40 research outputs found

    An object oriented approach to electrical machine design

    Get PDF

    Automated design optimisation and simulation of stitched antennas for textile devices

    Get PDF
    This thesis describes a novel approach for designing 7-segment and 5-angle pocket and collar planar antennas (for operation at 900 MHz). The motivation for this work originates from the problem of security of children in rural Nigeria where there is risk of abduction. There is a strong potential benefit to be gained from hidden wireless tracking devices (and hence antennas) that can protect their security. An evolutionary method based on a genetic algorithm was used in conjunction with electromagnetic simulation. This method determines the segment length and angle between segments through several generations. The simulation of the antenna was implemented using heuristic crossover with non-uniform mutation. Antennas obtained from the algorithm were fabricated and measured to validate the proposed method.This first part of this research has been limited to linear wire antennas because of the wide range and flexibility of this class of antennas. Linear wire antennas are used for the design of high or low gain, broad or narrow band antennas. Wire antennas are easy and inexpensive to build. All the optimised linear wire antenna samples exhibit similar performances, most of the power is radiated within the GSM900 frequency band. The reflection coefficient (S11) is generally better than -10dB. The method of moment (MoM-NEC2) and FIT (CST Studio Suite 2015) solvers were used for this design. MATLAB is used to as an interface to control computational electromagnetic solvers for antenna designs and analysis. The genetic algorithm procedures were written in MATLAB. The second part of the work focuses on meshed ground planes for applications at 900 MHz global system for mobile communications (GSM), 2.45 GHz industrial, scientific, and medical (ISM) band and 5 GHz wearable wireless local area networks (WLAN) frequencies. Square ground planes were developed and designed using linear equations in MATLAB. The ground plane was stitched using embroidery machines. To examine the effect of meshing on the antenna performance and to normalise the meshed antenna to a reference, solid patch antenna was designed, fabricated on an FR4 substrate. A finite grid of resistors was created for numerical simulation in MATLAB. The resistance from the centre to any node of a finite grid of resistors are evaluated using nodal analysis. The probability that a node connects to each node in the grid was computed. The circuit model has been validated against the experimental model by measurement of the meshed ground plane. A set of measurement were collected from a meshed and compared with the numerical values, they show good agreement.</div

    Ontology-Driven Semantic Annotations for Multiple Engineering Viewpoints in Computer Aided Design

    Get PDF
    Engineering design involves a series of activities to handle data, including capturing and storing data, retrieval and manipulation of data. This also applies throughout the entire product lifecycle (PLC). Unfortunately, a closed loop of knowledge and information management system has not been implemented for the PLC. As part of product lifecycle management (PLM) approaches, computer-aided design (CAD) systems are extensively used from embodiment and detail design stages in mechanical engineering. However, current CAD systems lack the ability to handle semantically-rich information, thus to represent, manage and use knowledge among multidisciplinary engineers, and to integrate various tools/services with distributed data and knowledge. To address these challenges, a general-purpose semantic annotation approach based on CAD systems in the mechanical engineering domain is proposed, which contributes to knowledge management and reuse, data interoperability and tool integration. In present-day PLM systems, annotation approaches are currently embedded in software applications and use diverse data and anchor representations, making them static, inflexible and difficult to incorporate with external systems. This research will argue that it is possible to take a generalised approach to annotation with formal annotation content structures and anchoring mechanisms described using general-purpose ontologies. In this way viewpoint-oriented annotation may readily be captured, represented and incorporated into PLM systems together with existing annotations in a common framework, and the knowledge collected or generated from multiple engineering viewpoints may be reasoned with to derive additional knowledge to enable downstream processes. Therefore, knowledge can be propagated and evolved through the PLC. Within this framework, a knowledge modelling methodology has also been proposed for developing knowledge models in various situations. In addition, a prototype system has been designed and developed in order to evaluate the core contributions of this proposed concept. According to an evaluation plan, cost estimation and finite element analysis as case studies have been used to validate the usefulness, feasibility and generality of the proposed framework. Discussion has been carried out based on this evaluation. As a conclusion, the presented research work has met the original aim and objectives, and can be improved further. At the end, some research directions have been suggested.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Meta-parametric design: Developing a computational approach for early stage collaborative practice

    Get PDF
    Computational design is the study of how programmable computers can be integrated into the process of design. It is not simply the use of pre-compiled computer aided design software that aims to replicate the drawing board, but rather the development of computer algorithms as an integral part of the design process. Programmable machines have begun to challenge traditional modes of thinking in architecture and engineering, placing further emphasis on process ahead of the final result. Just as Darwin and Wallace had to think beyond form and inquire into the development of biological organisms to understand evolution, so computational methods enable us to rethink how we approach the design process itself. The subject is broad and multidisciplinary, with influences from design, computer science, mathematics, biology and engineering. This thesis begins similarly wide in its scope, addressing both the technological aspects of computational design and its application on several case study projects in professional practice. By learning through participant observation in combination with secondary research, it is found that design teams can be most effective at the early stage of projects by engaging with the additional complexity this entails. At this concept stage, computational tools such as parametric models are found to have insufficient flexibility for wide design exploration. In response, an approach called Meta-Parametric Design is proposed, inspired by developments in genetic programming (GP). By moving to a higher level of abstraction as computational designers, a Meta-Parametric approach is able to adapt to changing constraints and requirements whilst maintaining an explicit record of process for collaborative working

    Arcades, let's plays, and avant-gardes

    Get PDF

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF
    corecore