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Summary

Modelling of the electrical machine is taken from an object oriented design ap­
proach. Groups of objects have been identified that allow any electrical machine 
to be modelled. Objects range from values that parameterise any aspect of the 
design through to graphical primitives that construct the machine’s geometry. 
More complex objects utilise the symmetry within the machine to reduce the 
amount of modelling involved by replicating geometries and machine properties, 
allowing transformations during the mapping process. The end goal is to con­
struct a whole machine from the smallest component of symmetry, geometrically 
copying it to produce the entire machine whilst allowing transformations to han­
dle varying region and boundary properties. These components can be saved and 
imported into new models, parameterisation of the entire component allows them 
to be slotted into place in any new design.

¥

A simple language is used to represent these objects and thus the electrical ma­
chine. The language describes objects in terms of each other so that the state of 
the model can be stored in a dependency tree. Changes to the parameterisation 
result in manipulation of the dependency tree and these changes filter down the 
tree with immediate effect. This allows the entire machine geometry to change 
shape as a slot tooth is widened, it allows refinement of the mesh in response to 
numerical changes, and it also allows reconfiguration of an entire stator winding 
even though we only designed a single slot. Many objects exist within the groups 
identified and these can all be parameterised and interchanged, programatically 
we can make unlimited additions to these groups without risk of breaking the 
program. Manipulation of the dependency tree allows objects to be pulled out of 
the tree and substituted with a replacement, this implements the changes made 
to the model such that every change can be undone and redone with a history 
that goes back as far as required. Manipulating the dependency tree means that
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none of the objects need knowledge of how to undo themselves, we have a generic 
undo/redo mechanism.

The designer is now free to interchange objects, substitute one meshing algorithm 
for another, swap between library components of different machine parts, always 
with the ability to undo and redo changes and achieve greater freedom in the 
design process.
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Chapter 1

Introduction

Figure 1.1: The Beginnings Of An Electrical Machine Model, Nodal Outline Of 
A Stator Slot

Figure 1.1 outlines the beginnings of an electrical machine design. Whilst the 
design process may be more involved than this simplified figure details the foun­
dation of a mesh can be seen, a meshing algorithm may be all that is needed to 
complete the layout of nodes and interconnecting elements as seen in the mesh 
of figure 1.2.



1.1 Previous Work

Much work has been done on the generation of a mesh given the initial outlining 
geometry, such as the geometry of figure 1.2.

However very little work has been done, and even less published, on programs 
specific to defining the initial shape or geometry ready for finite element meshing. 
This is probably because such schemes are implemented in commercial programs 
and the methods have not been published. Programs such as SPEED [3], from the 
University of Glasgow, and JMAG-Studio[4], from The Japan Research Institute, 
hint to this.

SPEED generates the coordinates of nodes along all region boundaries, a process 
referred to as Unimesh. The meshing of these areas is then performed as a 
separate process within the software.

JMAG-Studio has the capability to read CAD data, such as DXF files generated 
by Autocad[5], so that “Analysis is implemented using the same shape data that 
is used in design” which suggests that the design process is initiated in the CAD 
package.

A CAD based approach allows the geometry to be defined in terms of graphical 
primitives, such as lines, arcs, circles, and splines. Once the outline of the mesh 
has been drawn it can be handed to an unstructured meshing algorithm to pro­
duce the final mesh. However generic CAD based packages are not specifically 
aimed at meshing and so, for example, cannot specify the node density or any 
other constraints on the mesh. Neither are they specifically aimed at the design 
of electrical machines and so, for instance, they do not allow the utilisation of 
symmetry within an electrical machine which would allow only a single rotor 
segment to be drawn.

A dedicated design process is needed for electrical machines that can take ele­
ments of the CAD process and produce the outline of the electrical machine’s 
geometry. This process can then benefit from the wealth of meshing algorithms 
available and use such algorithms to complete the finite element mesh outlined 
by this geometry. Once changes to the geometry are made, through parameteri­
sation, the finite element mesh is reconstructed.
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There are some publications in this area. A generic extensible geometry interface [6] 
focuses on the interchange of geometric data between solid modelling programs, 
translating different representations into its own. Related heavily to the use 
of CAD systems, this work allows the interchange of data between several well 
known solid modellers. It highlights that for a given geometry the mesh often 
needs to be tailored for different solutions and that producing the geometry in 
one program whilst generating the mesh in another is problematic. The interface 
allows its own geometric representation, translated from others, to be read in 
terms of points, curves, and surfaces.

On a similar theme the object-oriented virtual geometry interface[7] focuses not 
on one geometric representation but on the ability to read one representation and 
translate to several, translating to the best representation for a given problem.
Solid model, faceted, composite, and mesh based representations are briefly dis­
cussed but the work focuses on object oriented techniques that allow access and 
translation b etween the geometric representations, whilst allowing t
of other representations.

Work has been done using parameterised templates [8] where the outlining ge­
ometry is still defined using nodes, however labels are given to these nodes so 
they can be identified easily. This process adds a layer of abstraction. Before a 
meshing algorithm is used to mesh the enclosed area a process locates nodes by 
their label and updates their coordinates.

The designer benefits from being able to reuse past mesh templates in new designs 
and the technique is geared towards optimisation, demonstrating the advantages 
of automated mesh refinement. However there is no relationship between the 
labelled nodes. Refining the mesh is not as simple as updating a single parameter, 
such as the airgap width, each refinement of the mesh involves moving a group 
of nodes.

An object oriented approach to mesh refinement[9] is an example of the wealth 
of papers that demonstrate the advantages of object oriented design, such as 
the ability to easily maintain, extend, and understand the program. This work 
focuses on the refinement of the finite element mesh without changing the defining 
geometry.
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More relevant work[10], again in the field of mesh refinement, deals with the use 
object oriented techniques used to describe domains within the whole geometry, 
termed the manifold. Geometric objects describe vertices, triangles, and line seg­
ments, the line segments being used to describe partitions within the manifold so 
that they may be meshed independently. Partitions are chosen to define smaller, 
more structured, meshes which are like tiles that combined together form a single 
mesh called the composite mesh.

Finally, a search of the internet highlights an internal report that outlines an ob­
ject oriented finite element meshing system[ll] which is the most related work to 
be found. In this method extensive templating has been incorporated to separate 
the containing geometry from the mesh algorithm, with application to stiffness 
matrix generation. This work defines a surface which is a two-dimensional ar­
bitrary region whose extremities are defined by a number of curves, these being 
abstract objects that can equate to lines and arcs. Each of these curves is defined 
by a number of points and additional points are added to the curves during the 
meshing of the area.

1.2 This Work

This thesis explores the use of object oriented methods that generate the outlining 
geometry of an electrical machine and its finite element mesh, specifically for two- 
dimensional problems.

A tool is provided that allows the designer to produce a parameterised geometric 
description of the electrical machine so that parameters such as the airgap width, 
slot depth, and node density can be varied and the new mesh generated in one 
single action.

This is achieved by defining a set of objects that construct the electrical machine 
in a bottom-up design. A relationship is established between these objects that 
allows the variation of one parameter to cascade throughout all affected objects 
so that an updated mesh is produced.

In turn the advantages of this object oriented method allow the defining objects
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of the machine to be interchanged at will so as to influence or change the design. 
A process that records such changes and allows the designer to step backwards 
and forwards, undoing and redoing the changes that were made.

At the top-level of this design process sits a component that can describe a 
symmetrical part of the electrical machine, utilising that symmetry to copy slots 
and windings and construct the entire machine whilst simultaneously handling 
variations in phase and polarity of windings and other regions.

These components can be stored as a library of interchangeable parts allowing 
reuse and modification into future designs.

The aim has been to write a program for the design of electrical machines that 
requires the least amount of effort from the designer.

Although this thesis uses a rotating machine as an example the methodology is 
general and could equally well be used for a wide variety of applications.

1.3 D esigning An Electrical M achine W ith  T he  

Least Am ount Of Effort

Stator Laminations
Coil Windings

Figure 1.2: The Beginnings Of An Electrical Machine Model, Stator Slot Meshed 
And Elements Colour Coded According To Different Regions Of Material
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The design process can often exploit the symmetry within an electrical machine 
so that the slot of figure 1.2 can be copied and rotated through an angle of a2 
degrees as seen in figure 1.3. Provided the nodes correspond along the joined 
edge of the two slot sections we can copy slots until the entire Stator is formed, 
saving a considerable amount of effort on the part of the designer.

Figure 1.3: Reproducing The Slot To Exploit A Machine’s Symmetry And Reduce 
The Amount Of Manual Meshing Involved

With modification of coil regions within the slot, to account for the differing 
polarity and phase of conductors carried in each slot, we will have achieved the 
complete stator mesh of figure 1.4. This mesh can be represented as a list of 
nodes and a list of elements, each element providing the node connectivity and a 
means of identifying the material properties of the region in which its included. 
Its a straight forward means of representation so the tools needed to build this 
mesh can vary considerably in complexity depending on how much work they 
take away from the designer. I t’s when modification of the mesh is required that 
this is fully appreciated.
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Figure 1.5: Parameterisation Of Stator Slot
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If we’re to modify our mesh to change the width of the slot opening we can 
probably achieve this without much effort, modify the slot depth and we could 
be looking at much more work. Given the boundary of nodes of figure 1.1 it 
would be possible to redefine the boundary and resubmit it to some meshing 
algorithm, freely available programs such as Bojan Niceno’s Easymesh[l] and 
Jonathan Shewchuk’s Triangle[2] perform such a task. We’d need to exploit 
the machine’s symmetry again and copy the slot through an angular rotation in 
order to rebuild the entire machine, then there’s still the problem of defining the 
numerous regions that can be seen in figure 1.4. In our example each slot carries 
two layers of conductors, with 24 slots we’re potentially redefining 48 regions of 
material. Should we fundamentally change the geometry, or decide to experiment 
with different stator winding configurations, we’re looking at considerable work 
in redefining these regions.

1.4 Using Parameterisation In Our Design

This is where parameterisation helps us by reducing the amount of work required 
to modify the mesh. There’s no single way to parameterise a model, methods 
exist that allow the mesh to be reformed but we’re looking to parameterise the 
geometry of figure 1.1. Figure 1.5 shows the geometric parameters we’ll use to 
modify our boundary of nodes, we can then mesh this area using any meshing 
algorithm we desire allowing further parameterisation of the input of the meshing 
algorithm so we can, for instance, define values that restrain the minimum angles 
and maximum areas used for elements in a mesh.

To fine tune the mesh density we can also allow control over the number of nodes 
used along each edge of our boundary. The figures seen so far demonstrate the 
use of two meshing algorithms, used with our parametric design, the slot tooth 
has been meshed using an alternative algorithm to the outer area of the stator 
which has been meshed using Triangle[2]. The ability to allow interchangeable 
meshing algorithms within the design is possible because we can define the mesh 
as one entity or break it down into smaller parts called mesh tiles. Using an 
object oriented approach we will demonstrate how the whole electrical machine 
can be broken down into a series of parts, represented by objects in our object 
oriented scheme, that can be fitted together in a flexible manner and interchanged
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to suit the designer. To fine tune meshing we can further divide our areas into 
smaller mesh tiles which can be swapped for other mesh tiles that use different 
meshing algorithms with different parameter values restraining angles and areas 
of elements.

1.5 O bjects U sed For The E lectrical M achine

Figure 1.5 shows all geometric parameters we have chosen in order to modify this 
particular design of slot. The most important parameters here are d l , d2, al and 
a2 which define the extremities of our slot. If we describe any slot using these 
parameters then it becomes an interchangeable component, as we shall come to 
describe it, of an electrical machine which can be stored amongst a library of 
components and imported for reuse in future designs.

The further parameterisations of figure 1.5, tooth tip thickness, tooth width, slot 
opening and slot depth) are dependent on the slot design and not essential for 
our parameterisation. These parameters supplement our d l, d2, a l, a2 parame­
terisation and merely increase the flexibility of the design, we shall focus on the 
primary d l, d2, al and a2 parameterisation to explain how the design works.

^  \  cc2

cel _il_cc2_cl2 ^

\   ̂ \V cl2 1

i _il_ccl_cl2
|
i
1 ell

c r̂ I _il_ccl_cll _il_cc2_cll

Figure 1.6: Parameterising The Stator Slot As A Single Part Of An Electrical 
Machine

Consider figure 1.6 where we have defined a centre point, ctr, and from this drawn
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two lines and two circles using the point as their origin. The following language 
is used to describe this construction:

dl = 27.75 
d2 = 67.5 
al = 0 
a2 = 15
ctr = vvpoint(0, 0)

ccl = pvcircle(ctr, dl) 
cc2 = pvcircle(ctr, d2) 
ell = pvvline(ctr, d2, al) 
cl2 = pvvline(ctr, d2, al + a2)

Here we have first defined the values of parameterisation, d l, d2, al, and a2, 
followed by the point ctr which is also a key parameter in our definition. Next 
the circle ccl is constructed with ctr as its origin and dl as its diameter, cc2 is 
constructed similarly and then two lines are defined with a point of origin, length, 
and angle.

The above description is used to save the state of this geometry, the entire machine 
is described in this manner rather than a node, element representation. Each 
line in this description results in the building of a value, point, or line segment 
object and these objects are stored in a dependency tree. Figure 1.7 shows the 
relationship of objects in this dependency tree.

What we haven’t defined in the description of this machine are the intersection 
points _il-ccl-cll, _il-cc2-dl, Al-ccl-clS, and -il-cc3-d3 illustrated in figure 1.6. 
These points exist where the line segments intersect, -il-ccl-cll being the in­
tersection of circle ccl and line ell, and have been automatically added by a 
post-processing routine within our program.

These points are useful because we can take any two points along a line segment 
and use them to define a line of nodes, called a discrete segment Figure 1.8 
shows four discrete segments, each described by one of the four line segments and 
its intersection with the other line segments. The result is an area completely 
bounded by nodes, defined by the following syntax:
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value valuevaluevalue value value

point
ctr

value 
a1 + a2

circle
segment

cc2

circle
segment

ccl

line
segment

cl2

line
segment

intersection point 
J1_cc1_  cl1

intersection point 
J1_cc2_  cl1

intersection point 
J1_cc1_  cl2

intersection point 
J 1 _ cc2 _ c l2

Figure 1.7: Corresponding Dependency Tree For The Value, Point, And Segment 
Objects Of Figure 1.6

cc2

_il_cc2_cl2 \
dscl2

cl 2 .dscc2

._i l_ccl_cl2
dsccl

ell
ctr _il_ccl_cll _il_cc2_cll

dscll

Figure 1.8: Using A Segment Bounded By Two Points To Form A Line Of Nodes
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n = 1.0

dscll = dsegment(ell, _il_ccl_cll, _il_cc2_cll, lOn)
dscl2 = dsegment(cl2, _il_ccl_cl2, _il_cc2_cl2, lOn)
dsccl = dsegment(ccl, _il_ccl_cll, _il_ccl_cl2, 5n)
dscc2 = dsegment(cc2, _il_cc2_cll, _il_cc2_cl2, 5n)

To create a discrete segment we provide it with the name of a segment and two 
points which must lie along the segment’s path. In this example we’ve used the 
intersection points which are automatically created and updated by our program. 
A final argument defines the number of nodes that are to populate the length 
of the segment. Here we have chosen to parameterise this number by making it 
a multiple of n, we can now vary the density of a mesh bounded by this area 
by adjusting this parameter. To mesh this area we simply provide these discrete 
segments as the arguments to one of the available meshing algorithms:

meshtilel = semesh(dscll, dscl2, dsccl, dscc2)

This produces the mesh of figure 1.9. The following figure, 1.10, shows the density 
of the mesh increase proportionally to the increase of n, the value we chose to 
parameterise our mesh density. This is simply done by assigning a new value to 
the parameter:

n = 1.5

Figure 1.11 then shows complete replacement of the mesh with a mesh tile that 
uses the Triangle [2] meshing program, again through reassignment of an existing 
variable. With this type of mesh tile we can control the mesh density not only 
through the discrete segments but also through two numerical values, the first 
restraining the minimum angle used in the mesh and the latter restraining the 
maximum area for any one element.

meshtilel = triangle(dscll, dscl2, dsccl, dscc2, 0, 20)
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Figure 1.10: Mesh Density Increased Through Chosen Parameterisation Value n
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dscl2

-nr" in

dsccl

dscll

Figure 1.11: Incorporating An Alternative Meshing Algorithm, Jonathan
Shewchuk’s Triangle[2]

1.6 An Inherent U n d o /R ed o  M echanism

When it comes to the reassignment of objects, such as the mesh tiles illustrated 
above, we are actually removing the old mesh tile from the dependency tree and 
replacing it with the new mesh tile. The old mesh tile isn’t discarded, it’s kept 
in an undo buffer so at any point we can reverse this change, the old mesh tile 
is reinserted into the dependency tree and its replacement is removed and placed 
in the redo buffer.

The implications of this are that mesh tiles don’t have to know how to undo 
themselves, they are simply replaced with another mesh tile. This works for any 
of our objects devised in this object oriented approach whether they be values, 
points, line segments or mesh tiles. An undo/redo mechanism simply operates 
on replacement of an object with another object of the same kind, such as a line 
segment and arc segment or two mesh tiles with differing meshing algorithms.

Absolutely any change made to the model of the electrical machine can be re­
verted and any part of the electrical machine can be replaced with an equivalent 
part.

33



1.7 To C om plete The E lectrical M achine

Our example slot, figure 1.12 has been divided up into a number of mesh tiles 
through the addition of several circle and line segments, construction lines as 
we call them. The intersection between these line segments allows convenient 
alignment of discrete segments that define the outlines of mesh tiles, placed such 
that they separately mesh areas corresponding to differing materials.

tile5
S t >/ ■tilel

tile2tile3
tile4 & 7 \  /

tile7
J. ..

tile6

Figure 1.12: Here’s One I Meshed Earlier

The grouping of mesh tiles then defines regions, each region taking an index into 
a table of region properties:

AIR = region(2, t i le 7 )
LAMINATIONS = region(4, t i l e l ,  t i le 5 ,  t ile 6 )
T0P_C0IL = region(6, t i le 4 )
BOTTOM.COIL = region(7, t i l e 2 ,  t i le 3 )

Whilst we have divided our area into more mesh tiles than required, so as to 
achieve greater control over the meshing, it’s then possible to combine any number 
of these tiles into a single region. Figure 1.13 shows we have divided the slot into
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AIR

Figure 1.13: Mesh Tiles Now Combined Into Regions

two separate regions of equal areas so we can define two separate coils per slot. 
To produce the entire stator we need a geometric mapping of elements that will 
rotate this geometry through a2 degrees, the angle of one slot, as seen back in 
figure 1.3:

geomap = rotate(ctr, 0, 0, a2)

Geometric mappers simply take a coordinate and translate it, the above mapper 
allows rotation about a point, we’ll use our origin ctr, rotating through the x, y, 
and z axis respectively. We will also need to map the coil regions to accommodate 
different coil arrangements in the slots. The simplest method of achieving this 
is to use the region map editing tool to establish a region mapping object that 
corresponds to table 1.1 which defines the polarity and phase of each slot winding. 
This table lists our two stator coil regions along with their indexes into the region 
property table, these indexes are arranged by part, not slot, the reason being that 
we are not restricting the use of this mapping to rotating machines. The geometric 
mapper can be swapped for one with a linear translation so we can then apply 
our design technique to linear machines. We determine what constitutes a part 
with the final stage, the component.



Region
Part

0 1 2 3 4 5 6 7
TOP-COIL RPOS (6) YPOS (7) BPOS (8) RNEG (9) YNEG (10) BNEG (11) RPOS (6) YPOS (7)
BOTTOM_COIL YPOS (7) BPOS (8) RNEG (9) YNEG (10) BNEG (11) RPOS (6) YPOS (7) BPOS (8)

Region
Part

8 9 10 11 12 13 14 15
TOP_COIL BPOS (8) RNEG (9) YNEG (10) BNEG (11) RPOS (6) YPOS (7) BPOS (8) RNEG (9)
BOTTOM-COIL RNEG (9) YNEG (10) BNEG (11) RPOS (6) YPOS (7) BPOS (8) RNEG (9) YNEG (10)

Region
Part

16 17 18 19 20 21 22 23
TOP-COIL YNEG (10) BNEG (11) RPOS (6) YPOS (7) BPOS (8) RNEG (9) YNEG (10) BNEG (11)
BOTTOM-COIL BNEG (11) RPOS (6) YPOS (7) BPOS (8) RNEG (9) YNEG (10) BNEG (11) RPOS (6)

Table 1.1: Mapping Coil Regions Across Slots



1.8 Components

A component is intended to exploit the symmetry within electrical machines so 
that only part of the machine need be constructed. In rotating machines a logical 
part to construct is the slot. If we use a component to combine the four regions of 
figure 1.13 into a single part, the component can produce the entire stator of our 
electrical machine. The component needs to be told how to geometrically map 
these regions to produce a second part, we’ve already created a rotating mapper 
for this purpose. If i t’s told to repeat this process it will take the second part and 
map this to create a third, and so on as required. The syntax that will create 
our component is as follows:

stator = component(geomap, N, stator_region_map,
AIR, TOP.COIL, BOTTOM.COIL, LAMINATIONS)

We’ve provided the component with the geometric mapper, a number of repeti­
tions, a region mapper, and finally the list of regions contained. If the number 
of repetitions is set to zero the component does no mapping, it contains only the 
regions given and forms a single part denoted as part 0. With a little parameter­
isation we can play around with the geometry of the machine on a grand scale. 
The following sets the basic angular geometry according to a single parameter, 
the number of slots:

slots = 24
a2 = 360 / slots
repetitions = 360 / a2 - 1
stator = component(geomap, repetitions, stator_region_map,

AIR, TOP.COIL, BOTTOM.COIL, LAMINATIONS)

Figure 1.14 identifies a few of the mapped parts and their regions from the final 
mesh for correlation against table 1.1.
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Figure 1.14: Component Mapped Parts and Regions
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1.9 Libraries Of Components

However complex the geometry of a rotating machine’s part becomes, all parts are 
still fundamentally defined by a centre point, two diameters, and two angles, ctr, 
d l , d2, a l , and a2 respectively, so they’re interchangeable. Parts can therefore 
be exported as library components and so a new machine can be constructed 
simply by importing the relevant parts. The import process recognises parts of 
a rotating machine and prompts for the number of slots, internal diameter, and 
external diameter. The import can then setup the basic parameterisation for the 
machine as we’ve seen before:

slots = <set from input> 
a2 = 360 / slots
geometric_map = rotate(ctr, 0, 0, a2) 
repetitions = 360 / a2 - 1

The program then takes you through the region mapping, defining the region 
properties at the same time. Once complete the geometric mapping and region 
mapping exists to construct a revised component for the new electrical machine.

1.10 Benefits Of An Object Oriented Approach 
To Electrical Machine D esign

• We have broken the electrical machine down into separate objects, its build­
ing blocks, such as segments and mesh tiles. Within these families of objects 
everything is interchangeable so we can refine part of the mesh through the 
interchange of mesh tiles and we can experiment with different coil wind­
ing arrangements through different region mappings. Each change can be 
as simple as the substitution of one region mapper for another but the 
time saved, from having to redefine the identity of tens of regions, can be 
considerable.

• Object oriented programming has for example allowed us to easily provide 
a family of segments that are completely interchangeable. Thus no single
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line, arc, or circle segment knows about any other type of segment. An 
additional advantage of this transparency is in the ability to easily expand 
the program. If no segment specifically knows about any other segment then 
we can add to the family of segments without fear of breaking those that 
already exist or the program. The author has on occasion found the need 
for a different definition of arc or line segment in order to model a previously 
unencountered geometry in the most convenient form. The addition of a 
new arc segment simply needs the computational routine to calculate its 
geometric values, three points that define its position. One only has to 
look at a CAD package [5] to see the numerous ways of drawing the same 
graphics primitive, the building blocks of the machine can be supplemented 
at a later day with ease.

• All the building blocks describing the electrical machine are stored in a 
dependency tree framework. A general tool swaps objects in and out of the 
dependency tree without requiring any specific knowledge of the objects be­
ing handled. In object oriented terms this is achieved by having all building 
blocks of the machine inherit a dependency tree object. The opposite of 
this is also true, no single building block of the electrical machine needs 
any specific knowledge of how to be added, replaced, or removed from the 
dependency tree. This provides us with a generic undo and redo mecha­
nism. Any change made to the electrical machine is reversible, the changes 
can also be rewound backwards and forwards. Any building block additions 
cannot break this mechanism and undo information no longer needs to be 
programmed into every building block[12].

• A dependency tree clearly defines the relationship between objects. Con­
straints work down the tree and cannot work upwards, when changes are 
made to the parameterisation the values concerned filter changes down the 
tree and there’s no need to solve simultaneous equations[13] that balance 
changes between parameters in order to calculate new geometry. This not 
only simplifies the design but allows changes to be made very quickly. The 
time taken is linear, the time taken for the change to filter down from the 
top of the tree to the bottom.

• Through having a descriptive language for representing the electrical ma­
chine, rather than just a list of nodes and elements, we are less dependent 
on graphical tools that can manipulate our design. In making changes to 
a machine the author has found that a textual search and replace on the
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machine’s description has been as powerful asset, or compensated for the 
lack of, more sophisticated graphical tools in the demonstration program. 
Using this language a complete mesh refinement can be achieved by a single 
statement altering the parameterisation; we can create optimisation loops 
which iterate through different parameter values in order to find the one 
yielding the best result.

• The parameterisation this scheme offers allows the reuse of designs by ini­
tially defining parts of the electrical machine, such as the slot, in simple 
geometric terms. When commencing the design of an electrical machine 
these parameters allow past designs to be imported and slotted into place 
in the new machine. In this thesis we will demonstrate this re usability as 
the stator of a high speed motor, with permanent magnet rotor, is reused 
to form an induction motor.

1.11 The Structure of This Report

Chapter 2: M odelling An Electrical M achine introduces the individual com­
ponents we have identified to construct the finite element mesh of an elec­
trical machine.

Chapter 3: Com m unication Betw een O bjects details the dependency ob­
ject, used as a basis for the components describing an electrical machine, 
which gives the ability to refine our finite element mesh through the pa­
rameterisation of its defining parts.

Chapter 4: Building O bjects, Pre-processing takes us from the input def­
initions of the machine to prototypes, the mechanism that allows us to keep 
adding electrical machine building blocks without having to modify any of 
those already existing.

Chapter 5: Building details a construction mechanism that is independent 
of the types of object being constructed, that allows us to replace objects 
within our design with different objects i order to redesign the machine.

Chapter 6: Build Post-processing shows how we can apply specific post­
processing to the design of an electrical machine, allowing us to tailor the 
mechanism to a particular application.
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C hap ter 7: Building Blocks of an E lectrical M achine gives greater de­
tailed descriptions of the geometric objects we have used to describe the 
electrical machine, resulting in the mesh used for finite element analysis.

C hap ter 8: Conclusions are drawn from the work.

C hap ter 9: F u tu re  W ork a brief list of topics further developing this work.
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Chapter 2

Modelling an Electrical Machine

The object oriented approach to electrical machine design identifies the separate 
objects, or building blocks, that comprise an electrical machine and provides 
a flexible framework in which these building blocks can be put together. This 
framework has many advantages for the designer in terms of the ease in which 
a model can be constructed and altered, along with the time saved through this 
design approach which encourages the reuse of designs.

With these building blocks it should, the author hopes, be possible to 2-dimensionally 
model and provide the mesh representation for any electrical machine, ready for 
solution using finite element analysis.

In this chapter we identify the building blocks of an electrical as we work through 
the construction of a real world example of a high speed motor.

Figure 2.1 shows the specification sheet of a high speed motor with a 3-phase 
wound stator and permanent magnet rotor. This chapter focuses on modelling 
the stator of this machine in a way that allows the design to be reused at some 
point in the future.
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1 -  Dimensions

Lamination Outside OD = 135 mm 
Lamination Inside Diameter = 57.5 mm 
Stack Length = 80 mm 
Tooth width = 3.5 mm
Slot Depth (From stator bore to slot bottom) = 23.25 mm 
Tooth tip thickness = 0.75 mm 
Slot openning = 2.0 mm 
Number of slots = 24 
Magnet thickness = 2.5 mm 
Magnet angle expansion = 120 deg 
Rotor diam at outer magnet surface =52.85mm
Clearance gap between outer magnet surface and inner stator surface -2.323m m  
2 -  Materials
Stator core made of SiFe with a thickness of 0.2 mm 
Magnet material Br = 1.05 T; He = 79 kA/m; Ur -  1.05

3 -  Control Data
Supply voltage at motor terminal = 560 V DC 
Current Limit se t to 170 A 
Motor speed  = 80000 rpm 
Control is se t to be Sinusoidal control

4 -  Winding Data
Number of turns = 1 turns 
Number of strands in hand for one conductor = 40 
Slot fill on bare diameter = 0.4 
Wire diam eter = 0.79 mm 
4s/p/p with turn span of 9 slots 
Winding factor = 0.886 
Phase  resistance = 4.9 E -03 Ohm 
Phase Self Inductance = 0.130 mH 
Mutual Inductance between phases = 0.046 mH

Figure 2.1: Data For The High Speed Motor
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2.1 Basic Parameterisation That Allows Reusable 
Machine Parts

Whilst the designer needn’t restrict themselves to any specific parameterisation 
in order to describe an electrical machine, the following parameters have been 
chosen to describe part of a rotating machine so that parts from different machines 
become interchangeable through this standardisation. The standard part for 
a rotating machine is the slot, which figure 2.5 shows can be described by a 
centre point, ctr, internal diameter, d l , external diameter, d2, an angle, al, that 
describes the angular starting position of the slot, and angle, a2, that describes 
the angular extension of the slot. The centre and starting angle of the slot 
are unlikely to need adjustment, and thus arguably any parameterisation, but 
parameterisation of these values is straightforward and offers further potential 
flexibility.

2.1.1 Values, The First Building Block And The Param- 
eterisation Of The Electrical Machine

Our electrical machine building blocks fall into families, figure 2.2, one such family 
are the values which extend from simple floating point numbers through to the 
dot product of two vectors. Each value is interchangeable with another value so 
the angular value a2 could be fixed:

a2 = 15

or it could be the result of an arithmetic expression: 

a2 = 360 /  s lo ts

Ultimately even the simplest of other building block families, such as points, will 
depend on values to fix their coordinates for instance, so values always set the 
parameterisation of a machine.
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Figure 2.2: Relationship Between Different Families Of Object
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2.1.2 A ssign ing Values

Data entry is of the form:

<variable name> = <some value or other building block>(arguments)

This data is interpreted by a pre-processor, chapter 4, which understands many 
short cuts that allow the likes of:

x = real(O) 
y = real(O) 
ctr = vvpoint(x, y)

to actually be entered as:

ctr = vvpoint(0, 0)

Here two substitutions are being performed by the pre-processor. It’s first recog­
nising that two assignments are real numbers and expand to the real type of 
value:

ctr = vvpoint(real(0), real(0))

It subsequently recognises the nesting of assignments, separating them out and 
manufacturing names so the above becomes:

_vx_ctr = 0 
_vy_ctr = 0
ctr = vvpoint(_vx_ctr, _vy_ctr)

Each value and point consists of a separate object residing within a dependency 
tree. One exception to this is the infix value which allows flexible input of math­
ematical expressions such as:
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a2 = 360 /  24

The pre-processor recognises this as: 

a2 = in f ix (360 /  24)

and the infix prototype *, which is responsible for building the infix value, will 
construct several values to satisfy this expression. The dependency tree of fig­
ure 2.3 shows the final representation.

infix value 
a2 = 15

value 
v2_v_a2 = 24

value 
v1_v_a2 = 360

div value 
_v_a2 = 360 / 24 = 15

Figure 2.3: Corresponding Dependency TVee For The Infix Value of infix(360
/ w

2.2 On W ith  The M achine

We lay down the basic parameterisation as follows:

dl = 57.5
^ ach  building block of the machine has a prototype, chapter 5, whose responsibility is to 

ensure the correct arguments are supplied for the object to be constructed. It allows unlimited 
additions to the program with each addition adding a building block and its prototype. To 
know if something can be built you look for a like named prototype, being separate entities 
there’s no possibility of an addition breaking the existing program.
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d2 = 135 
al = 0
a2 = 360 / 24

We’ve touched on values and points, we now use members of the segment family 
to draw line, arc, or circle segments which define the outline of our machine. We 
first draw two circles, both centred at ctr with one at the inner diameter of the 
machine and the other at the outer diameter:

rl = dl / 2 
r2 = d2 / 2

ccl = pvcircle(ctr, rl)
cc2 = pvcircle(ctr, r2)

We then draw two lines that originate from the centre point, ctr, one at an angle 
of al degrees and the other at al + a2 degrees. We ensure these lines are long 
enough to intersect both circles:

ell = pvvvline(ctr, _vs_cll, r2, al)
cl2 = pvvvline(ctr, _vs_cl2, r2, al + a2)

The pvvvline segment is perfect for this purpose, figure 2.4, it’s easily defined by 
the parameterisation we’ve started with.

pe line name

point of

Figure 2.4: Line Segment Used For pvvlines ell And cl2, Formed From A Point 
Of Origin, Start And End Extension, Plus Angle Of Trajectory

The post-processor, chapter 6, discovers where segments intersect, it creates in­
tersection points whose position depends upon the segments and the point they

origin

from start point
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Figure 2.5: Laying Down The Fundamental Parameterisation Of A Stator Slot

intersect. If we change our parameterisation so that these segments move posi­
tion, intersection points will move accordingly. We’ve already created segments 
that depend on the centre point, any line segments that depend on the inter­
section points will accordingly move as parameterisation changes filter down the 
dependency tree.

The outline of the slot has now been formed, figure 2.5, the parameterisation 
allows this rotating part to be slotted into place in the stator of any rotating 
machine.

Our parameterisation doesn’t end here, however any further parameterisation 
will not affect this part’s ability to be imported into other designs. Additional 
parameterisation will be part specific, serving only to increase the flexibility of a 
particular design.

2.2.1 P aram eterisation  Of Slot T eeth

Parameterisation will now be introduced allowing variation in the width of the 
slot teeth.

First we define some additional parameters, taken from the specification of the 
high speed motor:



slot_depth = 23.25 
slot_opening = 2 
tooth_tip_thickness = 0.75 
tooth_width = 3.5

We then place another circle, ccO, inside the circle ccl whose radius is set to rl. 

ccO = pvcircle(ctr, rl * 3/4)

The intersection of this circle and the construction lines ell and cl2 will be used 
to anchor several construction lines that won’t directly form the opening of the 
slots. Keeping these segments away from the workspace surrounding the slot 
opening will prevent this area from appearing cluttered and will facilitate later 
construction.

Line segments can now be placed where the construction lines ell and cl2 inter­
sect this new circle and the larger circle, cc2.

clOOl = spvvvline(ccO, _il_cc0_cll, tooth_width/2, tooth_width/2, 0)
cl002 = spvvvline(ccO, _il_cc0_cl2, tooth_width/2, tooth_width/2, 0)
cl201 = spvvvline(cc2, _il_cc2_cll, tooth_width/2, tooth_width/2, 0)
cl202 = spvvvline(cc2, _il_cc2_cl2, tooth_width/2, tooth_width/2, 0)

We use a line segment called the spvvvline 2 for these anchors, illustrated in 
figure 2.6. This line segment produces a line parallel to a straight line, or the 
tangent of an arc or circle, at a given point. The new line extends out from either 
side of the reference point, like a seesaw, the extension either side being adjusted 
independently. The line can then be rotated around this point so a value of 90 
degrees creates a normal to the original segment. Figure 2.7 shows the four line 
segments, clOOl, cl002, cl201 and cl202.

2Names used for different building block objects derive from the arguments they are supplied 
with. The spvvvline requires a segment, point, and three values respectively, to draw the line. 
This naming convention has so far resulted in unique names and alleviated the author from the 
need to invent memorable and succinct names. Please note that these names can be given any 
number of aliases which may better describe their function.
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length 
of extension
to end pointlength 

of extension 
to start point _pe_line_name

rotation 
from tangent_ps_line_name tangential 

point 
on segment

Figure 2.6: Line Segments Used For Forming The Parallel Lines Of The Slot 
Tooth

X \  cc2

ccO \ cel _il_cc2_cl2 cl202

V cl002
_il_cc0_cl2

cl2

ctr ell
i cl201

_il_ccO_cll I clOOl
/

_il_cc2_cll I

Figure 2.7: Forming Anchors For The Parallel Lines Distanced Of The Slot Teeth
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In comparison to the line segment ppline, which connects between two points and 
which we’ll next use, the spvvvline has no points associated with the ends of its 
line. Such points are useful as they provide a reference to the end of the line, 
one which we can always attach another line to for instance. To compensate for 
this the spvvvline, knowing that no such points exist, manufactures points for 
just this purpose. The points -ps-cl001 and _pe-cl001 will be found at the start 
and end of line segment clOOl respectively. We use these manufactured points 
to connect the point to point lines cl4 and cl5 which are illustrated in figure 2.8 
and defined as follows:

cl4 = ppline(_ps_cl001, _ps_cl201) 
cl5 = ppline(_pe_cl002, _pe_cl202)

5 cl202

cl 5\ cl002 Jkj-'-"

cl4
cl201

h clOOl

Figure 2.8: Placement Of The Parallel Lines Forming The Length Of The Slot 
Teeth

2.2.2 P aram eterisation  O f Slot D ep th

Previously we parameterised the depth of the slot: 

slot_depth = 23.25

we now use this value to construct a circle cc3 which will later seat the base of 
the slot. The arrangement of figure 2.9 shows the position of this circle and the
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construction line cl3 which divides the slot into two equal halves. Where these 
two segments intersect we form another spvvvline which is parallel to the tangent 
of circle at this point:

cl3 = pvvvline(ctr, 0, ,r2, al + a2/2)
cc3 = pvcircle(ctr, rl + slot_depth)
c!303 = spvvvline(cc3, _il_cc3_cl3, 10, 10, 0)

x cc3

i cl303

cl3

Figure 2.9: Slot Depth Parameterisation Is Used To Set The Radius Of Con­
struction Circle cc3 Which Will Eventually Anchor The Base Of The Slot

Construction line clSOS forms the final segment needed to complete the base 
of the slot. In figure 2.10 four intersection points can be seen, the last two of 
which were created by the intersection of cl303 and construction lines cl4 and 
cl5. Joining these points together we create the three lines illustrated in bold, 
the line between the first and last points of the argument list is always ignored:

cal = pppparc(_il_ccl_cl5, _il_cl303_cl5, _il_cl303_cl4, _il_ccl_cl4)

The arc is formed from the largest circle that can be enclosed by this area whilst 
still touching the three specified sides. The lines will be tangential to the arc at 
each point of contact. The contact points between the arc and two side lines set 
the start and end of the arc.
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_il_cl303_cl5

Jl_ccl_cl5 "

_il_cl303_cl4
Jl_ccl_cl4 ..i

Figure 2.10: Base Of Slot Completed By An Arc That Fits Itself Within Three 
Vectors Formed By Our Construction Segments

2.2.3 P aram eterisation  O f Slot O pening

The outline of the slot is nearly complete, we have yet to form its opening or set 
the thickness of the slot tooth tip. These are formed with a similar arrangement 
to that used for the parallel lines of the slot walls.

The spvvvline segment that provides the seesaw like line arrangement is used to 
extend a line outwards from an intersection point, figure 2.11. The length of the 
line each side of the centre point is half the distance of the slot opening, total 
length of the line is thus equal to the size of the slot_opening. Lines clOOS and 
cl203 are both done in this manner and lines cl6 and cl7 interconnect their end 
points:

cl003 = spvvvline(ccO, _il_cc0_cl3, slot_opening/2, slot_opening/2, 0) 
cl203 = spvvvline(cc2, _il_cc2_cl3, slot_opening/2, slot_opening/2, 0) 
cl6 = ppline(_pe_cl003, _pe_cl203) 
cl7 = ppline(_ps_cl003, _ps_cl203)

This arrangement has created the slot opening. As the slot-opening parameter is 
varied the lengths of clOOS and cl203 will correspondingly change, the line always 
remaining centred around its anchoring intersection point. Lines cl6 and cl7 will
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also follow position and their intersection with circle ccl forms the slot opening. 
If we add another circle that is distanced from ccl by the tooth-tip-thickness then 
our slot outline is complete, cell also detailed in figure 2.11. The line between 
the intersection of cl6 and ccl and the intersection of cl6 and cell forms the 
tooth tip thickness, mirrored by the respective intersections of cl7 and these two 
circles.

ccl \ \ c c l l

cl 20 3cl 7

cl6cl 00 3

Figure 2.11: Slot Opening, The Radial Difference Between ccl and cell Equals 
The Value Of tooth-tip-thickness And The Parallel Lines cl6 And cl7 Are Spaced 
Apart By The Value Of slot-opening

2.2.4 D iv ision  O f T he Slot In P reparation  For Coil R e­
gions

Each slot is shared by two coils but the slot area isn’t equally divided between 
these two coils, instead one coil occupies three fifths of the area whilst the other 
occupies two fifths. In addition to this the division alternates from one slot to 
the next, first the upper layer of windings occupies three fifths of the area and 
then the lower layer occupies three fifths of the area in the next slot. Figure 2.29 
aids in visualising this arrangement.

For now, all we need do is divide the area of slot from top to bottom into areas 
of two fifths, one fifth, and two fifths again. The middle fifth of the area will 
be grouped either with the top two fifths or the bottom two fifths depending on 
the arrangement of coil windings. Here we cheat, the author has calculated the
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necessary divisions outside of the program thus compensating for the lack of a 
segment type that does this and the time needed to create one. The first con­
struction circle is placed at around 48% of the length of the slot depth, measured 
from the slot opening, the second division at about 66%:

ccrl = pvcircle(ctr, rl+tooth_tip_thickness+slot_depth*(48.18/100)) 
ccr2 = pvcircle(ctr, rT+tooth_tip_thickness+slot_depth*(65.67/100))

Figure 2.12 shows these construction lines in place.

Figure 2.12: Division Of Slot Into Areas Of Two Fifths, One Fifth, And Two 
Fifths

2.3 D iscrete Segm ents

We now have all the necessary segments in place to be able to outline our slot, 
and any regions within, by moving along its perimeter from a point to a segment 
and back to a point again, marking each of these sections as a line of nodes. At 
this stage we already have some nodes in our model, every point is actually a 
node but we just haven’t designated which ones we are yet to use. Taking the 
sections along segments, spanned by two points or nodes, we mark these spans 
as a line of nodes by using the discrete segment Areas contained on all sides 
by these discrete segments are like tiles that fit together to construct the mesh
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of the slot. Each one of these tiles will be meshed individually, the density of 
the mesh being controlled by the number of nodes along these discrete segments. 
By splitting the whole of the slot mesh into smaller mesh tiles we have greater 
control over the mesh density in different areas.

Figure 2.13 shows a discrete segment spanning a construction line segment be­
tween two intersection points. The discrete segment is created using the following 
syntax:

n = 1.0

dsl = dsegment(cl4, _il_ccll_cl4, _il_ccrl_cl4, 8n)

The first argument supplied is the segment’s name, the two subsequent argu­
ments are points which must reside on the segment. The final argument specifies 
the number of nodes to create along the discrete segment, because the discrete 
segment connects between two existing points, which are also nodes, the dis­
crete segment only creates nodes within the length spanned by these terminating 
nodes. This use of existing nodes helps prevent duplicate nodes, another discrete 
segment attached to -il-ccll-cl4  or _il-ccrl-cl4 will also reuse their node rather 
than create a duplicate at the same position. In the above definition of discrete 
segment dsl we have also chosen to parameterise the number of nodes, the value 
of n could be increased to 1.5 in order to increase the number of nodes to 12. 
Globally we shall use this parameter with all discrete segments so that the overall 
mesh density can be controlled.

Creating discrete segments in the above manner can be tedious, identifying seg­
ments and points takes the majority of the time. A point and click interface im­
proves this situation by allowing the segment and points to be identified through 
the graphical interface, however we can simplify the process further by utilising 
the underlying dependency tree in which or model resides. We find that some 
segments, such as the ppline, have their position defined by two points, other 
points like intersection points are then defined by two segments; whichever way 
around the relationship, a connected point and segment will always have a parent 
child relationship in the dependency tree. The dsegment tool utilises this, using 
the graphical interface points are first selected along the path that we wish to 
transform into discrete segments. The dsegment tool is then invoked and it walks
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dsl

Figure 2.13: First Discrete Segment Begins To Define Node Boundary Of Slot

along a path defined by these points and the segments that interconnect them, 
at each step the potential discrete segment is highlighted, figure 2.14, and if the 
designer wishes it created they need only enter an expression for the number of 
nodes. The entire geometry can be discretised very quickly in this manner.

Figure 2.15 shows all the discrete segments in place and figure 2.16 illustrates 
them with all construction lines removed and a mesh tile in place. Once all en­
closed ares are independently meshed using these tiles we will start to see how 
they can be combined into regions of the same material. The discrete segments 
play an even more important role when we start to define regions as they define 
the interfaces between them, they also define the external interfaces to which 
we will assign boundary conditions. Just as every point has a node, every dis­
crete segment has an interface. These relationships form the translation from a 
parameterised geometry into a mesh representation.

2.4 M esh Tiles

We are now ready to create mesh tiles in the area enclosed by discrete segments 
and have a few meshing algorithms to chose from. The semesh, super element 
mesh, deals very well with simple areas of three or four sides whilst two third part 
utilities have been interfaced to the program which are capable of more complex
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!> n = 1.0
> dsl  = dseqment(cl4, _ i l _ c c l l _ c l 4 ,  _ i l_ c c r l_ c l4 ,  8n)
> dsegment 
s in g le  path found: 
along segment: c\4  
from point: _ i l_ c c r l_ c l4  
to  point: _ i l_ccr?_c l4
Enter expression [express ion]/sk ip /qu it  : 4n 
s in g le  path found: 
along segment: cl4  
from point: i l  ccr2_cl4
to point: _ i l_ c a l_ c l4
Enter expression [express ion]/sk ip /qu it  3n 
s in g le  path found: 
along segment: cal  
from point: _ i l_ c a l_ c l4  
to p o in t : i l  cal c l3
Enter expression (exprcss ion]/skip /quit

Files Edit Layers Labels Selection View

Figure 2.14: Automation Of Discrete Segment Creation, Interactive Path Finder 
Follows A Trail Of Selected Points Creating Discrete Segments At Each Step
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Figure 2.15: All Discrete Segments In Place

geometries. The third party programs, Bojan Niceno’s Easymesh[l] and Jonathan 
Shewchuk’s Triangle[2], are separate programs that communicate through files, 
reading in a list of nodes and writing out a list of nodes and elements. Interfacing 
to these programs involves writing out the list of nodes, executing the program, 
then reading in the list of new nodes and elements. This method ensures that 
should the third party program fail, our program doesn’t suffer the same fate; if 
we don’t find valid node and element files on completion then the mesh is put 
into an invalid state which alerts the designer to a problem.

Using the super element mesh tile we produce the tile m l of figure 2.16. 

ml = semesh(cdsl, ds31, ds72, ds41)

In figure 2.17 this tile is then replaced with another tile built using Triangle,
reassignment of ml to another mesh tile pulls the original from the dependency
tree, replacing it with the new tile before storing the original in an undo buffer. 
At the same time we tile the larger area of our slot using the same meshing 
algorithm:

m2 = tr ia n g le (d s20, dsl8 , dsl9, dsl6, dsl7, dsl5)
ml = tr ian g le (cd s1, ds31, ds72, ds41)
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Figure 2.16: Super Element Mesh Tile

\  \ m2

w

Figure 2.17: Mesh Tiles Built Using An Alternative Meshing Algorithm,
Triangle [2]



The larger area would need to be broken down into smaller tiles if we were to 
use the super element mesh tile, this area we’ll leave meshed using Triangle. 
The smaller area we’ll revert to the previous super element mesh tile, the undo 
command will revert the last change to the model and successive undo commands 
can be used to revert all changes back to the initial state of the model.

Triangle also allows us to restrain the minimum angle and maximum area it 
uses with elements, we can restrain one and, or, the other and in figure 2.18 the 
maximum area of elements has been restrained by redefining mesh tile m2:

m2 = triangle(ds20, dsl8, dsl9, dsl6, dsl7, dsl5, 0, 5)

j *r.

>< m2

m
*• t ...

Figure 2.18: A Super Element Mesh Tile and Triangle[2] Mesh Tile With Maxi­
mum Area Of Elements Restrained

We complete the slot mesh in figure 2.19, ready for grouping mesh tiles into 
regions.

2.4.1 R egions

Regions simply group mesh tiles together, they have an index into the region 
property table so they’re also responsible for marking elements with their region 
identity. Let us define a region, such as the laminations that form the body of 
our stator slot. This region includes the vast majority of our mesh tiles and we’ll 
numerically identify it with region number five:
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ml2 ml3 ml4 ml5

Figure 2.19: All Areas Tiled, Ready For Grouping Into Regions 

LAMINATIONS = region(5, m2, m5, m6, m7, m8, m9, mil, ml2, ml3, ml4, ml5)

This adds a little colour to our output of figure 2.20 to aid visualisation. Mesh 
tiles can be listed in any order in the region’s argument list, however the region 
examines these tiles as it puts them together and it removes any of the discrete 
segment interfaces found between adjacent tiles. When asked for a list of its 
interfaces the region now lists only those that are external.

LAMINATIONS

Figure 2.20: Mesh Tiles Grouped By A Region

We can now go into the region properties, figure 2.21, where we’ll find an “unset” 
entry has been automatically created for us. The entry is held in the model as
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part of the dependency tree, as is any other building block of the machine. The 
edit regions tool simply automates the modification of these objects by providing 
an interactive interface that later creates new region property objects along with 
the rather long argument list they take. The designer can make unlimited changes 
in this tool before finally quiting it, these changes axe then translated into new 
region property objects that are stored in the model. Undoing the model at this 
stage reverts it to the state it was in prior to the running of the region editor.

Figure 2.21: Editing The LAMINATIONS Region Properties

We can create the small region of air, within the mouth of the slot opening, in 
exactly the same way, figure 2.22 shows the editing of its region properties.

AIR = region(2, mlO)

2.5 M apping R egions

Now we come to the more interesting coil regions. If we create the following 
regions for the top two fifths of the slot area, middle fifth, and bottom two fifths 
respectively:

>  e r

Region P r o p e r t i e s . .
Name ID Ur Cond. J s .

LAMINATIONS ( u n s e t )  5 0 .0 0 0  0 .0 0 0  N 

[ e r ]  a d d / e d i t / r e m o v e / q u i t  : e  5
Region name? [LAMINATIONS ( u n s e t ) ] / q u i t  : LAMINATIONS 
Region ty p e ?  [ l i n e a r ] / n o n * l i n e a r / h y s t e r e t i c / q u i t  : non 
F ilenam e f o r  t h e  B-H curve?  [ J / q u i t  : CURVE_02.DAT 
R e l a t i v e  c o n d u c t i v i t y ?  [ 0 . 0 0 0 ] / q u i t  :
D i r e c t i o n a l  c o n d u c t i v i t y ?  [ N ] / q u i t  :
Current f l o w  ty p e ?  G /T /S /D / [N ] /T P /S P /C P /q u i t  :
Thermal h e a t  f low ?  [ N ] / q u i t  :
Permanent magnet r e g io n ?  [ N ] / q u i t  :

Region P r o p e r t i e s . .
Name ID Ur Cond. J s .
. . . . . . . . . . . . . . . . . . . . . . I - - I  I  I ~ -
LAMINATIONS 5 0 .0 0 0  0 .0 0 0  N 

[ e r ]  a d d / e d i t / r e m o v e / q u i t  :
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X .,.[oL» *

Figure 2.22: Editing The Region Properties Of Region AIR

T0P_LAYER = region(6, ml)
MIDDLE.LAYER = region(6, m3)
B0TT0M_LAYER = region(6, m4)

region number 6 is going to correspond to the positive current of the red phase 
of our 3-phase winding, the whole of slot 1 contains conductors with this current 
flow. Slot 2 is split, the top top two fifths contain the positive red phase but the 
bottom fifth contains the negative blue phase. Table 2.1 shows the current flow 
of the conductors in each slot and it also shows how we are to assign the above 
three regions on a per slot basis.

Currently we have only one slot, figure 2.23, which represents slot 1 in table 2.1. 
Shortly we will create a component which constructs the entire stator from the 
one slot, replicating it twenty three times to produce the twenty four slot ma­
chine. However we don’t want to assign regions another twenty three times, its 
tedious and doesn’t give us much flexibility if we wish to experiment with different 
winding configurations.
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Region
Slot

1 2 3 4 5 6 7 8
TOP.COIL RPOS (6) RPOS (6) RPOS (6) RPOS (6) BNEG (11) BNEG (11) BNEG (11) BNEG (11)
MIDDLE.COIL RPOS (6) RPOS (6) BNEG (11) RPOS (6) BNEG (11) BNEG (11) YPOS (8) BNEG (11)
BOTTOM.COIL RPOS (6) BNEG (11) BNEG (11) BNEG (11) BNEG (11) YPOS (8) YPOS (8) YPOS (8)

Region
Slot

9 10 11 12 13 14 15 16
TOP-COIL YPOS (8) YPOS (8) YPOS (8) YPOS (8) RNEG (7) RNEG (7) RNEG (7) RNEG (7)
MIDDLE.COIL YPOS (8) YPOS (8) RNEG (7) YPOS (8) RNEG (7) RNEG (7) BPOS (10) RNEG (7)
BOTTOM.COIL YPOS (8) RNEG (7) RNEG (7) RNEG (7) RNEG (7) BPOS (10) BPOS (10) BPOS (10)

Region
Slot

17 18 19 20 21 22 23 24
TOP.COIL BPOS (10) BPOS (10) BPOS (10) BPOS (10) YNEG (9) YNEG (9) YNEG (9) YNEG (9)
MIDDLE.COIL BPOS (10) BPOS (10) YNEG (9) BPOS (10) YNEG (9) YNEG (9) RPOS (6) YNEG (9)
BOTTOM.COIL BPOS (10) YNEG (9) YNEG (9) YNEG (9) YNEG (9) RPOS (6) RPOS (6) RPOS (6)

Table 2.1: Coil Arrangements For Each Slot



LAM INATIONS
B O TTO M -LA YER

M IDDLE-LAYER
T O P -L A Y E R

Figure 2.23: All Mesh Tiles Grouped In To Regions

Let us start by creating the region properties for the six coil regions we’re going 
to need. The region editor automatically creates properties for new regions, the 
TOP.LAYER, MIDDLE-LAYER, and BOTTOM.LAYER regions all use identity 
6 so this will be the only new region property. In figure 2.24 this has been edited 
into region RPOS and the remaining five coil regions of table 2.1 have been 
created in figure 2.25.

This is where we construct a region mapper that will ensure that when the compo­
nent geometrically copies our slot, producing the entire stator, it also incorporates 
the mapping of regions into this process. Given table 2.1 we can see that given 
any slot and the name of a region we can return the region property for that 
region. A single region mapper performs this task and given the number of slots, 
and regions per slot, we have a lot of arguments to supply; a region map editor 
has been devised to wrap a more user friendly interface around the process of 
creation the map.

The region map editor allows the editing of multiple region mappers, just as the 
region property editor handles editing of all region properties. We will need one 
map for the stator but may need one for the rotor also.

Each mapper is capable of handling multiple regions. If we are to map the stator 
slot as one entity we want to encapsulate the mapping of all its regions in one 
mapper; this allows a simple one to one relationship to be established between
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Figure 2.24: Editing The Region Properties Of The Coil Regions
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Figure 2.25: Adding The Final Coil Region B N E G
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the mapping of regions and the mapping of geometry, it is useful when we reuse 
old designs and an import tool needs to automatically establish this relationship. 
Figure 2.26 shows the creation of a region mapper and the addition of a mapping 
for the TOP-LAYER region. This type of mapper recreates the layout of table 2.1, 
it’s simple but allows any mapping to be entered however complex the pattern. 
Simpler patters can utilise simpler region mappers. Figure 2.27 shows the final 
mapping of all three coil regions, reproducing the entirety of table 2.1.

x i i S B I

Region P r o p e r ty  M a p p e r s . .
#  Name R eg ion s  mapped No. P a r ts  Errors

[erm] a d d /e d i t / r e m o v e /r e n a m e /q u i t  : a
Region p r o p e r ty  mapper name? [ ] / q u i t  ; STATORCOILMAPPING

Region P r o p e r ty  Mapper STATOR COIL MAPPING'. .
#  Name

[erm] a d d / e d i t / r e m o v e / q u i t  : a

L i s t  o f  r e g i o n s
# Name Region ID
-I................ I.............
1 LAMS 5
2 AIR 2
3 TOP_LAYER 6
4 MIDDLE_LAYER 6
5 BOTTOMTAYER 6

Enter r e g io n  n a m e /ID /q u it  : 3

L i s t  o f  r e g i o n s  p r o p e r t i e s  
Name ID Ur Cond. J s .
- . . . . . . . . . I - - - I . . . . . . . . . . . . . . I . . . . . . . I - - -
AIR 2 1 .0 0 0  0 . 0 0 0  N
MSTEEL 4 1 .0 0 0  0 . 0 0 0  N
LAMS 5 1 .0 0 0  0 . 0 0 0  N
RPOS 6 1 .0 0 0  0 . 0 0 0  N
RNEG 7 1 .0 0 0  0 .0 0 0  N
YPOS 8 1 .0 0 0  0 . 0 0 0  N
YNEG 9 1 .0 0 0  0 . 0 0 0  N
BPOS 10 1 .0 0 0  0 . 0 0 0  N
BNEG 11 1 .0 0 0  0 . 0 0 0  N

Enter s p a ce  se p a r a te d  l i s t  o f  reg io n  IDs f o r  p art  0 onwards /  q u i t  : 6 6 6 6 11 11 11
11 8 8 8 8 7 7 7 7 10 10 10 10 9 9 9 9

Region P r o p e r ty  Mapper STATOR COIL MAPPING'. .
# Name 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20  21 22 23

1 TOP LAYER 6 6 6 6 11 11 11 11 7 7 7 7 10 10 10 10 9 9 9 9

[erm] a d d / e d i t / r e m o v e / q u i t  :

Figure 2.26: Adding Region Mappings For The Stator
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Enter  space  se p a r a te d  l i s t  o f  reg io n  IDs f o r  part  0 onwards /  q u i t  : 6 11 11 11 11 8 8
8 8 7 7 7 7  10 10 10 10 9 9 9 9 6 6 6

Region P ro p er ty  Mapper ' STAT0R_C0IL_MAPPING'. .
#  Name 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

- - I ............
1 T0PLAYER 6 6 6 6 11 11 11 11 8 8 8 8 7 7 7 7 10 10 10 10 9 9 9 9
2 MIDDLELAYER 6 6 11 6 11 11 8 11 8 8 7 8 7 7 10 7 10 10 9 10 9 9 6 9
3 B0TT0MLAYER 6 11 11 11 11 8 8 8 8 7 7 7 7 10 10 10 10 9 9 9 9 6 6 6

[erm] a d d / e d i t / r e m o v e / q u i t  : q 

Region P ro p er ty  M appers..
#  Name Regions mapped No. P a r t s  E rrors

: l ..........................- - - I ............................................................... I ............... I ..........
1 STAT0R_C0IL_MAPPING T0PLAYER, MIDDLELAYER, B0TT0M_LAYER 24 none

B
[erm] a d d /e d i t / r e m o v e /r e n a m e /q u i t  : Q

Figure 2.27: Completed Region Mapping For The Stator

2.6 G eom etric M apping

This object oriented design isn’t limited to the use of rotating electrical machines. 
When we copy the geometry we’ve designed so far we wish to allow any geomet­
ric mapping, to cope with linear machines as well as rotating for instance. A 
geometric mapping object simply maps a coordinate in space, the rotate mapper 
rotates along any axis around a centre. The following mapping will rotate around 
the centre of our stator, on the z-axis, through the angle a2 degrees occupied by 
our slot:

geomap = rotate(ctr, 0, 0, a2)

2.7 C om ponents

Finally we come to the most complex of our electrical machine building blocks, the 
component. A component takes a list of regions and puts these regions together 
to construct a single part of an electrical machine. The component looks at the 
regions’ representation of interfaces and elements and using the geometric mapper 
it constructs a copy of the original regions that have been geometrically mapped 
in space. It creates new interfaces and elements required for this mapped part.
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The component repeats this mapping process if required, it therefore needs to 
know how many copies of the initial part are required. For our twenty four slot 
machine we will group all the slot’s regions as a single part and tell the component 
to copy this twenty three times.

Once the component has completed the geometric mapping process it looks again 
at the interfaces it has created. During the mapping process it took care not to 
duplicate interfaces. For instance the first copy of our slot, figure 2.28, allows 
reuse of the interface between the adjacent slots. Duplication of interfaces would 
result in duplication of nodes. Once mapping is complete many of the interfaces 
will now be internal, the interface between the two slots of figure 2.28 for example. 
Internal interfaces are ignored, the component, like the region, is only interested 
in external interfaces. For each external interface the component creates a discrete 
segment should one not exist, the original regions are already defined by discrete 
segments. The discrete segment allows access to the external interface in order 
to set boundary conditions, periodic boundaries and sliding interfaces.

The component also creates regions that reside in the dependency tree, these 
correspond to each region mapping and like the original regions they are re­
sponsible for propagating region identities through to elements. The component 
uses the region mapper to determine the region identity of each mapped region. 
Figure 2.29 shows a section of the final stator with its mapped regions.

We now have a complete stator. Had our winding arrangement been a little 
simpler, more periodic, we could have told the component to repeat enough parts 
as to form half or quarter of the stator. The external interfaces the component 
created would have allowed us to set periodic boundaries and we wouldn’t have 
to model the entire machine.

2.8 Exporting Components To Augm ent Libraries 
Of Reusable Parts

Before we complete our electrical machine we will demonstrate how this compo­
nent can be utilised in future designs through the export and import of compo­
nents. Then we will import the rotor to our electrical machine to complete this
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LAMINATIONS

Figure 2.28: Component Groups Regions Into A Part Of A Machine, Ready For 
Mapping Through To Successive Parts
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Figure 2.29: Region Mapping Of The Stator
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design.

Exporting works with components through the examination of the dependency 
tree. Every building block of the machine used by the component is linked to it 
through this tree, by exporting the component we are saving everything needed 
to reuse this part in a future design. This includes the regions and their mapping, 
nothing is thrown away. The import process ensures that none of these building 
blocks can interfere with an existing design, importing a rotor can’t interfere 
with our stator, so keeping as much as possible could later minimise the amount 
of work we do. The fact that our geometry is governed by a few fundamental 
parameters allows it to be imported and slotted into place in any future design.

The export process examines our component to ascertain whether its part of a 
rotating or linear machine. The export process isn’t limited to these parts but if 
it recognises the part it can perform some sanity checks, mainly to ensure the cor­
rect parameters exist for it to be imported properly at a later stage. Figure 2.30 
illustrates the export process. Part of a rotating machine has been identified 
and the required parameters are present. Additional parameters have also been 
identified, these are values that sit at the top of the dependency tree. These 
parameters can be optionally highlighted in the exported component and given 
verbose descriptions. When this component is imported the optional parameters 
will be highlighted so the designer is aware of any design specific parameterisa- 
tions.

2.9 Im porting Library Components

A library component differs from a saved model only in the extra information 
it has regarding the parameters it uses to slot into a design. The import tool 
detects this information and presents the designer with a few questions that will 
be used to set these parameters. In figure 2.31 we are importing the rotor for our 
machine, part of a rotating machine has been detected and a few questions are 
presented so the internal diameter, external diameter, and the number of slots 
can be set. This is all the information we need to fit the import into our design.

From the number of slots we can set the angle of the slot a2, the absolute angle of
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Figure 2.30: Exporting A Component To Augment A Library Of Reusable Parts

the slot al is assumed to be zero and the centre is assumed to be the origin. The 
import tool can now fix all the required parameterisations of the imported part 
and construct a component that will form, in this case, the rotor of our machine:

dl = <set from input> 
d2 = <set from input> 
slots.rotor = <set from input>

ctr.rotor = vvpoint(0, 0) 
al.rotor = 0
a2.rotor = 360 / slots.rotor 

repetitions.rotor = slots.rotor - 1
geometric_map.rotor = rotate(ctr.rotor, 0, 0, a2.rotor) 

region_map.rotor = <detected from library>
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component.rotor = component(geometric_map.rotor,
repetitions.rotor, 
region_map.rotor,
<plus all regions exported>)

The import tool asks for a label, a name-space, that will be appended to each 
object’s name upon import. This ensures that names don’t clash and the im­
port of one part doesn’t affect another part already in our model. The import 
uses the region mapper of the exported part, or an empty one otherwise, when 
constructing the component. The one to one relationship between a component 
and region mapper is extremely useful for the import process; it can construct 
a component with a single mapper that the designer can edit using the editing 
tool. No matter how many regions are added or removed from the mapper, as 
it’s still a single object the designer never has to touch the command line and 
redefine the component in terms of other mappers.

> import
Filenam e of  t h e  import f i l e  ? [ ] / q u i t  : . / p a r t s / r o t o r _ t e s t  

D e te c te d  part  o f  a r o t a t i n g  machine  

Parameters d e t e c t e d . .
ID V a r ia b le  Requirement D e s c r ip t io n

I I I
1 a l  re q u ir e d  Angle through t o  s t a r t  o f  component
2 a2 req u ired  Angle o f  component e x t e n s i o n
3 c t r  re q u ir e d  C entre  o f  component
4 d l  re q u ir e d  Inner  d ia m e ter  o f  component
5 d2 req u ired  Outer d ia m e ter  o f  component
6 n req u ired  Node d e n s i t y
7 s l o t d e p t h  o p t i o n a l  S l o t  Depth
8 s l o t o p e n i n g  o p t i o n a l  S l o t  Opening
9 t o o t h t i p t h i c k n e s s  o p t i o n a l  Tooth Tip T h ick n ess
10 t o o t h w i d t h  o p t i o n a l  Tooth Width
Import ? [ y e s ] / q u i t  : y

Number o f  s l o t s  : 18 
I n t e r n a l  d ia m e te r ,  d l  : 0 
E x te r n a l  d ia m e te r ,  d2 : 5 7 .5

Namespace f o r  t h i s  p a r t?  [ i m p o r t l ] / q u i t  : ro tor  

open ing  ' . / p a r t s / r o t o r _ t e s t '
0% ..10% ..20% ..30% ..40%7.50%..60%..70%..80%..90%..100%  
open co m p le te  
>1

Figure 2.31: Importing A Library Component
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2.9.1 Defining Interfaces Between Independent M eshes

We now have two completely separate meshes, one for the stator and one for the 
rotor. The internal diameter of the stator’s mesh matches the external diameter 
of the rotor’s mesh and so their interfaces overlap. However it is unlikely that 
the nodes along these interfaces will be aligned, we would have to match the 
geometry and node density on the respective discrete segments and this would 
significantly complicate the simple import and reuse of components at a later 
stage.

The chosen solution to this problem is to use a sliding interface[14] which is a 
fairly general technique that allows independent meshes to be translated and 
rotated whilst coupled together using Lagrange multipliers. The meshes of our 
stator and rotor are now free to move with respect to each other without any 
need for remeshing.

This technique must be implemented within the finite element solver, here we 
just mark the respective interfaces so the information can be propagated through 
to the exported mesh.

If we stop the components from mapping parts, by setting the number of times 
they copy to zero, then we’ll highlight the discrete segments that are forming the 
sliding interface in figure 2.32.

repetitions = 0 
repetitions.rotor = 0

Manually we would mark these discrete segments as sliding interfaces as follows:

> list dsl5.rotor
dsl5.rotor=dsegment(ccl.rotor, _pe_cll.rotor, _pe_cl3.rotor, _vn_ds15.rotor) 

segment: ccl.rotor 
from : _pe_cll.rotor
to : _pe_cl3.rotor
with : 15 nodes

78



Figure 2.32: Identifying Discrete Segments That Form A Sliding Interface

> ds15.rotor=dsegment(ccl.rotor,
_pe_cll.rotor,
_pe_cl3.rotor,
_vn_ds15.rotor, flag(s))

The discrete segment takes an optional argument that can be used to change 
its properties. When the component copies parts and creates new interfaces 
the properties of the interfaces it copies are propagated through the copies. It 
is possible to set the attributes of the whole of the stator’s internal interface, 
and the rotor’s outer interface, by designating two discrete segments as sliding 
interfaces. The, currently rather primitive, interface editing tool of figure 2.33 
uses this feature and presents its user with the short list of discrete interfaces that 
it finds external. As their properties are propagated, they may only represent a 
small part of the whole interface but they actually control all of it.

2.10 U sing  The M esh

Here are some gratuitous screen shots that show the export of the mesh to a 
format that can be read by the MEGA [15] finite element solver, figure 2.34.

A view of the mesh via the MEGA pre-processor is in figure 2.35.



  w i i m w w w w i h j h w p — w ,  i » j i .  » ■ ■■  . . ■« " M i n a - w r i

> e i
I n t e r f a c e s  d e t e c t e d . .

#  D i s c r e t e  Segment Name S l i d i n g  I n t e r f a c e

" I   ................ I" - ...................
1 d s l l  yes

I 2 d s ! 8  no
3 d s l 5 . r o t o r  no

E d it  I n t e r f a c e  ? ID /n am e/q u it  : d s l 5  j

Togg led  s t a t e  of  ' d s l 5 . r o t o r '

| I n t e r f a c e s  d e t e c t e d . .
#  D i s c r e t e  Segment Name S l i d i n g  I n t e r f a c e

M , .............................
1 d s l l  yes
2 d s l 8  no I
3 d s l 5 .  r o to r  yes

E d it  I n t e r f a c e  ? ID /n am e/q u it  : q
>  a

Figure 2.33: Toggling The State Of Sliding Interfaces On Discrete Segments

open co m p lete  
> mega
e n t e r  f i l e  name ( q u i t 1 t o  a b o r t )  [machine4]  
f i l e  t e s t '  a lr e a d y  e x i s t s  - o v e r w r i t e  [ y ] / n  
c h eck in g  fo r  d u p l i c a t e  nodes . . 
d u p l i c a t e :  _ i l _ c l 4 _ c l 8  -> p e c a l  
ig n o r e d .  _pe e l l . r o t o r  -> l l  ccag  e l l ,  both

s i

on s e p a r a te  s l i d i n g  i n t e r f a c e s

RJRJ
Rl

removed 1 d u p l i c a t e  node
I f  you h a v e n ' t  e n te r e d  d im e ns ion s  in m etres  you must now e n t e r  a s c a l i n g  f a c t o r
f o r  exam ple ,  IE -3  or 0 .0 0 1  i f  u s in g  m i l l i m e t r e s
Enter a s c a l i n g  f a c t o r  [ 1 . 0 ]  :
ex p o rted  12350 nodes
ex p o rted  14982 e le m e n ts

Figure 2.34: Exporting Mesh To A Finite Element Solver
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Figure 2.35: Exporting Nodes And Elements To A Finite Element Solver

2.11 Transform ation Of The High Speed M otor  

Into A n Induction M otor

If we wanted to use a different rotor configuration, to turn this into an induction 
motor, we can put our reuse ability to the test with the import of another library 
component. Figure 2.36 shows the geometry of an induction machine’s rotor, a 
definite case of here’s one I did earlier. Figure 2.37 gives the more attractive and 
colourful illustration that better identifies the rotor’s regions.

Finally, in figure 2.38 we can see full induction motor using MEGA’s pre-processor. 
End of gratuitous screen shots.
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Figure 2.36: Rotor Library Component Of An Induction Machine

Figure 2.37: Rotor Library Component Of An Induction Machine With Regions 
Highlighted
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Figure 2.38: Rotor Of Induction Motor Imported
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Chapter 3

Communication Between Objects

To make a point communicate with a line when its position changes, so that the 
line can change accordingly, we need a form of communication between our data 
objects. This communication should work across all objects without the need 
for any unique implementation beyond basic necessity, after all we are using an 
Object Oriented Programming scheme.

3.1 Parents and Children

The design approach used starts with basic numeric values, independent of other 
data objects, working up to symmetry components. This relationship is the basis 
of a dependency tree, once a value changes the dependent objects need either to 
be updated immediately or flagged to ensure an update occurs when they’re ac­
tually used. The dependency works in one direction through the tree. The initial 
values are parents to the points and other objects that ultimately end with the 
components. We can consider the dependency in terms of parents and children. 
The initial values are without parents, subsequent objects, taking these values as 
arguments, are the children of these values; these objects in turn become the par­
ents to subsequent objects that take these as arguments in their definition. The 
dependency therefore involves the use of a list of parents and children within an 
object. Creating this as a stand alone object allows reusability, objects inheriting 
this dependency object can all be referenced as a dependency object regardless of
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their final form. Our dependency tree becomes a network of dependency objects, 
each of which contains a list referencing the parent dependency objects and child 
dependency objects. A polymorphic function within the dependency object need 
only be implemented by the inheriting object, the purpose of which tells that 
object to do the necessary update to its state.

The abstract nature of the dependency object has resulted in it being called a 
Thing. An example illustrating the dependency relationship is as follows, starting 
with the creation of two values:

x = 1

y = 2

These values will always be without parents and are childless until we define a 
cartesian point referencing them as attributes:

p = vvpoint (x, y)

Now both the values have the point as a child, the point has the two values as 
its parents. As values and points inherit the dependency object, Thing, the lists 
of parents and children will point to the dependency object part of the value 
and point object’s structures. Hence it is possible to reference any Thing derived 
object in these lists. This poses the question, once an object is referenced in this 
list then how do we tell what type of object it is? It could be a value, it could 
be a point. To the outside world, looking at the object, some kind of mechanism 
would indeed be needed to establish the type of object once its identity is lost 
and it becomes a generic Thing reference in one of these lists. Something easily 
remedied with run time type identification, a mechanism found in the C ++ OOP 
used, or the use of text fields identifying types and families. However the point, 
being a concrete representation, knows it was constructed from two values. The 
two references in its parent list must thus identify these two values. From this 
we can deduce that the order of the parents, contained in the parent list, must 
never be tampered with.

If we were to add a third value and a second point as follows:

85



x2 = 2
p2 = vvpoint (x2, y)

The y value now has two points as children. From this it can seen that objects will 
always have a fixed number of parents, the order of which must be maintained, 
however the child lists can contain an arbitrary number of references. If we were 
to delete point p such that its reference were removed from the child lists of values 
x  and y, it can be seen that the order of the child lists is unimportant.

3.2 Public Accessibility

To facilitate the explanation of dependency operation, this is how the basic Thing 
looks, table 3.1 shows the functions that are provided publically, to the whole 
world, and table 3.2 shows the protected functions that are accessible only to 
derived objects.

The purpose of public functions are as follows: 

family, typ e :
A means of identifying an object’s family and type. Families of objects 
allow interchange of family members within the dependency tree, chap­
ter 5 explains this further. The earlier example include objects of the value 
and point families. The type identifies a particular object, all types being 
unique. The example included the vvpoint type of the point family in our 
example.

label, nam e, nam espace :
Each dependency object has a unique name, used to identify it within the 
model. For the floating point value “x =  5” , x  would be the assigned label. 
A name space may be used, such as width.slotl and width. slot2, allowing like 
named variables to be used in different areas of the electrical machine. The 
label is the summation of the name and name space using the full stop as a 
separator, any number of parts may exist to a name space; this allows the 
nesting of name spaces, such as width.slot2.machine, with the name space
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Public Methods

virtual
virtual const char* 
virtual const char* 
const char* 
const char* 
const char* 
const ThingList&; 
const ThingList& 
bool

void

void

bool
bool
bool
bool
virtual bool 
virtual bool 
bool
virtual bool 
virtual void 
virtual void 
void

Thing ()
'•'■'Thing () 
family ( ) const =  0 
type ( ) const =  0 
label () const 
name () const 
name_space () const 
parentCList () const 
childCList () const 
flag (unsigned n) const 
setFlag (unsigned n, 

bool b)
flagD ependents (unsigned n, 

bool state)
pending () const 
invalid () const 
retired () const 
orphaned () const 
retire () 
reinstate ()
reco (bool down =  false) 
can W rite () const 
outX  (ostream &out) 
outG  (ostream &out) const 
outFam ily ( ostream &out) const

Table 3.1: Thing Public Interface

Protected Methods

void setLabel (const char *str)
ThingList& parentList ()
ThingList& childList ()
void adoptParent ( Thing *parent)
void disownParent (Thing *parent)
virtual bool _reco ()

Table 3.2: Thing Protected Interface
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operating in a like manner to internet domain names[16]. Future work, 
chapter 9 would concentrate on an intuitive graphical user interface that 
allowed the designer to use multiple windows viewing the same machine, 
each view allowing confinement to a name space.

parentC List, childCList :
A method of read only access to the list of the object’s parents or chil­
dren, this prevents unwarranted access to this sensitive data allowing mis­
cellaneous access to, for instance, verbosely print dependency information. 
Write operations on this data is performed through the parentList and 
childList functions of the protected interface.

flag, setF lag, flagD ependents :
To be versatile and efficient on memory the Thing stores boolean flags as 
the states of different bits within one integer variable, similar to bitfields 
within C[17], only new flags can be requested, or unused flags relinquished. 
With this mechanism a new flag can be requested, reserved for use across all 
dependency objects, for the lifetime of a particular operation. This method 
is used when saving data, marking objects as saved whilst ensuring no object 
is written out until all the objects it is dependent upon have been. The flag 
and setFlag functions read and write the boolean state of a flag according 
to an index that identifies the bit held to store this information. In order 
to mark all the dependents of an object, children and grand children and 
so on, flagDependents is used.

pending, invalid :
Changes need not take take effect immediately, should the state of an object 
change it can mark any dependent objects as requiring an update by setting 
their pending flag. Only when an object’s state is accessed does it need 
to check the pending flag and update its state if necessary. For invalid 
objects, imagine two segments, once intersecting, no longer intersect; the 
intersection point is now invalid. Invalid objects should not allow their state 
to be read, the effect could be damaging if not just incorrect. Both these 
functions provide access to flags using the flag function, they simply used 
stored indexes pointing to the correct flags.

retired, orphaned, retire, reinstate :
More flags are provided by retired and orphaned using stored indexes; these 
flags offer an insight into the state of the model precipitated by the retire



and reinstate functions. These functions are better explained in chapter 6.

reco(bool down =  false) :
A very essential function meaning “update your state if necessary”. This 
is the easy way to make sure the object is current and thus whenever an 
object’s state is accessed, this should be called first. The function will 
recursively access all parents or children, depending on whether the down 
variable is set to false, the default, or true respectively, updating their 
state if necessary. This function can therefore be used to either ensure 
that all parents are up to date, so that this object can be updated, or all 
children are up to date, because this object has been changed. The value 
returned by this function is true if the object has a valid state, allowing the 
object to be ensured updated whilst accessing its validity simultaneously, 
and thus whether to use the object. The pending flag is used by this 
function during the recursive check of parents or children to determine 
whether anything actually needs to be done; hence efficiency is maintained 
by avoiding updates of current states. This function is further detailed, 
later in this chapter..

can W rite, outX , outG , outFam ily :
All objects can output a list of their dependencies in the form of “name =  
(parentl, parent2, ..)” , this is done with outG and provides the format used 
for saving the model to file. However, further information on the objects 
state may be provided if the object implements outX and canWrite. Values 
do this in the G Value base object to print the real and complex parts of 
their representation. Finally, outFamily will print a nicely tabulated display 
of the parents and children of an object. This provides knowledge of the 
object connections and has been a very handy tool in the debugging of 
dependency tree manipulation tools.

The Thing’s protected functions are accessible only to objects inheriting from
Thing. This interface gives a little more access to the object’s representation:

setLabel :
Allows the object’s unique name to be set.

parentList, childList :
Methods providing read and write access to the list of the object’s parents
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and children.

adoptParent, disownParent :
Usually adoptParent is called when a concrete object is constructed, this 
function attaches the calling object to a parent such that it becomes the 
parent’s child. This object has then become part of the dependency tree of 
the model. The reverse action to this, disownParent, detaches this object 
from the stated parent, isolating it and any dependent objects from the 
parent and most probably the dependency tree.

_reco :
this polymorphic function is to be implemented by the concrete object 
representation ultimately inheriting this functionality. The function imple­
ments the concrete object’s action of reading in data from parents in order 
to update its state; it implements the mechanism of converting the data 
acquired from the parents, defining its interface, into the generic represen­
tation that is usually defined by the base class object of its family. The 
function is only called from the generic reco function and returns a logic, 
boolean, value indicating the success of the conversion; if false, the object 
becomes invalid.

3.3 Reconstruction of D ependency Tree M em­
bers

One function within Thing is of great significance, explaining the reco function 
gives a good insight into the operation of the dependency tree. When the data 
of an object is accessed, through its interface, reco should be called to ensure the 
state of the object is current and valid. This is usually automatic, for instance 
the display of objects will call this function and skip display of the object if it is 
invalid. The display function returns no data, however functions returning data 
on this object should take this measure to ensure validity of the object before 
accessing its data; if the object has an invalid parent, and is thus invalid itself, 
the action of reading invalid data could be damaging, the object may be without 
data being unable to read the necessary parameters defining it from the parent. 
Most data access is done as a result of updating the dependency tree, this action
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itself safeguards against this eventuality through the reco function and as a result 
the use of reco is seldom used externally.

Here begins the definition of Thing’s reco function: 

bool
Thing::reco(bool down)
{

if (IpendingO) return !invalid();
Thing *parent;
ThingListlter parents(_parentList); 
while ((parent = parents.next())) {

if (parent->pending()) if (!parent->reco()) return false;
}
if (!_reco()) {

setFlag(PENDING, false); 
setFlag(INVALID, true); 
flagDependents(PENDING, false); 
flagDependents(INVALID, true); 
return false;

>

setFlag(PENDING, false); 
setFlag(INVALID, false); 
if (down) {

Thing *chiId;
ThingListlter children(_childList);
while ((child = children.next())) child->reco(true);

>

return true;

Now we’ll explain each significant block in turn, starting with the opening of 
the definition. By default the boolean value of down is false, meaning update 
parents only when calling this function. The mode of operation can be changed 
by inverting this value, resulting in changes immediately cascading down the 
dependency tree once this function is called.
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bool
Thing::reco(bool down)
{

When a parent changes state it flags all children as pending, if our pending flag is 
not set then nothing has changed. Return immediately with the value of Unvalid, 
i.e. logical true if we’re valid.

if (IpendingO) return !invalid();

Getting this far means we’re pending, we need to ensure the state of our parents 
is valid before checking our own state. The following cycles through all parents 
checking validity. Bearing in mind that this prompts the same action in our 
parent that we’re currently stepping through ourselves, then if one parent should 
prove invalid we stop immediately. That parent will see that it marks itself invalid 
along with all dependents, th a t’s us, so we simply return false stating that we’re 
in an invalid state.

Thing *parent;
ThingListlter parents(_parentList); 
while ((parent = parents.next())) {

if (parent->pending()) if (!parent->reco()) return false;
}

The above has certified our parents valid and their state current. We call the poly­
morphic function _reco to get the concrete representation to convert its defining 
data into the generic representation. This function will return true if success­
ful, false otherwise. In the unsuccessful case we’re no longer pending and we’re 
no longer valid too. We can mark all dependents likewise to ensure the program 
doesn’t go and extensively check them too. Should they have called our reco func­
tion, they would abort at the above stage. The idea is to minimise the processing 
involved.

if (!_reco()) {
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setFlag(PENDING, false); 
setFlag(INVALID, true); 
flagDependents(PENDING, false); 
flagDependents(INVALID, true); 
return false;

}

With the last stage proving successful we can mark ourself as current, not pend­
ing, and valid.

setFlag(PENDING, false); 
setFlag(INVALID, false);

The exceptional mode of use, now we ensure all our children update their state. 
They will perform the above; they will stop at the first, parent non-pending, 
stage for the case where the parent is us, and will recursively check upwards for 
any other parents. Therefore, they may still prove invalid, even though we are 
valid, due to one of the other parents.

if (down) {
Thing *child;
ThingListlter children(_childList);
while ((child = children.next())) child->reco(true);

>

All is successful, return a valid status of true 

return true;
}

For what use is the exceptional mode when our dependency oriented data struc­
ture does not use this method? Object Oriented Programming is, among many 
things, designed to make reusable code by producing objects dependent on as 
few other objects as possible. The application of these objects to other areas
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saves time in the future. Not wishing to bind the graphical user interface of this 
program to a particular graphical system, the used method of graphical widgets 
were abstracted behind my own interface. The idea being that should another 
graphical system be used, that implementation could be made behind my ab­
stract interface and the new system plugged in as a replacement. One difficulty 
in this is the placement of graphical widgets within the physical window, they do 
depend on one another for their placement. Therefore, the widgets were inher­
ited from the dependency object. Re-using the InfixGValue to provide a means 
of describing the placement of widgets, the object builder of chapter 5 was reused 
to construct widgets along with value objects that depended on and controlled 
the x, y, width, and height values of the widgets. The “downwards” action of the 
dependency tree is used, for example, such that if the window size is changed, 
that change immediately cascades down the dependency tree updating dependent 
widgets; the effect of the re-size being immediate, rather than postponed as our 
model data structure facilitates where changes need only take effect when needed.

3.4 Constraints

Dependency works down the tree from the real and integer values to higher level 
objects. This motion simplifies the inter-object relationships as an object will 
always be constrained by its parent. Different concrete representations, chap­
ters 2 and 7, allow the same types of object to defined in terms of different 
parameters which become their parents. Arcs, lines, and circles are all segments, 
concrete representations of these segment types allow them to be created in any 
manner necessary for a design strategy since the addition of a concrete repre­
sentation requires no modification to the existing objects. Amongst the arc’s 
concrete types defined exist contrasting variations, one specified by its start, 
through and end point, another using a center point, start point and end point, 
a third using a center, radius and angle values. Differences between these lie in 
the order of dependency; a three point arc depends on the position of the three 
points, a center, radius arc depends on the center point and the other values; 
this type creates points at it’s start and end which depend on itself, this is the 
default behaviour for objects that are not defined by points as they themselves 
construct points dependent on their open ends to facilitate connection to other 
geometries, see chapter 6. Therefore, the two types explained differ significantly
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in their constraining behaviour. The dependency tree governing the model fil­
ters changes down the tree so behaviour is dictated by dependency. Rather than 
needing explicit constraints, the dependency relationship implicitly defines these; 
a line dependent on two points must vary it’s length according to the distance 
between points, whereas a line defined by a starting point, angle and length will 
create end points which must move as the line’s length changes. This constrain­
ing effect simplifies the desired parameterisation response within a model and it’s 
effects are immediate. It avoids the need to explicitly define constraints between 
all objects in order to effect the desired parameterisation. The cost of iterating 
over simultaneous equations resolving these constraints is also avoided. A state 
change affects dependent objects only, the repercussions echoed in a single pass 
down the tree, as opposed to iterations of an order corresponding to the number 
of couplings between objects[13].
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Chapter 4

Building Objects, Pre-processing

There are a number of objects related to the mechanism of constructing build­
ing block objects and placing them into the dependency tree. The first step 
involves the pre-processing of user input. Input is taken in the form of a string of 
characters. Build of an object can always be recognised by a valid object name 
followed by an assignment; valid object names begin with letters, or underscores 
if internally generated by the program, thereafter containing any combinations 
of numbers, letters, underscores and full stops. Names beginning with numbers 
are specifically disallowed.

Once the character string input is identified, conversion to an Expression can 
commence. The Expression breaks the string of characters down into sections 
according to specific formatting. Expression types exist for different format­
ting requirements, the mathematical expression handles the assignment format 
used for building objects whilst the command expression handles other require­
ments. A mathematical expression breaks the string down so the builder, after 
pre-processing the expression to expand any shortcuts, is able to immediately 
identify the variable name, type of object and the arguments supplied to that 
object. The builder takes the object type and looks for a matching Prototype. 
For every building block object a prototype exists of the same name, it’s their 
job to check that the supplied arguments match the object’s requirements. They 
can perform any necessary processing on the argument data, checking types and 
quantities, before building and returning the object to the builder. A mecha­
nism for type checking exists such that should the supplied arguments specify
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non-existing objects, that information can be used to try and build an object 
of the correct type. This recursive mechanism allows the user to build objects, 
specifying arguments in terms of unbuilt objects that will be automatically man­
ufactured prior to the main build. Thus it allows nesting of expressions, with it 
being possible to construct an entire model on a single line of input.

With a completed build, the object is inserted into the dependency tree at the 
appropriate positions; if the named object already existed in the dependency 
tree, that object is pulled out of the tree, the new object is inserted and the 
dependency tree is appropriately modified.

Finally, post-processing is performed by the builder. This may involve the build 
of subsequent objects specified by the object just built, the re-intersection of 
affected segments and components, and an update of displayable objects with 
the display.

4.1 Formatting Input To Expressions

Data entry is either from file, console or graphical user interface. Regardless of 
the method, data entry begins with a common character stream representation. 
The stream is checked for the assignment pattern that tells the program an object 
type is being assigned to a variable name. The Builder object takes its input as 
an Expression describing the object to be built.

4.1.1 Expressions

An Expression is a linked list of character strings designed to ease the input of 
user provided text. For that reason, the expression has a few safety features 
that ensure that, should the amount of input fall short of that expected, empty 
text strings are always returned when data has been exhausted. This prevents 
extensive testing throughout the program for the null pointers usually returned 
by the linked list, of C++ origin, that is reused extensively throughout this 
program. Instead, the expression has inherited the linked list and extended its 
interface to provide methods through which its list can be accessed in a protected
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manner. As a result, a function operating on a string will at worst operate on an 
empty string and never a null pointer; that would certainly cause the program to 
terminate.

The user input, having being recognised as data input, is now converted into 
an expression by an Expression Parser. This involves splitting the stream of 
characters into individual characters or blocks of characters. It is akin to taking 
a sentence and splitting the sentence into its separate words by cutting at, and 
removing, the spaces. The expression would by a linked list of words. Reading 
the expression with an iterator would result in sequential access of each word, 
from start to finish, of the sentence. The end of the sentence being denoted 
by an empty character string. The safety mechanism of the expression would 
ensure that should another word be asked for, empty strings would thereafter by 
provided. This protects the program should only one word be contained within 
an expression where the program expected more.

4.1.2 Expression Parsers

A stream of characters, an istream in C++, provides the input for the Expression 
Parser. As long as input is supplied, the expression parser will process the stream 
of characters deciding where to cut and store lengths of characters as an expres­
sion. Multiple expressions can be entered simultaneously allowing the parsing 
of files, expressions denoted by separate lines with the line feed separator, and 
single line inputs, the semi-colon as a separator. Several expression parsers exist, 
all derived from the generic expression parser that provides the core functional­
ity. A Mathematical Expression Parser cuts the input stream separating names, 
numbers, grammatical symbols and mathematical symbols, passing text within 
quotes untouched and otherwise stripping all spaces and tabs, white space, from 
the input. To do this, the parser requires knowledge of what constitutes a name 
or a number. This knowledge is required else where and therefore a separate 
object provides this mechanism allowing object reuse. The parser is therefore 
simplified, easier to maintain, having a few mechanisms to handle quoted text 
and reversing of the input stream to amend past decisions.
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4.1.3 Expression Identifier

The Expression Identifier has the knowledge needed to identify strings of char­
acters. It identifies a number as potentially having a decimal point, an exponent 
e, and a unary sign, but disallows multiple instances of these characters. Valid 
names are identified, allowing alphanumeric characters, full stops and under­
scores. A valid name is a2slotl.namespace, whilst 2aslotl.namespace, actually 
a shortcut for 2 * 2slotl.namespace, would fail. Signed floating point, real, num­
bers, integers and names can be identified. Mathematical expressions, checking 
for balanced parentheses, unary, and binary operators, are also identified. This 
allows short cuts in the input, with correct identification this can be accepted and 
expanded to the full format recognised by the program. If the format of names 
were to be expanded, as was the case when name spaces were added, an update 
to this object would reflect the change across the whole program.

4.1.4 M athem atical Expression Parser

The following are examples of the way an input stream of characters is split, with 
each block of split characters being stored as the next token of an expression. 
Spaces denote the splitting of tokens within the expression:

# the raw input:
a=ppline(wpoint (0,0),vvpoint (5,5))
# the expression:
a = ppline ( vvpoint ( 0 , 0 )  , wpoint ( 5 , 5 ) )

# the raw input:
a=vvpoint(namela*+2/(3name_b),~y_val)
# the expression:
a = vvpoint ( namela * + 2 / ( 3  name_b ) , -y_val )
# the shortcuts implied:
a = wpoint ( infix ( namela * +2 / ( 3 * name_b ) ) , neg ( y_val ) )

b=-b 
b = -b
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b = n e g  ( - b  )

b=-3.Ie7— b
b = -3.1e7 - -b
b = infix ( -3.1e7 - -b )

b=3 (x— 2y) 
b = 3 ( x - -2 y )
b = 3 * ( x - -2 * y )

4.2 The Pre-Build Processor

The Builder receives an expression through its evaluateExpression interface func­
tion. This entry point performs a check on the input, it allows creation of objects 
with names preceding with an underscore only if an internal flag is set; this
allows for file input of manufactured names denoted by this underscore. Manu­
factured names denote variables manufactured by the program itself, these being 
adjustable only if already existing. The reasoning behind this is that the naming 
system reserves these names for use by the program at the appropriate instance. 
Once created their state may be altered, however the unique naming allows the 
program to identify objects and perform some appropriate house keeping. This 
check aside, the evaluateExpression function then calls processExpression to do 
the real work.

4.2.1 Expression Resolver

Having said the processExpression does the real work, it actually delegates it to 
two intensive tasks. The first of these is the matching of the object type to be 
built. This task’s performed by the GBuilderExpressionResolver object. First 
checking to see if the input method indicates a file read is in progress, it decides 
whether to check briefly or extensively. For instance, if a file were being read 
the input is likely to be formatted correctly having been written by the program. 
This allows a brief resolution of the input by reading the object type as the first 
name after the assignment, “= ” , sign. This method can of course fail if the file
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was modified, then the fall back is to use the default, and very verbose, method 
used for general input. Parentheses are checked for the balance of opening and 
closing brackets, should the expression be of the form:

x = ( 5 )

then the enclosing brackets are removed. This example would then match the 
first check, using the Expressionldentifier object we would recognise this as an 
integer assignment. This expands to:

# integer expansion.. 
name int 5

We have removed superfluous formatting, leaving the essential name, type, and 
defining value. Passing the integer test, the expression resolver returns the name 
and type as separate entities to the builder; the expression, as the third entity, is 
left containing all defining values for the type, in other words the arguments to 
our variable’s type. It can be seen that shortcuts in the input allow, for certain 
object types, omission of the type of object being created. The second test, should 
the integer test fail, checks for real numbers. Qualification of the following input 
would result in the type being set to real:

# real assignment examples..
name = 4.4 # shorthand for name = real ( 4.4 )
name = 2.3e5 # name = real ( 2.3e5 )
name = -3.2 name = real ( -3.2 )

Now for a few more interesting types, starting with the negation of objects of the
value type:

# where y is a variable of the value type,
# x can be the negation of y.. 
x = -y
# shorthand for.. 
x = neg ( y )
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Assignments are another recognised shortcut that don’t just apply to values. 
Taking “a =  b” , where b is a value, this expands to “a =  value ( b )”. Likewise, 
assignment of points would be performed for “p i =  p2” if p2 were found to be 
a point. The pattern “variablel =  variable2” is recognised, variable2’s type is 
determined, the type name is found and the expression expanded. How is the 
type name found? Well, all object types are created using a prototype. Prototypes 
will be explained shortly, however they define the construction of an object type. 
As a result, they can be interrogated to determine the arguments an object, these 
are the concrete representations, requires. Assignments can be recognised easily 
because for “variablel =  assignment-type ( variable2 )” , the prototype needed 
will state that one argument is required, that argument is the same type as 
the object being created. All that need be performed is a search for prototypes 
constructing objects of the same type as variable2 which take one argument, that 
argument again being of the same object type as variable2. This mechanism has 
an advantage, some object families are harder to clone and the implementation 
of the assignment object type for that family can be postponed; when it is added, 
the search through prototypes will pick the new object up and all assignments 
for that family of objects.

# example assignments..
# values.. 
a = b
a = value ( b )

# points.. 
pi = p2
pi = point ( p2 )

# segments.. 
linel = line2
linel = segment ( line2 )

Finally, the last recognised shortcut is for the infix value type used to handle 
mathematical expressions. The following patterns are currently recognised as 
valid. Additions to these rules take effect with the modification of the infix 
identifier within the Expressionldentifier object. This function simply looks for 
the patterns of tokens within an expression and is easily modified.
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# allow 2 a, infix expands it to 2 * a 
v = 2 a
# allow 2 (, infix expands it to 2 * (
v = 2 ( x  + y )

# deny a (
# these would be confused with nested declarations
1 = ppline ( vvpoint ( x , y ) , p2 )

# allow binary operators 
v = 1 + x
v = a * y
# allow unary operators
v = 1 + -x # infix expands to 1 + -1 * x
v = -a  * y

Once these tests are complete, the only course of action is to assume the type was 
entered. Then the token of the expression, following the assignment, is examined 
against the list of all object types that can be built. If a unique match is found, 
the name and type can be identified to the builder; the remaining tokens of the 
expression are taken to be arguments supplied for the build of the object. These 
are now reduced, the parentheses are examined and the expression is compressed 
for compatibility with nested declarations. For example, a vvpoint takes two 
value arguments, x and y, as follows:

p = vvpoint ( x , y )

If we were to supply, ignoring the fact that we can use short cuts, x + 1 and y 
+ 1:

p = vvpoint ( infix ( x + 1 ) , infix ( y + 1 ) )

We would want to compress this expression as follows, noting that spaces de­
note separate tokens within the expression, so that the vvpoint still received two 
arguments:
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p = vvpoint ( infix(x+1) , infix(y+1) )
# the resulting two arguments with all superfluous grammer stripped.. 
infix(x+1) infix(y+1)

This can be performed by compressing the text between the first bracket and 
comma, this comma and the next comma, and there on until the last comma and 
bracket. Attention needs to be paid to parentheses. After finding an opening 
bracket, discovery of a second bracket means we’ve entered a nested declaration, 
discovery of a third bracket meaning we’ve entered further into another nested 
declaration, and so on. Concentrating only on the arguments for the top level 
object declaration, we compress all nested declarations by ignoring commas found 
in nested declarations; this is done by monitoring the number of open brackets, 
only when we have one open bracket do we honour a comma and separate those 
arguments into a token.

# a fully expanded expression prior to compression..
1 = ppline ( vvpoint ( 1 , 1 ) ,  vvpoint ( 2 , 2 ) )
# the compressed version providing just two arguments for the ppline.. 
1 = ppline ( vvpoint(1,1) , vvpoint(2,2) )

4.2.2 Prototypes

With the expression successfully broken down into the name, type and optionally 
some type arguments, the expression resolver tries to find a matching prototype 
to build this object.

For every concrete representation of a type of object, such as addition , sub­
traction and infix value types, there exists a prototype. A Prototype, detailed 
in table 4.1, constructs its associated object. All objects have a type and fam­
ily identifier, for a multiplication value the type would be mult with the family 
being value. These identifiers are present in the actual concrete representations 
and their prototypes, we can not only search for a particular type but should we 
be less sure of a match we can search through family members; this is also useful 
if we want to replace a particular object with another of the same family.
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Public Methods

virtual 
const char* 
const char*

virtual Thing* 

Thing*

virtual unsigned
virtual const char*
virtual int
int
int
GBuilder&

=  0

ProtoT ype ( GBuilder &builder, 
const char *type, 
const char *family) 

P rotoT ype () 
typ e () const 
family () const 
construct (const char *name,

const Expression &parms) 
construct ( const char *name,

const ThingList ^parents) 
param eterTypes () const 
param eterType (unsigned n) const 
param eterScope (unsigned n) const 
m atchB yType ( const char *desc) const 
m atchByFam ily (const char *fam) const 
builder ()

Protected Methods

check (const char *myname,
, , const Thing *parent,bool , . ’ constconst char *parentname,

const char *parenttype)
param eter Check (const char *myname,

bool const char *nextparm, const
const Expression &;parms)

Table 4.1: Prototype Public and Protected Interfaces
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Prototypes have knowledge of their respective concrete counterpart required for 
its build. Upon receipt of an expression containing arguments for the object’s 
build, the prototype will check these arguments for compatibility; should this 
fail, the prototype will return a null pointer denoting this. In order to preempt 
this, such that we can be sure of supplying the correct arguments, the prototype 
has in its interface the functions capable of supplying this information. This 
is useful, for example, in supplying a graphical user interface for the input of 
the correct data, or for searching prototypes for specific matches; one such case 
being the search for assignment types, recognised as requiring one object as a 
build argument that is also of the same type as the assignment object itself.

The prototype’s type specifying interface has three functions, parameterTypes 
tells us how many types of object the prototype requires:

# for example,
# the multiplication value requires one type, the value type., 
a = mult ( value1 , value2 )

# the pvcircle requires two types, the point and value types., 
c = pvcircle ( centre_point , radius_value )

The function parameterType identifies the required types, parameters cope iden­
tifies the quantities of the required types. Therefore, if parameterTypes told us 
three types were required, parameterType and parameters cope could be called 
three times as parameterType (0), parameters copy (0), parameterType(l)) parame- 
terScope(l), parameterType (2), parameters cope (2). Instead of a specific quantity, 
parameters cope can return 0, meaning optional, -1, one or more required, -2, two 
or more required, and so on.

4.2.3 A Factory of Prototypes

To facilitate in the search for a prototype, matchByType and matchByFamily 
functions compare a given, and possibly incomplete, type or family against the 
respective type or family of the prototype. However this matching needs to be 
performed for all prototypes, at least until a match is found, and th a t’s where the
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factory comes in. A builder, GBuilder, has a factory, GFactory, and the factory 
contains a list of prototypes thus describing what it can build. Inheriting from 
the generic factory, factories can be built with a base list of default prototypes; 
additional prototypes can then be added later, usually by builders, inheriting the 
generic GBuilder, to create customised factories that produce objects to specific 
build requirements.

Finding a prototype match via the factory is done so by calling search Proto Type 
with a description of the object, the factory will first try an exact match and 
then, if specified, try to match as much of the description as possible to likely 
candidates* Should it match a variable, if that variable exists then parameters for 
that variable are read from the prototype. At the point of entering a type, other 
types from the same family are listed to allow the change of the variable within 
the possible scope. At the point of entering arguments, grammar is examined 
to determine the argument being entered, taking into account nested declara­
tions, such that a list of available variables, of the correct type, can be listed 
and completed against any entered text. This applies to the input of new data 
too; once a new variable name is recognised, all types are listed. When a type is 
entered, it is checked, the required arguments queried, and possible variable and 
type completions displayed. This allows the user to enter arguments of existing 
variables or types for nested declarations; once a nested declaration is entered, 
completion will act upon the arguments for the nested declaration, to any depth, 
until it is completed and the higher level argument list completion can continue. 
This whole process is facilitated by the factory whose matchByParameters func­
tion will check the argument type list against a prototype, verifying a match, 
highlighting errors and predicting the types required for completion.
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Chapter 5

Building

Having had a prototype returned to us via the pre-processing stage of the build, 
chapter 4,, the next stage is to construct our object using the prototype. Here the 
builder does a few checks, firstly it looks to see if an object already exists under 
the name returned by the pre-processing stage. Names are unique, the name 
check simply involves the parsing of a “model” list looking for a match; whilst 
parsing the dependency tree is relatively fast and straight forward, a linear list 
of all objects is quicker to examine. The builder therefore maintains a lists of all 
objects currently within the dependency tree, since the builder is responsible for 
modifications of the dependency tree. If no object exists within this list under 
the name of the new object to be, the builder immediately proceeds with the 
construction.

Should an object already exist of the same name, the builder assumes a reas­
signment is taking place. For this to occur, the two objects must be compatible. 
Objects dependent upon the existing object are expecting a particular family 
of object, whatever the concrete representation may be, the dependent object 
is accessing the generic interface of a value, point, segment or other type. The 
new object must match this type otherwise the program will fail; the dependent 
objects contain a list of parent objects in the form of pointers to Things, see 
chapter 3, only they know what objects they really cast to. The new object must 
cast to the same type for the program to operate correctly. Also, the dependent 
objects only know how to convert their particular concrete representation into 
the generic representation. Altering a type of object they depended upon would
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also cause them to fail. The builder therefore verifies the match of the existing 
and new objects families by comparing the results of the family function from the 
existing object and the prototype for the new object. Verification of matching 
families allows the builder to proceed with the construction as per the case of a 
new object.

5.1 Construction Via the Prototype

All prototypes have a construct function; being passed the variable name of the 
object the prototype is to create, along with an expression of the object’s defining 
arguments, the prototype sets forth on its constructive path. The builder now 
acts as a resource to the prototype which, having the knowledge specific to its 
particular object, sets forth verifying any provided input in order for to ensure a 
successful object build.

Taking the input “p =  vvpoint(x,y)”, the vvpoint prototype will receive the name 
p and argument list of two tokens x and y. Firstly the prototype will check that 
x exists and is a value, to do this the prototype will access the builder that 
initiated the construction and enquire about the variable. The builder has a list 
of all variable objects that it has constructed, this list reflects every object in the 
dependency tree. Instead of a dependency tree search, the builder can search its 
own list for particular objects; this is quicker, the builder assumes responsibility 
for correlating this list with the objects of the dependency tree for every action 
taken upon the dependency tree.

5.1.1 Lookup of Object Variables

The builder has two generic functions, resolveThing looks through the builders 
list, a list of Things from which all objects are derived, searching for a named 
variable according to a given type of family; upon finding the named object, 
noting all objects are uniquely named, the builder can then check the family of 
the object is correct and return it to the prototype. The prototype, happy with 
this resolution, advances to the next argument it has to check in the example, y. 
Successful referral of these two variables allows the prototype to proceed with the
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construction of the object, passing the referenced variables through as the argu­
ments required to construct the object. Failure to resolve any of these arguments 
would cause the prototype to return a null pointer to the builder signalling the 
failure, the prototype would print useful messages to the user explaining the prob­
lem using generic functions within the template prototype which all prototypes 
inherit; constructing a prototype is thus made as simple as possible, requiring 
the implementation of the polymorphic construct function.

To facilitate use of resolvcThing by the prototypes, a file is provided containing 
macros that supply the type of family required by the builder. Our vvpoint 
prototype will then use resolveValue to find if value x existed, the resolveValue 
macros supplying the value type to the resolveThing function of the builder.

5.1.2 Lookup and A utom atic M anufacture of Object Vari­
ables

The second of the builder’s functions is used more so by the prototypes; alter­
native to resolveThing is resolveOrCreateThing, mirrored with macros such as 
resolveOrCreate Value. If we are to ask the vvpoint prototype to construct “p =  
vvpoint(x,5)”, the prototype will successfully look up x as before. However, the 
value 5 doesn’t relate to a variable name. We could construct a variable called 
five automatically and make variable p dependent upon that, a better solution 
is to construct a variable name dependent upon the variable that requires it; 
house keeping is easier this way, should we delete p we then know to delete the 
automatically manufactured variable too. State of the automatically manufac­
tured variable is also independent of the name, allowing us to change the value 
of this variable without confusion. The resolveOrCreateThing will automatically 
manufacture variables as required. To simplify prototypes, this function is used 
by default unless automatic manufacture is specifically undesired. Just as the 
call to the resolveThing macro supplied one of the construct arguments, being 
the name to lookup, the call to the resolveOrCreateThing macro supplies this 
same information. Here, however, it’s the number 5 in our example, and is a 
nested declaration for construction. The resolveOrCreateThing macro also takes 
the name of the object being created by the prototype along with an identity 
tag; the macro supplies another tag indicating the family type and all this in­
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formation becomes the name of the manufactured object. For our example, the 
manufactured name of -macroTa,gprototypeTa,g-name becomes ~vy-p indicating 
the manufactured object is a value for the y coordinate of object p. Function re­
solveOrCreateThing is told by the macro resolveOrCreate Value to look up value 
5 which doesn’t exist; the function then creates the manufactured name and asks 
the builder to evaluate “~vy_p =  5” , this recursive action now entering the same 
construction cycle we initially ventured upon. The builder’s pre-processor will 
deduce we want “-vy_p =  int (5)” and the int prototype will construct an integer 
value of 5 which the prototype will return to the builder, for the builder to return 
to our initial prototype allowing construction. The recursive nature of the process 
allows use of shortcuts via the pre-processor at all nested stages. Manufactured 
names are guaranteed unique and interpretable to the user should they wish to 
modify their state.

5.2 W hat to do in the Event of Failure

Image we try to resolve “p =  vvpoint(5,y)” which is very similar to the example 
before. The vvpoint prototype is found, it calls the resolveOrCreateValue macro 
which in turn calls the resolveOrCreateThing to create the manufactured object 
-vx-p as the automatically manufactured “x” coordinate value of p. The resolve­
OrCreateThing passes “_vx_p =  5” to the builder whose pre-processor determines 
the expression expands to “_vx_p =  int (5)” , the int prototype successfully creates 
the integer value object, returns it to the builder which returns it to resolveOrCre­
ateThing. Here it is checked that a value was actually created, as it was, because 
resolveOrCreateThing was called by resolveOrCreateValue with the type set to 
value. All is successful and the automatically manufactured object is returned to 
the vvpoint prototype. Now this prototype calls resolveOrCreateValue asking for 
a value named y, the problem occurs if y doesn’t exist. The vvpoint prototype is 
told that this variable doesn’t exist, it thus exits after returning a null pointer to 
tell the builder that the object p failed in its construction. The resulting problem 
lies with the automatically manufactured value object that’s sitting in the depen­
dency tree. Whilst this may taint our house keeping, leaving unwanted objects 
lying about that could easily be cleaned up at a convenient moment, the failure 
exhibits itself if we were to consider that this point object, p, already existed. As 
it will be later seen, rather than try to modify the internal state of an object, it is
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easier and more advantageous to create a new object and swap it for the old one. 
Therefore, if point p already resides in the dependency tree and we fail in our 
new declaration of p, we run the risk of the newly automatically manufactured 
variable erasing the old one; this would leave the dependency tree in an incorrect 
state because the newly manufactured variable would certainly be of a different 
numeric value.

5.2.1 Inherent Undo and Redo M echanism

To resolve the possibility of leaving the dependency tree in a broken state, as a 
result of failed builds, we record the actions of the build after each operation; at 
the point after a prototype returns a successful construction, the builder has a 
newly created object. Should that object already exist, the builder removes the 
old object and substitutes the new object. Here we create a history object that 
states a replacement took effect, recording the removed and inserted objects. 
Should the object be a new addition, the history object states there was an 
addition and references the new object. Each recursive action of the automatic 
manufacture process results in a history object being tagged on to the end of a 
list of such objects; if a build fails at some point in the installation, the history 
list can be parsed in reverse order reinstating objects.

On completion of a successful build, this history list need not be discarded; by 
creating a list of history lists, it is possible to traverse this list and restore the 
model to any previous state. Travelling backward through the list of history 
lists, reinstating the previous state of the dependency tree by traversing the last 
history list backwards, we are performing an undo operation. Once restoration 
is completed, we can then remove the history list from this undo list and tag it 
to the end of a redo list. As a byproduct of the build fail mechanism, the user is 
now able to traverse through the various states of the dependency tree. This is 
an abstract mechanism, the undo features are inherited when the derived object 
inherits from the base Thing and as a result can be applied to any object type 
without type specific programming [12].
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5.3 Additions and Replacem ents

Having determined, at the point the GBuilderExpressionResolver returned a pro­
totype, whether an object was being added or an existing object was being re­
assigned, the builder will have recorded a respective added or replaced history 
object. If the object was an addition, the builder adds the object to the “model” 
list detailing all objects currently within the dependency tree. No modifications 
need be done to the dependency tree by the builder, the constructor of the added 
object handles this; for every parent object that it depends on, it adds itself to 
those object’s child lists. This process is performed by the object itself because it 
knows what parameters passed to it should actually constitute dependencies. For 
each object it depends upon it calls adoptParent, a function within Thing thus 
inherited by all dependency objects; this function adds the calling object to the 
child list of each parent specified for adoptParent. For the example “p =  vvpoint 
( x , y )” , the point p will call adoptParent for parent x and parent y as follows:

// constructor for VVGPoint, passed the two x, y value parameters

VVGPoint::VVGPoint(GValue *x, GValue *y, NodeBuilder *nodeBuilder, 
const char *str)
: GPoint(nodeBuilder, str)

{
// adopt x and y as parents.. 
adoptParent(x); 
adoptParent(y);
_node = _nodeBuilder->newNode();
// (re)construct the generic representation of the GPoint 
reco ();

}

Replacement builds have a little added complexity, the old object needs pulling 
from the child lists of its parents and the parent lists of its children; the new object 
is then substituted into these lists, ensuring order of parent lists is maintained. 
However, the lists of the removed object are kept as intact as possible; this 
information allows the object to be reinstated within the dependency tree during 
an undo operation. The old object is removed from the model list, a history object
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is created stating the replacement, removed object, and replacing object, then 
the new object is added to the model list. This process effectively deletes the old 
object from the dependency tree, without removing the dependents, and inserts 
the new object; normally dependents would be removed in a delete operation, 
they cannot exist because they reference the deleted parent. For house keeping 
purposes, any manufactured objects of the replaced object are deleted. The 
new object will have its own manufactured objects created before itself. Should 
any of these match the old object’s manufactures by name, the recursive nature 
of the builder would mean that they would already have been manufactured 
and have replaced those objects; having been replaced, they would be out of 
the dependency tree and the builder’s list of current objects. Deletion works 
only on object’s within the current dependency tree, allowing deletion through 
the subject’s parent list trying to delete any manufactured objects found. The 
subject cannot be deleted, it is already removed from the dependency tree, some 
of the manufactured parents are possibly removed from the dependency tree, 
had they already been replaced by the builder. Any remaining manufactured 
variables affected are removed if independent. This ensures that manufactured 
objects can’t be deleted should the program user specifically have added objects 
dependent upon these. The program will never do this, however it’s possible for 
the user to create an object with manufactured objects that the user then adds 
dependency upon. The following example illustrates the point:

# create a point that results in two manufactured variables., 
p = vvpoint (1, 4)

# listing the current model., 
list
_vx_p = int(l)
-vy_p = int (4) 
p = vvpoint (_vx_p, _vy_p)

# add a dependency upon a manufactured variable.. 
p2 = vvpoint (5, _vy_p)

# remove p, _vy_p cannot be removed as p2 depends upon it., 
rm p
list
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_vy_p = int(4)
_vx_p2 = int(5)
p2 = vvpoint (_vx_p2, _vy_p)

# remove p2 and all will be deleted.. 
rm p2

House keeping ensures tidiness by removing any manufactured, and independent, 
parent object regardless of whether it was manufactured by the object being 
deleted. Therefore, deleting the main subject with deleteUp results in deleteUp 
being called upon all parents. If they are manufactured and still within the model, 
deleteUp will remove them and act upon their parents moving up the dependency 
tree actively removing all redundant objects. Manufactured objects only are 
removed in this process, other objects, whilst potentially being independent and 
unused, were specifically put there by the user.

With the replacing object now inserted into the dependency tree, another generic 
function provided by the Thing, is used to flag all the dependent objects as 
pending. This means, as we’ve replaced an object they’re dependent upon, that 
their state now needs revision. We don’t have to update the states’ of these 
objects until i t’s actually required, until then the pending flag ensures that their 
states will be revised when time necessitates.

Finally, the builder calls a polymorphic function within the builder itself called 
thing-evaluated. The generic builder doesn’t implement this function, its purpose 
is to allow inheriting builders access to the individual events that occur in the 
build process. An inheriting builder would be able to process events, examining 
the built objects in order to perform object specific post-processing upon them. 
This allows the base builder to remain as generic and reuseable as possible. Tak­
ing the thing-evaluated function, which supplies a pointer to the object just built, 
an implementing function in the inheriting builder could construct a list of all 
evaluated objects. Easy identification of modified objects is now possible without 
scanning of the dependency tree. Additional “hooks” into the build and model 
update are detailed in the following chapter.
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5.3.1 Advantages of Replacem ents

Initially a reconstruct mechanism was tested with objects; when an expression was 
entered matching an existing object variable, the parameters of the expression 
were passed to the reconstruct function of that object. This worked within a 
limited scope, for instance a real value successfully changes state; a line’s length, 
dependent on that value, will thus change through the dependency tree. The 
line is dependent on a value for its length, it can only be modified by changing 
the value it depends upon. There is lMhaiifclie dMicadtiaicBt mec 
within the line. The more complex an object, the less scope for modification. 
We could not make that line depend on completely different object types, we 
could not turn the line into an arc even though the line and arc, as segments, are 
indistinguishable to dependent objects.

Actually removing an object and replacing it allowed insertion of the new object 
with modified state, equivalent to reconstruction for the simplest of objects like 
real values. Dependent objects saw the same type of object, with a different state, 
generic interfaces allowed objects to be interchanged provided they had the same 
interface. There was however no necessity to maintain the same parents during 
this interchange, since the newly inserted object would hook itself into the child 
lists of its parents; the old object simply needed to be unhooked from its parents. 
This made it possible to replace one object with a like object dependent on 
completely different objects, the children still seeing the same generic type of 
object. Different concrete representations of a family could be interchanged, the 
circle dependent upon centre and radius being switched for a circle dependent on 
three points, or the circle being switched for an arc and any other segment. The 
user of the program is able to modify the model in a much wider variety of ways, 
changing the order of dependency as well as the states of variables.

Had the reconstruct method been used, manufactured variables would have been 
reconstructed during the reassignment process; had the process failed part way, 
there would be no way of restoring the model’s state without objects themselves 
knowing how to undo their reconstruction. Replacement of objects ties in greatly 
with the history providing undo and redo mechanisms. Object state and De­
pendency tree manipulation are two advantages, an inherent undo mechanism 
is another. Objects need no programming for remembering states, this creates 
simpler objects and allows the history mechanism to apply to any objects. There

116



is no limit to the depth of model change attainable other than memory size.
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Chapter 6

Build Post-processing, Updating  
the Model

The following chapter concentrates on the builder’s updateModel function. This 
function signifies the point in the build where the principal object has been com­
pleted, either successfully or unsuccessfully, and the builder is now realising the 
effects this has on the entire model. Post-processing of the model is accommo­
dated through a few polymorphic functions. The generic builder is designed to 
be just so, there is nothing specific to object types; any processing specific to 
objects is designed to be implemented in builders inheriting from the generic 
builder. These builders can implement polymorphic functions allowing access to 
key events in the build and model update process. One such “hook” into the 
process has been introduced in the previous chapter, thing-evaluated is a func­
tion called after every object is built. The PM GBuilder used by the program 
implements this function in order to maintain a list of all objects inserted into 
the model for that operation.

6.1 Updating The M odel

Function updateModel is self-contained, designed to be called whenever actions 
are taken upon the model. Any model change involves manipulation of the depen­
dency tree along with a corresponding reflection within the list of objects current
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to the dependency tree, known as the model list. Any change is immediate, the 
dependency tree and model list are altered by the modifying routine, it is the 
history that primarily concerns the model update. This history lists all additions, 
replacements and deletions taken upon the model. By default the builder is in­
teractive, updating the model after every assignment entered by the user such 
that each individual step the user takes is stored separately in the undo mech­
anism. If the user added an object, then deleted an object, undo would restore 
the deleted object the first executed time, then remove the added object when 
executed a second time. Reading input from a file usually involves the creation of 
many objects, here the builder is placed into a non-interactive mode and update 
of the model is done only when all objects are read from file. Now the history 
for the file opening contains as many addition entries as there were objects in the 
file, the update stores this as one action and undoing this will remove all these 
objects simultaneously. Likewise, the rename command replaces objects with re­
named counterparts in one action; as renaming involves manufactured children, 
explained next, and parents, the names a composite of the name being changed, 
several objects exist in the history of this change. Therefore an update affects as 
many objects that were added, replaced, and deleted, since the last update.

In the builder’s non-interactive mode, evaluateExpression doesn’t call update­
Model It is the job of the program, such as a file open command, to call up­
dateModel at the appropriate time, usually before the program returns to an 
interactive state. In calling updateModel a true or false success argument is sup­
plied, telling updateModel whether the action succeeded or failed respectively. 
In an interactive mode, evaluateExpression calls updateModel passing the built 
object as this argument; if successful the pointer to the object counts as true, if 
unsuccessful the null pointer passed counts as a false. On success updateModel 
will continue post-processing of the model, otherwise it uses the history to reverse 
any changes made upon the model before discarding the history.

6.1.1 Additional Object Builds

We have discussed automatic manufacture of parent objects in the previous chap­
ter, performed prior to the build requiring these parents in order to manufacture 
objects in the order of dependency. Now we discuss cases where automatic man­
ufacture of children is required because this is the first action undertaken by
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updateModel

Taking the segment object, a line segment can be drawn between two points as 
in figure 6.1:

end point

start point

Figure 6.1: Line Segment Constructed From Two Points

The dependency of the line segment, figure 6.2, shows by definition that two 
points define its extents. We now draw the different line segment and dependen­
cies of figures 6.3 and 6.4 using a starting point, angle, starting and ending length 
projection:

This example line segment is not bound by any points, nor are there any points 
with which to anchor subsequent objects. This segment is quite useless unless 
intersected and used purely with intersection points, the definition of a segment 
thus stipulates that points should terminate all segments in order to provide 
the useful anchor points. The best way to implement this is for these particu­
lar segment types to construct the necessary points, rather than have a builder 
that needs knowledge of what objects needs special requirements; we therefore 
maintain as generic a builder as possible.

Initially these objects constructed the necessary anchor points within their own 
constructors. This caused a problem because the dependent points were recorded 
by the builder as being constructed before the segment they actually depended 
upon, this happening because the builder records objects as a prototype returns 
the successful build. Repercussions of this were in reconstruction of the depen­
dency tree during undo and redo operations, whilst achievable it was ultimately 
found to be much simpler if objects entered and left the tree in order of their 
dependency. Moving the construction of the dependent anchor points into the 
prototype would also fail for the same reason, object creation had to be postponed 
until the prototype had exited.

A solution to the problem was found by taking the expressions, used by the 
segment to define dependent anchor points, and supplying them to the builder as
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IntGValue IntGValue IntGValue IntGValue
[_vx_start_point] L vy_start_poin t] [_vx_end_point] [_vy_end_point]

paren ts: p a ren ts: p aren ts: p a ren ts:
(none) (none) (none) (none)

children: children: children: children:
start_point 

-------------- 1--------------

start_poin t 

-------------- 1----------
end_poin t

■

end_poin t

i

VVGPoint VVGPoint
[start_point] [end_point]

pa ren ts: p a ren ts:
_vx_start_po in t _vx_end_po in t
_vy_start_po in t _ vy_end_poin t

children: children:
lin e_ seg m en t

I

lin e_ seg m en t 

------------- 1-------------

I 
I
X

P P G L ineS egm en t
[line_segm ent]

p aren ts: 
start_point 
end_point

children:
(none)

Figure 6.2: Line Segment Dependency on Two Points

, line_segment

<. projection_point

Figure 6.3: Line Segment Constructed From Centre Point, Angle and Length 
Projections
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IntGValue
[_vx_projection_point]

IntGValue 
[_vy_projection jjoint]

IntGValue
[projection_start]

parents: parents: parents:
(none) (none) (none)

children: children: children:
projection_point 

----------------1---------------
projection_point

T
line_segment 

------------1------------

VVGPoint 
[project ionjjoint]

parents:
_vx_projection _point 
vy_projection point

children:
line_segment

PPGLineSegment
[line_segment]

parents: 
start_point 
end_point

children:
(none)

IntGValue 
[projection length]

parents:
(none)

children:
line_segment

IntGValue
[angle]

parents:
(none)

children:
line_segment

Figure 6.4: Line Segment Dependency on Centre Point, Angle and Length Pro­
jections
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appended builds; the builder maintains this list of expressions and on successful 
completion of the segment build, the builder would process these expressions and 
all objects would be processed in the correct order. The mechanism would work 
if appended builds yet further supplied appended builds too.

For a segment to manufacture termination points, it would supply the following 
expressions to the builder’s appendExpressionF'orEvaluation function. The two 
points take manufactured names, produced via the builder’s createLabel function, 
to denote their internally manufactured nature:

# an spoint takes a segment,
# binding to the position of its specified point.
# start point of segment,
# the ‘O ’ becomes an automatically manufactured value.. 
_ps_segmentName = spoint ( segmentName , 0 )
# end point of segment..
_pe_segmentName = spoint ( segmentName , 1 )

The following figures show the final construction, the segment with its termination 
points, figure 6.5, and the corresponding dependency tree, figure 6.6.

pe line segment ^

_ps_line_segment 

0 projection_point

Figure 6.5: Line Segment With Constructed Anchor Points

If any appended build should fail, the build process is now considered unsuc­
cessful; no further appended expressions will be processed and updateModel will 
proceed as it would if told previous actions had been unsuccessful, using the 
history to restore the model to its state subsequent to the last update. Hav­
ing processed these appended expressions in a non-interactive mode using the
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IntGValue
[_vx_projection_point]

IntGValue
[_vy_projection_point]

IntGValue
[projection_start]

IntGValue
[projectionjength]

IntGValue
[angle]

parents: parents: parents: parents. parents:
(none) (none) (none) (none) (none)

children: children: children: children: children:
projection_point 

--------------- 1
projection_point 

--------------- 1----------
line_segment 

------------1
line_segment 

------------- 1-------------
line_segment 

i----------

VVGPoint 
[project ion^point]

parents:
_vx_projection_point 
_vyprojection_ point

children: 
line segment

IntGValue 
[_vn _ps_line_segment]

PPGLineSegment
[line^segment]

IntGValue
[_vn_pe_line_segment]

parents:
(none)

children:
_ps_line_segment

parents:
start_point
end_point

children:
_ps_line_segment 
_pejine_ segment

parents:
(none)

children:
_pe_line_segment

i
i

i
i

SGPoint SGPoint
[_ps line segment] [_pe_line_segment]

parents: parents:
line segment line_segment
_vn_psjine_segment _vn _pe_line_segment

children: children:
(none) (none)

Figure 6.6: Line Segment Dependency of Constructed Anchor Points
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usual expression processing of the previous chapter, the builder will have these 
additions tagged to the end of the current history list.

6.1.2 Beginning the U pdate for Post-processors

The generic updateModel function has now added any objects required by previous 
builds, removal of related objects has been performed. Now is the perfect time for 
post processing of the model, any changes resulting from this will still be added 
to, and subsequently processed from, the history.

The Generic Builder

The generic GBuilder has been kept free of processing specific to particular ob­
jects. Pre-processing within the builder used knowledge of low-level objects only, 
these being necessary for any build application, with the prototype mechanism 
being used to match higher level object types, keeping the knowledge in the pro­
totype rather than the builder. Even then, this processing was separated into 
the GBuilderExpressionResolver object; first to allow pre-processing without any 
object knowledge with the use of a slimmed down expression resolver, and sec­
ondly to allow expansion upon the object knowledge, and thus the short cuts in 
expressing them, without the need to touch the builder.

Extending the Generic B uilder’s Capabilities

The following functions are polymorphic in the GBuilder, inheriting from the 
GBuilder, implementing any of these functions, allows processing on objects in a 
sane manner protecting against the unusual effects that can occur when modifying 
the dependency tree.

thing_evaluated (Thing *thing_evaluated) :
called after an expression is evaluated and an object has either been added 
or replaced. Used by the PMBuilder to maintain a list of modified objects.
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m odel_update_begin(bool evaluation_was_successful) :
actually called just after model update begins, once the model has the post 
processing performed that might add or remove objects. The model has 
reached a steady state and the resident objects can be examined safely. 
The PMGBuilder uses the list of evaluated things, obtained from the pre­
vious function, to identify segments and components whose position has 
changed; this allows these objects to be re-examined for intersections with 
like objects. This is only done if the operation was successful, evalua- 
tion-wassuccessful set to true.

m odel_update_adding(Thing *thing_evaluated) :
added and replaced objects actually exist within the model before the up­
date procedure, the history objects describing these actions are simply anal­
ysed to cement this fact; their function mainly being in restoring the model 
to its original state upon failure. However, the PMGBuilder uses this func­
tion to add any such displayable objects to the display. The action updates 
a flag that ultimately determines that the display should then be redrawn.

m odel_update_rem oving(Thing *thing_evaluated) :
removed objects, or those replaced, identified within history objects, cause 
this function to be called when the update cements this change. The PMG­
Builder then removes any such object from the display, should it be of the 
displayable kind. The action flags the display for later update.

m odel_update_end(bool evaluation_was_successful) :
finally, a function called when absolutely every update has been performed 
and the model has reached its final state. The PMGBuilder uses this 
event to display information about the current state of nodes and ele­
ments, plus it tells the display to redraw itself if modeLupdate-adding or 
modeLupdate-removing changed the number of displayed objects.

The updateModel function now calls modeLupdate-begin to allow further analysis 
of the model. Any resulting changes will be included in the history of this op­
eration, grouped together as one long list of history objects marking all changes 
since the last model update. The nature of the post-processing is likely, as in the 
PMGBuilder’s case, to validate many objects within the model. Intersection of 
segments, performed by the PMGBuilder causes many intersection points to be 
added or invalidated. Until this stage is finished, the model is far from complete.
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6.1 .3  D ealing  W ith  Invalid O bjects

If we take two intersecting segments, defined as follows and illustrated in fig­
ure 6.7.

# draw one line segment from point 0,0 to point 1,1..
11 = ppline(vvpoint(0,0), vvpoint(l,1))

# intersect with another line segment from point 0,1 to point 1,0..
12 = ppline(vvpoint(0,1), vvpoint(l,0))

_ps_12

12

il_ll 12

11

_ps_ll

Figure 6.7: Two Intersecting Segments 

Now we take line 12 and shift its position so it no longer intersects with line 11:

12 = ppline(vvpoint(0 ,1 ), vvpoin t(0 .4 ,0 .6))

Figure 6.8 reflects this change, the intersection point -HJ1J2 between these two 
line segments is rightly nowhere to be seen; these two lines no longer intersect
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, __ps_12 pell

12

\  _pe_12/

11

/ .ps_ll

Figure 6.8: Two No Longer Intersecting Segments

and this point has no idea of what position it should take, detecting this it has 
returned a false, failure, value from its reconstruction, _reco, function. The generic 
reco function within the Thing has thus marked the intersection point invalid, it 
would also have marked any dependents invalid too.

The builder’s final parse of the model, before processing the history objects, 
checks for invalid objects. Invalid objects can quite happily reside within the 
dependency tree. An object’s state is checked, either through the invalid flag or 
more appropriately through the reco function to ensure the state is updated if 
pending, before it’s used; invalid objects are never used, they are therefore never 
displayed, selected, or acted upon by any other operations except a model list 
or save. The user will therefore know nothing of invalid objects unless notice­
ably missed. The builder will thus check for invalid objects and alert the user; 
this allows them to ignore this state, later they can alter the model to re-validate 
objects, otherwise they can be deleted if the invalidated branch has become so be­
cause it is redundant. Currently only the deletion process is implemented, future 
work, chapter 9, would include an interactive element which ideally incorporates 
a graphically interactive process.
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6.1.4 Cem enting Changes

With invalid objects potentially deleted, finally all additions and deletions have 
been performed upon the model. Had there been a failure along the line, or in 
the main build itself, the history will be used to revert the model to its previous 
state, subsequent to the last update. Otherwise, all changes stored in the history 
objects will be parsed and filed away to allow later undoing of the changes; having 
said that, it’s possible to pass a flag to the builder, upon its creation or a later, 
disabling undo operations. Here the undo mechanism still works to the point 
that failed build operations can be reverted, history of the changes of a successful 
build are simply discarded so that undo and redo operations by the program user 
are not supported.

The H istory

Every change has been stored in a history object, this ThingUndo object simply 
consists of three fields incorporating an action descriptor and two Thing pointers. 
The action descriptor describes the operation, add, delete, or replace, then two 
pointers point to “was” and “is” objects. Additions set the is pointer to the 
added object, deletions set the was pointer to the removed object, replacements 
set the was pointer to the replaced object, the is pointer being set to the replacing 
object. From this pattern it can be seen that the action descriptor is redundant, 
the pointers amply describing the action, however the descriptor is maintained 
should additional actions be added in the future.

Within the builder is a ThingUndoList called _history; as soon as modifications 
begin on the model, the describing ThingUndo objects are added to the ThingUn­
doList -history. This list is now going to be parsed, if user undo is enabled then 
a new ThingUndoList is created for the addition of parsed ThingUndo objects. 
Once every ThingUndo object has been removed from the _history, parsed, and 
then added to the new ThingUndoList, the new list can be added to the builder’s 
_undo list; this is a Thing Undo ListOfLists, lots of lists do seem to be involved in 
order to keep track of events! A redo list accompanies the undo list; when an 
undo takes place upon the model, all the information within the last -undo list’s 
last ThingUndoList list is parsed in reverse order. Once the model is restored to
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i t’s previous state, this ThingUndoList is removed from the end of the -undo list 
and added to the end of the -redo list. Should the model be changed after this, 
the -redo list must be erased; the -redo list references changes in the future that 
may no longer be possible to make if the current change affects the objects they 
reference.

Successful Build

The following describes the history parsing in view of a successful build:

• If user undo is enabled, create a new ThingUndoList for adding ThingUndo 
objects to as processed.

• Pull the first available ThingUndo object from the -history list.

• For replacements and removals, call modeLupdate-removing for the was 
object pointed to by ThingUndo.

• Likewise, for replacements and additions, call modeLupdate-adding for the 
is object pointed to by ThingUndo.

• If user undo is enabled, append this ThingUndo to the new ThingUndoList. 
Otherwise, delete any removed or replaced object by deleting the was object 
and delete the now redundant ThingUndo object.

• Once all the history is parsed, add the new ThingUndoList, if user undo 
is enabled, to the builder’s central -undo list. As a result of this, the redo 
history must be cleared as it acts upon a model whose state is now different.

Unsuccessful Build

• Pull the first available ThingUndo object from the -history list.

• Use the ThingUndo object to reverse the action accordingly, without delet­
ing any object pulled from the model.

• Add any returned object to a list of deletions, a ThingList, for later deletion. 
The now redundant ThingUndo object is deleted.
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• Once all the history is parsed, delete all the objects in the deletions list. 
We couldn’t delete these objects at the point the ThingUndo object was 
processed because the undo process doesn’t just affect this object; the de­
pendency lists of this object’s parents and children would be affected, these 
objects may have also been processed and accordingly deleted. Trying to 
modify the dependency lists of deleted objects would be rather dangerous. 
Now all processing is done, all can be deleted safely.

The final stage of the model update calls the modeLupdate-end function allowing 
inheriting builders the opportunity to hook extra processing into this final stage. 
The PMGBuilder used by the program uses this event to output some useful 
debugging information regarding elements and nodes, the display is also updated 
should objects have been added to, or removed from, the display.

6.2 The Specialised Parametric M odel Builder

Here follows an explanation of the PMGBuilder that inherits from the generic 
GBuilder in order to provide specialised processing upon the model of the elec­
trical machine. Having already introduced the functions the generic builder pro­
vides in order to implement specialised post-processing on a model update, the 
following serves to explain the nature of the PMGBuilder type builder and its 
post-processing in the context of electrical machine design.

6.2.1 Additions To The Electrical M achine M odel

Any object that has been evaluated, this covers additions and replacements to the 
model of the electrical machine, is added to a list for later use. The specialised 
builder used for electrical machines knows of new evaluations by implementing 
the polymorphic function, thing-evaluated, which the generic builder calls after 
each evaluation; this function provides a pointer to the evaluated object.
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6.2.2 Starting Electrical M achine Specific Post-processing

The generic builder performs some post-processing itself upon the model; at 
the point this is finished, we now have in place all the desired objects, and 
repercussions of these, caused by the evaluation the builder was initially asked to 
complete. Now a modeLupdate-begin function is called to allow post-processing 
of the static model specific to a specialised builder. For electrical machines, this 
builder determines intersections between segments and also components.

Intersecting Segm ents

All modified objects, identified through the list formed with the thing-evaluated 
object, are flagged as modified along with objects dependent upon these; this 
is through the use of flag and flagDependents functions of the Thing interface 
of chapter 3. The builder has a linear list of all objects held within the depen­
dency tree, this allows easy identification of objects without the need to parse 
the dependency tree avoiding multiple references to the same object. This list 
is now parsed and any segment identified as being modified is added to a list 
of pending segments, the same is done for components. This methods avoids 
the identification of objects no longer within the dependency tree which are in 
the undo history; such objects may exist within the list obtained through the 
thing-evaluated if actions replaced them and then deleted them, entirely possible 
considering multiple evaluations may be offered to the builder for inclusion in 
one model update; in other words, perform all these evaluations sequentially and 
store as a single change so that one undo of the model will revert all changes.

Now segment intersections are examined. The first segment is pulled out of the 
pending segment list just constructed. That segment’s reco function is called 
to ensure it’s state is up to date; segments have been identified through being 
modified or dependent upon a modified object, marking them as pending recon­
struction. Changes do not take immediate effect upon dependent objects within 
the model, only when they are used is their state updated by calling the reco 
function. This allows for more efficient operation, only incurring the overhead of 
updates when objects need to be used. As a bonus the reco function also returns 
the validity of the object, we check this to ensure we have an object worth testing.

132



The first segment is now intersected against all other segments held within the 
builder’s linear list of objects contained within the dependency tree, the “model” . 
Those segments are first checked for validity by calling their reco function, noting 
that this simply returns the validity if they’re up to date, not too expensive on 
processing, an additional check is then done to ensure this intersection didn’t take 
place before; in order to provide consistency in the labelling of intersection points 
we produce the name “J{intersectionNumber}segmentName-otherSegmentName” 
where segmentName alphabetically precedes otherSegmentName, this way we re­
sult in the same point name irrespective of whether we intersect segmentName 
with otherSegmentName or vice-versa. For a circle and line segment, “circl” and 
“linel” say, two intersections could result giving the names J l.c irc lJ in e l and 
J2_circlJinel. All processed intersections within this update are stored using 
the name of the intersection point, we can now check for this name in case a pre­
vious intersection involved the intersection of these two intersections in reverse.

With checks completed we now intersect these two segments by asking one to 
intersectWith the other. Chapter 7 details how two segments are intersected when 
these segments are referenced through an abstract GSegment interface which 
hides the true circle, line, or arc implementation. If one or more intersections 
were found, an intersection point is constructed for each by creating an expression 
for the builder to process through its process Expression interface. The names of 
these intersection points are then added to the list of processed intersections in 
order to avoid duplicate intersections later.

6.2.3 Adding and Rem oving Building Block O bjects

With all post-processing performed, the generic builder sets about cementing 
changes in its undo history. This process is completed regardless off the success 
or failure in the desired evaluation. The mechanism either restores the model 
to its initial state if a failure occurred, otherwise the effect of every addition, 
replacement, or deletion is recorded for prosperity. A failed evaluation at hand, 
nothing is to be done by the specialised builder as the initial model state is re­
stored. On success, every object that has been added to the model is announced 
using the modeLupdate-adding function; every removed object is announced us­
ing the modeLupdate-removing function. An object replacement is effectively an 
object removal and then an addition, the replaced object is removed and the
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replacing object is added with modeLupdate-removing and modeLupdate-adding 
being called respectively. The specialised builder uses these events, taking the an­
nounced objects and examining them for use of the GeometricThing specialisation 
to the Thing object. This effects an inheritance, from Thing, adding functions to 
display and detect objects with a geometric presence in a graphical environment. 
Any such object will be accordingly added or removed from the display by calling 
the respective add or remove functions a display has. GeometricThings can be 
seen in chapter 7.

6.2.4 Finalising Changes To The Electrical Machine

When modeLupdate-end is called the model’s state is final. We use this event 
to update the contents of the display, the change of any displayable object hav­
ing set a signifying flag in the modeLupdate-adding and modeLupdate-removing 
functions. As a check, the management of node and element references is ver­
ified. This system is designed to maintain the ownership of a node or element 
with a particular object, dependent objects then referencing inherited nodes and 
elements. This system aims to alleviate replication of nodes in the final node and 
element output used to solve the machine’s desired properties. When designing 
higher level building block objects, the management of nodes has been subject to 
a few “programmer errors” in the past. As reference builders maintain lists of all 
the allocated nodes and elements, see the end of chapter 7, we can quickly parse 
the list and look for out of place references. This point is the best place to do 
this since this builder knows of these reference builders and the model changes 
have reached a state of completion.
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Chapter 7 

Building Blocks of an Electrical 
Machine

Chapter 2 introduced the building blocks used to construct an electrical machine. 
We now discuss these objects in greater detail.

7.1 Communication and Representation

Lower level objects, such as values, are likely to be reused more than higher level 
objects, being dependent on more objects thus specialising them more. For this 
reason, lower level objects are split into two parts. The first part is communica­
tive, being derived from the Thing of chapter 3, providing the generic interface 
for that object family, this is the interface seen by other dependent objects ex­
pecting a particular family of object, the GValue in the case of values. This part 
also provides the base for object inheritance within this family of object. Objects 
derived from this provide different dependencies on other objects, these concrete 
representations allow the generic object, the GValue for instance, to be defined 
in a number of different ways. Each concrete representation provides a different 
definition of the generic object, translating the data of other objects, which they 
depend upon, into the generic representation for view by the world through the 
generic interface. For higher level objects, the generic interface and representa­
tion are provided by the same object; the generic interface is usually just a way of
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providing access, in a safe and protected manner, to the generic representation. 
Concrete representations, the objects that actually exist within the model, have 
already translated their parent objects’ data into the generic representation, the 
interface they’ve inherited provides access to this. Thus for higher level objects, 
where the complex nature of the generic representation makes it less reuseable, 
the representation is also maintained by the communicative object providing the 
interface.

Lower level objects maintain their generic representation as a separate object 
within the communicative object. This collaboration allows the representation 
to be passed to other objects as a copy, the data represented may be manipulated 
through functions provided by the generic representation. In the case of values, 
the generic representation is provided by an XValue\ this object encapsulates the 
representation, ensuring other objects access it through the “correct channels” 
by its interface. This allows the representation within the object to be changed, 
perhaps to optimise behaviour in some way, maintaining external compatibility 
by ensuring the outside world still sees the same interaction via the interface. 
The functions provided to manipulate the representation ensure that this is done 
so correctly, also minimising external functionality, and its repetition, by encap­
sulating it within the object. For values, as an example, this method has proven 
successful with the transformation of their representation from a single floating 
point number into real and imaginary floating point parts. The transformation 
maintained compatibility by translating this information in a way that kept the 
interface consistent with the previous version, access to the extended functionality 
was then provided through additional interface functions.

7.2 Values

The “roots” of the dependency tree, describing the model of an electrical machine, 
will always take the form of floating point or integer values. These two types are 
effectively the same, using the same representation, the integer type is simply 
used when indexing is performed. Their independence, they depend on no other 
objects and are without parents, places them at the root of the dependency tree; 
therefore they always provide the basis of the parameterisation and can identify 
all other objects within the tree, these being their children. Such values are
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Public Methods

virtual
double
double
double
double
double
XValue
bool
virtual void 
const char*

~G V alue () 
value () const 
mag () const 
ang () const 
real () const 
imag () const 
xvalue () const 
can W rite  () const 
outX  (ostream &out) 
family () const

Table 7.1: GValue Public Interface

thus used when saving the model in order to ensure the arguments, other objects 
defining dependent objects, are saved before themselves; that way, when reading 
in a model, the defining objects are established within the model before they are 
referenced.

Table 7.1 shows the GValue interface. As mentioned earlier the representation 
for a GValue is held within the XValue object, table 7.3 illustrates this as be­
ing the sole item of data possessed by this object. The GValue is therefore an 
entirely communicative object, inheriting this communication from the Thing of 
chapter 3; as a result a few of the functions illustrated in table 7.1 are implemen­
tations of polymorphic functions inherited from the Thing. Function canWrite 
tells the outside world whether this object is capable of printing some information 
about its state, outX actually performs this function so canWrite would return 
true and outX would simply print the numeric values from the representation 
of real and imaginary components. The last function, family, is appropriately 
implemented by the GValue as all concrete representations inherit from this, it 
communicates the string of “value” as its family type; this becomes useful when 
replacing an object within the dependency tree with another of, what must be, 
the same family, explained in chapter 5. These three functions will be found to 
be implemented amongst all the object types detailed within this chapter.

A protected function, as shown in table 7.2, allows access only to derived, or 
inheriting, classes, as opposed to the world wide access public functions provide. 
Within table 7.2 is the constructor of the GValue object. This terminology is
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Protected Methods

GValue (const char *str)

Table 7.2: GValue Protected Interface

Protected Attributes

XValue _xval 

Table 7.3: GValue Representation

specific to the C ++ programming language, explained best by the creator of 
C ++ himself[18] [19]. This function builds the object when a new instance of 
a value is required, the protected nature shows that values can only be built 
using one of the derived, concrete, types; derived types have public constructors, 
they can be built by anything and pass, in this case, the name of the object to 
the GValue object, to which they have access. Now moving back to the public 
methods of table 7.1, those remaining, barring the destructor ~GValue which 
is responsible for closing the object down correctly, provide various methods of 
access to the generic representation. Most geometric use of values, as coordinates 
for example, use the value function to gain access to the real part of the complex 
value representation. Other uses, such as the setting of complex voltages, can 
access either the cartesian or polar representations of the complex value through 
the other functions.

7.2.1 Value Representation

Finally, the all encapsulating X  Value representation itself can be extracted through 
the xvalue function to allow the passing of the representation as a complete ob­
ject; the public interface of this representation can be seen in table 7.4, many 
of the functions are identical to those within the GValue interface which simply 
call these counterparts. Other functions are responsible for initialising the object 
and changing the values held within the representation.
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Public Methods

bool
double
void

void

void
double
void
double
void
double
double
void

void

void

void

void

void

void

void

XValue ()
XValue ( double val)
XValue ( double real, 

double imag) 
XValue (const XValue &val) 
com plex ( ) const 
value () const 
set Value (double real) 
set Value ( double real, 

double imag) 
set Value ( X Value val) 
real () const 
setR eal (double real) 
imag () const 
setlm ag ( double imag) 
mag () const 
ang () const 
neg ( XValue val) 
add ( XValue a,

XValue b) 
sub (XValue a,

X Value b) 
mult ( XValue a,

XValue b) 
div ( XValue a,

X Value b) 
power ( XValue a,

XValue b) 
cross (const XPoint &pl, 

const XPoint &p2) 
dot (const XPoint &pl, 

const XPoint &p2)

Table 7.4: XValue Public Interface



Protected Attributes

bool .complex 
double _real 
double Jmag 
double _hyp

Table 7.5: XValue Protected Representation

ListEntry _previous
next

/  _start 
end

/

current

( J is t Jters /

next

List

Label

Listlter

BitFieldThingList BitManager

NumberManagerTemplateList< Thing >

_parentList \ 
\  _childList ^

/Jabel
_bf ' _name ' bm

/  _namespace ^

\  /

xval

Thing XValue

GValue

Figure 7.1: Collaboration Diagram For GValue
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7.2.2 Inheritance or Aggregation?

With the use of Doxygen[20], a program that directly examines source code in or­
der to determine an object’s dependencies and collaborations, we can very easily 
construct pictures showing the relationships involved between the value objects. 
Figure 7.1 shows the inheritance of GValue from Thing using the solid line, the 
dotted line shows that a GValue contains an XValue. In object oriented terms 
there is a big conceptual difference between an object inheriting another object, 
and thus being a specialisation of such an object, and object aggregation, having 
such an object[21]. For values, either inheritance or aggregation would work and 
the GValue could arguably be an XValue or contain one. The deciding factor 
comes from maintaining some uniformity across our building block objects; the 
segment family has members of several groups, namely circles, lines and arcs, 
mirrored in the representation structure used. A GSegment must contain an 
XSegment because the abstract XSegment may be one concrete representation of 
many derivatives of XLineSegments, XArcSegments, and XCircleSegments. The 
XSegment representation a GSegment contains may also mutate into different 
segment types, for example when a three point arc’s points form a straight line 
and the arc becomes a line; this is done by allowing this segment type two switch 
between an arc and line representation, the segment contains two segment repre­
sentations and is something of which multiple inheritance is incapable of fulfilling.

7.2.3 Concrete Representations

Again we can use doxygen to extract and illustrate the inheritances, now includ­
ing the concrete representations that form the manufacturable objects for use 
by the designer. Figure 7.2 allows us to show every value that currently exists, 
stressing again that additional objects may be easily added without complication, 
thanks to the object oriented design, without fear of breaking any of the existing 
functionality and without the need to modify any existing objects. Table 7.6 
shows the AddGValue object’s public interface; it consists of a constructing func­
tion, by which this object is called in order to create an instance of it, and the 
type function which uniquely identifies the object by the name of “add”. The
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Public Methods

AddG Value (GValue *argl,
GValue *arg2, 
const char *str)

const char* type  () const

Table 7.6: AddGValue Public Interface

only other function implemented is -reco, listed as follows: 

bool
AddGValue::_reco()
{

ThingListlter iter(parentList 0);
XValue argl = ((GValue *)iter.next0 )->xvalue();
XValue arg2 = ((GValue *)iter.next0 ) ->xvalue();
_xval.add(argl, arg2); 
return true;

>

The .reco function reads the list of parents, it knows it depends upon two GValue
objects as so casts the pointers of the Things to G Values which it then reads the
XValue representations from. The XValue representation it owns is then used 
to add the representations, storing the answer in its own representation. The 
order of the parent list is always maintained, chapter 3, so that this casting can 
be performed safely without any need to check the identity of the parents. This 
casting will only identify the GValue interface of the parent objects, the identity of 
the concrete representation, this could be another AddGValue or an InfixGValue, 
is never known. Hence the addition of other value concrete representations can 
be seen, not only to be independent of existing implementation, but also quite 
straightforward with only a constructor and the -reco function to write. For 
values, the constructor simply sets the object’s name and attaches the object to 
the child lists of the parents. For binary value objects, those operating upon two 
values, this is done by an additional layer they inherit that sits between them 
and the GValue, this makes implementation of binary values ever easier, by just 
a small amount.
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AddGValue::AddGValue(GValue *argl, GValue *arg2, const char *str)
: WGValue(argl, arg2, str)

{
// reco ensures the object is updated after initial construction, 
// this isn’t really necessary, 
reco ();

}

VVGValue: :VVGValue (GValue *argl, GValue *arg2, const char *str)
: GValue(str)

{
// VVGValues are attached to their parent’s child lists here.. 
adoptParent(argl); 
adoptParent(arg2);

Other value objects for use by the designer are as follows. Any value referenced 
on the right hand side may be the reference to a named value, such as x or radius, 
a numeric value, such as 1.23 or 3.4e-7, or a nested definition, such as mult(2, 
radius), 2 * radius, or indeed any of the value types listed below:

AddGValue : addition of two values
Syntax: value-variable — add (first-value, second-value)

CartesianGValue : defines complex numbers as cartesian values 
Syntax: value-variable =  cartesian (reaLvalue, imaginary .value)

DivG Value : division of two values
Syntax: value-variable =  div(a_value, divide.by.value)

DotG V alue : dot product of two vectors
Syntax: value-variable =  dot (first_point, second_point)

InfixGValue : solves mathematical expression with the infix syntax 
Syntax: value.variable =  a_value +  2 /  (another.value - 2)...
Understood unary operators are and ,
understood binary operators are “+ ”, V ’, “/ ” and “A” (power).
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IntGValue : integer value
Syntax: value_variable =  int(5)
Shortcuts: value_variable =  5, +/-5, (5), (+/-5)

M ultG Value : multiplication of two values
Syntax: value_variable =  mult (first .value, seconcLvalue)

N egG Value : negates a value variable
Syntax: value-variable =  neg(a_value)
Shortcuts: value-variable =  -a, (-a)

PolarGValue : defines complex numbers as polar values
Syntax: value-variable =  polar (magnitude, value, angle.value)

PowerGValue : value to the power of another value
Syntax: value_variable =  power(a_value, to_power_of_value)

RealGValue : floating point value
Syntax: value_variable =  real(5.5)
Shortcuts: value_variable =  5.5, +/-5.5, (5.5), (+/-5.5), +5.5e7 -5.5e-7...

SubGValue : subtraction of two values
Syntax: value.variable =  sub(a_value, subtract_this_value)

ValueGValue : assignment
Syntax: value.variable =  value (a_value)
Shortcuts: value.variable =  a, (a)
This value will allow one value to follow the value of another.

7.3 Geometric Building Blocks

Graphically there is no representation for a value object. All the objects sub­
sequently explained can be visualised and so utilise a Geometric Thing layer 
of specialisation, through inheritance, with this layer being derived from the 
Thing base defining the communicative properties. This layer defines additional 
functions for use in the display and interaction of geometric properties. The dis­
playable function, illustrated in table 7.7, can be implemented to return a pointer 
used to display this object if it can be represented graphically. If this is the case,
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Public Methods

virtual GeometricThing* displayable ()
virtual unsigned displayLayer () const
virtual void displayLabel ( GDisplay &display)
virtual void displayO bject ( GDisplay &display)
virtual bool selectable () const
bool selected () const
void set Selected (bool state)
virtual XPoint centre ()
virtual XBox boundingBox ()
virtual double proxim ity (const XPoint &seed)

Table 7.7: GeometricThing Public Interface

displayLayer describes a layer which allows the display to view only this type 
of object, in addition to other specific layers, which simplifies the model view. 
Reference to the display is then given to displayLabel and displayObject functions 
so that these geometric objects can tell a display what to draw, such as draw a 
point here and a segment there, without actually having knowledge of the display 
implementation. This collaboration means that geometric objects do not have 
detailed knowledge of display implementation or of any particular displays and 
the lifetime any knowledge is just for the duration of these functions. This keeps 
the geometric objects simple and allows the use of different displays; multiple 
displays can be used to view different aspects of the model, perhaps focusing on 
different areas of a machine, and different display implementations based on the 
generic display can be used. Currently there exist two displays, one capable of 
on screen representation and the other capable of the postscript output used to 
illustrate objects within this writing. A display knows how to draw points and 
segments, all objects being representable through these, so the geometric object 
knows nothing of lower level lines and arcs which might change from one display 
type to another.

The other functions within the GeometricThing interface deal with the selection 
or detection of geometric objects. A point and click interface uses the proximity 
function to determine the nearest object, that object can then be marked as 
selected using an additional flag along the same lines as the pending and invalid 
flags implemented within the Thing.
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7.4 Points

The point objects start to lay the foundations for the node and element repre­
sentation of the electrical machine by containing a node which will be referenced 
by dependent objects. The layers of objects that will build on these points will 
implement additional nodes with these nodes being the corner stones in their 
design. Nodes are implemented at this level because the equations describing the 
sought properties of the electrical machine are associated with these nodes. This 
allows properties to be bound to the building block objects, such as boundary 
properties, which will then be associated with these nodes and their equations. 
Later, post-processing can be done on the machine by reading in answers using 
the nodes to associate equations back with the original objects. Post-processing 
is future work, see chapter 9.

7.4.1 The Beginnings of Nodal M anagement

GPoint’s are not constructible objects, only instances of the concrete representa­
tions may be built. The protected interface of table 7.9 illustrates this by allowing 
constructor access to derived classes of the object only. This constructor takes, 
and stores in the generic GPoint of table 7.10, the reference to a node builder. 
When a point is first built it asks the node builder for a new point. The node 
builder maintains references to all points it allocates, this allows quick identifi­
cation of all nodes through the node builder. Every time a node aware object 
uses this point and thus its node, the node builder will increment an index of 
the number of uses this node has; this allows good management of nodes because 
the index should zero if all objects have relinquished their reference to the node. 
If this is not the case, as is often the case during development of new objects, 
there’s a failure in the node management of an object. Therefore, when this point 
is deleted it tells the node builder it no longer needs this node; hence the refer­
ence to the node builder which will be used in the destructor of this object. This 
mechanism allows the node builder to ensure nodes are not redistributed to other 
objects when objects in the undo history still reference them; these objects may 
come back into play if the designer facilitates the use of the undo buffer. Position 
of this node will be updated in the -reco function of the concrete representation 
as the position of the point invariably changes.
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Public Methods

virtual
const XPoint&
const Node*
bool
XPoint
XBox
double

rs-/ G Point ()
point () const
node () const
selectable () const
centre ()
boundingBox ()
proxim ity (const XPoint &seed)

GeometricThing* displayable ()

virtual void 
const char*

unsigned
void
void
bool

displayLayer () const 
displayLabel ( GDisplay ^display) 
displayO bject ( GDisplay &display) 
can W rite () const 
outX  (ostream &out) 
family () const

Table 7.8: GPoint Public Interface

Protected Methods

G Point ( NodeReferenceBuilder *nodeReferenceBuilder, 
const char *str)

Table 7.9: GPoint Protected Interface

Protected Attributes

XPoint _xpnt
NodeReferenceBuilder* _nodeReferenceBuilder 
const Node* _node

Table 7.10: GPoint Representation
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Examination of the generic point interface, table 7.8, shows that this base object 
mainly implements functions within the Thing and GeometricThing interfaces 
which are applicable to all points; these basically allowing state specific informa­
tion to be output and point objects to be displayed and detected within graphical 
interfaces. These functions aside, all th a t’s left are interfaces to the point rep­
resentation, used geometrically, and the node used for nodal construction of the 
electrical machine. This is a tell tale sign that the node structure is a latter addi­
tion to geometric objects, designed in parallel to the geometric system so that the 
two operate together but quite independently. This becomes even more apparent 
when nodes are examined and seen to be derivatives of the of the XPoint, used as 
the generic representation within the communicative GPoint object. The latter 
section of this chapter illustrates the design of these reference objects.

7.4.2 Point Representation

Like values, points use separate objects as part of their generic representation. 
This representation can be passed to the display, telling it to draw the point at its 
specific location; this simplifies displays because they need no knowledge of the 
more complex communicative Thing derived objects of which the additional in­
formation held is of no use to the display. Point representations can also be reused 
to describe vectors, passed to other independent representations using coordinate 
definitions, and passed to mapping objects which will translate the coordinates 
using transformation matrices. Coordinates are so frequently used, the encapsu­
lation of x, y, and z coordinate values is very useful. The number of repetitive 
operations based on coordinates that need repeating for the different axes have 
been reduced, in terms of repeated program code, through the inclusion of mathe­
matical operators proved by the representation itself. The XPoint representation 
shown in table 7.11 provides nothing but access to the coordinate representation 
and mathematical operators to act upon this representation. Where integer and 
floating point values, of the C ++ programming language kind, can be added, 
subtracted, compared for equality and the lack of, so too can points having had 
these operators defined with the operator syntax shown in the public interface.

A nice diagram illustrates the relationships of the point object, figure 7.3. The 
solid line between the GPoint and Thing shows inheritance, the dotted line be­
tween GPoint and XPoint shows object aggregation; the communicative GPoint
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Public Methods

X Point ()
X Point (const XPoint &p)
X Point ( double x, 

double y, 
double z) 

double x  () const
void setX  (double x)
double y () const
void setY  ( double y)
double z () const
void setZ (double z)
void reset ()
void invert ()
XPoint operator-b (const XPoint &p) const
XPoint operator- (const XPoint &p) const
XPoint operator * ( const double v) const
XPoint operator/ (const double v) const
bool op erator= =  (const XPoint &p) const
bool operator!=  (const XPoint &p) const
double cross (const XPoint &p) const
double dot (const XPoint &;p) const
double mag () const
double sqr () const
void normalize ()

set ( double x, 
void double y,

double z) 
set ( const XValue &x, 

void const XValue &y,
const XValue &z) 

void set (const XPoint &p)

Protected Attributes

double _x 
double _y 
double _z

Table 7.11: XPoint Public Interface and Representation
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has an XPoint representation and, as was explained with values, it could be ar­
gued that the GPoint is a point and should use inheritance instead of aggregation. 
However, note the line of inheritance between the Node and XPoint; the Node is 
actually a point and a reference managed point too, the Buildable part, enabling 
the node specific reference builder management of this object discussed at the 
end of this chapter. Inheritance can’t allow multiple inheritance of the XPoint 
object which the GPoint object would require in order to be both a point and a 
node.
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Figure 7.3: Collaboration Diagram For GPoint

7.4.3 C oncrete R epresentations

Now we move onto the building block point objects that the designer can actually 
construct, illustrated in the inheritance diagram of figure 7.4.

PointG Point : assignment
Syntax: point-variable =  point(a_point)
This allows the value of one point to follow another.
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Thing

GPoint

SGPoint SSGPoint VVGPointPointGPoint VVVGPoint

GeometricThing

Figure 7.4: Inheritance Diagram For GPoint

SGPoint : attach a point to a segment
Syntax: point-variable =  spoint(a_segment, index_value)
Internally used to create points on segments that would otherwise lack the 
anchor points facilitating object connection. Chapter 6 contains a section 
on additional object builds which explains this in greater detail.

SSGPoint : attach a point to the intersection of two segments
Syntax: point-variable =  sspoint(first_segment, second_segment)
Another internally used type which produces a point at the position where 
two segments intersect

VV GPoint : x, y coordinate
Syntax: point-variable =  wpoint(x_value, y_value)
This type, and the next, will be used most frequently to provide the anchor 
point for segments that will form the machine’s outline.

VVVGPoint : x, y, z coordinate
Syntax: point-variable =  wvpoint(x_value, y.value, z.value)
The prototypes for VVGPoints and VVVGPoints really ought to be com­
bined into a simple value dependent point. The point objects themselves 
could also be combined, it is a trivial task to detect in the -reco function 
whether the object uses two or three values.
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7.5 Segments

Segments are one of the most interesting of the building block objects. Histor­
ically they originated from what is now the line segment, a line defined by two 
points. These lines were intersected to produce intersection points, the approach 
being that the designer didn’t need to draw the detailed outline of the machine 
part by placing all the points by which the lines would be connected. That 
method would require parameterisation of all points, complicating the design. 
Figure 7.5 shows that for the slot width to vary, the four width controlling points 
would need parameterisation to allow them to slide along a tilted axis; if we also 
want to vary the slot depth then we have to incorporate further parameterisa­
tion into the values controlling these points to allow them to slide along another 
axis. It would certainly seem a daunting task mathematically, and in effort, to 
produce this parameterisation, there would need to a library encompassing many 
reuseable examples for this method to become viably useable.

slot width

Figure 7.5: Parameterisation Through The Positioning Of Points

The preferred scheme uses construction lines to either form the direct outline, 
or provide intersection points that will serve to allow subsequent anchorage of 
construction lines. This method’s advantages lie in the fact that we’re usually 
trying to modify some aspect of the electrical machine, governed by parameters 
measured between lines; the slot depth and width both concern distances between 
parallel lines in the example of figure 7.5, the angle of the slot, modified to alter 
the number of slots within a machine, is the angle between two lines. Figure 7.6
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shows a pattern of construction lines and arcs used to build a parameterised slot, 
the central radiating line has been predominantly used to provide anchor points 
from intersections with the three arcs. Figure 7.7 shows the slot outline with all 
superfluous construction lines removed and labelling of the adjustable parameters. 
Parameterisation based on points may still be performed, the example revolves 
around a centre point upon which everything is dependent, segment intersections 
simply allow a different design approach more suitable for certain applications.

i
i

v  /X . /  >

/  X /

Figure 7.6: Parameterisation Through The Positioning of Segments

7.5.1 Segm ents A s A  Param eterised  Line

As mentioned earlier, segments originated from a line dependent upon two points. 
In order to intersect two segments, the quickest method was to define them as 
a parameterised line. Equations 7.1 and 7.2 describe the x and y equations for 
parameterised lines respectively, detailed in figure 7.8:

x = x0 + f t  

y =  yo + gt 
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s1ot_tooth_depth

radius

Figure 7.7: Rudiments of a Parameterised Slot

155



t=l

t=0

A

g

V

Figure 7.8: Parameterised Line

start point

mid point

d2,
dl

ill il2

centre point

end point

Figure 7.9: Arc Defined Using Three Points

Arcs were then added, the first type created using a similar type to the line 
segment where three points defined the start, end, and intermediate point as 
shown in figure 7.9. In order to utilise the arc we had to find the centre and 
radius, the figure shows how two line segments are drawn between the start point 
and mid point, the mid point and the end point. Dissecting these two lines into 
equal parts gives us points dl and d2 from which we can calculate the normals 
to our original lines, matching their length as an arbitrary length to give the 
normals. Now the normals are converted into implicit line types governed by 
equation 7.3.

ax + by + c = 0 (7.3)
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Intersecting the two implicit lines, marked ill and il2 in figure 7.9, gives us the 
intersection point that is our centre.

7.5.2 Im plicit, Param eterised Lines and Segments

With implicit, parameterised and segmented lines having their place, construc­
tion lines were initially thought of as being implemented through implicit lines. 
Figure 7.6 shows that construction lines can have an arbitrary length, so long 
as they extend outside the bounds of the slot in order to provide the necessary 
intersections. Implicit lines could later be cropped to tidy the design and produce 
lines of specific lengths, these being implemented through either parameterised 
lines or line segments. The process of tying this into a coherent scheme proved 
difficult; the inclusion of arcs into this scheme complicated matters further, espe­
cially if we wanted to interchange lines with arcs. As is often the case, if a design 
proves to difficult to conceive i t ’s probably taking the wrong approach.

7.5.3 The Abstract Segment

The final scheme uses abstract segments, these having a start and end point with 
an arbitrary number of points in between. For a line type to be a segment, it 
must be possible to parameterise it between the values of t=0 to t= l accord­
ing to equations 7.1 and 7.2. Table 7.12 shows the interface functions accessing 
the GSegment object. Like values and points, the constructor is protected sig­
nifying that this object is not constructible within its own write; only derived 
objects, the concrete representations, can be constructed. Also notable are the 
lack of polymorphic functions within this interface considering its abstract na­
ture. The XSegment object held within the GSegment representation, table 7.13, 
is a pointer to another family of objects responsible for the representation side of 
segments. This family of objects simply concern themselves with the geometric 
properties of segments, without concerning themselves with the communicative 
and interactive side the GSegment object deals in; in fact, of all the functions 
within the GSegment interface, most functions implement aspects of the commu­
nicative Thing object and the geometrically interactive GeometricThing object, 
whilst the others provide access to like named functions within the interface of
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Public Methods

virtual 
X Segments

XSegment*

const XPoint&
const XPoint&
const XPoint&;
unsigned
XPoint
double
bool
unsigned
const SplitXPoint&
XlmplicitLine
bool
XPoint
XBox
double
GeometricThing*
unsigned
bool
const char*

G Segm ent () 
xsegm ent () 
copy (double start_t, 

double end_t) 
start () const 
end () const 
point (unsigned i) const 
nPoints () const 
point A t (double t) const 
atPoint (const XPoint &p) const 
closedSegm ent () const 
in tersectW ith  (GSegment *segment) 
intersectPoint (unsigned i) 
tangent (const XPoint &seed) const 
selectable () const 
centre () 
boundingB ox () 
proxim ity (const XPoint &seed) 
displayable () 
displayLayer () const 
can W rite () const 
fam ily () const

Protected Methods

GSegm ent ( const char *str) 

Table 7.12: GSegment Interface

the geometric representation.

7.5.4 Segment Representation

Worth noting is the pointer nature of the XSegment representation within the 
GSegment’s representation of table 7.13. This utilises the polymorphic nature 
of the representation; the XSegment is actually an abstract class through which 
segment implementations can be accessed. The pointer nature allows any imple-
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Protected Attributes

XSegment* _xseg
XPoint .centre
bool _centre_cached
XBox -boundingBox
bool _boundingBox_cached

Table 7.13: GSegment Representation

mentation of the XSegment object, created through its inheritance, not only to be 
plugged into the representation but also to be switched for another representation; 
this allows an arc to be switched for a line within a GSegment implementation 
that contains both these types, this may happen when three points defining an 
arc form a straight line.

Looking at the XSegment interface of table 7.14, it consists almost entirely 
of polymorphic functions of the form pure virtual form; in C++ nomencla­
ture [18] [19], this means that an implementation will be looked for in the derived 
class with there being no implementation in the base class. In other words, the 
straight line, circle and arc implementations forming the real objects must im­
plement these functions, the program will not compile otherwise. Half these 
functions access points, points being the representation of a segment; a segment 
must have two or more points describing a line that can be parameterised. Here’s 
a quick explanation of some functions in the context of their use:

copy :
Given to parameters of t, we can describe any section of the line. Discrete 
segments identify such a section through the identification of two points 
lying upon the line. This function allows identification of this section, 
producing a copy of it that can be used elsewhere.

pointA t :
To obtain the coordinates of a point on the line at a specific parameter of t, 
pointAt returns the coordinate as an XPoint. Now we can see the benefit of 
the point representation as a separate entity to the communicative GPoint 
object.

atPoint :
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Public Methods

virtual ^X Segm ent ()

virtual XSegment* copy (double start.t =  0, _  _ 
double end_t =  0)

virtual const XPoint& start ( ) const =  0
virtual void setStart (const XPoint &s) =  0
virtual const XPoint& end ( ) const =  0
virtual void set End (const XPoint &e) =  0
virtual const XPoint& point (int i) const =  0

virtual void set Point (int i,
const XPoint &p)

virtual int nPoints () const =  0
virtual XPoint pointA t ( double t ) const =  0

virtual double atPoint ( const XPoint &p,
bool strict =  true) =  °

virtual bool closedSegm ent () const =  0
virtual int intersect W ith  (XSegment ^segment) =  0
virtual int intersectW ithC ircle ( XCircleSegment ^segment) =  0
virtual int intersectW ithLine ( XLineSegment &segment) =  0

void addlntersect ( const XPoint &xp,
double t)

void clearlntersects ()
const SplitXPoint& intersectPoint (int i ) const
virtual const XPoint& centre ( ) const =  0
virtual XBox boundingBox ( ) const =  0
virtual double proxim ity (const XPoint &seed) const =  0
virtual XlmplicitLine tangent (const XPoint &seed) const =  0

Protected Methods

XSegm ent () 

Table 7.14: XSegment Interface
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The reverse to the previous function, atPoint, returns the value of t for a 
given coordinate that, ideally but not strictly, lies on the line.

closedSegm ent :
A circle is a closed segment, straight lines and arcs are open. Discrete 
segments divide the section they describe according to a number of nodes, 
n; if a closed segment is involved the last node overlaps the first and so 
they can compensate for this by sectioning the length into n + 1 nodes, 
connecting the nth node back to the first.

centre :
Gives the particular segment’s idea of what its centre is. This, and the next 
two functions, help implement the graphical representation and detection 
of objects used with the GeometricThing interface.

boundingBox :
Gives a XBox bounding box for the object. The XBox implements in­
tersections of bounding boxes allowing detection of an intersection and its 
union.

proxim ity :
Returns the distance from the given point to the nearest point on the seg­
ment.

tangent :
Given a seed point on the segment, this calculates the tangent to the seg­
ment at that point. This proves very useful in the SPVVVGLineSegment 
object explained later, an object that draws a line segment at a given angle 
to the tangent of a segment.

Remaining intersect functions deal with the problem of intersecting segments 
through an abstract interface. The implementing functions need some knowledge 
of the segment’s true nature, straight line or circle. If we ask an XSegment to 
intersect with another XSegment we ultimately need to intersect between the 
XLineSegment and XCircleSegment types, this is because the intersection rou­
tines deal with the parameterised, Xq, yo, g , and /  parameters of a line and the 
centre and radius of a circle. The arcs, XArcSegment, are treated as circles. Fig­
ure 7.10 shows the arc as a derivative of the circle, it simply implements a start 
angle and angle of duration. The arc implements some extra functionality onto
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the circle to ensure that, in the case of intersections, the resulting intersection of 
a segment with a circle actually lies on the portion of the circle defined by the 
arc.

XSegment

XArcSegment

XLineSegmentXCircleSegment

Figure 7.10: Inheritance Diagram For XSegment

Each segment type knows how to intersect itself with a line or circle segment, 
hence the intersectWithLine and intersectWithCircle functions in the XSegment 
interface. If we wanted to intersect two segments, I being an XLineSegment 
and c being an XCircleSegment, we could do so by asking either segment to 
intersectWith the other. Asking the line I to intersect with the circle we would 
use:

l->intersectWith(c)

This passes the XSegment interface of c to the line object. Unable to do anything 
with this abstract XSegment description of c, the line asks c to intersect itself 
with a line segment:

c->intersectWithLine(this)

The line, quite aware of its own identity, can remove ambiguity by telling the 
crcle, which it doesn’t know the identity of, to intersect with a line, passing 
itself, this, as an argument. The circle now performs an intersection with a 
line[22], storing any resultant intersection points in a cache of points held both
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within itself and the line. The initial intersection asked the line to intersect with 
the circle, ultimately the circle intersected with the line. The results are hence 
stored in both objects to avoid any confusion. The circle returns the number of 
intersections to the line with the intersectWithLine return value, this allows the 
line to return this number through the return value of the intersectWith function. 
Whatever initiated this intersection can then obtain the intersection points using 
intersect Point, the caching mechanism being the only implementation held within 
the XSegment object. The return type of this function, a SplitXPoint, gives a 
point coordinate and the parameter of t at which the intersection occurred; this 
parameter is thus specific to the intersected object as the line and the circle in 
our example would intersect at points differing in their parameterisation.
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Figure 7.11: Collaboration Diagram For GSegment

Figure 7.11 shows the collaboration between the GSegment and XSegment ob­
jects. The XSegment contains a list of intersection points, its only data, the 
dotted line showing ownership. Straight lines denote inheritance, the GSegment 
being a GeometricThing as a specialisation of a Thing.
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7.5.5 C oncrete R epresentations

GeometricThing

Figure 7.12: Inheritance Diagram For GSegment

The number of objects useable to the designer is of the largest with respect to 
the segment family. Most of them fall into three main groups due to their type of 
representation, however all are interchangeable as this representation is hidden 
behind the GSegment interface. The outside world sees a line type which can be 
parameterised, with non-closing line types, such as arcs and straight lines, having 
terminating points with which to aid subsequent anchorage of objects. Figure 7.12 
shows the three families of GArcSegment, GCircleSegment, and GLineSegment, in 
addition to the SegmentGSegment, an assignment type that exists independently. 
This type facilitates the importing of library components by allowing an imported 
segment to depend upon an existing segment within the model, taking a copy of 
its representation.

Arc Segments

The first of the three families uses an XArcSegment representation. All concrete 
representations within this family convert their defining parameters into the de­
fault representation of three points, a start point, intermediate point, and end 
point, through which the arc passes defining its path. The GArcSegment family 
currently implements three concrete types, shown in figure 7.13.

PPPG A rcSegm ent : figure 7.14

GSegment

GArcSegment

GCircleSegment
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G e o m e t r i c T h i n g

| G S e c m e n t

| P P P G A r c S e g m e n t  P P P V V G A r c S e g m e n t |  |  P V V V G A r c S e g m e n t ]

Figure 7.13: Inheritance Diagram For GArcSegment

Syntax: segment-variable =  ppparc(start_point, mid-point, end_point)

Dependent upon three points, this arc will find the path that takes it from 
the start point, through the mid point and up to the end point. The points 
defining the arc thus define its anchor points for subsequent attachment.

mid point

end point

start point

Figure 7.14: Arc Dependent Upon Three Points

PPPV V G A rcSegm ent : figure 7.15

Syntax: segment-variable =  pppwarc(start_point, mid_point, end_point,
length_extension_from_start_point,
length_extension_from_end_point)

Dependent upon three points and two length values. Being similar to the 
previous PPPGArcSegment, this type creates two new points extending
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along the path of the arc from the defining start and end points. This 
allows the arc to project outwards providing new anchor points, possibly 
intersecting neighbouring segments. Two new points are created at these 
new extents, these being of the SGPoint variety dependent upon the arc 
itself.

mid point
end point

start point length > 
of extension from end point_ps_a rc_name •4f length 

of extension from start point

Figure 7.15: Arc Dependent Upon Three Points and Two Extension Values

PV VVG ArcSegm ent : figure 7.16

Syntax: segment-variable =  pwvarc(centre_point, radius_value,
start_angle_value, through_angle_value)

This type depends upon a centre, radius and two angles. One of the most 
commonly used methods for arc representation, useful for defining the fore­
most construction lines where the radius matches that of the machine. The 
only point used to define this arc is its centre, therefore, in order to ful­
fil the specification that an arc must supply anchor points for subsequent 
connection, this arc produces to dependent point at the extremities of its 
path.

Circle Segments

The family of GCircleSegments uses an XCircleSegment representation to pro­
vide concrete representations useful for founding construction lines within the 
machine and the definition of holes in slots. It’s representation is the same as the 
arc’s, the arc being a specialisation to the circle inheritance of figure 7.10. This 
segment type is closed, with no start or end to the segment. Unless the concrete 
representation uses points to define the path of the circle, no points will exist

166



_pe_arc_name
through angle

start angle

centre
pointradius

Figure 7.16: Arc Dependent Upon Centre Point, Radius, Starting, and Through 
Angle Values

on the circle for subsequent anchorage. The intersection of the circle with other 
segments produces intersection points facilitating this. Only two concrete types 
exist, shown in figure 7.17.

T h i n g  |

| G e o m e t r i c T h i n g |

[ G S e g m e n t

P V G C i r c l e S e g m e n t

G C i r c l e S e g m e n t

Figure 7.17: Inheritance Diagram For GCircleSegment

PPPG C ircleSegm ent : figure 7.18

Syntax: segment-variable =  pppcircle(start.point, mid-point, end.point)

Dependent upon three points, this circle will find the circular path that 
intersects all these points.
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mid point

end point

start point

Figure 7.18: Circle Dependent Upon Three Points

PVGCircleSegment : figure 7.19

Syntax: segment-variable =  pvcircle(centre_point, radius_value)

Dependent upon a centre point and radius value. Placement of a few of 
these circles around the machine’s centre will define the machine’s radius 
and useful intersection points, between lines radiating from the centre, for 
dependencies upon slot depth and other depth specific parameters.

Line Segments

Eere we have the largest family of segments, using the XLineSegment representa- 
ton consisting of two points connecting the line. The available types of figure 7.20 
are briefly describe as follows:

IPG LineSegm ent : figure 7.21

Syntax: segment-variable =  ppline(start_point, end_point)
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Figure 7.19: Circle Dependent Upon A Centre Point and Radius Value
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Figure 7.20: Inheritance Diagram For GLineSegment
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Dependent upon two points, the points defining this line also provide the 
necessary anchor points.

end point

start point

Figure 7.21: Line Dependent Upon Two Points

PPVV GLineSegm ent : figure 7.22

Syntax: segment-variable =  ppwline(start_point, end_point,
length_extension_from_start_point, 
length_extension_from_end_point)

This types relation to the PPGLineSegment resembles the relationship of 
the PPPVVGArcSegment type to the PPPGArcSegment The length of 
the line can be extended along its path, beyond the extremities defined by 
the two points it depends upon. This is predominantly used to extend an 
existing line to the point of intersection with other segment, those points 
then allowing definition of discrete segments to sub-divide an are for finer 
meshing.

_pe_line_name
end point

start point

_ps_line_name

length 
of extension 

from start point

Figure 7.22: Line Dependent Upon Two Points and Two Extension Values 

PVVVGLineSegment : figure 7.23
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Syntax: segment-variable =  ppvvline(origin_point, startJength, extensionJength,
angle_of_trajectory)

Dependent upon a point of origin, this line extends at a given trajectory, 
relative to the 3 o’clock position. The physical line starts at the given length 
from the origin, extending then by the length of extension. Anchor points 
are created at the termination of the physical part of the line governed by 
the start and extension lengths.

pe line name

point of

Figure 7.23: Line Dependent Upon a Point of Origin, Start Length, Extension 
Length, and Angle of Trajectory

SPVVVGLineSegment : figure 7.24

Syntax: segment-variable = sppwline(segment, point,
length_extension_to_start_point, 
length_extension_to_end_point, 
angle_relative_to_tangent)

Produces a line segment at an angle to the tangent of a segment at a given 
point. The line segment extends from this tangential point by given values 
of extension for the start and end point. These points are manufactured to 
provide the necessary anchorage.

origin

from start point
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Figure 7.24: Line Dependent Upon Segment’s Tangent at the Given Point

7.6 D iscrete Segm ents

A discrete segment identifies a section of a segment, bounded by two points. 
It inherits the nodes of these two points and then divides the spanned section 
into 7i— l smaller sections according to a discretisation policy. Nodes are then 
created, marking these divisions so that the final discrete segment contains n 
nodes. A chain of discrete segments marks boundaries for meshing, the density 
of nodes along this boundary dictating the mesh density. A variation on this type 
allows the grouping of discrete segments, this allows several segments to appear 
as one. Objects dependent on specific numbers of discrete segments can thus 
span a greater number of segments using this type.

This object family is the first explained so far within this chapter not to have a 
separate generic representation. All it essentially contains, see table 7.16, is an 
array of node references and a reference to the node builder, used to reference 
and manufacture nodes. The generic interface to this object is very simple, ta­
ble 7.15 shows access functions used to read points, used geometrically within 
the program, and nodes, used in the parallel node reference system. All other 
functions implement its interaction, based in the implementation of functions 
within the Thing and GeometricThing interfaces. The GDSegment isn’t a con­
structive object, two concrete representations currently exist which inherit this 
interface; hence the protected, accessible only to derived objects, nature of this 
object’s constructing interface of table 7.15. These two concrete objects differ 
significantly in their representation. With the simplicity of one type and the 
complexity of the other, no separate representation has been used.
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Public Methods

virtual ^G D Segm ent ()
unsigned nPoints () const
XPoint point (unsigned n) const
unsigned nNodes () const
const Node* node (unsigned n) const
bool selectable () const
GeometricThing* displayable ()
unsigned displayLayer () const
void displayLabel (GDisplay &display)
void displayO bject ( G Display &;display)
bool canW rite () const
const char* family () const

Protected Methods

GDSegment ( NodeReferenceBuilder *nodeReferenceBuilder, 
const char *str)

Table 7.15: GDSegment Interface

Protected Attributes 

NodeReferenceBuilder* _nodeReferenceBuilder
Node Array -nodes
X Point -centre
bool _centre_cached
XBox -boundingBox
bool _boundingBox_cached

Table 7.16: GDSegment Representation
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7.6.1 T he D iscrete T ype

The SGDSegment is the main type used, initially being the sole representative of 
this family. The need for a collective type cause abstraction of the GDSegment 
interface with this type being sub-classed as one of two concrete types. It therefore 
has a very simply inheritance structure, shows in figure 7.25.

Thing

GDSegment

SGDSegment

GeometricThing

Figure 7.25: Inheritance Diagram For SGDSegment

The following, figure 7.26, illustrates the conversion of a segment into a discrete 
segment using a linear node spacing. Placement of the nodes is done using the 
segments ability to be parameterised from t = 0 to t = 1. For arcs and lines 
this is simply performed by taking the two parameters of t the segment returns 
when asked at what parameters the bounding points lie, using the segment’s 
atPoint function. The discretisation policy is told how many points are required, 
it then governs how this difference is divided. Having calculated the values of 
t where the intermediate points lie, all that remains is the conversion of these 
parameters back into coordinates. This is performed using the segment’s point At 
function. The only problems arise when we’re dealing with closed segments, 
namely circles. Here the parameter t identifies the same point for t = 0 and 
t = 1. In this case, regardless of their values, if the two bounding parameters 
of t are equal, we assume that we want to travel the full length of the closed 
segment. The other problem lies with the direction taken around the closed
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segment. If the bounding parameters were 0.75 and 0.25 respectively, do we 
increase t positively from t = 0.75, crossing the t =  1.0/0.0 boundary until 
t = 0.25, or do we decrease t negatively from t = 0.75 to t = 0.25? To solve this 
we introduce another assumption that we always travel counter-clockwise along 
the closed segment with t increasing positively in this direction.

If we were to take the slot of figure 7.6, creating discrete segments along the 
outline of the slot, figure 7.27 would show the discrete segments displayed against 
the original segments. The next illustration, figure 7.28 removes the segments 
from the display leaving just the discrete segments. The electrical machine is 
starting to take form. Each discrete segment’s node count is multiplied by a factor 
of n, allowing, ultimately, the mesh density to be tuned using this parameter.

12

11

Figure 7.26: Discrete Segment Based On An Arc Segment

7.6.2 C om posite  D iscrete  Segm ents

This form of discrete segment exists to masquerade two or more discrete segments 
as one. Take the example of figure 7.29, the lower part of the figure forms a 
triangular section of which the top, horizontal, line is divided into three discrete 
segments. For a meshing object, consisting of a finite discrete segment interface, 
to mesh this, these three segments need to appear as one segment. This is not 
just to overcome the interface to the meshing object. We could overlay the three 
discrete segments with an additional discrete segment, however this would cause 
two problems. First, the new segment would create intermediate nodes that would
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Figure 7.27: Discrete Segments Based On A Slot Example, Segments Shown

Figure 7.28: Discrete Segments Based On A Slot Example, Segments Removed



affect our node referencing by producing duplicate nodes at the same points in 
space as the nodes of the other segments. Secondly, if the number of nodes in 
either segment were changed so they no longer overlaid one another, the nodes 
on the boundaries of the adjacent meshes would not correspond and we would 
require a solver capable of overcoming this. By producing a composite discrete 
segment of the form “ds_21_8_20 =  cdsegment(ds21, ds8, ds20” we would avoid 
this, the new discrete segment would reference the other segments nodes thus 
mimicking their behaviour.

ds20ds21 ds8

Figure 7.29: Composition of Discrete Segments

Chaining Discrete Segments

Masquerading discrete segments as one involves the sorting of each individual 
discrete segment into a continuous path. Adjoining discrete segments will refer­
ence a common node, helping in the search, these nodes can be overlaid resulting 
in a continuous chain of nodes. Some chains will close, others will remain open; 
in order to ensure the best connectivity, the node furthest from all other nodes 
denotes the start of an open chain. Ihbt,l®@iisbfetdks tiwothe c 
nodes either side of the discontinuity are not overlaid; this effectively inserts an 
extra link in the chain, this way we only every have the one, largest, discontinu­
ity in any open chain. Use of a discrete segment organiser is quite prevalent in 
the following objects, it has thus been created as a reuseable object which the 
composite discrete segment, CGDSegment, inherits. Figure 7.30 illustrates this. 
The CGDSegment inherits the GDSegmentChain object as it is indeed a chain 
of segments, also it will never contain more than one such chain, a candidate for
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the use of object aggregation.

GDSegmentChain|

Thing

GDSegment

CGDSegment

GeometricThing

Figure 7.30: Inheritance Diagram For CGDSegment

7.7 Fronts

Figure 7.31: Slot Sub Division Into Five Domains

In meshing an area we have the choice of either dividing that into manageable 
domains, figure 7.31 shows the slot example with additional discrete segments 
added, or of treating it as one domain, figure 7.32. The foremost method allows 
greater control over the mesh, the domains are simple three or four sided areas 
which can be meshed quite precisely, whilst the latter method relies on a meshing 
method capable of handling the more complex geometry. Such a method very
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Figure 7.32: Slot Treated As A Single Domain

much puts us at the mercy of the mesh generating software we have available; 
many mesh generators are available within the public domain, these predomi­
nantly use methods based on the Delauney Voronoi method[l][2], producing tri­
angular elements. If quadrilateral elements are preferred, these will not bear the 
desired results. They are however capable of handling holes within the meshed 
domain. To allow the use of these schemes, fronts must be used; a front is capa­
ble of grouping a chain of discrete segments into one object, a versatile way of 
dealing with many segments when interfacing to the more geometrically capable 
meshing methods. Interfaces to such methods are then capable of differentiating 
between the different groupings of discrete segments as boundaries, allowing the 
specification of holes within the mesh.

|GeometricThing

Thing

G Front

GDSegmentChain

Figure 7.33: Inheritance Diagram For GFront

We have a very convenient way of producing the front object, figure 7.33 illus­
trates the reuse of the GDSegmentChain object. A front can now be specified in 
terms of an arbitrary list of discrete segments, the GDSegmentChain will order



Public Methods

GFront ( GDSegmentList *segs,
No deReferenceBuilder * no deReferenceB uilder, 
const char *str)

~G Front ()
int iEnclose (GFront *front)
bool selectable () const
X Point centre ()
XBox boundingBox ()
double proxim ity (const XPoint &seed)
GeometricThing* displayable ()
unsigned displayLayer () const
void displayLabel ( GDisplay ^display)
void displayO bject ( GDisplay ^display)
bool can W rite () const
void outX  (ostream &out)
const char* family () const
const char* type () const

Table 7.17: GFront Interface

these segments accordingly to try and produce a closed boundary; if the chain 
fails to close, the front is marked invalid according the Thing’s invalid flag. This 
prevents any dependent meshes from trying to mesh an open boundary.

The reuse of the GDSegmentChain object, in addition to it being the sole mem­
ber of its family, makes the front a very straight forward object in terms of its 
class hierarchy. Table 7.17 shows only a public interface, there being no generic 
interface with concrete representations, with it being the first object, so far, to 
implement all the required communicative and interactive functions of the Thing 
and GeometricThing in one object.

7.8 M eshes

Meshes are defined using either discrete segments or fronts, the spacing of nodes 
along either of these objects dictating the density of the mesh. Previous geomet­
ric objects have used separate representations due to their reusability, the ability
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Protected Attributes

NodeReferenceBuilder* _nodeReferenceBuilder 
ElementReferenceBuilder* _elementReferenceBuilder
NodeArray
NodeArray2
NodeArray

-boundaryNodes
JioleNodes
_meshNodes
.elements
-centre
_centre_cached
-boundingBox
_boundingBox_cached

ElementArray
XPoint
bool
XBox
bool

Table 7.18: GMesh Representation

to encapsulate data with the mathematical operators, define higher level objects 
in terms of these representations, and to interact with the display using these 
representations. Therefore a parallel system can be seen in some objects imple­
menting a geometric point interface alongside a node reference interface. Meshes 
exist on a node, and element, representation; only the outer boundary can be de­
scribed using the geometric point interface, facilitating the detection of proximity 
to other objects. Like the discrete segment inherits nodes from defining points, 
creating intermediate nodes for itself, the mesh inherits its boundary nodes from 
the discrete segment or front, creating new nodes describing the mesh it creates. 
As can be seen from the mesh’s representation, table 7.18, node references are 
maintained within three groups. Boundary nodes define the outermost boundary 
of the mesh, its perimeter, whilst hole nodes are held in a two dimensional array, 
an array of boundaries that allows any number of holes boundaries to be defined. 
Mesh nodes are again held separately. This segregation is maintained through­
out the objects forming the final stages of the design. Boundary forming nodes 
are carefully managed throughout the various building block objects in order to 
prevent duplicate nodes from existing at the same point in space. This might be 
a problem when outputting a node and element representation of the machine 
where different nodes have the same coordinates and are referenced by different 
elements. Components pose a problem in this scheme, explained later in their 
section of this chapter, the result being that intersecting components are checked 
for overlaying nodes on boundaries. Identification of boundary nodes simplifies 
this check.
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7.8.1 C oncrete R epresen tations

Thing

GMesh

SEGMesh TriangleGMesh

GeometricThing

EasymeshGMesh

Figure 7.34: Inheritance Diagram For GMesh

The inheritance diagram of figure 7.34 shows the three concrete mesh represen­
tations. Meshes generators are complex in their design, therefore one type has 
been written and the other two make use of third party software.

Super Element Mesh

A Super Element splits a domain into smaller, more manageable, areas, allow­
ing a simpler mesh generation to be used. This type deals with triangular and 
quadrilateral areas, sides to these areas are supplied in the form of discrete seg­
ments. Areas bounded by a greater number of discrete segments can be meshed 
by consolidating sequential segments using the CGDSegment chain object ex­
plained earlier. The interface simplifies the object by using the first discrete 
segment supplied as the seed for the meshing. The mesh generator propagates 
a wave from this face towards the opposite face, for a quadrilateral, or point, 
for a triangle. This imposes the restriction that both discrete segments either 
side of the propagating face must have the same number of nodes. This type 
does however produce very structured meshes using triangular and quadrilateral 
elements. Figure 7.35 shows the meshed version of figure 7.31 using five super 
elements.
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Figure 7.35: Super Element Mesh Using Five Sub Domains 

Easymesh

A public domain mesh generator called Easymesh[l], using the Delauney Voronoi 
method, has been interface into a concrete type. The source code for this program 
is freely available and was initially integrated into the program. It was found that 
some geometries caused the mesh generator to fail and thus the whole program 
terminated; subsequently the two programs now communicate through the node 
and element file formats Easymesh understands, Easymesh being launched as 
an external program. In addition to the gained stability, the infrastructure for 
communication with external programs has been built that has allowed another 
mesh generator, Triangle[2], to be used. This is useful in terms of the additional 
mesh generation programs that could be interfaced in order to attain the quality 
of mesh wanted.

Easymesh handles complex geometries containing holes, an interface of fronts is 
used to describe the mesh boundary and its enclosed holes. Using the geometry 
of figure 7.32, we can see the results, in figure 7.36, produced by Easymesh when 
the area is meshed without the aid of further subdivision into smaller domains. 
Figure 7.37 then introduces a hole into this boundary.

Triangle

Another use of third party software, Triangle[2] is much faster than Easymesh 
and it gives greater control over the resulting mesh. Both the minimum an-



Figure 7.36: Easyesh Based Mesh Using One Domain
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Figure 7.37: Easyesh Based Mesh Using One Domain With Hole



gle size within elements and the maximum area for elements can be adjusted. 
Figures 7.38 and 7.39 show the meshing of geometries corresponding to those 
produced by Easymesh in figures 7.36 and 7.37 respectively.
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Figure 7.38: Triangle Based Mesh Using One Domain
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Figure 7.39: Triangle Based Mesh Using One Domain With Hole

7.9 R egions

Regions collate meshes according to material properties. The structure of node 
and element references founded in the GMesh is maintained so that components 
can easily identify boundary nodes. This object, like the front, has only the con­
crete representation. It takes a material property in the form of a GMaterial, 
whose representation simply composes of an integer material identifier. This a 
generic object, simply so derived types can set the property identifier for partic­
ular materials allowing the material to be entered descriptively with the likes of 
“air” or “copper”. The other arguments supplied to the region are one or more 
arbitrarily ordered meshes that take this material property.
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7.10 Components and M apping

The final stage in the machine’s development collates all regions into a compo­
nent. If the symmetry of the machine can be exploited, only this section needs 
designing to produce the template component. This section can be copied with 
a mapping policy governing the space the new component is copied to. The 
GComponent object provides the interface for the component, its representation 
consists of the same node and element arrays used by the GMesh and GRegion. A 
RGComponent concrete object takes an arbitrary list of regions and places their 
node and element references into the representation. A mapping CMGComponent 
reads the GSegment interface, translating the nodes to produce a new set accord­
ing to the a supplied mapping. The mapped component stores these new nodes, 
and corresponding elements, in its representation, so another mapped component 
could read this object instead of the original region based component. To build a 
complete machine from a single slot design, a rotational mapping can be used to 
map the original component onto a new component adjacent to the original; this 
would use a rotational mapping, the angle parameterised according to the num­
ber of desired slots. The machine can be sequentially constructed by taking the 
last mapping object to translate to the next, utilising just one type of rotational 
mapping for construction of the entire machine.

Three mapping objects exist, figure 7.40 shows the flipping of a component about 
a line of symmetry. Figure 7.41 shows the same component rotated about a point, 
finally figure 7.42 shows a method allowing any kind of translation; two segments 
can be used such that the mapping is described by translating the seed segment 
onto the target. This allows scaling, rotation and translation along any axis.

To complete a section of a machine, all that remains is a component mapping 
for the ongoing slot example used to illustrate the various building block objects. 
Figure 7.43 shows the final slot component to be used. The outer, tooth, section 
is the main area of interest, so this has been meshed using four super element 
meshes. This has produced some nice quadrilateral elements. The rest of the slot, 
covered by mesh m5, has used the Triangle meshing scheme to allow incorporation 
of a hole into this boundary. The slot angle has been parameterised, we now make 
this a function of the number of slots we desire:
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Figure 7.40: Flipping Components About A Segment



Figure 7.41: Rotating Components About A Point
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Figure 7.42: Translating Components Using Two Segments
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slots=12
slot_angle=360/slots

Next we define our mapping policy, this rotates the slot about a centre point in 
the z-axis:

mapping=rotate(centre, 0, 0, slot_angle)

Finally, the component, named as such, is mapped for all the slots using a com­
mand to show the result of figure 7.44:

cs component mapping slot_angle

Figure 7.43: Final Slot Configuration

Mapped components pose a problem in the scheme of node references. Through­
out the design of the machine, objects have depended upon and overlaid one 
another, from foundation points to components, in a layered design. Node refer­
ences have been inherited from one object to another so that overlaying objects 
don’t produce nodes on top of existing nodes. If two nodes overlaid one another on 
the boundary of two meshes, the elements of one mesh would reference one node 
and vice versa. The resulting node and element representation of the machine 
could prove confusing to a solver. Components break this scheme. A mapped
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Figure 7.44: Slot Mapped To Produce A Twelve Slot Section Of An Electrical 
Machine
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component knows of only one other component. The mapping may be such that 
the translated component doesn’t ever share a boundary with its master. It could 
at best ensure that it didn’t create new nodes along a shared boundary. However, 
with a final mapping component fulfilling the symmetry of the machine, closing 
the gap between two components, this component has no knowledge of compo­
nent on the opposite side to its parent. Figure 7.45 illustrates this, component c\ 
closes the symmetry by bridging components cl and c3\ this component knows 
of either c3 or cl but not of both. The situation worsens if c\ depends upon c2.

To remedy this problem, we utilise the post-processing of the specialised builder 
detailed in chapter 6. Already intersecting segments affected by parameter changes, 
the builder extends this to components by using the boundingBox of the Geomcr- 
icThing interface to discover component intersections. Each component intersec­
tion is added to a list of intersections held within the respective components. The 
builder maintains these lists through the duration of the design. Only when the 
node and element information is output are these intersections examined; then 
the boundary nodes, which have been maintained separately through the object 
node inheritance, are examined for duplications.
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Figure 7.45: Sharing of Component Boundaries
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Chapter 8

Conclusions

The objectives of this work have been met.

The electrical machine has been broken down into separate objects using a top- 
down design that starts with the component as the largest of these objects. The 
component exploits the symmetry of the electrical machine so that geometric 
mapping of this object constructs the entire machine, releasing the programmer 
from the repetitive process of entering the entire geometry. Region property 
mapping then handles the changes in materials throughout the machine, needed 
to define windings with different phase and polarity.

The component is built using a bottom-up design, starting with values that pa- 
rameterise any aspect of the electrical machine. The geometry is then constructed 
using the interaction of points and segments. Line, arc, and circle segments an­
chor to points and in turn intersect to produce intersection points that provide 
further anchorage for more segments. This process is used to construct the outline 
of the component and partition it internally into a number of non-overlapping 
tiles. Nodes are placed around the outline of the component and along the in­
ternal boundaries between the tiles using discrete segments. The tiles are then 
meshed and these mesh tiles are grouped into regions which group into the final 
component.

Multiple components can be used within the design of the electrical machine, for 
example an induction motor can be built from two components, one representing
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the slot of the stator and one representing the slot of the rotor. Components are 
then reuseable and can be stored in libraries for importing into future designs. 
Each of the separate objects, points, segments, and so forth, is stored within a 
dependency tree that can be manipulated and edited to make easy changes to 
components that will ultimately propagate through the entire machine.

The object oriented approach has shown to be very useful in implementing this 
framework.

Each family of object has been implemented using an abstract, generic interface. 
Each object within that family, the concrete objects as seen and used in the 
design, hides behind this interface. Thus a point can be defined in terms of 
cartesian and polar coordinates and it can be defined by the intersection of two 
lines. These different types of point are the concrete types and vary considerably 
in how they are defined. The abstract interface of the point hides this. Any 
object that uses a point sees the abstract interface which will provide the point’s 
location, they do not see how that location is derived. This abstraction allows us 
to attach a line segment to any point irrespective of its concrete type.

The functionality of the objects used in designs can be easily extended as a result 
of this. If we wish to provide another means of defining a point we simply ensure 
that it adheres to the abstract interface. As only the abstract interface is seen 
throughout the rest of the framework we can be sure that this addition will not 
break any of the existing framework. The designer has the freedom to define 
geometries in the most convenient form whilst from a programming perspective 
we needn’t check that each new object is capable of interacting with every other 
object.

Abstract interfaces are neither restrictive in terms of the additions we can make 
to these families of objects. The segment family defines types of lines, arcs, and 
circles, that are described in terms of a  number of points that lie along their path. 
Not only can we add to the methods in which lines and arcs can be defined, using 
additional concrete objects for these types, but we can also add a completely new 
type of segment such as a spline.

As the basis for all families of objectt we use a class called the Thing. All the 
families of derive from this Thing ancll thus can be described in terms of it. The
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Thing forms the basis for the dependency tree used to store the relationship 
between objects once they are entered into the design. When a line segment is 
constructed in terms of two points it is given a name and constructed in terms of 
the names of the two points. This relationship is stored in the dependency tree 
and allows us to efficiently filter changes down the dependency tree that only 
affect the objects that are dependent on the object being changed.

When changing an object we pluck it from the dependency tree and replace it 
with one newly defined by the designer, perhaps in terms of other objects. The old 
object is stored and its place in the dependency tree restored if we choose to undo 
this change. The use of the Thing ensures this mechanism remains independent of 
the actual objects being manipulated, knowledge of their specific type is irrelevant 
and so a generic undo/redo mechanism is provided. The designer is free to take 
a line segment defined by two points and replace it with a line segment that 
lies tangential to an arc. The line segment can even be replaced with an arc 
segment. When components are reused in new designs this flexible interchange 
of objects allows easy modification of the component towards the new design and 
any undesired change can be undone and subsequently redone. As a programmer 
we benefit because we don’t have to implement an undo mechanism in every 
object we add to the framework. Thus we don’t risk breaking the framework 
because additions weren’t implemented correctly.

Naming objects gives us a descriptive language for representing the electrical 
machine which has a one to one mapping on to the dependency tree. This lan­
guage allows us to make design changes without the need for graphical tools. We 
can visualise the dependencies between objects and clearly see what constraints 
we have. With the bottom-up design we always have values at the base of the 
dependency tree, thus every aspect of the machine is parameterised and can be 
manipulated at the language level or using design tools.

The ease of making changes the the parameterised design, without human inter­
action, lends itself to batch processing. A value, such as the slot tooth width, 
can be varied in a linear manner and the modified mesh generated and solved to 
see which width yields the best results.

With the additional ability to interpret data from the finite element solver we 
would have the option of creating an optimisation loop that would streamline
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this process, please see the chapter on further work.
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Chapter 9

Future Work

This PhD has effectively become a single program which the author would like 
to see reach maturity. Of the existing program code there is little that needs to 
be changed. The author has confidently used this program for extensive periods 
of time without incident throughout the writing of this thesis.

9.1 Graphical Interface

At one stage the program had a very useable graphical interface, effort had been 
put into this in order to demonstrate reusability of the object oriented structure 
with application to a graphical user interface. The building blocks of the electrical 
machine became graphical widgets, like menu bars and buttons, the interaction of 
these was governed by the dependency tree such that resizing the display filtered 
dimensions down the dependency tree redimensioning and redrawing widgets.

The interface has since suffered due to the impact of program changes made to 
improve the electrical machine design. More effort has been put into the necessary 
changes than to the maintenance of the interface, which has been kept useable. 
The interface is now the main obstacle that prevents this program from being 
used in a production environment. Usability of the program would also benefit 
from more interaction with the designer. For example the ability to point at 
discrete segments and interactively change their node density would improve the
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mesh refinement process. Such tools need a solid foundation to build on, which 
doesn’t exist.

9.2 Post-processing

Post-processing of the finite element model would allow this program to become 
a complete solution for the design of electrical machines. This depends greatly 
on improvements to the user interface in order to represent the results visually. 
However the ability to read in the results of the finite element analysis would 
also allow a feedback loop to be put into place from which we could optimise the 
electrical machine.

It is currently possible to batch process refinements to the mesh because the same 
instructions understood during interactive use can also be deposited in files and 
run automatically. This allows an element of remote control to the program, 
however this not an ideal solution. Ideally the program would submit its mesh 
for analysis and when ready read the results back in for graphical representation. 
The program would allow specified measurements to be taken anywhere within 
the model, feeding these back into an iterative optimisation loop that adjusted 
a parameterised mesh before writing it out and repeating this process. The 
designer would create the optimisation loop, designating what was to be measured 
and what parameters were to be correspondingly varied. They would define the 
relationship between the measurement and the parameters, specifying limits and 
the degree of variation. The process would complete when the specified condition 
was met.
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Appendix A

An Object Oriented Approach to  
Parameterized Electrical 
Machine Design

Entered into the IEEE Transactions On Magnetics, Vol. 36, No.4, July 2000.
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An Object Oriented Approach to Parameterized Electrical Machine
Design

M.B. Norton P.J. Leonard 
University of Bath, Clavert.on Down, BATH BA2 7AY, UK

A b s tra c t— T his paper details th e  structure and ad­
vantages o f an  object oriented , param eterized pre­
processor for use in electrical m achine design. D e­
tailed  are generic ob jects that form  th e  m odel base  
and interface ob jects that define th e  design  structure. 
A bstractions w ith in  th e  design  are explained  detailing  
additional benefits o f  th e  ob ject oriented  m ethods.

I n t r o d u c t i o n

Object oriented methods are now demonstrating their 
benefits to the programmer in the design of reusable, re­
liable and maintainable programs for elect,rical machine 
designfl]. There is no unique mapping from the problem 
domain to the class structure, in this paper we present 
our scheme which we believe has significant advantages 
compared to previous schemes.

Our approach aims to fulfill the needs of both the ex­
perienced and less experienced designer of an electrical 
machine. The user is guided through a scripted design 
process, answering initial questions detailing machine as­
pects until a template is provided which provides the can­
vas for the design. Experienced users can create and 
modify these templates to satisfy customisation or pre­
pare environments for less experienced users. Ultimately 
this template takes parameterised plug in components of 
a machine, either purposely designed or re-used from ear­
lier sessions, and fits them into the global machine. Our 
approach to designing these components is similar to that 
of a Computer Aided Design package. We use the object 
oriented approach to build up components in layers from 
different object building blocks. The fundamental build­
ing block is a value, the family of value objects allow pa- 
rameterisation of machine slot numbers, dimensions and 
electrical charact,eristics. Variation of the values allows 
different scenarios to be tested. Building on top of the 
values, segments provide the lines and arcs which form 
the physical shape. Objects of a family are interchange­
able by virtue of their common interface, allowing the 
designer to iterate through different designs. Ultimately 
mesh and region objects produce re-usable segments that 
may be symmetrically exploited within the machine and 
exported to libraries for future re-use. All objects are

M a n u s c r ip t ,  r e c e iv e d  O c to b e r  2 5 ,1 9 9 9

communicative; they are the nodes of a dependency tree 
which relate between object families using their generic 
interface. Changes in any object will filter through the de­
pendency tree updating the total model. External manip­
ulation of the dependencies is possible to allow variations 
in the design through its parameterisation; with feedback 
this allows iterative analytical solutions to be parsed in 
order to automatically find the optimised parameters.

O b j e c t  d e p e n d e n c y

A dependency object forms the foundation of all the ob­
ject,s seen by the user. When an object is constructed it 
is supplied with a named list of objects. The construct,ed 
object, reads its constraining data through the interfaces 
of these objects. If their state changes, they notify this 
object, and other dependent, objects of their change; de­
pendent, objects are then able to update their state by 
reading the new data. An object, family such as segments 
is represented by lines parameterised from zero to one. A 
circle segment, could be described using three points or 
a centre and radius. Whichever method is chosen, the 
resultant, circle can always be parameterised; this is the 
generic interface. The two circle interfaces mentioned are 
the concrete representations. All object families inherit, 
the dependency object, and build on top of it, the interface 
to that, family; this is then inherited by concrete object,s, 
figure 1 details this inheritance.

Once a family interface is defined, all a concrete ob­
ject, needs to do is convert, its definition into the generic 
representation. The tools the designer has to work with 
are now easily extendible through the addition of concrete 
objects.

Figure 1 shows part, of the class hierarchy illustrating 
the dependency between concrete classes and the generic 
interface, defined in terms of an abstract, base class. We 
have only shown some of the relationships to avoid clutter.

The user’s benefit of this aspect is in the ability to pull 
one type of object out of the dependency tree so as to 
replace it, with another object of the same type. Now 
the user can modify a design, as demonstrated by figure 
2, by interchanging objects. The design process is not, 
restrained by previous actions, the user can iteratively 
experiment, by interchanging concrete types at, any point,, 
even after subsequent, objects have been made dependent,
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tw e e n  c o n c re te  a n d  g e n e r ic  o b j e c ts

opon them.

F ig . 2 . G e n e r ic  o b j e c t  in te rc h a n g e

O b j e c t  V a l i d a t i o n

Figure 2 shows the rudiments of a slot geometry con­
structed from a set of arc and line segments. The segment 
family’s function is to provide some kind of parameterised 
line. Segments may then he placed to intersect, points are 
positioned at the intersection and regions can be defined 
by walls created along segments between two points. In­
tersection points are automatically created in the build 
process, they take two segments and update their posi­

tion according to the segment’s intersection. Should the 
segments no longer intersect, the point, and any of its de­
scendants, are marked invalid. Invalid objects are alerted 
to the user, should they wish to delete them, otherwise 
they lie inactive until the model changes such that they 
can be revalidated appropriately.

P r o v i d i n g  C o n s t r a i n t s

Sometimes a segment’s ends are constrained by being 
attached to defining points, other segments defined differ­
ently may create these points so they exist. The points 
then facilitate connection to other objects. Differences in 
these types lie in the order of dependency. They differ sig­
nificantly in their constraining behavior. The dependency 
tree governing the model filters changes down the tree so 
behavior is dictated by dependency. Rather than needing 
explicit constraints, the dependency relationship implic­
itly defines these; a straight line dependent on two points 
must vary it’s length according to the distance between 
points, whereas a line defined by a start,ing point, angle 
and length will create end points which must move as the 
line’s length changes. This constraining effect simplifies 
the desired parameterization response within a model and 
it’s effects are immediate. It avoids the cast, of iterating 
associated with approaches that, effect, a change, then iter­
ate over the simultaneous equations, coupling all objects 
until a solution is reached[3].

C o n s t r u c t i n g  T h r o u g h  P r o t o t y p e s

The construction of object,s is simplified through the 
use of prot,ot,ypes[2]. For every concrete object, a proto­
type exists. This prototype knows of the generic object, 
types its counterpart, requires and understands textual ex­
pressions detailing its construction. Given the expression:

p -  p o in t ( x ,y ,z ) ,

the given variables .r, y, and z are checked by the pro­
totype to ensure they are of the correct, type, additional 
checks are also possible. In validation the prototype con­
sults the model, should the variable not, exist, an object, 
builder will try to construct it,. This allows the nesting of 
further expressions within the body of the main expres­
sion:

p * p o in t ( x ,6 ,z ) ; 1 * l in e ( p o in t ( x ,1 0 ,z ) , p)

T h e  N i c e  S i d e - E f f e c t s

The prototype simply works through the expression 
resolving variables, constructing where necessary. Con­
structed variables are given manufactured names unique 
to the main variable being constructed; should that vari­
able be deleted, then the manufactured variable can be 
deleted also. Obviously there comes the case where the 
prototype fails to resolve the necessary variables and the 
object, cannot, be constructed. For the case
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p = point(1,2,z)

where z is non-existent,, the integer value objects for 
1 and 2 will have already been constructed before the 
prototype fails at z. A history mechanism is required in 
order to delete these objects on failure if we’re to provide a 
tidy design environment. This has a side effect; the object 
builder now has a record of the objects created to allow 
reversal. This provides an undo buffer, where the action 
had failed it may also have succeeded with this history 
being stored. Later that history can be recalled, reversed, 
and the model restored to a previous state.

Taking this a step further, we have a model where 
communication exists between object,s using generic inter­
faces. Providing the dependency tree structure is main­
tained, it, is possible to extract an object from the de­
pendency tree and replace it, with an object, of the same 
interface, i.e. replace an advancing front mesh with a De­
launay mesh. This action is recorded in the history so 
it can be undone. The designer can now interchange ob­
jects of the same family. Walls of meshes may be reshaped 
with the interchange of segment, types, as well as param- 
eterisation. The dependency communication allows the 
resolution of the mesh to be modified through the values 
describing its node numbers. Every one of these actions 
Ls reversible through the object, history. Reversed histo­
ries simply get shuffled into another list allowing them to 
he redone, the user now' has the ability to undo and then 
redo any changes. The changes this implicates are filtered 
down the dependent, objects amending their state. This 
functionality is common to the dependency object, and 
Ls inherited by our building block objects; it is generic, 
no implementation specifics are required: this is unlike 
other schemes requiring individual methods for concrete 
r.lasses[4]. The history understands simultaneous model 
changes allowing any sizeable change.

B u i l d i n c ;  a  S i m p l e  P a r a m e t e r i s e d  G e o m e t r y

Using the geometric object types to design the physical 
aspects of a very basic rotor slot, figure 3, initial values can 
be construct,ed. These govern the fundamental aspects of 
parameterisation, they will be controlled by our global 
machine. The slot angles, for example, will be set to fit 
this geometry into the template machine. The following 
values allow us to demonstrate the building of a simple 
slot:

cen tre p o in t, radius and angles fo r  th e s lo t  
etr * po in t (0 , 0 , 0) 
rad « 20 .5; angl “ 90; ang2 “ 90

some more v a r ia b les  govern s l o t  dimensions
41 * 10 ! s lo t  depth
42 * 3 ! s lo t  tooth  depth
vl = 5 ! width between s lo t  te e th
v2 » 10 ! s lo t  width

F ig . 3 .  B u ild  o f  a  b a s ic  s lo t  g e o m e tr y

Now some construction segments are used to create the 
initial framework:

11 » p v v v lin e fc tr , 1, rad+1, angl)
12 * p v v v lin e fc tr , 1, rad+1, angl+ang2/2)
13 » p v v v lin e fc tr , 1, rad+1, angl-ang2/2) 
r l  « r a d -d l; r2 -  rad-d2
a l « p vvvarc(ctr , r l ,  angl-ang2/2+5, ang2+10)
a2 -  p vvvarcfctr , r2 . angl-ang2/2+5, angl-ang2/2+5)
a3 * p vvvarc(ctr , rad, angl-ang2/2+6, ang2+10)
111 » s p v w l in e ( a l , _ i l _ a l _ l l ,  w2/2, w2/2, 0)
115 -  pp line(_ps_112 , _ p s _ l l l )
116 -  pp line(_pe_112 , _ p e _ lll)

For geometric object,s, a point and click interface facil­
itates the design process by producing the equivalent of 
the above command lines. For the line:

111 -  s p v v v lin e (a l , _ i i _ a l _ l l ,  w 2/2, w2/2, 0 ) ,

the J l .a l J l  variable denotes the first automatically 
manufactured intersection point between arc al and line 
11. For the lines:

115 -  pp lin e(_p s_112 , _ p s _ l l l )
116 -  pp line(_pe_112, _ p e _ lll)

the _psJtt2 variable denotes the manufactured termina­
tion point for the start of line segment 112, likewise the 
variable .peJl2 denotes the end point manufactured for 
that segment,. The next, step uses the construction seg­
ments and points to define closed areas for meshing. The 
point and click interface makes this much easier, however 
it still constructs the same commands to next, define the 
discrete segments. Here, two points are taken which lie on 
a segment. This sub-segment, is given a policy of discreti­
sation, linear, exponential, user supplied, which it, uses to 
divide that sub-segment, into the given number of n-1 seg­
ments, i.e. by defining n points. Ultimately, these are the 
nodes along the edges of our mesh. The following com­
mands discretise and mesh our slot of figure 3, as shown 
in figure 4:
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Fig. 4. Build of discrete segments from construction segments

! simple control of density through one variable 
n-1
! discrete segments for larger area, mesh ml 
dsl * dsegment(111, _p6_lll, _pe_lll, linear, 9n)
ds6 * dsegment(116, _ps_lll, _ps_112, linear, 6n)
ds6 * dsegment(116, _pe_lll, _pe_112, linear, 5n)
ds2 * dsegment(112, _ps_112, _ps_113, linear, 3n)
ds3 ” dsegment(112, _pe_113, _pe_112, linear, 3n)
ds9 » dsegment(112, _ps_113, _pe_113, linear, Bn)
! combine three segments into one for meshing 
ds239 * cdsegment(ds2, ds3, ds9)
! super element mesh
ml - semesh(dsl, ds6, ds6, ds239)

In figure 4 a super element, mesh has been used to pre­
cisely mesh the area, giving very uniform results. A fur­
ther layer may be inserted between the discrete segments 
and mesh; a front orders an arbitrarily ordered list of seg­
ments to produce a continuous chain of nodes. Meshes 
may then take fronts as arguments allowing holes within 
meshes.

! create one front for the slot
frl » front(dsl, ds2, ds3, ds4, dsS, ds6, ds7, ds8)
! mesh the front using a delauney voronoi mesh 
! this handles holes,
! mesh * dvmesh(boundary, holel, hole2, ...) 
ml ” dvmesh(frl)
! try out an advancing front mesh instead 
ml » afmesh(frl)

T h e  F i n a l  M a c h i n e

All that remains is to group meshes together with a 
material to form a region; regions can also be grouped 
together to form components, acting as containers. All 
these object types can be mapped onto a new object of the 
same type. This simply allows duplication of an object, 
the duplicate mirroring the original so that any changes 
to the original affect it’s mapped duplicates. The compo­
nent object, when mapped, will allow us to exploit any 
symmetry within the machine by using an appropriate 
mapping, such as rotation or mirroring along a line. With 
our generic object interfaces, mapped objects can further 
be mapped themselves. Should we need to customise a 
mapped object, because of some peculiarity, we then ex­
ploit the copy on write aspect, of these objects to make

the copy into its own entity that can be modified sepa- 
rately. However, a more elegant solution in line with our 
machine template allows us to re-use our work in a future 
project,. So far the slot, has been built, as a separate en­
tity from the machine. At this point we can export, as 
we could at any earlier stage, the component so it can 
be inserted into any future project. The exported library 
component contains the necessary information to recon­
struct our geometry, along with a list of the key variables 
that parameterise the geometry. For our example, this 
would include the angles, centre, radius and maybe the 
slot dimensions. The export process allows descriptions 
of these variables to facilitate the import, at a later stage. 
This allows libraries of useful geometries to be constructed 
by more experienced designers for the less experienced 
to re-use later. The motor templating scheme can auto­
matically link in these defining variables to a global set; 
geometries imported into the template become globally 
controlled this way. Imported components, if modified, 
can be re-exported to further enhance the library.

C o n c l u s i o n

Use of abstract mechanisms allows object, interactive 
methods to be independent of implementation, interfaces, 
file transfer, model construction and modification need no 
knowledge of specific implementations; this allows simple 
extension of object types to facilitate the design process 
and accommodate the needs of the most, experienced of 
users. A dependency structure allows easy understanding 
of model constraints, object interchange, undo and redo 
allow easy restructure of the model. Parameterization 
facilitates this leading to automatic model optimization, 
further aiding the design process. Templates for machine 
design allow automation and customisation of machine 
design to suit the level of the particular user, exploiting 
the export and import, of library components to re-use 
designs; these being easily modified through object re­
placement and the parameterisation to adapt a re-used 
design to a new scenario.
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