

pathToConfigurationFile): to set it to either document based 

partitioning or term based partitioning 

 createIndex(inputPath, OutputPath): create the index as shown in the 

previous section 

As for the retrieval API, the user has access to the search method to submit the 

queries. 

 loadIndex(indexPath, SparkContext): to load the index and the 

related global statistics into memory 

 search (query, SparkContext): to search for a single query and return 

the results to the user. 

 batchSearch(queries[], SparkContext, output): given a list of 

queries and an output path, this method writes the results of the queries in the output 

path. 

3.5.2 Required Configurations 

To run SparkIR the user has to include a configuration file that the user has to 

include. The configuration file has the different parameters the system depends on in 

both indexing and retrieval. These configurations include: 

 tier-ubound and tier-lbound: the tiers tf cutoff values. 
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 number-of-partition: number of partitions of the index 

 min-df: minimum value of df 

 max-df: maximum value of df 

 no-prunning: A flag that indicates if the index is with or without pruning. 

 champion-list: A flag that indicates if the champion list technique is selected or 

not 

 n: The size of the champion list 

 tiering: A flag that indicates if tiering is included or not 

 ranking-method: The ranking method 

 maxscore: A flag that indicates if maxscore should be implemented or not 

 k: The size of the results returned to the user 

 query-evaluation: The query evaluation technique - DAAT or TAAT - . 
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3.6: Experimental Evaluation 

In this chapter, we will evaluate the performance of the proposed system. This 

chapter is divided into two sections. In the first section, we discuss the experimental 

setup where we disclose the dataset and the services used for evaluation. The second 

section shows and discusses the results of the different stages of the system, and how 

the system performs against the baseline. 

3.7 Experimental Setup 

3.7.1 Dataset 

The dataset used is a subset of ClueWeb123. ClueWeb12 contains about 733 

million English web pages collected from February to May of 2012. Carnegie Mellon 

University was responsible for collecting this dataset and distributing it. It took four 

months of crawling to collect the dataset. Once the crawling was over, the data was 

cleaned by removing non-English content, and other pages or websites that are not 

usable as part of a research dataset. The uncompressed size of the dataset is 27.3 TB. 

ClueWeb12-B13 is a 7% sample that was created by taking the 14th document from 

each file of the full dataset. The number of documents in this collection is 52,343,021. 

The collection was distributed on HDFS with three replications as compressed files. 

This sample is the dataset we use for our evaluations. Therefore, from this point 

forward, 'dataset' refers to ClueWeb12-B13 unless otherwise stated. 

In the upcoming sections, we evaluate the scalability and response time of the 

SparkIR architecture. Another important aspect is to make sure that the effectiveness 

of the proposed system does not fall when we perform the efficiency methods. 

                                                 

3 https://lemurproject.org/clueweb12/ 
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The queries used for this experiment are from the TREC2013 and TREC2014 

web track. Each set has 50 different queries of varying lengths. Figure 10 shows the 

length distribution of the 100 queries. These queries will be used for testing the 

effectiveness and efficiency of the proposed system. 

 

 

Figure 10. Query length distribution. 

 

 

 

 

3.7.2 Evaluation environment 

We test the system on a three-server cluster. Each server has 120 cores and 

128 GB memory. However, only 100 GB is configured for Hadoop on each node. The 
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cluster has Hadoop 2.6.0 and Spark 1.6.0 installed.  All the below experiments were 

run on this cluster using Yarn as the resource manager. 

In both indexing and retrieval, we use the same number of executors and 

memory per executor. Empirically, we fixed the memory per executor to 22 GB and 

the number of cores to three cores per executor. By default, Spark assigns 128 MB for 

java heap overhead, a memory portion added to an executor to avoid Java heap errors. 

We added about 3 GB for each executor as an overhead; therefore, in total, each 

executor has about 25 GB reserved for its use. Aside from the executor, we also need 

to specify the memory size of the driver and its number of cores. Since most of the 

work is done on the executors, the driver does not need to have much memory, but it 

needs enough in case we collect data to it. Thus, we assigned 5 GB for the driver, and 

the number of cores is one which is the default value assigned by Spark. More details 

on how and why we choose these numbers will be mentioned in the subsequent 

sections.  

3.7.3 Performance measures 

Since the main field this work tackles is Big data, high efficiency is essential 

for SparkIR. Therefore, we will be focusing on time in both the indexing and retrieval 

stages. In the indexing phase, we will evaluate how fast the system indexes a 

collection as it grows. As for the retrieval, we will conduct experiments to measure 

the response time of the system. For both stages, we will test how to fine-tune Spark 

to enhance its performance. However, this does not mean we will neglect the 

effectiveness, as we need our system to be efficient without harming its effectiveness.  

3.8 Indexing Performance 
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In this section, we evaluate the time it takes for SparkIR to build the index. 

Aside from the number of executors and cores assigned for Spark, the number of 

partitions is the only parameter in SparkIR that affects the indexing time. In Spark, it 

is recommended to either have the number of partitions to be 2 or 3 times the number 

of CPUs or by dividing the collection size on the block size [27]. For our system, we 

decided to choose the number of partitions based on the size of the data.  We split the 

data into six different sizes; the smallest data size has about 7 million documents, 

while the largest size is the full 52 million documents collection. 

As mentioned earlier, the other parameters that affect the indexing are Spark 

parameters. The speed of execution in Spark is greatly affected by the number of 

executors and cores. The more executors and cores per executor we employ, the faster 

the job will be if we assigned enough memory to support the job execution. However, 

these two parameters are limited by the available resources and the size of the data.  

For a fair comparison, we fixed the number of cores and the size of memory to 

accommodate the largest size of the dataset. We choose the memory per executor to 

be 22 GB, this forced Spark to create 11 executors with about four executors on two 

nodes while the last node has three executors and the driver. As for the cores, we set 

it to three cores per node. We choose these values empirically by indexing the full 

collection and choose the configuration that led to the best results. However, we 

change the number of partitions according to the size of the data.  Moreover, the driver 

needs enough memory to collect the mapping RDDs that are needed for retrieval. 

Similarly, we tried different driver size starting from the default value of 1 GB until 

we reached 5 GB where the RDDs were collected without causing an out of memory 

error in the driver. 
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3.8.1 Preprocessing 

In our system, preprocessing can either be pipelined along with the indexing 

stage or ran as a separate stage where the intermediate preprocessed collection is saved 

to disk.  For the experiment, we opt to save the intermediate results on disk. Then we 

based the number of partitions on the size of the dataset after preprocessing. Table 2 

shows the rounded partition number for each dataset. We round up the number 

partitions to a few more than the original number given by division to reduce the 

chances of out of memory problems. 

 

Table 2. The size and Number of Partitions for each dataset 

No. of documents in millions 7 15 23 31 36 51 

Size in GB 20.3 39.5 63.1 85.6 101.8 151.9 

No. of partitions 150 310 500 700 900 1200 

 

 

Since the preprocessing is shared between the document and term partitioning 

indexing, we excluded that time from the indexing. It is also worth noting that the 

reported time for preprocessing also includes writing to disk as SparkIR will execute 

the preprocessing transformation pipeline after calling the action 

saveAsObjectFile. Thus, it is difficult to measure the real-time taken by 
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preprocessing. Figure 11 shows the time taken by preprocessing for the different 

collection sizes. 

The preprocessing is approximately linear in the size of the data and as the 

size of the collection increases, the longer it takes to preprocess the collection. It is 

also worth noting that the number of partitions affects the speed of processing 

significantly. Naturally, more partitions mean more tasks to schedule; therefore, the 

longer it takes to finish a job. On the other hand, with fewer partitions, we will need 

enough memory to fit the partitions in the executor storage memory and save some 

memory for computation. 

 

Figure 11. Preprocessing time across different dataset sizes 

 

3.8.2 Indexing 
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After preprocessing, we indexed the different sizes using both document 

partitioning and term partitioning. Figure 12 shows the indexing time only across the 

datasets.  

 

 

 

Figure 12.Document and term partitioning indexing time 

 

 

The indexing time for both term and document partitioning is increasing with 

the dataset size. However, what is striking in this figure is the difference in how the 

increase happens in both techniques. As the figure shows, the increase in time for term 

partition is much larger than document partitioning. This difference could be due to 

the shuffling that happens in the term partitioning.  Unlike term partitioning, 

document partitioning is designed to avoid unnecessary shuffling by working per 
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partitioning. Meanwhile, in term partitioning, Spark has to shuffle the whole dataset 

to group similar terms in the same partition to build the indexes.  Although we tried 

to employ the recommended Spark method AggregateByKey, the shuffling proved 

to be very expensive. As a consequence, as the number of partitions and data 

increases, the time to build the index increases significantly. 

This issue caused some problems for us. First, when indexing the 36 million 

with 900 partitions the AggregateByKey, ends up failing as some executors reach 

the maximum allocated memory for them. Therefore, we tried increasing the number 

of partitions. We tried different numbers and ended up with 1000 partition to the  

dataset of size 36 million document and 1400 for the full dataset. The indexing time 

kept increasing sharper compared to document partitioning, however we did not get 

any errors. However, it will be unfair to compare the performance with the different 

numbers of partitions for each schema since more partitions mean more time needed 

to schedule and compute them. 

This experiment answers our research question about the partitioning 

technique best suited for Spark. Although we cannot claim that Spark cannot index 

the full collection, we can conclude that Spark is more suitable for document based 

partitioning as it does not need to shuffle huge amount of data over the network. The 

total time for preprocessing and indexing is available in Table 3 
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Table 3. Total Indexing time with Preprocessing for Document Partitioning and Term 

Partitioning in minutes 

Datasets 

 7 15 23 31 36 51 

DP 33 101.4 165 251.3 322.6 483.3 

TP 42.2 142.7 389 464.3 618.9 1438.1 

 

 

3.9 Retrieval Performance 

For the retrieval phase, we measure the response time of the system. We 

conducted two different experiments to test our system. In the first experiment, we 

measure the response time across the dataset sizes and check the effects of changing 

the executor memory and cores have on the response time if we fixed the dataset size. 

The last section compares the performance of our system against Elasticsearch. For 

both experiments, we retrieve the top k where k = 10 and use BM25 as our ranking 

method. 

3.9.1 Response time across different dataset sizes 

In this experiment, we used the same configurations for the executor memory 

and cores as we did in the indexing. Figure 13 shows the response time across different 

datasets – excluding the 51 million documents dataset – for different techniques. In 
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this test, we focused on DAAT, TAAT, Champion list with DAAT, and Maxscore. 

For the champion list the length of the postings list was set to 1000. 

As expected with small datasets, the retrieval is fast; however, the response 

time increases as the dataset size increases. We can also see that in most cases, 

Maxscore is faster than DAAT, but with a small margin. Furthermore, most 

noticeably, the TAAT response time increases at a faster pace than the rest. This high 

increase could be due to the skewed data that occurs due to the architecture of the term 

partitioning. 

 

 

Figure 13. Response time for different techniques 
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By definition, the postings of a term must all be on the same partition. 

Therefore, terms with very long postings list may appear on the same partition; as a 

result, some partitions will be larger than the rest. Thus, execution might take longer 

on some partitions than others. This case was evident after inspecting the size of the 

partitions of term partitioning.  While the size of the partitions was acceptably uniform 

in document partitioning, it was visibly skewed with term partitioning.  For example, 

in one index for the same dataset, the size of partitions ranged from 300 MB to 70MB 

in term partitioning, but for document partitioning, the sizes were between 116 MB to 

90 MB, and they had more fair distribution than term partitioning. Due to this, some 

tasks were taking longer than others since in Spark a task is the whole partition itself.    

3.9.2 Effects of number of executors and cores on the retrieval 

As mentioned earlier in this section, the execution time of a job in Spark is 

affected by the number of cores, executors, and partitions. In this experiment, we will 

focus solely on the 23 million records dataset. We conducted two tests; in the first, we 

fixed the number of executors and varied the number of cores per executor. While in 

the second, we fixed the number of cores and executors and varied the number of 

partitions. In both experiments, we used 11 executors. Figure 14 shows how response 

time is affected by the number of partitions. In this test, we fixed the number of cores 

to 5 per executor, and in total, we had 11 executors. The figure shows an increase in 

time as we increase the number of partitions. This proves that in order to get an 

optimal response time, we need to make sure that the number of partitions is suitable 

for the job. 
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Figure 14. The effect of number partitions on response time 

 

 

In the next experiment, we also fixed the number of executors to 11 while 

changing the number of cores to see how it affects the response time for the different 

partitions. From Figure 15, we note that as we increase the number of cores from 1 to 

5 the response time decrease; however, the change in response time was insignificant 

after five cores. From this test, we can conclude that the performance of retrieval will 

have a slight change after hitting a specific number of cores. For this small collection 

and number of executors, five cores would be enough to carry out the retrieval job. 
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Figure 15. The effect of the number of cores and partitions on response time 

 

 

3.10 SparkIR vs. Elasticsearch 

3.10.1 Effectiveness 
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system against Elasticsearch. For SparkIR, we will only focus on document 

partitioning with different efficiency techniques. Table 4 shows the effectiveness of 

document partitioning with the champion list, MaxScore, Tiering, and standard 
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tf less than 7 and greater than or equal to 3, the last tier has postings with tf less than 

3.  

The results reported in the table represent the effectiveness of SparkIR using 

BM25. It is noticeable that Elasticsearch has better performance than our system, 

although both systems use BM25. However, Elasticsearch uses a Lucene scoring 

function that is a modified version that differs slightly from the original BM25 that 

we use. Moreover, while indexing, our system faced some issues processing some of 

the WARC files due to encoding; thus, we had to catch and skip these records. In total, 

the number of skipped records was about 600,000 records. Meanwhile, Elasticsearch 

takes as an input raw text in JSON format. Therefore, Elasticsearch had no issues 

while indexing the full dataset. Due to our decision to skip these records, we might 

have skipped potential relevant documents, which led to a decrease in the 

effectiveness of Spark IR. 

 However, our original intent was to make sure that our system's effectiveness 

is not significantly affected by the efficiency techniques and this is what we achieved. 

Looking at the figures obtained we can see that the effectiveness was maintained 

across the different efficiency methods. We can see that with the efficiency techniques 

applied in SparkIR do not harm the effectiveness significantly. 

It is also worth noting that the Tiering achieved the lowest results out of all the 

techniques. This could be due to how tiering chooses the top k scores from the tiers. 

It is possible that some terms do not exists in the same tier; therefore, a document that 

might be relevant might not have a high score when scoring terms from the first tier 

which might lead to it being excluded. 
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Table 4. The effectiveness of the different techniques against Elasticsearch 

Techniques 

TREC2013 TREC2014  

P@10 nDCG@10 P@10 nDCG@10 

DAAT 0.1820 0.1238 0.1840 0.1163 

MaxScore 0.1820 0.1210 0.1840 0.1115 

Champion list 

+DAAT 

0.1880 0.1234 0.1900 0.1174 

Tiering + 

DAAT 

0.1820 0.1188 0.1760 0.1223 

Elasticsearch 0.204 0.1323 0.276 0.1481 

 

 

3.10.2 Response time 

It was challenging to compare the performance of our proposed system against 

Elasticsearch because the systems differ in the concept of sizes of the partitions. 

Elastic search has a similar concept, but it is referred to as shards. In Elasticsearch, 

each shard is a Lucene index, and the Elasticsearch team recommends that a single 

shard should be large enough to reduce the overhead of searching many small shards. 

In the official documentation of Elasticsearch, they recommended the size of a shard 

should be around 20 to 40 GB, which is the contrast of the size of a partition in Spark. 

In Spark, it is recommended that the size of a partition to be small to fit in an executor 

while the computation is ongoing. 
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To conduct a fair comparison, we attempted to index Elasticsearch on 1024 

shards - the maximum number of shards accepted by Elasticsearch-, but the indexing 

faced many errors as the rate of requests to the index exceeded the threshold of 

requests that Elasticsearch can handle for this small collection. This error caused 

Elasticsearch to skip some records during the indexing processes.  

So, we opt to index Elastic search on 25 shards because the total size of the 50 

million documents in JSON format is 447 GB. Thus, by having 25 shards, each shard 

should be around 20 GB or more. This approach puts our system at a disadvantage 

since it was tested earlier that the number of partitions affects the retrieval process and 

given the size of the index we cannot increase the number of cores as it will either 

force the executor to spill the persisted RDDs or to waste time in garbage collection 

instead of actual computation. 

Nevertheless, we compared the response time of Elasticsearch with the 

different techniques of SparkIR to see the difference in response time if both systems 

were indexed to the recommended sizes of shards/partitions. Table 5 shows the 

average response time of Elasticsearch, and SparkIR with DAAT, champion list, and 

Tiering. Compared to Elasticsearch, SparkIR response time was around 8.8 to 9.2 for 

the different techniques. The response time got better as we applied the efficiency 

techniques, and this is due to the reduction of the index size. Although in all cases the 

index is in memory, without any efficiency methods most of the space in the executors 

is used for storage. Thus, the executor will need to free memory by doing garbage 

collection while scoring. This behavior was noticed with long postings lists, as with 

shorter postings lists, no garbage collection was needed; therefore, the response time 

was shorter for these queries. For the Champion list, the response time decreased 
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while maintaining its effectiveness, as shown in Table 4. However, by using Tiering, 

we achieved high response time in favor of effectiveness.  

 

Table 5. Average response time of SparkIR and Elasticsearch 

IR system Average response time(sec) 

SparkIR – DAAT 9.2239 

SparkIR – Maxscore  8.75581 

SparkIR – Champion list 1.90208 

SparkIR – Tiering   0.74703 

Elasticsearch 2.32715 
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Chapter 4 : Conclusion and Future Work 

This work aimed to build a scalable IR engine over Spark framework. We tried 

to include all the basic features of an IR engine and its architecture and test how they 

can be implemented on this framework. The results showed that this framework has a 

promising performance in the IR field. Although the current results show that Spark 

is not a competitor to the current distributed search engine if it only supported state-

of-the-arts techniques, but by including some efficiency techniques, it might be a 

promising competitor. Finally, as stated in earlier sections, we managed to create a 

library over Spark core that can work together with the other spark libraries such as 

MLlib and Streaming.  

However, this work still has room for growth. In the future, we would like to 

include more advanced ranking methods like vector models and language models. 

Furthermore, we want to focus on efficiency and implement other retrieval efficiency 

methods like WAND. We also think that a framework like Spark could be used for 

batch query processing by issuing different queries at the same time. We also want to 

study new alternatives to indexing the collection as a term -based partitioned index to 

get overcome the shuffling bottleneck. 

Furthermore, we based our system on RDDs, which are now considered low 

level as new data structures are added in the newer versions of Spark. Thus, we would 

like to examine the difference between implementing our system on RDDs and 

Datasets. In Spark 2.0+, Datasets are marketed as a combination of an RDD and 

Dataframes, making it the most efficient structure in the new versions of Spark 
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because it combines the best features of both data structures. Lastly, due to the time 

constraints, we were not able to test the limits of Spark in indexing more than 50 

million documents. Therefore, in the future, we will aim to index the full ClueWeb12 

dataset to see how Spark performs under such a huge collection in both indexing and 

search. 
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