78 research outputs found

    Application of Memristors in Microwave Passive Circuits

    Get PDF
    The recent implementation of the fourth fundamental electric circuit element, the memristor, opened new vistas in many fields of engineering applications. In this paper, we explore several RF/microwave passive circuits that might benefit from the memristor salient characteristics. We consider a power divider, coupled resonator bandpass filters, and a low-reflection quasi-Gaussian lowpass filter with lossy elements. We utilize memristors as configurable linear resistors and we propose memristor-based bandpass filters that feature suppression of parasitic frequency pass bands and widening of the desired rejection band. The simulations are performed in the time domain, using LTspice, and the RF/microwave circuits under consideration are modeled by ideal elements available in LTspice

    Reliable SPICE Simulations of Memristors, Memcapacitors and Meminductors

    Get PDF
    Memory circuit elements, namely memristive, memcapacitive and meminductive systems, are gaining considerable attention due to their ubiquity and use in diverse areas of science and technology. Their modeling within the most widely used environment, SPICE, is thus critical to make substantial progress in the design and analysis of complex circuits. Here, we present a collection of models of different memory circuit elements and provide a methodology for their accurate and reliable modeling in the SPICE environment. We also provide codes of these models written in the most popular SPICE versions (PSpice, LTspice, HSPICE) for the benefit of the reader. We expect this to be of great value to the growing community of scientists interested in the wide range of applications of memory circuit elements

    Memristor-based design solutions for mitigating parametric variations in IoT applications

    Get PDF
    PhD ThesisRapid advancement of the internet of things (IoT) is predicated by two important factors of the electronic technology, namely device size and energy-efficiency. With smaller size comes the problem of process, voltage and temperature (PVT) variations of delays which are the key operational parameters of devices. Parametric variability is also an obstacle on the way to allowing devices to work in systems with unpredictable power sources, such as those powered by energy-harvesters. Designers tackle these problems holistically by developing new techniques such as asynchronous logic, where mechanisms such as matching delays are widely used to adapt to delay variations. To mitigate energy efficiency and power interruption issues the matching delays need to be ideally retained in a non-volatile storage. Meanwhile, a resistive memory called memristor becomes a promising component for power-restricted applications owing to its inherent non-volatility. While providing non-volatility, the use of memristor in delay matching incurs some power overheads. This creates the first challenge on the way of introducing memristors into IoT devices for the delay matching. Another important factor affecting the use of memristors in IoT devices is the dependence of the memristor value on temperature. For example, a memristance decoder used in the memristor-based components must be able to correct the read data without incurring significant overheads on the overall system. This creates the second challenge for overcoming the temperature effect in memristance decoding process. In this research, we propose methods for improving PVT tolerance and energy characteristics of IoT devices from the perspective of above two main challenges: (i) utilising memristor to enhance the energy efficiency of the delay element (DE), and (ii) improving the temperature awareness and energy robustness of the memristance decoder. For memristor-based delay element (MemDE), we applied a memristor between two inverters to vary the path resistance, which determines the RC delay. This allows power saving due to the low number of switching components and the absence of external delay storage. We also investigate a solution for avoiding the unintended tuning (UT) and a timing model to estimate the proper pulse width for memristance tuning. The simulation results based on UMC 180nm technology and VTEAM model show the MemDE can provide the delay between 0.55ns and 1.44ns which is compatible to the 4-bit multiplexerbased delay element (MuxDE) in the same technology while consuming thirteen times less power. The key contribution within (i) is the development of low-power MemDE to mitigate the timing mismatch caused by PVT variations. To estimate the temperature effect on memristance, we develop an empirical temperature model which fits both titanium dioxide and silver chalcogenide memristors. The temperature experiments are conducted using the latter device, and the results confirm the validity of the proposed model with the accuracy R-squared >88%. The memristance decoder is designed to deliver two key advantages. Firstly, the temperature model is integrated into the VTEAM model to enable the temperature compensation. Secondly, it supports resolution scalability to match the energy budget. The simulation results of the 2-bit decoder based on UMC 65nm technology show the energy can be varied between 49fJ and 98fJ. This is the second major contribution to address the challenge (ii). This thesis gives future research directions into an in-depth study of the memristive electronics as a variation-robust energy-efficient design paradigm and its impact on developing future IoT applications.sponsored by the Royal Thai Governmen

    Memristors

    Get PDF
    This Edited Volume Memristors - Circuits and Applications of Memristor Devices is a collection of reviewed and relevant research chapters, offering a comprehensive overview of recent developments in the field of Engineering. The book comprises single chapters authored by various researchers and edited by an expert active in the physical sciences, engineering, and technology research areas. All chapters are complete in itself but united under a common research study topic. This publication aims at providing a thorough overview of the latest research efforts by international authors on physical sciences, engineering, and technology,and open new possible research paths for further novel developments

    Hardware design of LIF with Latency neuron model with memristive STDP synapses

    Full text link
    In this paper, the hardware implementation of a neuromorphic system is presented. This system is composed of a Leaky Integrate-and-Fire with Latency (LIFL) neuron and a Spike-Timing Dependent Plasticity (STDP) synapse. LIFL neuron model allows to encode more information than the common Integrate-and-Fire models, typically considered for neuromorphic implementations. In our system LIFL neuron is implemented using CMOS circuits while memristor is used for the implementation of the STDP synapse. A description of the entire circuit is provided. Finally, the capabilities of the proposed architecture have been evaluated by simulating a motif composed of three neurons and two synapses. The simulation results confirm the validity of the proposed system and its suitability for the design of more complex spiking neural network

    Memristors for the Curious Outsiders

    Full text link
    We present both an overview and a perspective of recent experimental advances and proposed new approaches to performing computation using memristors. A memristor is a 2-terminal passive component with a dynamic resistance depending on an internal parameter. We provide an brief historical introduction, as well as an overview over the physical mechanism that lead to memristive behavior. This review is meant to guide nonpractitioners in the field of memristive circuits and their connection to machine learning and neural computation.Comment: Perpective paper for MDPI Technologies; 43 page

    Memristor: Modeling, Simulation and Usage in Neuromorphic Computation

    Get PDF
    Memristor, the fourth passive circuit element, has attracted increased attention from various areas since the first real device was discovered in 2008. Its distinctive characteristic to record the historic profile of the voltage/current through itself creates great potential in future circuit design. Inspired by its high Scalability, ultra low power consumption and similar functionality to biology synapse, using memristor to build high density, high power efficiency neuromorphic circuits becomes one of most promising and also challenging applications. The challenges can be concluded into three levels: device level, circuit level and application level. At device level, we studied different memristor models and process variations, then we carried out three independent variation models to describe the variation and stochastic behavior of TiO2 memristors. These models can also extend to other memristor models. Meanwhile, these models are also compact enough for large-scale circuit simulation. At circuit level, inspired by the large-scale and unique requirement of memristor-based neuromorphic circuits, we designed a circuit simulator for efficient memristor cross-point array simulations. Out simulator is 4~5 orders of magnitude faster than tradition SPICE simulators. Both linear and nonlinear memristor cross-point arrays are studied for level-based and spike-based neuromorphic circuits, respectively. At application level, we first designed a few compact memristor-based neuromorphic components, including ``Macro cell'' for efficient and high definition weight storage, memristor-based stochastic neuron and memristor-based spatio temporal synapse. We then studied three typical neural network models and their hardware realization on memristor-based neuromorphic circuits: Brain-State-in-a-Box (BSB) model stands for level-based neural network, and STDP/ReSuMe models stand for spiking neural network for temporal learning. Our result demonstrates the high resilience to variation of memristor-based circuits and ultra-low power consumption. In this thesis, we have proposed a complete and detailed analysis for memristor-based neuromorphic circuit design from the device level to the application level. In each level, both theoretical analysis and experimental data versification are applied to ensure the completeness and accuracy of the work

    Phase Noise Analyses and Measurements in the Hybrid Memristor-CMOS Phase-Locked Loop Design and Devices Beyond Bulk CMOS

    Get PDF
    Phase-locked loop (PLLs) has been widely used in analog or mixed-signal integrated circuits. Since there is an increasing market for low noise and high speed devices, PLLs are being employed in communications. In this dissertation, we investigated phase noise, tuning range, jitter, and power performances in different architectures of PLL designs. More energy efficient devices such as memristor, graphene, transition metal di-chalcogenide (TMDC) materials and their respective transistors are introduced in the design phase-locked loop. Subsequently, we modeled phase noise of a CMOS phase-locked loop from the superposition of noises from its building blocks which comprises of a voltage-controlled oscillator, loop filter, frequency divider, phase-frequency detector, and the auxiliary input reference clock. Similarly, a linear time-invariant model that has additive noise sources in frequency domain is used to analyze the phase noise. The modeled phase noise results are further compared with the corresponding phase-locked loop designs in different n-well CMOS processes. With the scaling of CMOS technology and the increase of the electrical field, the problem of short channel effects (SCE) has become dominant, which causes decay in subthreshold slope (SS) and positive and negative shifts in the threshold voltages of nMOS and pMOS transistors, respectively. Various devices are proposed to continue extending Moore\u27s law and the roadmap in semiconductor industry. We employed tunnel field effect transistor owing to its better performance in terms of SS, leakage current, power consumption etc. Applying an appropriate bias voltage to the gate-source region of TFET causes the valence band to align with the conduction band and injecting the charge carriers. Similarly, under reverse bias, the two bands are misaligned and there is no injection of carriers. We implemented graphene TFET and MoS2 in PLL design and the results show improvements in phase noise, jitter, tuning range, and frequency of operation. In addition, the power consumption is greatly reduced due to the low supply voltage of tunnel field effect transistor
    corecore