1,432 research outputs found

    Multiple classifiers in biometrics. part 1: Fundamentals and review

    Full text link
    We provide an introduction to Multiple Classifier Systems (MCS) including basic nomenclature and describing key elements: classifier dependencies, type of classifier outputs, aggregation procedures, architecture, and types of methods. This introduction complements other existing overviews of MCS, as here we also review the most prevalent theoretical framework for MCS and discuss theoretical developments related to MCS The introduction to MCS is then followed by a review of the application of MCS to the particular field of multimodal biometric person authentication in the last 25 years, as a prototypical area in which MCS has resulted in important achievements. This review includes general descriptions of successful MCS methods and architectures in order to facilitate the export of them to other information fusion problems. Based on the theory and framework introduced here, in the companion paper we then develop in more technical detail recent trends and developments in MCS from multimodal biometrics that incorporate context information in an adaptive way. These new MCS architectures exploit input quality measures and pattern-specific particularities that move apart from general population statistics, resulting in robust multimodal biometric systems. Similarly as in the present paper, methods in the companion paper are introduced in a general way so they can be applied to other information fusion problems as well. Finally, also in the companion paper, we discuss open challenges in biometrics and the role of MCS to advance themThis work was funded by projects CogniMetrics (TEC2015-70627-R) from MINECO/FEDER and RiskTrakc (JUST-2015-JCOO-AG-1). Part of thisthis work was conducted during a research visit of J.F. to Prof. Ludmila Kuncheva at Bangor University (UK) with STSM funding from COST CA16101 (MULTI-FORESEE

    Strategies for exploiting independent cloud implementations of biometric experts in multibiometric scenarios

    Get PDF
    Cloud computing represents one of the fastest growing areas of technology and offers a new computing model for various applications and services. This model is particularly interesting for the area of biometric recognition, where scalability, processing power and storage requirements are becoming a bigger and bigger issue with each new generation of recognition technology. Next to the availability of computing resources, another important aspect of cloud computing with respect to biometrics is accessability. Since biometric cloud-services are easily accessible, it is possible to combine different existing implementations and design new multi-biometric services that next to almost unlimited resources also offer superior recognition performance and, consequently, ensure improved security to its client applications. Unfortunately, the literature on the best strategies of how to combine existing implementations of cloud-based biometric experts into a multi-biometric service is virtually non-existent. In this paper we try to close this gap and evaluate different strategies for combining existing biometric experts into a multi-biometric cloud-service. We analyze the (fusion) strategies from different perspectives such as performance gains, training complexity or resource consumption and present results and findings important to software developers and other researchers working in the areas of biometrics and cloud computing. The analysis is conducted based on two biometric cloud-services, which are also presented in the paper

    Multi-modal palm-print and hand-vein biometric recognition at sensor level fusion

    Get PDF
    When it is important to authenticate a person based on his or her biometric qualities, most systems use a single modality (e.g. fingerprint or palm print) for further analysis at higher levels. Rather than using higher levels, this research recommends using two biometric features at the sensor level. The Log-Gabor filter is used to extract features and, as a result, recognize the pattern, because the data acquired from images is sampled at various spacing. Using the two fused modalities, the suggested system attained greater accuracy. Principal component analysis (PCA) was performed to reduce the dimensionality of the data. To get the optimum performance between the two classifiers, fusion was performed at the sensor level utilizing different classifiers, including K-nearest neighbors (K-NN) and support vector machines (SVMs). The technology collects palm prints and veins from sensors and combines them into consolidated images that take up less disk space. The amount of memory needed to store such photos has been lowered. The amount of memory is determined by the number of modalities fused

    Quality-Based Conditional Processing in Multi-Biometrics: Application to Sensor Interoperability

    Full text link
    As biometric technology is increasingly deployed, it will be common to replace parts of operational systems with newer designs. The cost and inconvenience of reacquiring enrolled users when a new vendor solution is incorporated makes this approach difficult and many applications will require to deal with information from different sources regularly. These interoperability problems can dramatically affect the performance of biometric systems and thus, they need to be overcome. Here, we describe and evaluate the ATVS-UAM fusion approach submitted to the quality-based evaluation of the 2007 BioSecure Multimodal Evaluation Campaign, whose aim was to compare fusion algorithms when biometric signals were generated using several biometric devices in mismatched conditions. Quality measures from the raw biometric data are available to allow system adjustment to changing quality conditions due to device changes. This system adjustment is referred to as quality-based conditional processing. The proposed fusion approach is based on linear logistic regression, in which fused scores tend to be log-likelihood-ratios. This allows the easy and efficient combination of matching scores from different devices assuming low dependence among modalities. In our system, quality information is used to switch between different system modules depending on the data source (the sensor in our case) and to reject channels with low quality data during the fusion. We compare our fusion approach to a set of rule-based fusion schemes over normalized scores. Results show that the proposed approach outperforms all the rule-based fusion schemes. We also show that with the quality-based channel rejection scheme, an overall improvement of 25% in the equal error rate is obtained.Comment: Published at IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Human

    Multiple classifiers in biometrics. Part 2: Trends and challenges

    Full text link
    The present paper is Part 2 in this series of two papers. In Part 1 we provided an introduction to Multiple Classifier Systems (MCS) with a focus into the fundamentals: basic nomenclature, key elements, architecture, main methods, and prevalent theory and framework. Part 1 then overviewed the application of MCS to the particular field of multimodal biometric person authentication in the last 25 years, as a prototypical area in which MCS has resulted in important achievements. Here in Part 2 we present in more technical detail recent trends and developments in MCS coming from multimodal biometrics that incorporate context information in an adaptive way. These new MCS architectures exploit input quality measures and pattern-specific particularities that move apart from general population statistics, resulting in robust multimodal biometric systems. Similarly as in Part 1, methods here are described in a general way so they can be applied to other information fusion problems as well. Finally, we also discuss here open challenges in biometrics in which MCS can play a key roleThis work was funded by projects CogniMetrics (TEC2015-70627-R) from MINECO/FEDER and RiskTrakc (JUST-2015-JCOO-AG-1). Part of this work was conducted during a research visit of J.F. to Prof. Ludmila Kuncheva at Bangor University (UK) with STSM funding from COST CA16101 (MULTI-FORESEE

    Performance analysis of multimodal biometric fusion

    Get PDF
    Biometrics is constantly evolving technology which has been widely used in many official and commercial identification applications. In fact in recent years biometric-based authentication techniques received more attention due to increased concerns in security. Most biometric systems that are currently in use typically employ a single biometric trait. Such systems are called unibiometric systems. Despite considerable advances in recent years, there are still challenges in authentication based on a single biometric trait, such as noisy data, restricted degree of freedom, intra-class variability, non-universality, spoof attack and unacceptable error rates. Some of the challenges can be handled by designing a multimodal biometric system. Multimodal biometric systems are those which utilize or are capable of utilizing, more than one physiological or behavioural characteristic for enrolment, verification, or identification. In this thesis, we propose a novel fusion approach at a hybrid level between iris and online signature traits. Online signature and iris authentication techniques have been employed in a range of biometric applications. Besides improving the accuracy, the fusion of both of the biometrics has several advantages such as increasing population coverage, deterring spoofing activities and reducing enrolment failure. In this doctoral dissertation, we make a first attempt to combine online signature and iris biometrics. We principally explore the fusion of iris and online signature biometrics and their potential application as biometric identifiers. To address this issue, investigations is carried out into the relative performance of several statistical data fusion techniques for integrating the information in both unimodal and multimodal biometrics. We compare the results of the multimodal approach with the results of the individual online signature and iris authentication approaches. This dissertation describes research into the feature and decision fusion levels in multimodal biometrics.State of Kuwait – The Public Authority of Applied Education and Trainin
    • 

    corecore