

University of Bath

PHD

An object oriented approach to electrical machine design

Norton, Mark B.

Award date:
2005

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

AN OBJECT ORIENTED
APPROACH TO ELECTRICAL

MACHINE DESIGN

Submitted by M. B. Norton

for the degree of

Doctor of Philosophy

of the University of Bath

2005

UNIVERSITY OF BATH
LIBRARY

AUTHOR: M B NORTON YEAR: 2005

TITLE : AN OBJECT ORIENTED APPROACH TO ELECTRICAL MACHINE
DESIGN

Attention is drawn to the fact that the copyright of this thesis rests with its author.
This copy of the thesis has been supplied on condition that anyone who consults it is
understood to recognise that the copyright rests with its author and that no
quotation from the thesis and no information derived from it may be published
without the prior written consent of the author.

This thesis may be made available for consultation within the University Library
and may be photocopied or lent to other libraries for the purpose of consultation.

UMI Number: U204457

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U204457
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

J \ i i

7 0 1 5 f-Af! 2006

Acknowledgements

Thank you to my supervisor Dr P.J. Leonard, for his patience, help and encour
agement over the past years. This work would be nowhere near complete without
his support.

Dr P.J. Coles deserves special mention for his contribution of the high speed motor
and guidance in its modelling, an excellent real world example of an electrical
machine which has been used within this work.

I would like to gratefully acknowledge the financial support of the Engineering
and Physical Sciences Research Council (EPSRC).

Thanks to Bojan Niceno and Jonathan Shewchuk for making their meshing pro
grams Easymesh[l] and Triangle[2] freely available to researchers in need of ad
ditional meshing algorithms.

Thanks to my parents and Sue for all their support, especially for the loan of the
printing requisites.

The typesetting language DT̂]X deserves mentioning for its help in alleviating
the presentation headaches, allowing me to concentrate on the content.

1

Summary

Modelling of the electrical machine is taken from an object oriented design ap
proach. Groups of objects have been identified that allow any electrical machine
to be modelled. Objects range from values that parameterise any aspect of the
design through to graphical primitives that construct the machine’s geometry.
More complex objects utilise the symmetry within the machine to reduce the
amount of modelling involved by replicating geometries and machine properties,
allowing transformations during the mapping process. The end goal is to con
struct a whole machine from the smallest component of symmetry, geometrically
copying it to produce the entire machine whilst allowing transformations to han
dle varying region and boundary properties. These components can be saved and
imported into new models, parameterisation of the entire component allows them
to be slotted into place in any new design.

¥

A simple language is used to represent these objects and thus the electrical ma
chine. The language describes objects in terms of each other so that the state of
the model can be stored in a dependency tree. Changes to the parameterisation
result in manipulation of the dependency tree and these changes filter down the
tree with immediate effect. This allows the entire machine geometry to change
shape as a slot tooth is widened, it allows refinement of the mesh in response to
numerical changes, and it also allows reconfiguration of an entire stator winding
even though we only designed a single slot. Many objects exist within the groups
identified and these can all be parameterised and interchanged, programatically
we can make unlimited additions to these groups without risk of breaking the
program. Manipulation of the dependency tree allows objects to be pulled out of
the tree and substituted with a replacement, this implements the changes made
to the model such that every change can be undone and redone with a history
that goes back as far as required. Manipulating the dependency tree means that

2

none of the objects need knowledge of how to undo themselves, we have a generic
undo/redo mechanism.

The designer is now free to interchange objects, substitute one meshing algorithm
for another, swap between library components of different machine parts, always
with the ability to undo and redo changes and achieve greater freedom in the
design process.

3

Contents

1 Introduction 19

1.1 Previous Work .. 20

1.2 This W ork ... 22

1.3 Designing An Electrical Machine With The Least Amount Of Effort 23

1.4 Using Parameterisation In Our D e s ig n .. 27

1.5 Objects Used For The Electrical Machine... 28

1.6 An Inherent Undo/Redo Mechanism ... 33

1.7 To Complete The Electrical M ach in e ... 34

1.8 Components.. 37

1.9 Libraries Of Components... 39

1.10 Benefits Of An Object Oriented Approach To Electrical Machine
D esign ... 39

1.11 The Structure of This R e p o r t ... 41

2 M odelling an Electrical M achine 43

2.1 Basic Parameterisation That Allows Reusable Machine Parts . . . 45

2.1.1 Values, The First Building Block And The Parameterisa
tion Of The Electrical M a ch in e 45

2.1.2 Assigning V a lu e s ... 47

2.2 On With The M achine.. 48

2.2.1 Parameterisation Of Slot T e e th .. 50

2.2.2 Parameterisation Of Slot D e p th .. 53

2.2.3 Parameterisation Of Slot Opening... 55

2.2.4 Division Of The Slot In Preparation For Coil Regions . . . 56

2.3 Discrete Segments.. 57

2.4 Mesh T iles.. 59

2.4.1 R e g io n s .. 63

2.5 Mapping R eg ions.. 65

2.6 Geometric M apping... 71

2.7 Components... 71

2.8 Exporting Components To Augment Libraries Of Reusable Parts . 72

2.9 Importing Library C om ponents... 75

2.9.1 Defining Interfaces Between Independent Meshes 78

2.10 Using The M esh... 79

5

2.11 Transformation Of The High Speed Motor Into An Induction Motor 81

3 Com m unication Betw een O bjects 84

3.1 Parents and Children... 84

3.2 Public Accessibility.. 86

3.3 Reconstruction of Dependency Tree Members 90

3.4 C o n stra in ts ... 94

4 Building O bjects, Pre-processing 96

4.1 Formatting Input To Expressions.. 97

4.1.1 Expressions.. 97

4.1.2 Expression P a r s e r s .. 98

4.1.3 Expression Iden tifie r... 99

4.1.4 Mathematical Expression P arser... 99

4.2 The Pre-Build P rocessor.. 100

4.2.1 Expression Resolver... 100

4.2.2 Prototypes...104

4.2.3 A Factory of P ro to ty p es.. 106

5 Building 108

5.1 Construction Via the P ro to ty p e .. 109

5.1.1 Lookup of Object V ariab les .. 109

5.1.2 Lookup and Automatic Manufacture of Object Variables . 110

5.2 What to do in the Event of F a i lu re .. I l l

5.2.1 Inherent Undo and Redo M echanism112

5.3 Additions and Replacements.. 113

5.3.1 Advantages of Replacements.. 116

6 Build Post-processing, U pdating the M odel 118

6.1 Updating The M o d e l...118

6.1.1 Additional Object Builds.. 119

6.1.2 Beginning the Update for Post-processors................................ 125

6.1.3 Dealing With Invalid O b je c ts ...127

6.1.4 Cementing Changes... 129

6.2 The Specialised Parametric Model B u ild e r ...131

6.2.1 Additions To The Electrical Machine M o d e l.......................... 131

6.2.2 Starting Electrical Machine Specific Post-processing 132

6.2.3 Adding and Removing Building Block O b jects.......................133

6.2.4 Finalising Changes To The Electrical M achine.......................134

7 B uilding B locks of an Electrical M achine 135

7

135

136

138

141

141

145

147

147

149

151

153

154

157

157

158

164

172

174

175

Communication and Representation

V alu es ...

7.2.1 Value Representation..................................

7.2.2 Inheritance or Aggregation?......................

7.2.3 Concrete Representations

Geometric Building B locks.....................................

P o in t s ...

7.4.1 The Beginnings of Nodal Management . .

7.4.2 Point Representation..................................

7.4.3 Concrete Representations

Segments ...

7.5.1 Segments As A Parameterised Line

7.5.2 Implicit, Parameterised Lines and Segments

7.5.3 The Abstract Segm ent...............................

7.5.4 Segment R epresentation............................

7.5.5 Concrete Representations

Discrete Segments.. ..

7.6.1 The Discrete T y p e ..

7.6.2 Composite Discrete S egm en ts.....................

8

7.7 F ro n ts .. 178

7.8 Meshes...180

7.8.1 Concrete Representations ..182

7.9 Regions 185

7.10 Components and M apping ...186

8 Conclusions 193

9 Future Work 197

9.1 Graphical In terface... 197

9.2 Post-processing... 198

A A n O bject Oriented Approach to Param eterized Electrical Ma
chine Design 199

R eferences 204

9

List of Figures

1.1 The Beginnings Of An Electrical Machine Model, Nodal Outline
Of A Stator Slot .. 19

1.2 The Beginnings Of An Electrical Machine Model, Stator Slot Meshed
And Elements Colour Coded According To Different Regions Of
M a te ria l.. 23

1.3 Reproducing The Slot To Exploit A Machine’s Symmetry And
Reduce The Amount Of Manual Meshing Involved......................... 24

1.4 Final Stator M esh.. 25

1.5 Parameterisation Of Stator S lo t .. 26

1.6 Parameterising The Stator Slot As A Single Part Of An Electrical
M achine.. 28

1.7 Corresponding Dependency Tree For The Value, Point, And Seg
ment Objects Of Figure 1.6 .. 30

1.8 Using A Segment Bounded By Two Points To Form A Line Of Nodes 30

1.9 Mesh Tile Defined By Discrete Segm ents.. 32

1.10 Mesh Density Increased Through Chosen Parameterisation Value n 32

10

1.11 Incorporating An Alternative Meshing Algorithm, Jonathan Shewchuk’s
Triangle [2].. 33

1.12 Here’s One I Meshed E arlie r.. 34

1.13 Mesh Tiles Now Combined Into R e g io n s .. 35

1.14 Component Mapped Parts and Regions... 38

2.1 Data For The High Speed Motor .. 44

2.2 Relationship Between Different Families Of Object 46

2.3 Corresponding Dependency Tree For The Infix Value of a2 = in
fix (360 / 2 4) ... 48

2.4 Line Segment Used For pwlines ell And cl2, Formed From A Point
Of Origin, Start And End Extension, Plus Angle Of Trajectory . . 49

2.5 Laying Down The Fundamental Parameterisation Of A Stator Slot 50

2.6 Line Segments Used For Forming The Parallel Lines Of The Slot
T o o t h ... 52

2.7 Forming Anchors For The Parallel Lines Distanced Of The Slot
Teeth.. 52

2.8 Placement Of The Parallel Lines Forming The Length Of The Slot
Teeth.. 53

2.9 Slot Depth Parameterisation Is Used To Set The Radius Of Con
struction Circle cc3 Which Will Eventually Anchor The Base Of
The S lo t .. 54

2.10 Base Of Slot Completed By An Arc That Fits Itself Within Three
Vectors Formed By Our Construction S egm ents............................ 55

11

2.11 Slot Opening, The Radial Difference Between ccl and cell Equals
The Value Of tooth-tip-thickness And The Parallel Lines cl6 And
cl7 Are Spaced Apart By The Value Of slot-opening 56

2.12 Division Of Slot Into Areas Of Two Fifths, One Fifth, And Two
Fifths .. 57

2.13 First Discrete Segment Begins To Define Node Boundary Of S lo t. 59

2.14 Automation Of Discrete Segment Creation, Interactive Path Finder
Follows A Trail Of Selected Points Creating Discrete Segments At
Each S t e p .. 60

2.15 All Discrete Segments In Place... 61

2.16 Super Element Mesh T ile ... 62

2.17 Mesh Tiles Built Using An Alternative Meshing Algorithm, Triangle[2] 62

2.18 A Super Element Mesh Tile and Triangle[2] Mesh Tile With Max
imum Area Of Elements R estrained... 63

2.19 All Areas Tiled, Ready For Grouping Into Regions......................... 64

2.20 Mesh Tiles Grouped By A Region... 64

2.21 Editing The LAMINATIONS Region P roperties........................... 65

2.22 Editing The Region Properties Of Region A I R 66

2.23 All Mesh Tiles Grouped In To R eg ions.. 68

2.24 Editing The Region Properties Of The Coil Regions...................... 69

2.25 Adding The Final Coil Region B N E G ... 69

2.26 Adding Region Mappings For The S ta to r .. 70

12

2.27 Completed Region Mapping For The S t a t o r 71

2.28 Component Groups Regions Into A Part Of A Machine, Ready For
Mapping Through To Successive P a r t s ... 73

2.29 Region Mapping Of The S t a t o r .. 74

2.30 Exporting A Component To Augment A Library Of Reusable Parts 76

2.31 Importing A Library Component ... 77

2.32 Identifying Discrete Segments That Form A Sliding Interface . . . 79

2.33 Toggling The State Of Sliding Interfaces On Discrete Segments . . 80

2.34 Exporting Mesh To A Finite Element S o lv er.................................. 80

2.35 Exporting Nodes And Elements To A Finite Element Solver . . . 81

2.36 Rotor Library Component Of An Induction Machine 82

2.37 Rotor Library Component Of An Induction Machine With Regions
H ighlighted .. 82

2.38 Rotor Of Induction Motor Im ported... 83

6.1 Line Segment Constructed From Two P o in ts120

6.2 Line Segment Dependency on Two Points ...121

6.3 Line Segment Constructed From Centre Point, Angle and Length
Projections ... 121

6.4 Line Segment Dependency on Centre Point, Angle and Length
Projections ... 122

6.5 Line Segment With Constructed Anchor P o i n t s 123

13

6.6 Line Segment Dependency of Constructed Anchor P o in ts124

6.7 Two Intersecting Segments...127

6.8 Two No Longer Intersecting Segments... .. 128

7.1 Collaboration Diagram For G V a lu e ..140

7.2 Inheritance Diagram For GValue .. 142

7.3 Collaboration Diagram For G P o in t ..151

7.4 Inheritance Diagram For G Point..152

7.5 Parameterisation Through The Positioning Of P o in ts 153

7.6 Parameterisation Through The Positioning of Segments...................154

7.7 Rudiments of a Parameterised S l o t ... 155

7.8 Parameterised L in e ... 156

7.9 Arc Defined Using Three P o in ts ..156

7.10 Inheritance Diagram For XSegm ent... 162

7.11 Collaboration Diagram For G Segment.. 163

7.12 Inheritance Diagram For GSegm ent... 164

7.13 Inheritance Diagram For GArcSegment... 165

7.14 Arc Dependent Upon Three P o in t s ... 165

7.15 Arc Dependent Upon Three Points and Two Extension Values . . 166

14

7.16 Arc Dependent Upon Centre Point, Radius, Starting, and Through
Angle Values ..167

7.17 Inheritance Diagram For GCircleSegment..167

7.18 Circle Dependent Upon Three P o in ts ..168

7.19 Circle Dependent Upon A Centre Point and Radius Value 169

7.20 Inheritance Diagram For GLineSegment ..169

7.21 Line Dependent Upon Two P o in ts .. 170

7.22 Line Dependent Upon Two Points and Two Extension Values . . 170

7.23 Line Dependent Upon a Point of Origin, Start Length, Extension
Length, and Angle of Trajectory... 171

7.24 Line Dependent Upon Segment’s Tangent at the Given Point . . . 172

7.25 Inheritance Diagram For SG D Segm ent...174

7.26 Discrete Segment Based On An Arc Segment..................................... 175

7.27 Discrete Segments Based On A Slot Example, Segments Shown . 176

7.28 Discrete Segments Based On A Slot Example, Segments Removed 176

7.29 Composition of Discrete Segments.. 177

7.30 Inheritance Diagram For CGDSegment...178

7.31 Slot Sub Division Into Five D o m a in s ..178

7.32 Slot Treated As A Single D o m ain .. 179

7.33 Inheritance Diagram For GFront... 179

15

7.34 Inheritance Diagram For GM esh...182

7.35 Super Element Mesh Using Five Sub D om ains.................................. 183

7.36 Easyesh Based Mesh Using One D o m a in ..184

7.37 Easyesh Based Mesh Using One Domain With..H o le 184

7.38 Triangle Based Mesh Using One D o m ain ..185

7.39 Triangle Based Mesh Using One Domain With H o le 185

7.40 Flipping Components About A S e g m en t..187

7.41 Rotating Components About A P o in t ..188

7.42 Translating Components Using Two Segm ents.................................. 189

7.43 Final Slot Configuration... 190

7.44 Slot Mapped To Produce A Twelve Slot Section Of An Electrical
M achine...191

7.45 Sharing of Component Boundaries..192

16

List of Tables

1.1 Mapping Coil Regions Across S lo t s .. 36

2.1 Coil Arrangements For Each S l o t .. 67

3.1 Thing Public In te rface .. 87

3.2 Thing Protected In te rfa c e .. 87

4.1 Prototype Public and Protected In terfaces... 105

7.1 GValue Public Interface .. 137

7.2 GValue Protected Interface... 138

7.3 GValue Representation... 138

7.4 XValue Public Interface .. 139

7.5 XValue Protected R epresentation...140

7.6 AddGValue Public In terface ..143

7.7 GeometricThing Public Interface ...146

7.8 GPoint Public Interface .. 148

17

7.9 GPoint Protected Interface...148

7.10 GPoint Representation... 148

7.11 XPoint Public Interface and Representation 150

7.12 GSegment Interface................................ 158

7.13 GSegment R epresentation ... 159

7.14 XSegment Interface... 160

7.15 GDSegment Interface...173

7.16 GDSegment R epresentation .. 173

7.17 GFront Interface ...180

7.18 GMesh Representation... 181

18

Chapter 1

Introduction

Figure 1.1: The Beginnings Of An Electrical Machine Model, Nodal Outline Of
A Stator Slot

Figure 1.1 outlines the beginnings of an electrical machine design. Whilst the
design process may be more involved than this simplified figure details the foun
dation of a mesh can be seen, a meshing algorithm may be all that is needed to
complete the layout of nodes and interconnecting elements as seen in the mesh
of figure 1.2.

1.1 Previous Work

Much work has been done on the generation of a mesh given the initial outlining
geometry, such as the geometry of figure 1.2.

However very little work has been done, and even less published, on programs
specific to defining the initial shape or geometry ready for finite element meshing.
This is probably because such schemes are implemented in commercial programs
and the methods have not been published. Programs such as SPEED [3], from the
University of Glasgow, and JMAG-Studio[4], from The Japan Research Institute,
hint to this.

SPEED generates the coordinates of nodes along all region boundaries, a process
referred to as Unimesh. The meshing of these areas is then performed as a
separate process within the software.

JMAG-Studio has the capability to read CAD data, such as DXF files generated
by Autocad[5], so that “Analysis is implemented using the same shape data that
is used in design” which suggests that the design process is initiated in the CAD
package.

A CAD based approach allows the geometry to be defined in terms of graphical
primitives, such as lines, arcs, circles, and splines. Once the outline of the mesh
has been drawn it can be handed to an unstructured meshing algorithm to pro
duce the final mesh. However generic CAD based packages are not specifically
aimed at meshing and so, for example, cannot specify the node density or any
other constraints on the mesh. Neither are they specifically aimed at the design
of electrical machines and so, for instance, they do not allow the utilisation of
symmetry within an electrical machine which would allow only a single rotor
segment to be drawn.

A dedicated design process is needed for electrical machines that can take ele
ments of the CAD process and produce the outline of the electrical machine’s
geometry. This process can then benefit from the wealth of meshing algorithms
available and use such algorithms to complete the finite element mesh outlined
by this geometry. Once changes to the geometry are made, through parameteri
sation, the finite element mesh is reconstructed.

20

There are some publications in this area. A generic extensible geometry interface [6]
focuses on the interchange of geometric data between solid modelling programs,
translating different representations into its own. Related heavily to the use
of CAD systems, this work allows the interchange of data between several well
known solid modellers. It highlights that for a given geometry the mesh often
needs to be tailored for different solutions and that producing the geometry in
one program whilst generating the mesh in another is problematic. The interface
allows its own geometric representation, translated from others, to be read in
terms of points, curves, and surfaces.

On a similar theme the object-oriented virtual geometry interface[7] focuses not
on one geometric representation but on the ability to read one representation and
translate to several, translating to the best representation for a given problem.
Solid model, faceted, composite, and mesh based representations are briefly dis
cussed but the work focuses on object oriented techniques that allow access and
translation b etween the geometric representations, whilst allowing t
of other representations.

Work has been done using parameterised templates [8] where the outlining ge
ometry is still defined using nodes, however labels are given to these nodes so
they can be identified easily. This process adds a layer of abstraction. Before a
meshing algorithm is used to mesh the enclosed area a process locates nodes by
their label and updates their coordinates.

The designer benefits from being able to reuse past mesh templates in new designs
and the technique is geared towards optimisation, demonstrating the advantages
of automated mesh refinement. However there is no relationship between the
labelled nodes. Refining the mesh is not as simple as updating a single parameter,
such as the airgap width, each refinement of the mesh involves moving a group
of nodes.

An object oriented approach to mesh refinement[9] is an example of the wealth
of papers that demonstrate the advantages of object oriented design, such as
the ability to easily maintain, extend, and understand the program. This work
focuses on the refinement of the finite element mesh without changing the defining
geometry.

21

More relevant work[10], again in the field of mesh refinement, deals with the use
object oriented techniques used to describe domains within the whole geometry,
termed the manifold. Geometric objects describe vertices, triangles, and line seg
ments, the line segments being used to describe partitions within the manifold so
that they may be meshed independently. Partitions are chosen to define smaller,
more structured, meshes which are like tiles that combined together form a single
mesh called the composite mesh.

Finally, a search of the internet highlights an internal report that outlines an ob
ject oriented finite element meshing system[ll] which is the most related work to
be found. In this method extensive templating has been incorporated to separate
the containing geometry from the mesh algorithm, with application to stiffness
matrix generation. This work defines a surface which is a two-dimensional ar
bitrary region whose extremities are defined by a number of curves, these being
abstract objects that can equate to lines and arcs. Each of these curves is defined
by a number of points and additional points are added to the curves during the
meshing of the area.

1.2 This Work

This thesis explores the use of object oriented methods that generate the outlining
geometry of an electrical machine and its finite element mesh, specifically for two-
dimensional problems.

A tool is provided that allows the designer to produce a parameterised geometric
description of the electrical machine so that parameters such as the airgap width,
slot depth, and node density can be varied and the new mesh generated in one
single action.

This is achieved by defining a set of objects that construct the electrical machine
in a bottom-up design. A relationship is established between these objects that
allows the variation of one parameter to cascade throughout all affected objects
so that an updated mesh is produced.

In turn the advantages of this object oriented method allow the defining objects

22

of the machine to be interchanged at will so as to influence or change the design.
A process that records such changes and allows the designer to step backwards
and forwards, undoing and redoing the changes that were made.

At the top-level of this design process sits a component that can describe a
symmetrical part of the electrical machine, utilising that symmetry to copy slots
and windings and construct the entire machine whilst simultaneously handling
variations in phase and polarity of windings and other regions.

These components can be stored as a library of interchangeable parts allowing
reuse and modification into future designs.

The aim has been to write a program for the design of electrical machines that
requires the least amount of effort from the designer.

Although this thesis uses a rotating machine as an example the methodology is
general and could equally well be used for a wide variety of applications.

1.3 D esigning An Electrical M achine W ith T he

Least Am ount Of Effort

Stator Laminations
Coil Windings

Figure 1.2: The Beginnings Of An Electrical Machine Model, Stator Slot Meshed
And Elements Colour Coded According To Different Regions Of Material

23

The design process can often exploit the symmetry within an electrical machine
so that the slot of figure 1.2 can be copied and rotated through an angle of a2
degrees as seen in figure 1.3. Provided the nodes correspond along the joined
edge of the two slot sections we can copy slots until the entire Stator is formed,
saving a considerable amount of effort on the part of the designer.

Figure 1.3: Reproducing The Slot To Exploit A Machine’s Symmetry And Reduce
The Amount Of Manual Meshing Involved

With modification of coil regions within the slot, to account for the differing
polarity and phase of conductors carried in each slot, we will have achieved the
complete stator mesh of figure 1.4. This mesh can be represented as a list of
nodes and a list of elements, each element providing the node connectivity and a
means of identifying the material properties of the region in which its included.
Its a straight forward means of representation so the tools needed to build this
mesh can vary considerably in complexity depending on how much work they
take away from the designer. I t’s when modification of the mesh is required that
this is fully appreciated.

24

IMMHk
RWMMk

• # ^ 5 . - i a**55 5 * t f ^ 5 S S ^ M k >

H fhmgesiteS^si

Figure 1.4: Final Stator Mesh

25

slot opening

■ t o o t h w i d t h

1

tooth tip thickness

slot depth

Figure 1.5: Parameterisation Of Stator Slot

26

If we’re to modify our mesh to change the width of the slot opening we can
probably achieve this without much effort, modify the slot depth and we could
be looking at much more work. Given the boundary of nodes of figure 1.1 it
would be possible to redefine the boundary and resubmit it to some meshing
algorithm, freely available programs such as Bojan Niceno’s Easymesh[l] and
Jonathan Shewchuk’s Triangle[2] perform such a task. We’d need to exploit
the machine’s symmetry again and copy the slot through an angular rotation in
order to rebuild the entire machine, then there’s still the problem of defining the
numerous regions that can be seen in figure 1.4. In our example each slot carries
two layers of conductors, with 24 slots we’re potentially redefining 48 regions of
material. Should we fundamentally change the geometry, or decide to experiment
with different stator winding configurations, we’re looking at considerable work
in redefining these regions.

1.4 Using Parameterisation In Our Design

This is where parameterisation helps us by reducing the amount of work required
to modify the mesh. There’s no single way to parameterise a model, methods
exist that allow the mesh to be reformed but we’re looking to parameterise the
geometry of figure 1.1. Figure 1.5 shows the geometric parameters we’ll use to
modify our boundary of nodes, we can then mesh this area using any meshing
algorithm we desire allowing further parameterisation of the input of the meshing
algorithm so we can, for instance, define values that restrain the minimum angles
and maximum areas used for elements in a mesh.

To fine tune the mesh density we can also allow control over the number of nodes
used along each edge of our boundary. The figures seen so far demonstrate the
use of two meshing algorithms, used with our parametric design, the slot tooth
has been meshed using an alternative algorithm to the outer area of the stator
which has been meshed using Triangle[2]. The ability to allow interchangeable
meshing algorithms within the design is possible because we can define the mesh
as one entity or break it down into smaller parts called mesh tiles. Using an
object oriented approach we will demonstrate how the whole electrical machine
can be broken down into a series of parts, represented by objects in our object
oriented scheme, that can be fitted together in a flexible manner and interchanged

27

to suit the designer. To fine tune meshing we can further divide our areas into
smaller mesh tiles which can be swapped for other mesh tiles that use different
meshing algorithms with different parameter values restraining angles and areas
of elements.

1.5 O bjects U sed For The E lectrical M achine

Figure 1.5 shows all geometric parameters we have chosen in order to modify this
particular design of slot. The most important parameters here are d l , d2, al and
a2 which define the extremities of our slot. If we describe any slot using these
parameters then it becomes an interchangeable component, as we shall come to
describe it, of an electrical machine which can be stored amongst a library of
components and imported for reuse in future designs.

The further parameterisations of figure 1.5, tooth tip thickness, tooth width, slot
opening and slot depth) are dependent on the slot design and not essential for
our parameterisation. These parameters supplement our d l, d2, a l, a2 parame
terisation and merely increase the flexibility of the design, we shall focus on the
primary d l, d2, al and a2 parameterisation to explain how the design works.

^ \ cc2

cel _il_cc2_cl2 ^

\ ̂ \V cl2 1

i _il_ccl_cl2
|
i
1 ell

c r̂ I _il_ccl_cll _il_cc2_cll

Figure 1.6: Parameterising The Stator Slot As A Single Part Of An Electrical
Machine

Consider figure 1.6 where we have defined a centre point, ctr, and from this drawn

28

two lines and two circles using the point as their origin. The following language
is used to describe this construction:

dl = 27.75
d2 = 67.5
al = 0
a2 = 15
ctr = vvpoint(0, 0)

ccl = pvcircle(ctr, dl)
cc2 = pvcircle(ctr, d2)
ell = pvvline(ctr, d2, al)
cl2 = pvvline(ctr, d2, al + a2)

Here we have first defined the values of parameterisation, d l, d2, al, and a2,
followed by the point ctr which is also a key parameter in our definition. Next
the circle ccl is constructed with ctr as its origin and dl as its diameter, cc2 is
constructed similarly and then two lines are defined with a point of origin, length,
and angle.

The above description is used to save the state of this geometry, the entire machine
is described in this manner rather than a node, element representation. Each
line in this description results in the building of a value, point, or line segment
object and these objects are stored in a dependency tree. Figure 1.7 shows the
relationship of objects in this dependency tree.

What we haven’t defined in the description of this machine are the intersection
points _il-ccl-cll, _il-cc2-dl, Al-ccl-clS, and -il-cc3-d3 illustrated in figure 1.6.
These points exist where the line segments intersect, -il-ccl-cll being the in
tersection of circle ccl and line ell, and have been automatically added by a
post-processing routine within our program.

These points are useful because we can take any two points along a line segment
and use them to define a line of nodes, called a discrete segment Figure 1.8
shows four discrete segments, each described by one of the four line segments and
its intersection with the other line segments. The result is an area completely
bounded by nodes, defined by the following syntax:

29

value valuevaluevalue value value

point
ctr

value
a1 + a2

circle
segment

cc2

circle
segment

ccl

line
segment

cl2

line
segment

intersection point
J1_cc1_ cl1

intersection point
J1_cc2_ cl1

intersection point
J1_cc1_ cl2

intersection point
J 1 _ cc2 _ c l2

Figure 1.7: Corresponding Dependency Tree For The Value, Point, And Segment
Objects Of Figure 1.6

cc2

_il_cc2_cl2 \
dscl2

cl 2 .dscc2

._i l_ccl_cl2
dsccl

ell
ctr _il_ccl_cll _il_cc2_cll

dscll

Figure 1.8: Using A Segment Bounded By Two Points To Form A Line Of Nodes

30

n = 1.0

dscll = dsegment(ell, _il_ccl_cll, _il_cc2_cll, lOn)
dscl2 = dsegment(cl2, _il_ccl_cl2, _il_cc2_cl2, lOn)
dsccl = dsegment(ccl, _il_ccl_cll, _il_ccl_cl2, 5n)
dscc2 = dsegment(cc2, _il_cc2_cll, _il_cc2_cl2, 5n)

To create a discrete segment we provide it with the name of a segment and two
points which must lie along the segment’s path. In this example we’ve used the
intersection points which are automatically created and updated by our program.
A final argument defines the number of nodes that are to populate the length
of the segment. Here we have chosen to parameterise this number by making it
a multiple of n, we can now vary the density of a mesh bounded by this area
by adjusting this parameter. To mesh this area we simply provide these discrete
segments as the arguments to one of the available meshing algorithms:

meshtilel = semesh(dscll, dscl2, dsccl, dscc2)

This produces the mesh of figure 1.9. The following figure, 1.10, shows the density
of the mesh increase proportionally to the increase of n, the value we chose to
parameterise our mesh density. This is simply done by assigning a new value to
the parameter:

n = 1.5

Figure 1.11 then shows complete replacement of the mesh with a mesh tile that
uses the Triangle [2] meshing program, again through reassignment of an existing
variable. With this type of mesh tile we can control the mesh density not only
through the discrete segments but also through two numerical values, the first
restraining the minimum angle used in the mesh and the latter restraining the
maximum area for any one element.

meshtilel = triangle(dscll, dscl2, dsccl, dscc2, 0, 20)

31

\

dsccl

dsc12

> - rT Q-ar-" - 4 r ^^dscc2< T > t - t T UVT J H ' T 1 I — * -" ~ T T !I &-—f- 't \ \ L. i _i,t ! I .4 *-— f — «j— r — f
l i -4 ji: 4 E3

Figure 1.9: Mesh Tile Defined By Discrete Segments

B-s

v r i

If— = r i 't T=_- d;-'—̂3.......ffi—«
 7 I 1 ! ! i•b...a e -a a & & a

Figure 1.10: Mesh Density Increased Through Chosen Parameterisation Value n

32

dscl2

-nr" in

dsccl

dscll

Figure 1.11: Incorporating An Alternative Meshing Algorithm, Jonathan
Shewchuk’s Triangle[2]

1.6 An Inherent U n d o /R ed o M echanism

When it comes to the reassignment of objects, such as the mesh tiles illustrated
above, we are actually removing the old mesh tile from the dependency tree and
replacing it with the new mesh tile. The old mesh tile isn’t discarded, it’s kept
in an undo buffer so at any point we can reverse this change, the old mesh tile
is reinserted into the dependency tree and its replacement is removed and placed
in the redo buffer.

The implications of this are that mesh tiles don’t have to know how to undo
themselves, they are simply replaced with another mesh tile. This works for any
of our objects devised in this object oriented approach whether they be values,
points, line segments or mesh tiles. An undo/redo mechanism simply operates
on replacement of an object with another object of the same kind, such as a line
segment and arc segment or two mesh tiles with differing meshing algorithms.

Absolutely any change made to the model of the electrical machine can be re
verted and any part of the electrical machine can be replaced with an equivalent
part.

33

1.7 To C om plete The E lectrical M achine

Our example slot, figure 1.12 has been divided up into a number of mesh tiles
through the addition of several circle and line segments, construction lines as
we call them. The intersection between these line segments allows convenient
alignment of discrete segments that define the outlines of mesh tiles, placed such
that they separately mesh areas corresponding to differing materials.

tile5
S t >/ ■tilel

tile2tile3
tile4 & 7 \ /

tile7
J. ..

tile6

Figure 1.12: Here’s One I Meshed Earlier

The grouping of mesh tiles then defines regions, each region taking an index into
a table of region properties:

AIR = region(2, t i le 7)
LAMINATIONS = region(4, t i l e l , t i le 5 , t ile 6)
T0P_C0IL = region(6, t i le 4)
BOTTOM.COIL = region(7, t i l e 2 , t i le 3)

Whilst we have divided our area into more mesh tiles than required, so as to
achieve greater control over the meshing, it’s then possible to combine any number
of these tiles into a single region. Figure 1.13 shows we have divided the slot into

34

AIR

Figure 1.13: Mesh Tiles Now Combined Into Regions

two separate regions of equal areas so we can define two separate coils per slot.
To produce the entire stator we need a geometric mapping of elements that will
rotate this geometry through a2 degrees, the angle of one slot, as seen back in
figure 1.3:

geomap = rotate(ctr, 0, 0, a2)

Geometric mappers simply take a coordinate and translate it, the above mapper
allows rotation about a point, we’ll use our origin ctr, rotating through the x, y,
and z axis respectively. We will also need to map the coil regions to accommodate
different coil arrangements in the slots. The simplest method of achieving this
is to use the region map editing tool to establish a region mapping object that
corresponds to table 1.1 which defines the polarity and phase of each slot winding.
This table lists our two stator coil regions along with their indexes into the region
property table, these indexes are arranged by part, not slot, the reason being that
we are not restricting the use of this mapping to rotating machines. The geometric
mapper can be swapped for one with a linear translation so we can then apply
our design technique to linear machines. We determine what constitutes a part
with the final stage, the component.

Region
Part

0 1 2 3 4 5 6 7
TOP-COIL RPOS (6) YPOS (7) BPOS (8) RNEG (9) YNEG (10) BNEG (11) RPOS (6) YPOS (7)
BOTTOM_COIL YPOS (7) BPOS (8) RNEG (9) YNEG (10) BNEG (11) RPOS (6) YPOS (7) BPOS (8)

Region
Part

8 9 10 11 12 13 14 15
TOP_COIL BPOS (8) RNEG (9) YNEG (10) BNEG (11) RPOS (6) YPOS (7) BPOS (8) RNEG (9)
BOTTOM-COIL RNEG (9) YNEG (10) BNEG (11) RPOS (6) YPOS (7) BPOS (8) RNEG (9) YNEG (10)

Region
Part

16 17 18 19 20 21 22 23
TOP-COIL YNEG (10) BNEG (11) RPOS (6) YPOS (7) BPOS (8) RNEG (9) YNEG (10) BNEG (11)
BOTTOM-COIL BNEG (11) RPOS (6) YPOS (7) BPOS (8) RNEG (9) YNEG (10) BNEG (11) RPOS (6)

Table 1.1: Mapping Coil Regions Across Slots

1.8 Components

A component is intended to exploit the symmetry within electrical machines so
that only part of the machine need be constructed. In rotating machines a logical
part to construct is the slot. If we use a component to combine the four regions of
figure 1.13 into a single part, the component can produce the entire stator of our
electrical machine. The component needs to be told how to geometrically map
these regions to produce a second part, we’ve already created a rotating mapper
for this purpose. If i t’s told to repeat this process it will take the second part and
map this to create a third, and so on as required. The syntax that will create
our component is as follows:

stator = component(geomap, N, stator_region_map,
AIR, TOP.COIL, BOTTOM.COIL, LAMINATIONS)

We’ve provided the component with the geometric mapper, a number of repeti
tions, a region mapper, and finally the list of regions contained. If the number
of repetitions is set to zero the component does no mapping, it contains only the
regions given and forms a single part denoted as part 0. With a little parameter
isation we can play around with the geometry of the machine on a grand scale.
The following sets the basic angular geometry according to a single parameter,
the number of slots:

slots = 24
a2 = 360 / slots
repetitions = 360 / a2 - 1
stator = component(geomap, repetitions, stator_region_map,

AIR, TOP.COIL, BOTTOM.COIL, LAMINATIONS)

Figure 1.14 identifies a few of the mapped parts and their regions from the final
mesh for correlation against table 1.1.

37

Figure 1.14: Component Mapped Parts and Regions

38

3598

1.9 Libraries Of Components

However complex the geometry of a rotating machine’s part becomes, all parts are
still fundamentally defined by a centre point, two diameters, and two angles, ctr,
d l , d2, a l , and a2 respectively, so they’re interchangeable. Parts can therefore
be exported as library components and so a new machine can be constructed
simply by importing the relevant parts. The import process recognises parts of
a rotating machine and prompts for the number of slots, internal diameter, and
external diameter. The import can then setup the basic parameterisation for the
machine as we’ve seen before:

slots = <set from input>
a2 = 360 / slots
geometric_map = rotate(ctr, 0, 0, a2)
repetitions = 360 / a2 - 1

The program then takes you through the region mapping, defining the region
properties at the same time. Once complete the geometric mapping and region
mapping exists to construct a revised component for the new electrical machine.

1.10 Benefits Of An Object Oriented Approach
To Electrical Machine D esign

• We have broken the electrical machine down into separate objects, its build
ing blocks, such as segments and mesh tiles. Within these families of objects
everything is interchangeable so we can refine part of the mesh through the
interchange of mesh tiles and we can experiment with different coil wind
ing arrangements through different region mappings. Each change can be
as simple as the substitution of one region mapper for another but the
time saved, from having to redefine the identity of tens of regions, can be
considerable.

• Object oriented programming has for example allowed us to easily provide
a family of segments that are completely interchangeable. Thus no single

39

line, arc, or circle segment knows about any other type of segment. An
additional advantage of this transparency is in the ability to easily expand
the program. If no segment specifically knows about any other segment then
we can add to the family of segments without fear of breaking those that
already exist or the program. The author has on occasion found the need
for a different definition of arc or line segment in order to model a previously
unencountered geometry in the most convenient form. The addition of a
new arc segment simply needs the computational routine to calculate its
geometric values, three points that define its position. One only has to
look at a CAD package [5] to see the numerous ways of drawing the same
graphics primitive, the building blocks of the machine can be supplemented
at a later day with ease.

• All the building blocks describing the electrical machine are stored in a
dependency tree framework. A general tool swaps objects in and out of the
dependency tree without requiring any specific knowledge of the objects be
ing handled. In object oriented terms this is achieved by having all building
blocks of the machine inherit a dependency tree object. The opposite of
this is also true, no single building block of the electrical machine needs
any specific knowledge of how to be added, replaced, or removed from the
dependency tree. This provides us with a generic undo and redo mecha
nism. Any change made to the electrical machine is reversible, the changes
can also be rewound backwards and forwards. Any building block additions
cannot break this mechanism and undo information no longer needs to be
programmed into every building block[12].

• A dependency tree clearly defines the relationship between objects. Con
straints work down the tree and cannot work upwards, when changes are
made to the parameterisation the values concerned filter changes down the
tree and there’s no need to solve simultaneous equations[13] that balance
changes between parameters in order to calculate new geometry. This not
only simplifies the design but allows changes to be made very quickly. The
time taken is linear, the time taken for the change to filter down from the
top of the tree to the bottom.

• Through having a descriptive language for representing the electrical ma
chine, rather than just a list of nodes and elements, we are less dependent
on graphical tools that can manipulate our design. In making changes to
a machine the author has found that a textual search and replace on the

40

machine’s description has been as powerful asset, or compensated for the
lack of, more sophisticated graphical tools in the demonstration program.
Using this language a complete mesh refinement can be achieved by a single
statement altering the parameterisation; we can create optimisation loops
which iterate through different parameter values in order to find the one
yielding the best result.

• The parameterisation this scheme offers allows the reuse of designs by ini
tially defining parts of the electrical machine, such as the slot, in simple
geometric terms. When commencing the design of an electrical machine
these parameters allow past designs to be imported and slotted into place
in the new machine. In this thesis we will demonstrate this re usability as
the stator of a high speed motor, with permanent magnet rotor, is reused
to form an induction motor.

1.11 The Structure of This Report

Chapter 2: M odelling An Electrical M achine introduces the individual com
ponents we have identified to construct the finite element mesh of an elec
trical machine.

Chapter 3: Com m unication Betw een O bjects details the dependency ob
ject, used as a basis for the components describing an electrical machine,
which gives the ability to refine our finite element mesh through the pa
rameterisation of its defining parts.

Chapter 4: Building O bjects, Pre-processing takes us from the input def
initions of the machine to prototypes, the mechanism that allows us to keep
adding electrical machine building blocks without having to modify any of
those already existing.

Chapter 5: Building details a construction mechanism that is independent
of the types of object being constructed, that allows us to replace objects
within our design with different objects i order to redesign the machine.

Chapter 6: Build Post-processing shows how we can apply specific post
processing to the design of an electrical machine, allowing us to tailor the
mechanism to a particular application.

41

C hap ter 7: Building Blocks of an E lectrical M achine gives greater de
tailed descriptions of the geometric objects we have used to describe the
electrical machine, resulting in the mesh used for finite element analysis.

C hap ter 8: Conclusions are drawn from the work.

C hap ter 9: F u tu re W ork a brief list of topics further developing this work.

42

Chapter 2

Modelling an Electrical Machine

The object oriented approach to electrical machine design identifies the separate
objects, or building blocks, that comprise an electrical machine and provides
a flexible framework in which these building blocks can be put together. This
framework has many advantages for the designer in terms of the ease in which
a model can be constructed and altered, along with the time saved through this
design approach which encourages the reuse of designs.

With these building blocks it should, the author hopes, be possible to 2-dimensionally
model and provide the mesh representation for any electrical machine, ready for
solution using finite element analysis.

In this chapter we identify the building blocks of an electrical as we work through
the construction of a real world example of a high speed motor.

Figure 2.1 shows the specification sheet of a high speed motor with a 3-phase
wound stator and permanent magnet rotor. This chapter focuses on modelling
the stator of this machine in a way that allows the design to be reused at some
point in the future.

43

1 - Dimensions

Lamination Outside OD = 135 mm
Lamination Inside Diameter = 57.5 mm
Stack Length = 80 mm
Tooth width = 3.5 mm
Slot Depth (From stator bore to slot bottom) = 23.25 mm
Tooth tip thickness = 0.75 mm
Slot openning = 2.0 mm
Number of slots = 24
Magnet thickness = 2.5 mm
Magnet angle expansion = 120 deg
Rotor diam at outer magnet surface =52.85mm
Clearance gap between outer magnet surface and inner stator surface -2.323m m
2 - Materials
Stator core made of SiFe with a thickness of 0.2 mm
Magnet material Br = 1.05 T; He = 79 kA/m; Ur - 1.05

3 - Control Data
Supply voltage at motor terminal = 560 V DC
Current Limit se t to 170 A
Motor speed = 80000 rpm
Control is se t to be Sinusoidal control

4 - Winding Data
Number of turns = 1 turns
Number of strands in hand for one conductor = 40
Slot fill on bare diameter = 0.4
Wire diam eter = 0.79 mm
4s/p/p with turn span of 9 slots
Winding factor = 0.886
Phase resistance = 4.9 E -03 Ohm
Phase Self Inductance = 0.130 mH
Mutual Inductance between phases = 0.046 mH

Figure 2.1: Data For The High Speed Motor

44

2.1 Basic Parameterisation That Allows Reusable
Machine Parts

Whilst the designer needn’t restrict themselves to any specific parameterisation
in order to describe an electrical machine, the following parameters have been
chosen to describe part of a rotating machine so that parts from different machines
become interchangeable through this standardisation. The standard part for
a rotating machine is the slot, which figure 2.5 shows can be described by a
centre point, ctr, internal diameter, d l , external diameter, d2, an angle, al, that
describes the angular starting position of the slot, and angle, a2, that describes
the angular extension of the slot. The centre and starting angle of the slot
are unlikely to need adjustment, and thus arguably any parameterisation, but
parameterisation of these values is straightforward and offers further potential
flexibility.

2.1.1 Values, The First Building Block And The Param-
eterisation Of The Electrical Machine

Our electrical machine building blocks fall into families, figure 2.2, one such family
are the values which extend from simple floating point numbers through to the
dot product of two vectors. Each value is interchangeable with another value so
the angular value a2 could be fixed:

a2 = 15

or it could be the result of an arithmetic expression:

a2 = 360 / s lo ts

Ultimately even the simplest of other building block families, such as points, will
depend on values to fix their coordinates for instance, so values always set the
parameterisation of a machine.

45

f
| Dependency

Association
V

segm ent

1

1

point
(node)

discrete segm en t
(interface)

value:
number of nodes

2
mesh tile

region property

SL &
region mapper

<

V
region

value:
number of repetitions

I geom etric mapper

1
1

2.

com ponent

com ponent manufactured
discrete segm en ts

com ponent manufactured
regions

Figure 2.2: Relationship Between Different Families Of Object

46

2.1.2 A ssign ing Values

Data entry is of the form:

<variable name> = <some value or other building block>(arguments)

This data is interpreted by a pre-processor, chapter 4, which understands many
short cuts that allow the likes of:

x = real(O)
y = real(O)
ctr = vvpoint(x, y)

to actually be entered as:

ctr = vvpoint(0, 0)

Here two substitutions are being performed by the pre-processor. It’s first recog
nising that two assignments are real numbers and expand to the real type of
value:

ctr = vvpoint(real(0), real(0))

It subsequently recognises the nesting of assignments, separating them out and
manufacturing names so the above becomes:

_vx_ctr = 0
_vy_ctr = 0
ctr = vvpoint(_vx_ctr, _vy_ctr)

Each value and point consists of a separate object residing within a dependency
tree. One exception to this is the infix value which allows flexible input of math
ematical expressions such as:

47

a2 = 360 / 24

The pre-processor recognises this as:

a2 = in f ix (360 / 24)

and the infix prototype *, which is responsible for building the infix value, will
construct several values to satisfy this expression. The dependency tree of fig
ure 2.3 shows the final representation.

infix value
a2 = 15

value
v2_v_a2 = 24

value
v1_v_a2 = 360

div value
_v_a2 = 360 / 24 = 15

Figure 2.3: Corresponding Dependency TVee For The Infix Value of infix(360
/ w

2.2 On W ith The M achine

We lay down the basic parameterisation as follows:

dl = 57.5
^ ach building block of the machine has a prototype, chapter 5, whose responsibility is to

ensure the correct arguments are supplied for the object to be constructed. It allows unlimited
additions to the program with each addition adding a building block and its prototype. To
know if something can be built you look for a like named prototype, being separate entities
there’s no possibility of an addition breaking the existing program.

48

d2 = 135
al = 0
a2 = 360 / 24

We’ve touched on values and points, we now use members of the segment family
to draw line, arc, or circle segments which define the outline of our machine. We
first draw two circles, both centred at ctr with one at the inner diameter of the
machine and the other at the outer diameter:

rl = dl / 2
r2 = d2 / 2

ccl = pvcircle(ctr, rl)
cc2 = pvcircle(ctr, r2)

We then draw two lines that originate from the centre point, ctr, one at an angle
of al degrees and the other at al + a2 degrees. We ensure these lines are long
enough to intersect both circles:

ell = pvvvline(ctr, _vs_cll, r2, al)
cl2 = pvvvline(ctr, _vs_cl2, r2, al + a2)

The pvvvline segment is perfect for this purpose, figure 2.4, it’s easily defined by
the parameterisation we’ve started with.

pe line name

point of

Figure 2.4: Line Segment Used For pvvlines ell And cl2, Formed From A Point
Of Origin, Start And End Extension, Plus Angle Of Trajectory

The post-processor, chapter 6, discovers where segments intersect, it creates in
tersection points whose position depends upon the segments and the point they

origin

from start point

49

Figure 2.5: Laying Down The Fundamental Parameterisation Of A Stator Slot

intersect. If we change our parameterisation so that these segments move posi
tion, intersection points will move accordingly. We’ve already created segments
that depend on the centre point, any line segments that depend on the inter
section points will accordingly move as parameterisation changes filter down the
dependency tree.

The outline of the slot has now been formed, figure 2.5, the parameterisation
allows this rotating part to be slotted into place in the stator of any rotating
machine.

Our parameterisation doesn’t end here, however any further parameterisation
will not affect this part’s ability to be imported into other designs. Additional
parameterisation will be part specific, serving only to increase the flexibility of a
particular design.

2.2.1 P aram eterisation Of Slot T eeth

Parameterisation will now be introduced allowing variation in the width of the
slot teeth.

First we define some additional parameters, taken from the specification of the
high speed motor:

slot_depth = 23.25
slot_opening = 2
tooth_tip_thickness = 0.75
tooth_width = 3.5

We then place another circle, ccO, inside the circle ccl whose radius is set to rl.

ccO = pvcircle(ctr, rl * 3/4)

The intersection of this circle and the construction lines ell and cl2 will be used
to anchor several construction lines that won’t directly form the opening of the
slots. Keeping these segments away from the workspace surrounding the slot
opening will prevent this area from appearing cluttered and will facilitate later
construction.

Line segments can now be placed where the construction lines ell and cl2 inter
sect this new circle and the larger circle, cc2.

clOOl = spvvvline(ccO, _il_cc0_cll, tooth_width/2, tooth_width/2, 0)
cl002 = spvvvline(ccO, _il_cc0_cl2, tooth_width/2, tooth_width/2, 0)
cl201 = spvvvline(cc2, _il_cc2_cll, tooth_width/2, tooth_width/2, 0)
cl202 = spvvvline(cc2, _il_cc2_cl2, tooth_width/2, tooth_width/2, 0)

We use a line segment called the spvvvline 2 for these anchors, illustrated in
figure 2.6. This line segment produces a line parallel to a straight line, or the
tangent of an arc or circle, at a given point. The new line extends out from either
side of the reference point, like a seesaw, the extension either side being adjusted
independently. The line can then be rotated around this point so a value of 90
degrees creates a normal to the original segment. Figure 2.7 shows the four line
segments, clOOl, cl002, cl201 and cl202.

2Names used for different building block objects derive from the arguments they are supplied
with. The spvvvline requires a segment, point, and three values respectively, to draw the line.
This naming convention has so far resulted in unique names and alleviated the author from the
need to invent memorable and succinct names. Please note that these names can be given any
number of aliases which may better describe their function.

51

length
of extension
to end pointlength

of extension
to start point _pe_line_name

rotation
from tangent_ps_line_name tangential

point
on segment

Figure 2.6: Line Segments Used For Forming The Parallel Lines Of The Slot
Tooth

X \ cc2

ccO \ cel _il_cc2_cl2 cl202

V cl002
_il_cc0_cl2

cl2

ctr ell
i cl201

_il_ccO_cll I clOOl
/

_il_cc2_cll I

Figure 2.7: Forming Anchors For The Parallel Lines Distanced Of The Slot Teeth

52

In comparison to the line segment ppline, which connects between two points and
which we’ll next use, the spvvvline has no points associated with the ends of its
line. Such points are useful as they provide a reference to the end of the line,
one which we can always attach another line to for instance. To compensate for
this the spvvvline, knowing that no such points exist, manufactures points for
just this purpose. The points -ps-cl001 and _pe-cl001 will be found at the start
and end of line segment clOOl respectively. We use these manufactured points
to connect the point to point lines cl4 and cl5 which are illustrated in figure 2.8
and defined as follows:

cl4 = ppline(_ps_cl001, _ps_cl201)
cl5 = ppline(_pe_cl002, _pe_cl202)

5 cl202

cl 5\ cl002 Jkj-'-"

cl4
cl201

h clOOl

Figure 2.8: Placement Of The Parallel Lines Forming The Length Of The Slot
Teeth

2.2.2 P aram eterisation O f Slot D ep th

Previously we parameterised the depth of the slot:

slot_depth = 23.25

we now use this value to construct a circle cc3 which will later seat the base of
the slot. The arrangement of figure 2.9 shows the position of this circle and the

53

construction line cl3 which divides the slot into two equal halves. Where these
two segments intersect we form another spvvvline which is parallel to the tangent
of circle at this point:

cl3 = pvvvline(ctr, 0, ,r2, al + a2/2)
cc3 = pvcircle(ctr, rl + slot_depth)
c!303 = spvvvline(cc3, _il_cc3_cl3, 10, 10, 0)

x cc3

i cl303

cl3

Figure 2.9: Slot Depth Parameterisation Is Used To Set The Radius Of Con
struction Circle cc3 Which Will Eventually Anchor The Base Of The Slot

Construction line clSOS forms the final segment needed to complete the base
of the slot. In figure 2.10 four intersection points can be seen, the last two of
which were created by the intersection of cl303 and construction lines cl4 and
cl5. Joining these points together we create the three lines illustrated in bold,
the line between the first and last points of the argument list is always ignored:

cal = pppparc(_il_ccl_cl5, _il_cl303_cl5, _il_cl303_cl4, _il_ccl_cl4)

The arc is formed from the largest circle that can be enclosed by this area whilst
still touching the three specified sides. The lines will be tangential to the arc at
each point of contact. The contact points between the arc and two side lines set
the start and end of the arc.

54

_il_cl303_cl5

Jl_ccl_cl5 "

_il_cl303_cl4
Jl_ccl_cl4 ..i

Figure 2.10: Base Of Slot Completed By An Arc That Fits Itself Within Three
Vectors Formed By Our Construction Segments

2.2.3 P aram eterisation O f Slot O pening

The outline of the slot is nearly complete, we have yet to form its opening or set
the thickness of the slot tooth tip. These are formed with a similar arrangement
to that used for the parallel lines of the slot walls.

The spvvvline segment that provides the seesaw like line arrangement is used to
extend a line outwards from an intersection point, figure 2.11. The length of the
line each side of the centre point is half the distance of the slot opening, total
length of the line is thus equal to the size of the slot_opening. Lines clOOS and
cl203 are both done in this manner and lines cl6 and cl7 interconnect their end
points:

cl003 = spvvvline(ccO, _il_cc0_cl3, slot_opening/2, slot_opening/2, 0)
cl203 = spvvvline(cc2, _il_cc2_cl3, slot_opening/2, slot_opening/2, 0)
cl6 = ppline(_pe_cl003, _pe_cl203)
cl7 = ppline(_ps_cl003, _ps_cl203)

This arrangement has created the slot opening. As the slot-opening parameter is
varied the lengths of clOOS and cl203 will correspondingly change, the line always
remaining centred around its anchoring intersection point. Lines cl6 and cl7 will

55

also follow position and their intersection with circle ccl forms the slot opening.
If we add another circle that is distanced from ccl by the tooth-tip-thickness then
our slot outline is complete, cell also detailed in figure 2.11. The line between
the intersection of cl6 and ccl and the intersection of cl6 and cell forms the
tooth tip thickness, mirrored by the respective intersections of cl7 and these two
circles.

ccl \ \ c c l l

cl 20 3cl 7

cl6cl 00 3

Figure 2.11: Slot Opening, The Radial Difference Between ccl and cell Equals
The Value Of tooth-tip-thickness And The Parallel Lines cl6 And cl7 Are Spaced
Apart By The Value Of slot-opening

2.2.4 D iv ision O f T he Slot In P reparation For Coil R e
gions

Each slot is shared by two coils but the slot area isn’t equally divided between
these two coils, instead one coil occupies three fifths of the area whilst the other
occupies two fifths. In addition to this the division alternates from one slot to
the next, first the upper layer of windings occupies three fifths of the area and
then the lower layer occupies three fifths of the area in the next slot. Figure 2.29
aids in visualising this arrangement.

For now, all we need do is divide the area of slot from top to bottom into areas
of two fifths, one fifth, and two fifths again. The middle fifth of the area will
be grouped either with the top two fifths or the bottom two fifths depending on
the arrangement of coil windings. Here we cheat, the author has calculated the

56

necessary divisions outside of the program thus compensating for the lack of a
segment type that does this and the time needed to create one. The first con
struction circle is placed at around 48% of the length of the slot depth, measured
from the slot opening, the second division at about 66%:

ccrl = pvcircle(ctr, rl+tooth_tip_thickness+slot_depth*(48.18/100))
ccr2 = pvcircle(ctr, rT+tooth_tip_thickness+slot_depth*(65.67/100))

Figure 2.12 shows these construction lines in place.

Figure 2.12: Division Of Slot Into Areas Of Two Fifths, One Fifth, And Two
Fifths

2.3 D iscrete Segm ents

We now have all the necessary segments in place to be able to outline our slot,
and any regions within, by moving along its perimeter from a point to a segment
and back to a point again, marking each of these sections as a line of nodes. At
this stage we already have some nodes in our model, every point is actually a
node but we just haven’t designated which ones we are yet to use. Taking the
sections along segments, spanned by two points or nodes, we mark these spans
as a line of nodes by using the discrete segment Areas contained on all sides
by these discrete segments are like tiles that fit together to construct the mesh

57

of the slot. Each one of these tiles will be meshed individually, the density of
the mesh being controlled by the number of nodes along these discrete segments.
By splitting the whole of the slot mesh into smaller mesh tiles we have greater
control over the mesh density in different areas.

Figure 2.13 shows a discrete segment spanning a construction line segment be
tween two intersection points. The discrete segment is created using the following
syntax:

n = 1.0

dsl = dsegment(cl4, _il_ccll_cl4, _il_ccrl_cl4, 8n)

The first argument supplied is the segment’s name, the two subsequent argu
ments are points which must reside on the segment. The final argument specifies
the number of nodes to create along the discrete segment, because the discrete
segment connects between two existing points, which are also nodes, the dis
crete segment only creates nodes within the length spanned by these terminating
nodes. This use of existing nodes helps prevent duplicate nodes, another discrete
segment attached to -il-ccll-cl4 or _il-ccrl-cl4 will also reuse their node rather
than create a duplicate at the same position. In the above definition of discrete
segment dsl we have also chosen to parameterise the number of nodes, the value
of n could be increased to 1.5 in order to increase the number of nodes to 12.
Globally we shall use this parameter with all discrete segments so that the overall
mesh density can be controlled.

Creating discrete segments in the above manner can be tedious, identifying seg
ments and points takes the majority of the time. A point and click interface im
proves this situation by allowing the segment and points to be identified through
the graphical interface, however we can simplify the process further by utilising
the underlying dependency tree in which or model resides. We find that some
segments, such as the ppline, have their position defined by two points, other
points like intersection points are then defined by two segments; whichever way
around the relationship, a connected point and segment will always have a parent
child relationship in the dependency tree. The dsegment tool utilises this, using
the graphical interface points are first selected along the path that we wish to
transform into discrete segments. The dsegment tool is then invoked and it walks

58

dsl

Figure 2.13: First Discrete Segment Begins To Define Node Boundary Of Slot

along a path defined by these points and the segments that interconnect them,
at each step the potential discrete segment is highlighted, figure 2.14, and if the
designer wishes it created they need only enter an expression for the number of
nodes. The entire geometry can be discretised very quickly in this manner.

Figure 2.15 shows all the discrete segments in place and figure 2.16 illustrates
them with all construction lines removed and a mesh tile in place. Once all en
closed ares are independently meshed using these tiles we will start to see how
they can be combined into regions of the same material. The discrete segments
play an even more important role when we start to define regions as they define
the interfaces between them, they also define the external interfaces to which
we will assign boundary conditions. Just as every point has a node, every dis
crete segment has an interface. These relationships form the translation from a
parameterised geometry into a mesh representation.

2.4 M esh Tiles

We are now ready to create mesh tiles in the area enclosed by discrete segments
and have a few meshing algorithms to chose from. The semesh, super element
mesh, deals very well with simple areas of three or four sides whilst two third part
utilities have been interfaced to the program which are capable of more complex

59

!> n = 1.0
> dsl = dseqment(cl4, _ i l _ c c l l _ c l 4 , _ i l_ c c r l_ c l4 , 8n)
> dsegment
s in g le path found:
along segment: c\4
from point: _ i l_ c c r l_ c l4
to point: _ i l_ccr?_c l4
Enter expression [express ion]/sk ip /qu it : 4n
s in g le path found:
along segment: cl4
from point: i l ccr2_cl4
to point: _ i l_ c a l_ c l4
Enter expression [express ion]/sk ip /qu it 3n
s in g le path found:
along segment: cal
from point: _ i l_ c a l_ c l4
to p o in t : i l cal c l3
Enter expression (exprcss ion]/skip /quit

Files Edit Layers Labels Selection View

Figure 2.14: Automation Of Discrete Segment Creation, Interactive Path Finder
Follows A Trail Of Selected Points Creating Discrete Segments At Each Step

60

Figure 2.15: All Discrete Segments In Place

geometries. The third party programs, Bojan Niceno’s Easymesh[l] and Jonathan
Shewchuk’s Triangle[2], are separate programs that communicate through files,
reading in a list of nodes and writing out a list of nodes and elements. Interfacing
to these programs involves writing out the list of nodes, executing the program,
then reading in the list of new nodes and elements. This method ensures that
should the third party program fail, our program doesn’t suffer the same fate; if
we don’t find valid node and element files on completion then the mesh is put
into an invalid state which alerts the designer to a problem.

Using the super element mesh tile we produce the tile m l of figure 2.16.

ml = semesh(cdsl, ds31, ds72, ds41)

In figure 2.17 this tile is then replaced with another tile built using Triangle,
reassignment of ml to another mesh tile pulls the original from the dependency
tree, replacing it with the new tile before storing the original in an undo buffer.
At the same time we tile the larger area of our slot using the same meshing
algorithm:

m2 = tr ia n g le (d s20, dsl8 , dsl9, dsl6, dsl7, dsl5)
ml = tr ian g le (cd s1, ds31, ds72, ds41)

61

Figure 2.16: Super Element Mesh Tile

\ \ m2

w

Figure 2.17: Mesh Tiles Built Using An Alternative Meshing Algorithm,
Triangle [2]

The larger area would need to be broken down into smaller tiles if we were to
use the super element mesh tile, this area we’ll leave meshed using Triangle.
The smaller area we’ll revert to the previous super element mesh tile, the undo
command will revert the last change to the model and successive undo commands
can be used to revert all changes back to the initial state of the model.

Triangle also allows us to restrain the minimum angle and maximum area it
uses with elements, we can restrain one and, or, the other and in figure 2.18 the
maximum area of elements has been restrained by redefining mesh tile m2:

m2 = triangle(ds20, dsl8, dsl9, dsl6, dsl7, dsl5, 0, 5)

j *r.

>< m2

m
*• t ...

Figure 2.18: A Super Element Mesh Tile and Triangle[2] Mesh Tile With Maxi
mum Area Of Elements Restrained

We complete the slot mesh in figure 2.19, ready for grouping mesh tiles into
regions.

2.4.1 R egions

Regions simply group mesh tiles together, they have an index into the region
property table so they’re also responsible for marking elements with their region
identity. Let us define a region, such as the laminations that form the body of
our stator slot. This region includes the vast majority of our mesh tiles and we’ll
numerically identify it with region number five:

63

ml2 ml3 ml4 ml5

Figure 2.19: All Areas Tiled, Ready For Grouping Into Regions

LAMINATIONS = region(5, m2, m5, m6, m7, m8, m9, mil, ml2, ml3, ml4, ml5)

This adds a little colour to our output of figure 2.20 to aid visualisation. Mesh
tiles can be listed in any order in the region’s argument list, however the region
examines these tiles as it puts them together and it removes any of the discrete
segment interfaces found between adjacent tiles. When asked for a list of its
interfaces the region now lists only those that are external.

LAMINATIONS

Figure 2.20: Mesh Tiles Grouped By A Region

We can now go into the region properties, figure 2.21, where we’ll find an “unset”
entry has been automatically created for us. The entry is held in the model as

64

part of the dependency tree, as is any other building block of the machine. The
edit regions tool simply automates the modification of these objects by providing
an interactive interface that later creates new region property objects along with
the rather long argument list they take. The designer can make unlimited changes
in this tool before finally quiting it, these changes axe then translated into new
region property objects that are stored in the model. Undoing the model at this
stage reverts it to the state it was in prior to the running of the region editor.

Figure 2.21: Editing The LAMINATIONS Region Properties

We can create the small region of air, within the mouth of the slot opening, in
exactly the same way, figure 2.22 shows the editing of its region properties.

AIR = region(2, mlO)

2.5 M apping R egions

Now we come to the more interesting coil regions. If we create the following
regions for the top two fifths of the slot area, middle fifth, and bottom two fifths
respectively:

> e r

Region P r o p e r t i e s . .
Name ID Ur Cond. J s .

LAMINATIONS (u n s e t) 5 0 .0 0 0 0 .0 0 0 N

[e r] a d d / e d i t / r e m o v e / q u i t : e 5
Region name? [LAMINATIONS (u n s e t)] / q u i t : LAMINATIONS
Region ty p e ? [l i n e a r] / n o n * l i n e a r / h y s t e r e t i c / q u i t : non
F ilenam e f o r t h e B-H curve? [J / q u i t : CURVE_02.DAT
R e l a t i v e c o n d u c t i v i t y ? [0 . 0 0 0] / q u i t :
D i r e c t i o n a l c o n d u c t i v i t y ? [N] / q u i t :
Current f l o w ty p e ? G /T /S /D / [N] /T P /S P /C P /q u i t :
Thermal h e a t f low ? [N] / q u i t :
Permanent magnet r e g io n ? [N] / q u i t :

Region P r o p e r t i e s . .
Name ID Ur Cond. J s .
. I - - I I I ~ -
LAMINATIONS 5 0 .0 0 0 0 .0 0 0 N

[e r] a d d / e d i t / r e m o v e / q u i t :

65

X .,.[oL» *

Figure 2.22: Editing The Region Properties Of Region AIR

T0P_LAYER = region(6, ml)
MIDDLE.LAYER = region(6, m3)
B0TT0M_LAYER = region(6, m4)

region number 6 is going to correspond to the positive current of the red phase
of our 3-phase winding, the whole of slot 1 contains conductors with this current
flow. Slot 2 is split, the top top two fifths contain the positive red phase but the
bottom fifth contains the negative blue phase. Table 2.1 shows the current flow
of the conductors in each slot and it also shows how we are to assign the above
three regions on a per slot basis.

Currently we have only one slot, figure 2.23, which represents slot 1 in table 2.1.
Shortly we will create a component which constructs the entire stator from the
one slot, replicating it twenty three times to produce the twenty four slot ma
chine. However we don’t want to assign regions another twenty three times, its
tedious and doesn’t give us much flexibility if we wish to experiment with different
winding configurations.

66

Region
Slot

1 2 3 4 5 6 7 8
TOP.COIL RPOS (6) RPOS (6) RPOS (6) RPOS (6) BNEG (11) BNEG (11) BNEG (11) BNEG (11)
MIDDLE.COIL RPOS (6) RPOS (6) BNEG (11) RPOS (6) BNEG (11) BNEG (11) YPOS (8) BNEG (11)
BOTTOM.COIL RPOS (6) BNEG (11) BNEG (11) BNEG (11) BNEG (11) YPOS (8) YPOS (8) YPOS (8)

Region
Slot

9 10 11 12 13 14 15 16
TOP-COIL YPOS (8) YPOS (8) YPOS (8) YPOS (8) RNEG (7) RNEG (7) RNEG (7) RNEG (7)
MIDDLE.COIL YPOS (8) YPOS (8) RNEG (7) YPOS (8) RNEG (7) RNEG (7) BPOS (10) RNEG (7)
BOTTOM.COIL YPOS (8) RNEG (7) RNEG (7) RNEG (7) RNEG (7) BPOS (10) BPOS (10) BPOS (10)

Region
Slot

17 18 19 20 21 22 23 24
TOP.COIL BPOS (10) BPOS (10) BPOS (10) BPOS (10) YNEG (9) YNEG (9) YNEG (9) YNEG (9)
MIDDLE.COIL BPOS (10) BPOS (10) YNEG (9) BPOS (10) YNEG (9) YNEG (9) RPOS (6) YNEG (9)
BOTTOM.COIL BPOS (10) YNEG (9) YNEG (9) YNEG (9) YNEG (9) RPOS (6) RPOS (6) RPOS (6)

Table 2.1: Coil Arrangements For Each Slot

LAM INATIONS
B O TTO M -LA YER

M IDDLE-LAYER
T O P -L A Y E R

Figure 2.23: All Mesh Tiles Grouped In To Regions

Let us start by creating the region properties for the six coil regions we’re going
to need. The region editor automatically creates properties for new regions, the
TOP.LAYER, MIDDLE-LAYER, and BOTTOM.LAYER regions all use identity
6 so this will be the only new region property. In figure 2.24 this has been edited
into region RPOS and the remaining five coil regions of table 2.1 have been
created in figure 2.25.

This is where we construct a region mapper that will ensure that when the compo
nent geometrically copies our slot, producing the entire stator, it also incorporates
the mapping of regions into this process. Given table 2.1 we can see that given
any slot and the name of a region we can return the region property for that
region. A single region mapper performs this task and given the number of slots,
and regions per slot, we have a lot of arguments to supply; a region map editor
has been devised to wrap a more user friendly interface around the process of
creation the map.

The region map editor allows the editing of multiple region mappers, just as the
region property editor handles editing of all region properties. We will need one
map for the stator but may need one for the rotor also.

Each mapper is capable of handling multiple regions. If we are to map the stator
slot as one entity we want to encapsulate the mapping of all its regions in one
mapper; this allows a simple one to one relationship to be established between

68

g o *;; •

Figure 2.24: Editing The Region Properties Of The Coil Regions

1 X 0 5 ft I

i

1
t a n flWft

[
;

:
:
1
I

H
RffjlHRS L
RRkIHKSHRSHRS

B
1 z.

Figure 2.25: Adding The Final Coil Region B N E G

69

the mapping of regions and the mapping of geometry, it is useful when we reuse
old designs and an import tool needs to automatically establish this relationship.
Figure 2.26 shows the creation of a region mapper and the addition of a mapping
for the TOP-LAYER region. This type of mapper recreates the layout of table 2.1,
it’s simple but allows any mapping to be entered however complex the pattern.
Simpler patters can utilise simpler region mappers. Figure 2.27 shows the final
mapping of all three coil regions, reproducing the entirety of table 2.1.

x i i S B I

Region P r o p e r ty M a p p e r s . .
Name R eg ion s mapped No. P a r ts Errors

[erm] a d d /e d i t / r e m o v e /r e n a m e /q u i t : a
Region p r o p e r ty mapper name? [] / q u i t ; STATORCOILMAPPING

Region P r o p e r ty Mapper STATOR COIL MAPPING'. .
Name

[erm] a d d / e d i t / r e m o v e / q u i t : a

L i s t o f r e g i o n s
Name Region ID
-I................ I.............
1 LAMS 5
2 AIR 2
3 TOP_LAYER 6
4 MIDDLE_LAYER 6
5 BOTTOMTAYER 6

Enter r e g io n n a m e /ID /q u it : 3

L i s t o f r e g i o n s p r o p e r t i e s
Name ID Ur Cond. J s .
- I - - - I I I - - -
AIR 2 1 .0 0 0 0 . 0 0 0 N
MSTEEL 4 1 .0 0 0 0 . 0 0 0 N
LAMS 5 1 .0 0 0 0 . 0 0 0 N
RPOS 6 1 .0 0 0 0 . 0 0 0 N
RNEG 7 1 .0 0 0 0 .0 0 0 N
YPOS 8 1 .0 0 0 0 . 0 0 0 N
YNEG 9 1 .0 0 0 0 . 0 0 0 N
BPOS 10 1 .0 0 0 0 . 0 0 0 N
BNEG 11 1 .0 0 0 0 . 0 0 0 N

Enter s p a ce se p a r a te d l i s t o f reg io n IDs f o r p art 0 onwards / q u i t : 6 6 6 6 11 11 11
11 8 8 8 8 7 7 7 7 10 10 10 10 9 9 9 9

Region P r o p e r ty Mapper STATOR COIL MAPPING'. .
Name 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1 TOP LAYER 6 6 6 6 11 11 11 11 7 7 7 7 10 10 10 10 9 9 9 9

[erm] a d d / e d i t / r e m o v e / q u i t :

Figure 2.26: Adding Region Mappings For The Stator

70

Enter space se p a r a te d l i s t o f reg io n IDs f o r part 0 onwards / q u i t : 6 11 11 11 11 8 8
8 8 7 7 7 7 10 10 10 10 9 9 9 9 6 6 6

Region P ro p er ty Mapper ' STAT0R_C0IL_MAPPING'. .
Name 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

- - I
1 T0PLAYER 6 6 6 6 11 11 11 11 8 8 8 8 7 7 7 7 10 10 10 10 9 9 9 9
2 MIDDLELAYER 6 6 11 6 11 11 8 11 8 8 7 8 7 7 10 7 10 10 9 10 9 9 6 9
3 B0TT0MLAYER 6 11 11 11 11 8 8 8 8 7 7 7 7 10 10 10 10 9 9 9 9 6 6 6

[erm] a d d / e d i t / r e m o v e / q u i t : q

Region P ro p er ty M appers..
Name Regions mapped No. P a r t s E rrors

: l- - - I ... I I
1 STAT0R_C0IL_MAPPING T0PLAYER, MIDDLELAYER, B0TT0M_LAYER 24 none

B
[erm] a d d /e d i t / r e m o v e /r e n a m e /q u i t : Q

Figure 2.27: Completed Region Mapping For The Stator

2.6 G eom etric M apping

This object oriented design isn’t limited to the use of rotating electrical machines.
When we copy the geometry we’ve designed so far we wish to allow any geomet
ric mapping, to cope with linear machines as well as rotating for instance. A
geometric mapping object simply maps a coordinate in space, the rotate mapper
rotates along any axis around a centre. The following mapping will rotate around
the centre of our stator, on the z-axis, through the angle a2 degrees occupied by
our slot:

geomap = rotate(ctr, 0, 0, a2)

2.7 C om ponents

Finally we come to the most complex of our electrical machine building blocks, the
component. A component takes a list of regions and puts these regions together
to construct a single part of an electrical machine. The component looks at the
regions’ representation of interfaces and elements and using the geometric mapper
it constructs a copy of the original regions that have been geometrically mapped
in space. It creates new interfaces and elements required for this mapped part.

71

The component repeats this mapping process if required, it therefore needs to
know how many copies of the initial part are required. For our twenty four slot
machine we will group all the slot’s regions as a single part and tell the component
to copy this twenty three times.

Once the component has completed the geometric mapping process it looks again
at the interfaces it has created. During the mapping process it took care not to
duplicate interfaces. For instance the first copy of our slot, figure 2.28, allows
reuse of the interface between the adjacent slots. Duplication of interfaces would
result in duplication of nodes. Once mapping is complete many of the interfaces
will now be internal, the interface between the two slots of figure 2.28 for example.
Internal interfaces are ignored, the component, like the region, is only interested
in external interfaces. For each external interface the component creates a discrete
segment should one not exist, the original regions are already defined by discrete
segments. The discrete segment allows access to the external interface in order
to set boundary conditions, periodic boundaries and sliding interfaces.

The component also creates regions that reside in the dependency tree, these
correspond to each region mapping and like the original regions they are re
sponsible for propagating region identities through to elements. The component
uses the region mapper to determine the region identity of each mapped region.
Figure 2.29 shows a section of the final stator with its mapped regions.

We now have a complete stator. Had our winding arrangement been a little
simpler, more periodic, we could have told the component to repeat enough parts
as to form half or quarter of the stator. The external interfaces the component
created would have allowed us to set periodic boundaries and we wouldn’t have
to model the entire machine.

2.8 Exporting Components To Augm ent Libraries
Of Reusable Parts

Before we complete our electrical machine we will demonstrate how this compo
nent can be utilised in future designs through the export and import of compo
nents. Then we will import the rotor to our electrical machine to complete this

72

LAMINATIONS

Figure 2.28: Component Groups Regions Into A Part Of A Machine, Ready For
Mapping Through To Successive Parts

73

BNEG

Figure 2.29: Region Mapping Of The Stator

74

96

design.

Exporting works with components through the examination of the dependency
tree. Every building block of the machine used by the component is linked to it
through this tree, by exporting the component we are saving everything needed
to reuse this part in a future design. This includes the regions and their mapping,
nothing is thrown away. The import process ensures that none of these building
blocks can interfere with an existing design, importing a rotor can’t interfere
with our stator, so keeping as much as possible could later minimise the amount
of work we do. The fact that our geometry is governed by a few fundamental
parameters allows it to be imported and slotted into place in any future design.

The export process examines our component to ascertain whether its part of a
rotating or linear machine. The export process isn’t limited to these parts but if
it recognises the part it can perform some sanity checks, mainly to ensure the cor
rect parameters exist for it to be imported properly at a later stage. Figure 2.30
illustrates the export process. Part of a rotating machine has been identified
and the required parameters are present. Additional parameters have also been
identified, these are values that sit at the top of the dependency tree. These
parameters can be optionally highlighted in the exported component and given
verbose descriptions. When this component is imported the optional parameters
will be highlighted so the designer is aware of any design specific parameterisa-
tions.

2.9 Im porting Library Components

A library component differs from a saved model only in the extra information
it has regarding the parameters it uses to slot into a design. The import tool
detects this information and presents the designer with a few questions that will
be used to set these parameters. In figure 2.31 we are importing the rotor for our
machine, part of a rotating machine has been detected and a few questions are
presented so the internal diameter, external diameter, and the number of slots
can be set. This is all the information we need to fit the import into our design.

From the number of slots we can set the angle of the slot a2, the absolute angle of

75

x ioJLs! *

Figure 2.30: Exporting A Component To Augment A Library Of Reusable Parts

the slot al is assumed to be zero and the centre is assumed to be the origin. The
import tool can now fix all the required parameterisations of the imported part
and construct a component that will form, in this case, the rotor of our machine:

dl = <set from input>
d2 = <set from input>
slots.rotor = <set from input>

ctr.rotor = vvpoint(0, 0)
al.rotor = 0
a2.rotor = 360 / slots.rotor

repetitions.rotor = slots.rotor - 1
geometric_map.rotor = rotate(ctr.rotor, 0, 0, a2.rotor)

region_map.rotor = <detected from library>

76

component.rotor = component(geometric_map.rotor,
repetitions.rotor,
region_map.rotor,
<plus all regions exported>)

The import tool asks for a label, a name-space, that will be appended to each
object’s name upon import. This ensures that names don’t clash and the im
port of one part doesn’t affect another part already in our model. The import
uses the region mapper of the exported part, or an empty one otherwise, when
constructing the component. The one to one relationship between a component
and region mapper is extremely useful for the import process; it can construct
a component with a single mapper that the designer can edit using the editing
tool. No matter how many regions are added or removed from the mapper, as
it’s still a single object the designer never has to touch the command line and
redefine the component in terms of other mappers.

> import
Filenam e of t h e import f i l e ? [] / q u i t : . / p a r t s / r o t o r _ t e s t

D e te c te d part o f a r o t a t i n g machine

Parameters d e t e c t e d . .
ID V a r ia b le Requirement D e s c r ip t io n

I I I
1 a l re q u ir e d Angle through t o s t a r t o f component
2 a2 req u ired Angle o f component e x t e n s i o n
3 c t r re q u ir e d C entre o f component
4 d l re q u ir e d Inner d ia m e ter o f component
5 d2 req u ired Outer d ia m e ter o f component
6 n req u ired Node d e n s i t y
7 s l o t d e p t h o p t i o n a l S l o t Depth
8 s l o t o p e n i n g o p t i o n a l S l o t Opening
9 t o o t h t i p t h i c k n e s s o p t i o n a l Tooth Tip T h ick n ess
10 t o o t h w i d t h o p t i o n a l Tooth Width
Import ? [y e s] / q u i t : y

Number o f s l o t s : 18
I n t e r n a l d ia m e te r , d l : 0
E x te r n a l d ia m e te r , d2 : 5 7 .5

Namespace f o r t h i s p a r t? [i m p o r t l] / q u i t : ro tor

open ing ' . / p a r t s / r o t o r _ t e s t '
0% ..10% ..20% ..30% ..40%7.50%..60%..70%..80%..90%..100%
open co m p le te
>1

Figure 2.31: Importing A Library Component

77

2.9.1 Defining Interfaces Between Independent M eshes

We now have two completely separate meshes, one for the stator and one for the
rotor. The internal diameter of the stator’s mesh matches the external diameter
of the rotor’s mesh and so their interfaces overlap. However it is unlikely that
the nodes along these interfaces will be aligned, we would have to match the
geometry and node density on the respective discrete segments and this would
significantly complicate the simple import and reuse of components at a later
stage.

The chosen solution to this problem is to use a sliding interface[14] which is a
fairly general technique that allows independent meshes to be translated and
rotated whilst coupled together using Lagrange multipliers. The meshes of our
stator and rotor are now free to move with respect to each other without any
need for remeshing.

This technique must be implemented within the finite element solver, here we
just mark the respective interfaces so the information can be propagated through
to the exported mesh.

If we stop the components from mapping parts, by setting the number of times
they copy to zero, then we’ll highlight the discrete segments that are forming the
sliding interface in figure 2.32.

repetitions = 0
repetitions.rotor = 0

Manually we would mark these discrete segments as sliding interfaces as follows:

> list dsl5.rotor
dsl5.rotor=dsegment(ccl.rotor, _pe_cll.rotor, _pe_cl3.rotor, _vn_ds15.rotor)

segment: ccl.rotor
from : _pe_cll.rotor
to : _pe_cl3.rotor
with : 15 nodes

78

Figure 2.32: Identifying Discrete Segments That Form A Sliding Interface

> ds15.rotor=dsegment(ccl.rotor,
_pe_cll.rotor,
_pe_cl3.rotor,
_vn_ds15.rotor, flag(s))

The discrete segment takes an optional argument that can be used to change
its properties. When the component copies parts and creates new interfaces
the properties of the interfaces it copies are propagated through the copies. It
is possible to set the attributes of the whole of the stator’s internal interface,
and the rotor’s outer interface, by designating two discrete segments as sliding
interfaces. The, currently rather primitive, interface editing tool of figure 2.33
uses this feature and presents its user with the short list of discrete interfaces that
it finds external. As their properties are propagated, they may only represent a
small part of the whole interface but they actually control all of it.

2.10 U sing The M esh

Here are some gratuitous screen shots that show the export of the mesh to a
format that can be read by the MEGA [15] finite element solver, figure 2.34.

A view of the mesh via the MEGA pre-processor is in figure 2.35.

 w i i m w w w w i h j h w p — w , i » j i . » ■ ■■ . . ■« " M i n a - w r i

> e i
I n t e r f a c e s d e t e c t e d . .

D i s c r e t e Segment Name S l i d i n g I n t e r f a c e

" I I" -
1 d s l l yes

I 2 d s ! 8 no
3 d s l 5 . r o t o r no

E d it I n t e r f a c e ? ID /n am e/q u it : d s l 5 j

Togg led s t a t e of ' d s l 5 . r o t o r '

| I n t e r f a c e s d e t e c t e d . .
D i s c r e t e Segment Name S l i d i n g I n t e r f a c e

M ,
1 d s l l yes
2 d s l 8 no I
3 d s l 5 . r o to r yes

E d it I n t e r f a c e ? ID /n am e/q u it : q
> a

Figure 2.33: Toggling The State Of Sliding Interfaces On Discrete Segments

open co m p lete
> mega
e n t e r f i l e name (q u i t 1 t o a b o r t) [machine4]
f i l e t e s t ' a lr e a d y e x i s t s - o v e r w r i t e [y] / n
c h eck in g fo r d u p l i c a t e nodes . .
d u p l i c a t e : _ i l _ c l 4 _ c l 8 -> p e c a l
ig n o r e d . _pe e l l . r o t o r -> l l ccag e l l , both

s i

on s e p a r a te s l i d i n g i n t e r f a c e s

RJRJ
Rl

removed 1 d u p l i c a t e node
I f you h a v e n ' t e n te r e d d im e ns ion s in m etres you must now e n t e r a s c a l i n g f a c t o r
f o r exam ple , IE -3 or 0 .0 0 1 i f u s in g m i l l i m e t r e s
Enter a s c a l i n g f a c t o r [1 . 0] :
ex p o rted 12350 nodes
ex p o rted 14982 e le m e n ts

Figure 2.34: Exporting Mesh To A Finite Element Solver

80

UNSET*

v»v>at

■'A

Figure 2.35: Exporting Nodes And Elements To A Finite Element Solver

2.11 Transform ation Of The High Speed M otor

Into A n Induction M otor

If we wanted to use a different rotor configuration, to turn this into an induction
motor, we can put our reuse ability to the test with the import of another library
component. Figure 2.36 shows the geometry of an induction machine’s rotor, a
definite case of here’s one I did earlier. Figure 2.37 gives the more attractive and
colourful illustration that better identifies the rotor’s regions.

Finally, in figure 2.38 we can see full induction motor using MEGA’s pre-processor.
End of gratuitous screen shots.

81

Figure 2.36: Rotor Library Component Of An Induction Machine

Figure 2.37: Rotor Library Component Of An Induction Machine With Regions
Highlighted

82

AK x aFILE : t e s t 2

w m -

••

g p

Figure 2.38: Rotor Of Induction Motor Imported

83

Chapter 3

Communication Between Objects

To make a point communicate with a line when its position changes, so that the
line can change accordingly, we need a form of communication between our data
objects. This communication should work across all objects without the need
for any unique implementation beyond basic necessity, after all we are using an
Object Oriented Programming scheme.

3.1 Parents and Children

The design approach used starts with basic numeric values, independent of other
data objects, working up to symmetry components. This relationship is the basis
of a dependency tree, once a value changes the dependent objects need either to
be updated immediately or flagged to ensure an update occurs when they’re ac
tually used. The dependency works in one direction through the tree. The initial
values are parents to the points and other objects that ultimately end with the
components. We can consider the dependency in terms of parents and children.
The initial values are without parents, subsequent objects, taking these values as
arguments, are the children of these values; these objects in turn become the par
ents to subsequent objects that take these as arguments in their definition. The
dependency therefore involves the use of a list of parents and children within an
object. Creating this as a stand alone object allows reusability, objects inheriting
this dependency object can all be referenced as a dependency object regardless of

84

their final form. Our dependency tree becomes a network of dependency objects,
each of which contains a list referencing the parent dependency objects and child
dependency objects. A polymorphic function within the dependency object need
only be implemented by the inheriting object, the purpose of which tells that
object to do the necessary update to its state.

The abstract nature of the dependency object has resulted in it being called a
Thing. An example illustrating the dependency relationship is as follows, starting
with the creation of two values:

x = 1

y = 2

These values will always be without parents and are childless until we define a
cartesian point referencing them as attributes:

p = vvpoint (x, y)

Now both the values have the point as a child, the point has the two values as
its parents. As values and points inherit the dependency object, Thing, the lists
of parents and children will point to the dependency object part of the value
and point object’s structures. Hence it is possible to reference any Thing derived
object in these lists. This poses the question, once an object is referenced in this
list then how do we tell what type of object it is? It could be a value, it could
be a point. To the outside world, looking at the object, some kind of mechanism
would indeed be needed to establish the type of object once its identity is lost
and it becomes a generic Thing reference in one of these lists. Something easily
remedied with run time type identification, a mechanism found in the C ++ OOP
used, or the use of text fields identifying types and families. However the point,
being a concrete representation, knows it was constructed from two values. The
two references in its parent list must thus identify these two values. From this
we can deduce that the order of the parents, contained in the parent list, must
never be tampered with.

If we were to add a third value and a second point as follows:

85

x2 = 2
p2 = vvpoint (x2, y)

The y value now has two points as children. From this it can seen that objects will
always have a fixed number of parents, the order of which must be maintained,
however the child lists can contain an arbitrary number of references. If we were
to delete point p such that its reference were removed from the child lists of values
x and y, it can be seen that the order of the child lists is unimportant.

3.2 Public Accessibility

To facilitate the explanation of dependency operation, this is how the basic Thing
looks, table 3.1 shows the functions that are provided publically, to the whole
world, and table 3.2 shows the protected functions that are accessible only to
derived objects.

The purpose of public functions are as follows:

family, typ e :
A means of identifying an object’s family and type. Families of objects
allow interchange of family members within the dependency tree, chap
ter 5 explains this further. The earlier example include objects of the value
and point families. The type identifies a particular object, all types being
unique. The example included the vvpoint type of the point family in our
example.

label, nam e, nam espace :
Each dependency object has a unique name, used to identify it within the
model. For the floating point value “x = 5” , x would be the assigned label.
A name space may be used, such as width.slotl and width. slot2, allowing like
named variables to be used in different areas of the electrical machine. The
label is the summation of the name and name space using the full stop as a
separator, any number of parts may exist to a name space; this allows the
nesting of name spaces, such as width.slot2.machine, with the name space

86

Public Methods

virtual
virtual const char*
virtual const char*
const char*
const char*
const char*
const ThingList&;
const ThingList&
bool

void

void

bool
bool
bool
bool
virtual bool
virtual bool
bool
virtual bool
virtual void
virtual void
void

Thing ()
'•'■'Thing ()
family () const = 0
type () const = 0
label () const
name () const
name_space () const
parentCList () const
childCList () const
flag (unsigned n) const
setFlag (unsigned n,

bool b)
flagD ependents (unsigned n,

bool state)
pending () const
invalid () const
retired () const
orphaned () const
retire ()
reinstate ()
reco (bool down = false)
can W rite () const
outX (ostream &out)
outG (ostream &out) const
outFam ily (ostream &out) const

Table 3.1: Thing Public Interface

Protected Methods

void setLabel (const char *str)
ThingList& parentList ()
ThingList& childList ()
void adoptParent (Thing *parent)
void disownParent (Thing *parent)
virtual bool _reco ()

Table 3.2: Thing Protected Interface

87

operating in a like manner to internet domain names[16]. Future work,
chapter 9 would concentrate on an intuitive graphical user interface that
allowed the designer to use multiple windows viewing the same machine,
each view allowing confinement to a name space.

parentC List, childCList :
A method of read only access to the list of the object’s parents or chil
dren, this prevents unwarranted access to this sensitive data allowing mis
cellaneous access to, for instance, verbosely print dependency information.
Write operations on this data is performed through the parentList and
childList functions of the protected interface.

flag, setF lag, flagD ependents :
To be versatile and efficient on memory the Thing stores boolean flags as
the states of different bits within one integer variable, similar to bitfields
within C[17], only new flags can be requested, or unused flags relinquished.
With this mechanism a new flag can be requested, reserved for use across all
dependency objects, for the lifetime of a particular operation. This method
is used when saving data, marking objects as saved whilst ensuring no object
is written out until all the objects it is dependent upon have been. The flag
and setFlag functions read and write the boolean state of a flag according
to an index that identifies the bit held to store this information. In order
to mark all the dependents of an object, children and grand children and
so on, flagDependents is used.

pending, invalid :
Changes need not take take effect immediately, should the state of an object
change it can mark any dependent objects as requiring an update by setting
their pending flag. Only when an object’s state is accessed does it need
to check the pending flag and update its state if necessary. For invalid
objects, imagine two segments, once intersecting, no longer intersect; the
intersection point is now invalid. Invalid objects should not allow their state
to be read, the effect could be damaging if not just incorrect. Both these
functions provide access to flags using the flag function, they simply used
stored indexes pointing to the correct flags.

retired, orphaned, retire, reinstate :
More flags are provided by retired and orphaned using stored indexes; these
flags offer an insight into the state of the model precipitated by the retire

and reinstate functions. These functions are better explained in chapter 6.

reco(bool down = false) :
A very essential function meaning “update your state if necessary”. This
is the easy way to make sure the object is current and thus whenever an
object’s state is accessed, this should be called first. The function will
recursively access all parents or children, depending on whether the down
variable is set to false, the default, or true respectively, updating their
state if necessary. This function can therefore be used to either ensure
that all parents are up to date, so that this object can be updated, or all
children are up to date, because this object has been changed. The value
returned by this function is true if the object has a valid state, allowing the
object to be ensured updated whilst accessing its validity simultaneously,
and thus whether to use the object. The pending flag is used by this
function during the recursive check of parents or children to determine
whether anything actually needs to be done; hence efficiency is maintained
by avoiding updates of current states. This function is further detailed,
later in this chapter..

can W rite, outX , outG , outFam ily :
All objects can output a list of their dependencies in the form of “name =
(parentl, parent2, ..)” , this is done with outG and provides the format used
for saving the model to file. However, further information on the objects
state may be provided if the object implements outX and canWrite. Values
do this in the G Value base object to print the real and complex parts of
their representation. Finally, outFamily will print a nicely tabulated display
of the parents and children of an object. This provides knowledge of the
object connections and has been a very handy tool in the debugging of
dependency tree manipulation tools.

The Thing’s protected functions are accessible only to objects inheriting from
Thing. This interface gives a little more access to the object’s representation:

setLabel :
Allows the object’s unique name to be set.

parentList, childList :
Methods providing read and write access to the list of the object’s parents

89

and children.

adoptParent, disownParent :
Usually adoptParent is called when a concrete object is constructed, this
function attaches the calling object to a parent such that it becomes the
parent’s child. This object has then become part of the dependency tree of
the model. The reverse action to this, disownParent, detaches this object
from the stated parent, isolating it and any dependent objects from the
parent and most probably the dependency tree.

_reco :
this polymorphic function is to be implemented by the concrete object
representation ultimately inheriting this functionality. The function imple
ments the concrete object’s action of reading in data from parents in order
to update its state; it implements the mechanism of converting the data
acquired from the parents, defining its interface, into the generic represen
tation that is usually defined by the base class object of its family. The
function is only called from the generic reco function and returns a logic,
boolean, value indicating the success of the conversion; if false, the object
becomes invalid.

3.3 Reconstruction of D ependency Tree M em
bers

One function within Thing is of great significance, explaining the reco function
gives a good insight into the operation of the dependency tree. When the data
of an object is accessed, through its interface, reco should be called to ensure the
state of the object is current and valid. This is usually automatic, for instance
the display of objects will call this function and skip display of the object if it is
invalid. The display function returns no data, however functions returning data
on this object should take this measure to ensure validity of the object before
accessing its data; if the object has an invalid parent, and is thus invalid itself,
the action of reading invalid data could be damaging, the object may be without
data being unable to read the necessary parameters defining it from the parent.
Most data access is done as a result of updating the dependency tree, this action

90

itself safeguards against this eventuality through the reco function and as a result
the use of reco is seldom used externally.

Here begins the definition of Thing’s reco function:

bool
Thing::reco(bool down)
{

if (IpendingO) return !invalid();
Thing *parent;
ThingListlter parents(_parentList);
while ((parent = parents.next())) {

if (parent->pending()) if (!parent->reco()) return false;
}
if (!_reco()) {

setFlag(PENDING, false);
setFlag(INVALID, true);
flagDependents(PENDING, false);
flagDependents(INVALID, true);
return false;

>

setFlag(PENDING, false);
setFlag(INVALID, false);
if (down) {

Thing *chiId;
ThingListlter children(_childList);
while ((child = children.next())) child->reco(true);

>

return true;

Now we’ll explain each significant block in turn, starting with the opening of
the definition. By default the boolean value of down is false, meaning update
parents only when calling this function. The mode of operation can be changed
by inverting this value, resulting in changes immediately cascading down the
dependency tree once this function is called.

91

bool
Thing::reco(bool down)
{

When a parent changes state it flags all children as pending, if our pending flag is
not set then nothing has changed. Return immediately with the value of Unvalid,
i.e. logical true if we’re valid.

if (IpendingO) return !invalid();

Getting this far means we’re pending, we need to ensure the state of our parents
is valid before checking our own state. The following cycles through all parents
checking validity. Bearing in mind that this prompts the same action in our
parent that we’re currently stepping through ourselves, then if one parent should
prove invalid we stop immediately. That parent will see that it marks itself invalid
along with all dependents, th a t’s us, so we simply return false stating that we’re
in an invalid state.

Thing *parent;
ThingListlter parents(_parentList);
while ((parent = parents.next())) {

if (parent->pending()) if (!parent->reco()) return false;
}

The above has certified our parents valid and their state current. We call the poly
morphic function _reco to get the concrete representation to convert its defining
data into the generic representation. This function will return true if success
ful, false otherwise. In the unsuccessful case we’re no longer pending and we’re
no longer valid too. We can mark all dependents likewise to ensure the program
doesn’t go and extensively check them too. Should they have called our reco func
tion, they would abort at the above stage. The idea is to minimise the processing
involved.

if (!_reco()) {

92

setFlag(PENDING, false);
setFlag(INVALID, true);
flagDependents(PENDING, false);
flagDependents(INVALID, true);
return false;

}

With the last stage proving successful we can mark ourself as current, not pend
ing, and valid.

setFlag(PENDING, false);
setFlag(INVALID, false);

The exceptional mode of use, now we ensure all our children update their state.
They will perform the above; they will stop at the first, parent non-pending,
stage for the case where the parent is us, and will recursively check upwards for
any other parents. Therefore, they may still prove invalid, even though we are
valid, due to one of the other parents.

if (down) {
Thing *child;
ThingListlter children(_childList);
while ((child = children.next())) child->reco(true);

>

All is successful, return a valid status of true

return true;
}

For what use is the exceptional mode when our dependency oriented data struc
ture does not use this method? Object Oriented Programming is, among many
things, designed to make reusable code by producing objects dependent on as
few other objects as possible. The application of these objects to other areas

93

saves time in the future. Not wishing to bind the graphical user interface of this
program to a particular graphical system, the used method of graphical widgets
were abstracted behind my own interface. The idea being that should another
graphical system be used, that implementation could be made behind my ab
stract interface and the new system plugged in as a replacement. One difficulty
in this is the placement of graphical widgets within the physical window, they do
depend on one another for their placement. Therefore, the widgets were inher
ited from the dependency object. Re-using the InfixGValue to provide a means
of describing the placement of widgets, the object builder of chapter 5 was reused
to construct widgets along with value objects that depended on and controlled
the x, y, width, and height values of the widgets. The “downwards” action of the
dependency tree is used, for example, such that if the window size is changed,
that change immediately cascades down the dependency tree updating dependent
widgets; the effect of the re-size being immediate, rather than postponed as our
model data structure facilitates where changes need only take effect when needed.

3.4 Constraints

Dependency works down the tree from the real and integer values to higher level
objects. This motion simplifies the inter-object relationships as an object will
always be constrained by its parent. Different concrete representations, chap
ters 2 and 7, allow the same types of object to defined in terms of different
parameters which become their parents. Arcs, lines, and circles are all segments,
concrete representations of these segment types allow them to be created in any
manner necessary for a design strategy since the addition of a concrete repre
sentation requires no modification to the existing objects. Amongst the arc’s
concrete types defined exist contrasting variations, one specified by its start,
through and end point, another using a center point, start point and end point,
a third using a center, radius and angle values. Differences between these lie in
the order of dependency; a three point arc depends on the position of the three
points, a center, radius arc depends on the center point and the other values;
this type creates points at it’s start and end which depend on itself, this is the
default behaviour for objects that are not defined by points as they themselves
construct points dependent on their open ends to facilitate connection to other
geometries, see chapter 6. Therefore, the two types explained differ significantly

94

in their constraining behaviour. The dependency tree governing the model fil
ters changes down the tree so behaviour is dictated by dependency. Rather than
needing explicit constraints, the dependency relationship implicitly defines these;
a line dependent on two points must vary it’s length according to the distance
between points, whereas a line defined by a starting point, angle and length will
create end points which must move as the line’s length changes. This constrain
ing effect simplifies the desired parameterisation response within a model and it’s
effects are immediate. It avoids the need to explicitly define constraints between
all objects in order to effect the desired parameterisation. The cost of iterating
over simultaneous equations resolving these constraints is also avoided. A state
change affects dependent objects only, the repercussions echoed in a single pass
down the tree, as opposed to iterations of an order corresponding to the number
of couplings between objects[13].

95

Chapter 4

Building Objects, Pre-processing

There are a number of objects related to the mechanism of constructing build
ing block objects and placing them into the dependency tree. The first step
involves the pre-processing of user input. Input is taken in the form of a string of
characters. Build of an object can always be recognised by a valid object name
followed by an assignment; valid object names begin with letters, or underscores
if internally generated by the program, thereafter containing any combinations
of numbers, letters, underscores and full stops. Names beginning with numbers
are specifically disallowed.

Once the character string input is identified, conversion to an Expression can
commence. The Expression breaks the string of characters down into sections
according to specific formatting. Expression types exist for different format
ting requirements, the mathematical expression handles the assignment format
used for building objects whilst the command expression handles other require
ments. A mathematical expression breaks the string down so the builder, after
pre-processing the expression to expand any shortcuts, is able to immediately
identify the variable name, type of object and the arguments supplied to that
object. The builder takes the object type and looks for a matching Prototype.
For every building block object a prototype exists of the same name, it’s their
job to check that the supplied arguments match the object’s requirements. They
can perform any necessary processing on the argument data, checking types and
quantities, before building and returning the object to the builder. A mecha
nism for type checking exists such that should the supplied arguments specify

96

non-existing objects, that information can be used to try and build an object
of the correct type. This recursive mechanism allows the user to build objects,
specifying arguments in terms of unbuilt objects that will be automatically man
ufactured prior to the main build. Thus it allows nesting of expressions, with it
being possible to construct an entire model on a single line of input.

With a completed build, the object is inserted into the dependency tree at the
appropriate positions; if the named object already existed in the dependency
tree, that object is pulled out of the tree, the new object is inserted and the
dependency tree is appropriately modified.

Finally, post-processing is performed by the builder. This may involve the build
of subsequent objects specified by the object just built, the re-intersection of
affected segments and components, and an update of displayable objects with
the display.

4.1 Formatting Input To Expressions

Data entry is either from file, console or graphical user interface. Regardless of
the method, data entry begins with a common character stream representation.
The stream is checked for the assignment pattern that tells the program an object
type is being assigned to a variable name. The Builder object takes its input as
an Expression describing the object to be built.

4.1.1 Expressions

An Expression is a linked list of character strings designed to ease the input of
user provided text. For that reason, the expression has a few safety features
that ensure that, should the amount of input fall short of that expected, empty
text strings are always returned when data has been exhausted. This prevents
extensive testing throughout the program for the null pointers usually returned
by the linked list, of C++ origin, that is reused extensively throughout this
program. Instead, the expression has inherited the linked list and extended its
interface to provide methods through which its list can be accessed in a protected

97

manner. As a result, a function operating on a string will at worst operate on an
empty string and never a null pointer; that would certainly cause the program to
terminate.

The user input, having being recognised as data input, is now converted into
an expression by an Expression Parser. This involves splitting the stream of
characters into individual characters or blocks of characters. It is akin to taking
a sentence and splitting the sentence into its separate words by cutting at, and
removing, the spaces. The expression would by a linked list of words. Reading
the expression with an iterator would result in sequential access of each word,
from start to finish, of the sentence. The end of the sentence being denoted
by an empty character string. The safety mechanism of the expression would
ensure that should another word be asked for, empty strings would thereafter by
provided. This protects the program should only one word be contained within
an expression where the program expected more.

4.1.2 Expression Parsers

A stream of characters, an istream in C++, provides the input for the Expression
Parser. As long as input is supplied, the expression parser will process the stream
of characters deciding where to cut and store lengths of characters as an expres
sion. Multiple expressions can be entered simultaneously allowing the parsing
of files, expressions denoted by separate lines with the line feed separator, and
single line inputs, the semi-colon as a separator. Several expression parsers exist,
all derived from the generic expression parser that provides the core functional
ity. A Mathematical Expression Parser cuts the input stream separating names,
numbers, grammatical symbols and mathematical symbols, passing text within
quotes untouched and otherwise stripping all spaces and tabs, white space, from
the input. To do this, the parser requires knowledge of what constitutes a name
or a number. This knowledge is required else where and therefore a separate
object provides this mechanism allowing object reuse. The parser is therefore
simplified, easier to maintain, having a few mechanisms to handle quoted text
and reversing of the input stream to amend past decisions.

98

4.1.3 Expression Identifier

The Expression Identifier has the knowledge needed to identify strings of char
acters. It identifies a number as potentially having a decimal point, an exponent
e, and a unary sign, but disallows multiple instances of these characters. Valid
names are identified, allowing alphanumeric characters, full stops and under
scores. A valid name is a2slotl.namespace, whilst 2aslotl.namespace, actually
a shortcut for 2 * 2slotl.namespace, would fail. Signed floating point, real, num
bers, integers and names can be identified. Mathematical expressions, checking
for balanced parentheses, unary, and binary operators, are also identified. This
allows short cuts in the input, with correct identification this can be accepted and
expanded to the full format recognised by the program. If the format of names
were to be expanded, as was the case when name spaces were added, an update
to this object would reflect the change across the whole program.

4.1.4 M athem atical Expression Parser

The following are examples of the way an input stream of characters is split, with
each block of split characters being stored as the next token of an expression.
Spaces denote the splitting of tokens within the expression:

the raw input:
a=ppline(wpoint (0,0),vvpoint (5,5))
the expression:
a = ppline (vvpoint (0 , 0) , wpoint (5 , 5))

the raw input:
a=vvpoint(namela*+2/(3name_b),~y_val)
the expression:
a = vvpoint (namela * + 2 / (3 name_b) , -y_val)
the shortcuts implied:
a = wpoint (infix (namela * +2 / (3 * name_b)) , neg (y_val))

b=-b
b = -b

99

b = n e g (- b)

b=-3.Ie7— b
b = -3.1e7 - -b
b = infix (-3.1e7 - -b)

b=3 (x— 2y)
b = 3 (x - -2 y)
b = 3 * (x - -2 * y)

4.2 The Pre-Build Processor

The Builder receives an expression through its evaluateExpression interface func
tion. This entry point performs a check on the input, it allows creation of objects
with names preceding with an underscore only if an internal flag is set; this
allows for file input of manufactured names denoted by this underscore. Manu
factured names denote variables manufactured by the program itself, these being
adjustable only if already existing. The reasoning behind this is that the naming
system reserves these names for use by the program at the appropriate instance.
Once created their state may be altered, however the unique naming allows the
program to identify objects and perform some appropriate house keeping. This
check aside, the evaluateExpression function then calls processExpression to do
the real work.

4.2.1 Expression Resolver

Having said the processExpression does the real work, it actually delegates it to
two intensive tasks. The first of these is the matching of the object type to be
built. This task’s performed by the GBuilderExpressionResolver object. First
checking to see if the input method indicates a file read is in progress, it decides
whether to check briefly or extensively. For instance, if a file were being read
the input is likely to be formatted correctly having been written by the program.
This allows a brief resolution of the input by reading the object type as the first
name after the assignment, “= ” , sign. This method can of course fail if the file

100

was modified, then the fall back is to use the default, and very verbose, method
used for general input. Parentheses are checked for the balance of opening and
closing brackets, should the expression be of the form:

x = (5)

then the enclosing brackets are removed. This example would then match the
first check, using the Expressionldentifier object we would recognise this as an
integer assignment. This expands to:

integer expansion..
name int 5

We have removed superfluous formatting, leaving the essential name, type, and
defining value. Passing the integer test, the expression resolver returns the name
and type as separate entities to the builder; the expression, as the third entity, is
left containing all defining values for the type, in other words the arguments to
our variable’s type. It can be seen that shortcuts in the input allow, for certain
object types, omission of the type of object being created. The second test, should
the integer test fail, checks for real numbers. Qualification of the following input
would result in the type being set to real:

real assignment examples..
name = 4.4 # shorthand for name = real (4.4)
name = 2.3e5 # name = real (2.3e5)
name = -3.2 name = real (-3.2)

Now for a few more interesting types, starting with the negation of objects of the
value type:

where y is a variable of the value type,
x can be the negation of y..
x = -y
shorthand for..
x = neg (y)

101

Assignments are another recognised shortcut that don’t just apply to values.
Taking “a = b” , where b is a value, this expands to “a = value (b)”. Likewise,
assignment of points would be performed for “p i = p2” if p2 were found to be
a point. The pattern “variablel = variable2” is recognised, variable2’s type is
determined, the type name is found and the expression expanded. How is the
type name found? Well, all object types are created using a prototype. Prototypes
will be explained shortly, however they define the construction of an object type.
As a result, they can be interrogated to determine the arguments an object, these
are the concrete representations, requires. Assignments can be recognised easily
because for “variablel = assignment-type (variable2)” , the prototype needed
will state that one argument is required, that argument is the same type as
the object being created. All that need be performed is a search for prototypes
constructing objects of the same type as variable2 which take one argument, that
argument again being of the same object type as variable2. This mechanism has
an advantage, some object families are harder to clone and the implementation
of the assignment object type for that family can be postponed; when it is added,
the search through prototypes will pick the new object up and all assignments
for that family of objects.

example assignments..
values..
a = b
a = value (b)

points..
pi = p2
pi = point (p2)

segments..
linel = line2
linel = segment (line2)

Finally, the last recognised shortcut is for the infix value type used to handle
mathematical expressions. The following patterns are currently recognised as
valid. Additions to these rules take effect with the modification of the infix
identifier within the Expressionldentifier object. This function simply looks for
the patterns of tokens within an expression and is easily modified.

102

allow 2 a, infix expands it to 2 * a
v = 2 a
allow 2 (, infix expands it to 2 * (
v = 2 (x + y)

deny a (
these would be confused with nested declarations
1 = ppline (vvpoint (x , y) , p2)

allow binary operators
v = 1 + x
v = a * y
allow unary operators
v = 1 + -x # infix expands to 1 + -1 * x
v = -a * y

Once these tests are complete, the only course of action is to assume the type was
entered. Then the token of the expression, following the assignment, is examined
against the list of all object types that can be built. If a unique match is found,
the name and type can be identified to the builder; the remaining tokens of the
expression are taken to be arguments supplied for the build of the object. These
are now reduced, the parentheses are examined and the expression is compressed
for compatibility with nested declarations. For example, a vvpoint takes two
value arguments, x and y, as follows:

p = vvpoint (x , y)

If we were to supply, ignoring the fact that we can use short cuts, x + 1 and y
+ 1:

p = vvpoint (infix (x + 1) , infix (y + 1))

We would want to compress this expression as follows, noting that spaces de
note separate tokens within the expression, so that the vvpoint still received two
arguments:

103

p = vvpoint (infix(x+1) , infix(y+1))
the resulting two arguments with all superfluous grammer stripped..
infix(x+1) infix(y+1)

This can be performed by compressing the text between the first bracket and
comma, this comma and the next comma, and there on until the last comma and
bracket. Attention needs to be paid to parentheses. After finding an opening
bracket, discovery of a second bracket means we’ve entered a nested declaration,
discovery of a third bracket meaning we’ve entered further into another nested
declaration, and so on. Concentrating only on the arguments for the top level
object declaration, we compress all nested declarations by ignoring commas found
in nested declarations; this is done by monitoring the number of open brackets,
only when we have one open bracket do we honour a comma and separate those
arguments into a token.

a fully expanded expression prior to compression..
1 = ppline (vvpoint (1 , 1) , vvpoint (2 , 2))
the compressed version providing just two arguments for the ppline..
1 = ppline (vvpoint(1,1) , vvpoint(2,2))

4.2.2 Prototypes

With the expression successfully broken down into the name, type and optionally
some type arguments, the expression resolver tries to find a matching prototype
to build this object.

For every concrete representation of a type of object, such as addition , sub
traction and infix value types, there exists a prototype. A Prototype, detailed
in table 4.1, constructs its associated object. All objects have a type and fam
ily identifier, for a multiplication value the type would be mult with the family
being value. These identifiers are present in the actual concrete representations
and their prototypes, we can not only search for a particular type but should we
be less sure of a match we can search through family members; this is also useful
if we want to replace a particular object with another of the same family.

104

Public Methods

virtual
const char*
const char*

virtual Thing*

Thing*

virtual unsigned
virtual const char*
virtual int
int
int
GBuilder&

= 0

ProtoT ype (GBuilder &builder,
const char *type,
const char *family)

P rotoT ype ()
typ e () const
family () const
construct (const char *name,

const Expression &parms)
construct (const char *name,

const ThingList ^parents)
param eterTypes () const
param eterType (unsigned n) const
param eterScope (unsigned n) const
m atchB yType (const char *desc) const
m atchByFam ily (const char *fam) const
builder ()

Protected Methods

check (const char *myname,
, , const Thing *parent,bool , . ’ constconst char *parentname,

const char *parenttype)
param eter Check (const char *myname,

bool const char *nextparm, const
const Expression &;parms)

Table 4.1: Prototype Public and Protected Interfaces

105

Prototypes have knowledge of their respective concrete counterpart required for
its build. Upon receipt of an expression containing arguments for the object’s
build, the prototype will check these arguments for compatibility; should this
fail, the prototype will return a null pointer denoting this. In order to preempt
this, such that we can be sure of supplying the correct arguments, the prototype
has in its interface the functions capable of supplying this information. This
is useful, for example, in supplying a graphical user interface for the input of
the correct data, or for searching prototypes for specific matches; one such case
being the search for assignment types, recognised as requiring one object as a
build argument that is also of the same type as the assignment object itself.

The prototype’s type specifying interface has three functions, parameterTypes
tells us how many types of object the prototype requires:

for example,
the multiplication value requires one type, the value type.,
a = mult (value1 , value2)

the pvcircle requires two types, the point and value types.,
c = pvcircle (centre_point , radius_value)

The function parameterType identifies the required types, parameters cope iden
tifies the quantities of the required types. Therefore, if parameterTypes told us
three types were required, parameterType and parameters cope could be called
three times as parameterType (0), parameters copy (0), parameterType(l)) parame-
terScope(l), parameterType (2), parameters cope (2). Instead of a specific quantity,
parameters cope can return 0, meaning optional, -1, one or more required, -2, two
or more required, and so on.

4.2.3 A Factory of Prototypes

To facilitate in the search for a prototype, matchByType and matchByFamily
functions compare a given, and possibly incomplete, type or family against the
respective type or family of the prototype. However this matching needs to be
performed for all prototypes, at least until a match is found, and th a t’s where the

106

factory comes in. A builder, GBuilder, has a factory, GFactory, and the factory
contains a list of prototypes thus describing what it can build. Inheriting from
the generic factory, factories can be built with a base list of default prototypes;
additional prototypes can then be added later, usually by builders, inheriting the
generic GBuilder, to create customised factories that produce objects to specific
build requirements.

Finding a prototype match via the factory is done so by calling search Proto Type
with a description of the object, the factory will first try an exact match and
then, if specified, try to match as much of the description as possible to likely
candidates* Should it match a variable, if that variable exists then parameters for
that variable are read from the prototype. At the point of entering a type, other
types from the same family are listed to allow the change of the variable within
the possible scope. At the point of entering arguments, grammar is examined
to determine the argument being entered, taking into account nested declara
tions, such that a list of available variables, of the correct type, can be listed
and completed against any entered text. This applies to the input of new data
too; once a new variable name is recognised, all types are listed. When a type is
entered, it is checked, the required arguments queried, and possible variable and
type completions displayed. This allows the user to enter arguments of existing
variables or types for nested declarations; once a nested declaration is entered,
completion will act upon the arguments for the nested declaration, to any depth,
until it is completed and the higher level argument list completion can continue.
This whole process is facilitated by the factory whose matchByParameters func
tion will check the argument type list against a prototype, verifying a match,
highlighting errors and predicting the types required for completion.

107

Chapter 5

Building

Having had a prototype returned to us via the pre-processing stage of the build,
chapter 4,, the next stage is to construct our object using the prototype. Here the
builder does a few checks, firstly it looks to see if an object already exists under
the name returned by the pre-processing stage. Names are unique, the name
check simply involves the parsing of a “model” list looking for a match; whilst
parsing the dependency tree is relatively fast and straight forward, a linear list
of all objects is quicker to examine. The builder therefore maintains a lists of all
objects currently within the dependency tree, since the builder is responsible for
modifications of the dependency tree. If no object exists within this list under
the name of the new object to be, the builder immediately proceeds with the
construction.

Should an object already exist of the same name, the builder assumes a reas
signment is taking place. For this to occur, the two objects must be compatible.
Objects dependent upon the existing object are expecting a particular family
of object, whatever the concrete representation may be, the dependent object
is accessing the generic interface of a value, point, segment or other type. The
new object must match this type otherwise the program will fail; the dependent
objects contain a list of parent objects in the form of pointers to Things, see
chapter 3, only they know what objects they really cast to. The new object must
cast to the same type for the program to operate correctly. Also, the dependent
objects only know how to convert their particular concrete representation into
the generic representation. Altering a type of object they depended upon would

108

also cause them to fail. The builder therefore verifies the match of the existing
and new objects families by comparing the results of the family function from the
existing object and the prototype for the new object. Verification of matching
families allows the builder to proceed with the construction as per the case of a
new object.

5.1 Construction Via the Prototype

All prototypes have a construct function; being passed the variable name of the
object the prototype is to create, along with an expression of the object’s defining
arguments, the prototype sets forth on its constructive path. The builder now
acts as a resource to the prototype which, having the knowledge specific to its
particular object, sets forth verifying any provided input in order for to ensure a
successful object build.

Taking the input “p = vvpoint(x,y)”, the vvpoint prototype will receive the name
p and argument list of two tokens x and y. Firstly the prototype will check that
x exists and is a value, to do this the prototype will access the builder that
initiated the construction and enquire about the variable. The builder has a list
of all variable objects that it has constructed, this list reflects every object in the
dependency tree. Instead of a dependency tree search, the builder can search its
own list for particular objects; this is quicker, the builder assumes responsibility
for correlating this list with the objects of the dependency tree for every action
taken upon the dependency tree.

5.1.1 Lookup of Object Variables

The builder has two generic functions, resolveThing looks through the builders
list, a list of Things from which all objects are derived, searching for a named
variable according to a given type of family; upon finding the named object,
noting all objects are uniquely named, the builder can then check the family of
the object is correct and return it to the prototype. The prototype, happy with
this resolution, advances to the next argument it has to check in the example, y.
Successful referral of these two variables allows the prototype to proceed with the

109

construction of the object, passing the referenced variables through as the argu
ments required to construct the object. Failure to resolve any of these arguments
would cause the prototype to return a null pointer to the builder signalling the
failure, the prototype would print useful messages to the user explaining the prob
lem using generic functions within the template prototype which all prototypes
inherit; constructing a prototype is thus made as simple as possible, requiring
the implementation of the polymorphic construct function.

To facilitate use of resolvcThing by the prototypes, a file is provided containing
macros that supply the type of family required by the builder. Our vvpoint
prototype will then use resolveValue to find if value x existed, the resolveValue
macros supplying the value type to the resolveThing function of the builder.

5.1.2 Lookup and A utom atic M anufacture of Object Vari
ables

The second of the builder’s functions is used more so by the prototypes; alter
native to resolveThing is resolveOrCreateThing, mirrored with macros such as
resolveOrCreate Value. If we are to ask the vvpoint prototype to construct “p =
vvpoint(x,5)”, the prototype will successfully look up x as before. However, the
value 5 doesn’t relate to a variable name. We could construct a variable called
five automatically and make variable p dependent upon that, a better solution
is to construct a variable name dependent upon the variable that requires it;
house keeping is easier this way, should we delete p we then know to delete the
automatically manufactured variable too. State of the automatically manufac
tured variable is also independent of the name, allowing us to change the value
of this variable without confusion. The resolveOrCreateThing will automatically
manufacture variables as required. To simplify prototypes, this function is used
by default unless automatic manufacture is specifically undesired. Just as the
call to the resolveThing macro supplied one of the construct arguments, being
the name to lookup, the call to the resolveOrCreateThing macro supplies this
same information. Here, however, it’s the number 5 in our example, and is a
nested declaration for construction. The resolveOrCreateThing macro also takes
the name of the object being created by the prototype along with an identity
tag; the macro supplies another tag indicating the family type and all this in

110

formation becomes the name of the manufactured object. For our example, the
manufactured name of -macroTa,gprototypeTa,g-name becomes ~vy-p indicating
the manufactured object is a value for the y coordinate of object p. Function re
solveOrCreateThing is told by the macro resolveOrCreate Value to look up value
5 which doesn’t exist; the function then creates the manufactured name and asks
the builder to evaluate “~vy_p = 5” , this recursive action now entering the same
construction cycle we initially ventured upon. The builder’s pre-processor will
deduce we want “-vy_p = int (5)” and the int prototype will construct an integer
value of 5 which the prototype will return to the builder, for the builder to return
to our initial prototype allowing construction. The recursive nature of the process
allows use of shortcuts via the pre-processor at all nested stages. Manufactured
names are guaranteed unique and interpretable to the user should they wish to
modify their state.

5.2 W hat to do in the Event of Failure

Image we try to resolve “p = vvpoint(5,y)” which is very similar to the example
before. The vvpoint prototype is found, it calls the resolveOrCreateValue macro
which in turn calls the resolveOrCreateThing to create the manufactured object
-vx-p as the automatically manufactured “x” coordinate value of p. The resolve
OrCreateThing passes “_vx_p = 5” to the builder whose pre-processor determines
the expression expands to “_vx_p = int (5)” , the int prototype successfully creates
the integer value object, returns it to the builder which returns it to resolveOrCre
ateThing. Here it is checked that a value was actually created, as it was, because
resolveOrCreateThing was called by resolveOrCreateValue with the type set to
value. All is successful and the automatically manufactured object is returned to
the vvpoint prototype. Now this prototype calls resolveOrCreateValue asking for
a value named y, the problem occurs if y doesn’t exist. The vvpoint prototype is
told that this variable doesn’t exist, it thus exits after returning a null pointer to
tell the builder that the object p failed in its construction. The resulting problem
lies with the automatically manufactured value object that’s sitting in the depen
dency tree. Whilst this may taint our house keeping, leaving unwanted objects
lying about that could easily be cleaned up at a convenient moment, the failure
exhibits itself if we were to consider that this point object, p, already existed. As
it will be later seen, rather than try to modify the internal state of an object, it is

111

easier and more advantageous to create a new object and swap it for the old one.
Therefore, if point p already resides in the dependency tree and we fail in our
new declaration of p, we run the risk of the newly automatically manufactured
variable erasing the old one; this would leave the dependency tree in an incorrect
state because the newly manufactured variable would certainly be of a different
numeric value.

5.2.1 Inherent Undo and Redo M echanism

To resolve the possibility of leaving the dependency tree in a broken state, as a
result of failed builds, we record the actions of the build after each operation; at
the point after a prototype returns a successful construction, the builder has a
newly created object. Should that object already exist, the builder removes the
old object and substitutes the new object. Here we create a history object that
states a replacement took effect, recording the removed and inserted objects.
Should the object be a new addition, the history object states there was an
addition and references the new object. Each recursive action of the automatic
manufacture process results in a history object being tagged on to the end of a
list of such objects; if a build fails at some point in the installation, the history
list can be parsed in reverse order reinstating objects.

On completion of a successful build, this history list need not be discarded; by
creating a list of history lists, it is possible to traverse this list and restore the
model to any previous state. Travelling backward through the list of history
lists, reinstating the previous state of the dependency tree by traversing the last
history list backwards, we are performing an undo operation. Once restoration
is completed, we can then remove the history list from this undo list and tag it
to the end of a redo list. As a byproduct of the build fail mechanism, the user is
now able to traverse through the various states of the dependency tree. This is
an abstract mechanism, the undo features are inherited when the derived object
inherits from the base Thing and as a result can be applied to any object type
without type specific programming [12].

112

5.3 Additions and Replacem ents

Having determined, at the point the GBuilderExpressionResolver returned a pro
totype, whether an object was being added or an existing object was being re
assigned, the builder will have recorded a respective added or replaced history
object. If the object was an addition, the builder adds the object to the “model”
list detailing all objects currently within the dependency tree. No modifications
need be done to the dependency tree by the builder, the constructor of the added
object handles this; for every parent object that it depends on, it adds itself to
those object’s child lists. This process is performed by the object itself because it
knows what parameters passed to it should actually constitute dependencies. For
each object it depends upon it calls adoptParent, a function within Thing thus
inherited by all dependency objects; this function adds the calling object to the
child list of each parent specified for adoptParent. For the example “p = vvpoint
(x , y)” , the point p will call adoptParent for parent x and parent y as follows:

// constructor for VVGPoint, passed the two x, y value parameters

VVGPoint::VVGPoint(GValue *x, GValue *y, NodeBuilder *nodeBuilder,
const char *str)
: GPoint(nodeBuilder, str)

{
// adopt x and y as parents..
adoptParent(x);
adoptParent(y);
_node = _nodeBuilder->newNode();
// (re)construct the generic representation of the GPoint
reco ();

}

Replacement builds have a little added complexity, the old object needs pulling
from the child lists of its parents and the parent lists of its children; the new object
is then substituted into these lists, ensuring order of parent lists is maintained.
However, the lists of the removed object are kept as intact as possible; this
information allows the object to be reinstated within the dependency tree during
an undo operation. The old object is removed from the model list, a history object

113

is created stating the replacement, removed object, and replacing object, then
the new object is added to the model list. This process effectively deletes the old
object from the dependency tree, without removing the dependents, and inserts
the new object; normally dependents would be removed in a delete operation,
they cannot exist because they reference the deleted parent. For house keeping
purposes, any manufactured objects of the replaced object are deleted. The
new object will have its own manufactured objects created before itself. Should
any of these match the old object’s manufactures by name, the recursive nature
of the builder would mean that they would already have been manufactured
and have replaced those objects; having been replaced, they would be out of
the dependency tree and the builder’s list of current objects. Deletion works
only on object’s within the current dependency tree, allowing deletion through
the subject’s parent list trying to delete any manufactured objects found. The
subject cannot be deleted, it is already removed from the dependency tree, some
of the manufactured parents are possibly removed from the dependency tree,
had they already been replaced by the builder. Any remaining manufactured
variables affected are removed if independent. This ensures that manufactured
objects can’t be deleted should the program user specifically have added objects
dependent upon these. The program will never do this, however it’s possible for
the user to create an object with manufactured objects that the user then adds
dependency upon. The following example illustrates the point:

create a point that results in two manufactured variables.,
p = vvpoint (1, 4)

listing the current model.,
list
_vx_p = int(l)
-vy_p = int (4)
p = vvpoint (_vx_p, _vy_p)

add a dependency upon a manufactured variable..
p2 = vvpoint (5, _vy_p)

remove p, _vy_p cannot be removed as p2 depends upon it.,
rm p
list

114

_vy_p = int(4)
_vx_p2 = int(5)
p2 = vvpoint (_vx_p2, _vy_p)

remove p2 and all will be deleted..
rm p2

House keeping ensures tidiness by removing any manufactured, and independent,
parent object regardless of whether it was manufactured by the object being
deleted. Therefore, deleting the main subject with deleteUp results in deleteUp
being called upon all parents. If they are manufactured and still within the model,
deleteUp will remove them and act upon their parents moving up the dependency
tree actively removing all redundant objects. Manufactured objects only are
removed in this process, other objects, whilst potentially being independent and
unused, were specifically put there by the user.

With the replacing object now inserted into the dependency tree, another generic
function provided by the Thing, is used to flag all the dependent objects as
pending. This means, as we’ve replaced an object they’re dependent upon, that
their state now needs revision. We don’t have to update the states’ of these
objects until i t’s actually required, until then the pending flag ensures that their
states will be revised when time necessitates.

Finally, the builder calls a polymorphic function within the builder itself called
thing-evaluated. The generic builder doesn’t implement this function, its purpose
is to allow inheriting builders access to the individual events that occur in the
build process. An inheriting builder would be able to process events, examining
the built objects in order to perform object specific post-processing upon them.
This allows the base builder to remain as generic and reuseable as possible. Tak
ing the thing-evaluated function, which supplies a pointer to the object just built,
an implementing function in the inheriting builder could construct a list of all
evaluated objects. Easy identification of modified objects is now possible without
scanning of the dependency tree. Additional “hooks” into the build and model
update are detailed in the following chapter.

115

5.3.1 Advantages of Replacem ents

Initially a reconstruct mechanism was tested with objects; when an expression was
entered matching an existing object variable, the parameters of the expression
were passed to the reconstruct function of that object. This worked within a
limited scope, for instance a real value successfully changes state; a line’s length,
dependent on that value, will thus change through the dependency tree. The
line is dependent on a value for its length, it can only be modified by changing
the value it depends upon. There is lMhaiifclie dMicadtiaicBt mec
within the line. The more complex an object, the less scope for modification.
We could not make that line depend on completely different object types, we
could not turn the line into an arc even though the line and arc, as segments, are
indistinguishable to dependent objects.

Actually removing an object and replacing it allowed insertion of the new object
with modified state, equivalent to reconstruction for the simplest of objects like
real values. Dependent objects saw the same type of object, with a different state,
generic interfaces allowed objects to be interchanged provided they had the same
interface. There was however no necessity to maintain the same parents during
this interchange, since the newly inserted object would hook itself into the child
lists of its parents; the old object simply needed to be unhooked from its parents.
This made it possible to replace one object with a like object dependent on
completely different objects, the children still seeing the same generic type of
object. Different concrete representations of a family could be interchanged, the
circle dependent upon centre and radius being switched for a circle dependent on
three points, or the circle being switched for an arc and any other segment. The
user of the program is able to modify the model in a much wider variety of ways,
changing the order of dependency as well as the states of variables.

Had the reconstruct method been used, manufactured variables would have been
reconstructed during the reassignment process; had the process failed part way,
there would be no way of restoring the model’s state without objects themselves
knowing how to undo their reconstruction. Replacement of objects ties in greatly
with the history providing undo and redo mechanisms. Object state and De
pendency tree manipulation are two advantages, an inherent undo mechanism
is another. Objects need no programming for remembering states, this creates
simpler objects and allows the history mechanism to apply to any objects. There

116

is no limit to the depth of model change attainable other than memory size.

117

Chapter 6

Build Post-processing, Updating
the Model

The following chapter concentrates on the builder’s updateModel function. This
function signifies the point in the build where the principal object has been com
pleted, either successfully or unsuccessfully, and the builder is now realising the
effects this has on the entire model. Post-processing of the model is accommo
dated through a few polymorphic functions. The generic builder is designed to
be just so, there is nothing specific to object types; any processing specific to
objects is designed to be implemented in builders inheriting from the generic
builder. These builders can implement polymorphic functions allowing access to
key events in the build and model update process. One such “hook” into the
process has been introduced in the previous chapter, thing-evaluated is a func
tion called after every object is built. The PM GBuilder used by the program
implements this function in order to maintain a list of all objects inserted into
the model for that operation.

6.1 Updating The M odel

Function updateModel is self-contained, designed to be called whenever actions
are taken upon the model. Any model change involves manipulation of the depen
dency tree along with a corresponding reflection within the list of objects current

118

to the dependency tree, known as the model list. Any change is immediate, the
dependency tree and model list are altered by the modifying routine, it is the
history that primarily concerns the model update. This history lists all additions,
replacements and deletions taken upon the model. By default the builder is in
teractive, updating the model after every assignment entered by the user such
that each individual step the user takes is stored separately in the undo mech
anism. If the user added an object, then deleted an object, undo would restore
the deleted object the first executed time, then remove the added object when
executed a second time. Reading input from a file usually involves the creation of
many objects, here the builder is placed into a non-interactive mode and update
of the model is done only when all objects are read from file. Now the history
for the file opening contains as many addition entries as there were objects in the
file, the update stores this as one action and undoing this will remove all these
objects simultaneously. Likewise, the rename command replaces objects with re
named counterparts in one action; as renaming involves manufactured children,
explained next, and parents, the names a composite of the name being changed,
several objects exist in the history of this change. Therefore an update affects as
many objects that were added, replaced, and deleted, since the last update.

In the builder’s non-interactive mode, evaluateExpression doesn’t call update
Model It is the job of the program, such as a file open command, to call up
dateModel at the appropriate time, usually before the program returns to an
interactive state. In calling updateModel a true or false success argument is sup
plied, telling updateModel whether the action succeeded or failed respectively.
In an interactive mode, evaluateExpression calls updateModel passing the built
object as this argument; if successful the pointer to the object counts as true, if
unsuccessful the null pointer passed counts as a false. On success updateModel
will continue post-processing of the model, otherwise it uses the history to reverse
any changes made upon the model before discarding the history.

6.1.1 Additional Object Builds

We have discussed automatic manufacture of parent objects in the previous chap
ter, performed prior to the build requiring these parents in order to manufacture
objects in the order of dependency. Now we discuss cases where automatic man
ufacture of children is required because this is the first action undertaken by

119

updateModel

Taking the segment object, a line segment can be drawn between two points as
in figure 6.1:

end point

start point

Figure 6.1: Line Segment Constructed From Two Points

The dependency of the line segment, figure 6.2, shows by definition that two
points define its extents. We now draw the different line segment and dependen
cies of figures 6.3 and 6.4 using a starting point, angle, starting and ending length
projection:

This example line segment is not bound by any points, nor are there any points
with which to anchor subsequent objects. This segment is quite useless unless
intersected and used purely with intersection points, the definition of a segment
thus stipulates that points should terminate all segments in order to provide
the useful anchor points. The best way to implement this is for these particu
lar segment types to construct the necessary points, rather than have a builder
that needs knowledge of what objects needs special requirements; we therefore
maintain as generic a builder as possible.

Initially these objects constructed the necessary anchor points within their own
constructors. This caused a problem because the dependent points were recorded
by the builder as being constructed before the segment they actually depended
upon, this happening because the builder records objects as a prototype returns
the successful build. Repercussions of this were in reconstruction of the depen
dency tree during undo and redo operations, whilst achievable it was ultimately
found to be much simpler if objects entered and left the tree in order of their
dependency. Moving the construction of the dependent anchor points into the
prototype would also fail for the same reason, object creation had to be postponed
until the prototype had exited.

A solution to the problem was found by taking the expressions, used by the
segment to define dependent anchor points, and supplying them to the builder as

120

IntGValue IntGValue IntGValue IntGValue
[_vx_start_point] L vy_start_poin t] [_vx_end_point] [_vy_end_point]

paren ts: p a ren ts: p aren ts: p a ren ts:
(none) (none) (none) (none)

children: children: children: children:
start_point

-------------- 1--------------

start_poin t

-------------- 1----------
end_poin t

■

end_poin t

i

VVGPoint VVGPoint
[start_point] [end_point]

pa ren ts: p a ren ts:
_vx_start_po in t _vx_end_po in t
_vy_start_po in t _ vy_end_poin t

children: children:
lin e_ seg m en t

I

lin e_ seg m en t

------------- 1-------------

I
I
X

P P G L ineS egm en t
[line_segm ent]

p aren ts:
start_point
end_point

children:
(none)

Figure 6.2: Line Segment Dependency on Two Points

, line_segment

<. projection_point

Figure 6.3: Line Segment Constructed From Centre Point, Angle and Length
Projections

121

IntGValue
[_vx_projection_point]

IntGValue
[_vy_projection jjoint]

IntGValue
[projection_start]

parents: parents: parents:
(none) (none) (none)

children: children: children:
projection_point

----------------1---------------
projection_point

T
line_segment

------------1------------

VVGPoint
[project ionjjoint]

parents:
_vx_projection _point
vy_projection point

children:
line_segment

PPGLineSegment
[line_segment]

parents:
start_point
end_point

children:
(none)

IntGValue
[projection length]

parents:
(none)

children:
line_segment

IntGValue
[angle]

parents:
(none)

children:
line_segment

Figure 6.4: Line Segment Dependency on Centre Point, Angle and Length Pro
jections

122

appended builds; the builder maintains this list of expressions and on successful
completion of the segment build, the builder would process these expressions and
all objects would be processed in the correct order. The mechanism would work
if appended builds yet further supplied appended builds too.

For a segment to manufacture termination points, it would supply the following
expressions to the builder’s appendExpressionF'orEvaluation function. The two
points take manufactured names, produced via the builder’s createLabel function,
to denote their internally manufactured nature:

an spoint takes a segment,
binding to the position of its specified point.
start point of segment,
the ‘O ’ becomes an automatically manufactured value..
_ps_segmentName = spoint (segmentName , 0)
end point of segment..
_pe_segmentName = spoint (segmentName , 1)

The following figures show the final construction, the segment with its termination
points, figure 6.5, and the corresponding dependency tree, figure 6.6.

pe line segment ^

_ps_line_segment

0 projection_point

Figure 6.5: Line Segment With Constructed Anchor Points

If any appended build should fail, the build process is now considered unsuc
cessful; no further appended expressions will be processed and updateModel will
proceed as it would if told previous actions had been unsuccessful, using the
history to restore the model to its state subsequent to the last update. Hav
ing processed these appended expressions in a non-interactive mode using the

123

IntGValue
[_vx_projection_point]

IntGValue
[_vy_projection_point]

IntGValue
[projection_start]

IntGValue
[projectionjength]

IntGValue
[angle]

parents: parents: parents: parents. parents:
(none) (none) (none) (none) (none)

children: children: children: children: children:
projection_point

--------------- 1
projection_point

--------------- 1----------
line_segment

------------1
line_segment

------------- 1-------------
line_segment

i----------

VVGPoint
[project ion^point]

parents:
_vx_projection_point
vyprojection point

children:
line segment

IntGValue
[_vn _ps_line_segment]

PPGLineSegment
[line^segment]

IntGValue
[_vn_pe_line_segment]

parents:
(none)

children:
_ps_line_segment

parents:
start_point
end_point

children:
_ps_line_segment
pejine segment

parents:
(none)

children:
_pe_line_segment

i
i

i
i

SGPoint SGPoint
[_ps line segment] [_pe_line_segment]

parents: parents:
line segment line_segment
_vn_psjine_segment _vn _pe_line_segment

children: children:
(none) (none)

Figure 6.6: Line Segment Dependency of Constructed Anchor Points

124

usual expression processing of the previous chapter, the builder will have these
additions tagged to the end of the current history list.

6.1.2 Beginning the U pdate for Post-processors

The generic updateModel function has now added any objects required by previous
builds, removal of related objects has been performed. Now is the perfect time for
post processing of the model, any changes resulting from this will still be added
to, and subsequently processed from, the history.

The Generic Builder

The generic GBuilder has been kept free of processing specific to particular ob
jects. Pre-processing within the builder used knowledge of low-level objects only,
these being necessary for any build application, with the prototype mechanism
being used to match higher level object types, keeping the knowledge in the pro
totype rather than the builder. Even then, this processing was separated into
the GBuilderExpressionResolver object; first to allow pre-processing without any
object knowledge with the use of a slimmed down expression resolver, and sec
ondly to allow expansion upon the object knowledge, and thus the short cuts in
expressing them, without the need to touch the builder.

Extending the Generic B uilder’s Capabilities

The following functions are polymorphic in the GBuilder, inheriting from the
GBuilder, implementing any of these functions, allows processing on objects in a
sane manner protecting against the unusual effects that can occur when modifying
the dependency tree.

thing_evaluated (Thing *thing_evaluated) :
called after an expression is evaluated and an object has either been added
or replaced. Used by the PMBuilder to maintain a list of modified objects.

125

m odel_update_begin(bool evaluation_was_successful) :
actually called just after model update begins, once the model has the post
processing performed that might add or remove objects. The model has
reached a steady state and the resident objects can be examined safely.
The PMGBuilder uses the list of evaluated things, obtained from the pre
vious function, to identify segments and components whose position has
changed; this allows these objects to be re-examined for intersections with
like objects. This is only done if the operation was successful, evalua-
tion-wassuccessful set to true.

m odel_update_adding(Thing *thing_evaluated) :
added and replaced objects actually exist within the model before the up
date procedure, the history objects describing these actions are simply anal
ysed to cement this fact; their function mainly being in restoring the model
to its original state upon failure. However, the PMGBuilder uses this func
tion to add any such displayable objects to the display. The action updates
a flag that ultimately determines that the display should then be redrawn.

m odel_update_rem oving(Thing *thing_evaluated) :
removed objects, or those replaced, identified within history objects, cause
this function to be called when the update cements this change. The PMG
Builder then removes any such object from the display, should it be of the
displayable kind. The action flags the display for later update.

m odel_update_end(bool evaluation_was_successful) :
finally, a function called when absolutely every update has been performed
and the model has reached its final state. The PMGBuilder uses this
event to display information about the current state of nodes and ele
ments, plus it tells the display to redraw itself if modeLupdate-adding or
modeLupdate-removing changed the number of displayed objects.

The updateModel function now calls modeLupdate-begin to allow further analysis
of the model. Any resulting changes will be included in the history of this op
eration, grouped together as one long list of history objects marking all changes
since the last model update. The nature of the post-processing is likely, as in the
PMGBuilder’s case, to validate many objects within the model. Intersection of
segments, performed by the PMGBuilder causes many intersection points to be
added or invalidated. Until this stage is finished, the model is far from complete.

126

6.1 .3 D ealing W ith Invalid O bjects

If we take two intersecting segments, defined as follows and illustrated in fig
ure 6.7.

draw one line segment from point 0,0 to point 1,1..
11 = ppline(vvpoint(0,0), vvpoint(l,1))

intersect with another line segment from point 0,1 to point 1,0..
12 = ppline(vvpoint(0,1), vvpoint(l,0))

_ps_12

12

il_ll 12

11

_ps_ll

Figure 6.7: Two Intersecting Segments

Now we take line 12 and shift its position so it no longer intersects with line 11:

12 = ppline(vvpoint(0 ,1), vvpoin t(0 .4 ,0 .6))

Figure 6.8 reflects this change, the intersection point -HJ1J2 between these two
line segments is rightly nowhere to be seen; these two lines no longer intersect

127

, __ps_12 pell

12

\ _pe_12/

11

/ .ps_ll

Figure 6.8: Two No Longer Intersecting Segments

and this point has no idea of what position it should take, detecting this it has
returned a false, failure, value from its reconstruction, _reco, function. The generic
reco function within the Thing has thus marked the intersection point invalid, it
would also have marked any dependents invalid too.

The builder’s final parse of the model, before processing the history objects,
checks for invalid objects. Invalid objects can quite happily reside within the
dependency tree. An object’s state is checked, either through the invalid flag or
more appropriately through the reco function to ensure the state is updated if
pending, before it’s used; invalid objects are never used, they are therefore never
displayed, selected, or acted upon by any other operations except a model list
or save. The user will therefore know nothing of invalid objects unless notice
ably missed. The builder will thus check for invalid objects and alert the user;
this allows them to ignore this state, later they can alter the model to re-validate
objects, otherwise they can be deleted if the invalidated branch has become so be
cause it is redundant. Currently only the deletion process is implemented, future
work, chapter 9, would include an interactive element which ideally incorporates
a graphically interactive process.

128

6.1.4 Cem enting Changes

With invalid objects potentially deleted, finally all additions and deletions have
been performed upon the model. Had there been a failure along the line, or in
the main build itself, the history will be used to revert the model to its previous
state, subsequent to the last update. Otherwise, all changes stored in the history
objects will be parsed and filed away to allow later undoing of the changes; having
said that, it’s possible to pass a flag to the builder, upon its creation or a later,
disabling undo operations. Here the undo mechanism still works to the point
that failed build operations can be reverted, history of the changes of a successful
build are simply discarded so that undo and redo operations by the program user
are not supported.

The H istory

Every change has been stored in a history object, this ThingUndo object simply
consists of three fields incorporating an action descriptor and two Thing pointers.
The action descriptor describes the operation, add, delete, or replace, then two
pointers point to “was” and “is” objects. Additions set the is pointer to the
added object, deletions set the was pointer to the removed object, replacements
set the was pointer to the replaced object, the is pointer being set to the replacing
object. From this pattern it can be seen that the action descriptor is redundant,
the pointers amply describing the action, however the descriptor is maintained
should additional actions be added in the future.

Within the builder is a ThingUndoList called _history; as soon as modifications
begin on the model, the describing ThingUndo objects are added to the ThingUn
doList -history. This list is now going to be parsed, if user undo is enabled then
a new ThingUndoList is created for the addition of parsed ThingUndo objects.
Once every ThingUndo object has been removed from the _history, parsed, and
then added to the new ThingUndoList, the new list can be added to the builder’s
_undo list; this is a Thing Undo ListOfLists, lots of lists do seem to be involved in
order to keep track of events! A redo list accompanies the undo list; when an
undo takes place upon the model, all the information within the last -undo list’s
last ThingUndoList list is parsed in reverse order. Once the model is restored to

129

i t’s previous state, this ThingUndoList is removed from the end of the -undo list
and added to the end of the -redo list. Should the model be changed after this,
the -redo list must be erased; the -redo list references changes in the future that
may no longer be possible to make if the current change affects the objects they
reference.

Successful Build

The following describes the history parsing in view of a successful build:

• If user undo is enabled, create a new ThingUndoList for adding ThingUndo
objects to as processed.

• Pull the first available ThingUndo object from the -history list.

• For replacements and removals, call modeLupdate-removing for the was
object pointed to by ThingUndo.

• Likewise, for replacements and additions, call modeLupdate-adding for the
is object pointed to by ThingUndo.

• If user undo is enabled, append this ThingUndo to the new ThingUndoList.
Otherwise, delete any removed or replaced object by deleting the was object
and delete the now redundant ThingUndo object.

• Once all the history is parsed, add the new ThingUndoList, if user undo
is enabled, to the builder’s central -undo list. As a result of this, the redo
history must be cleared as it acts upon a model whose state is now different.

Unsuccessful Build

• Pull the first available ThingUndo object from the -history list.

• Use the ThingUndo object to reverse the action accordingly, without delet
ing any object pulled from the model.

• Add any returned object to a list of deletions, a ThingList, for later deletion.
The now redundant ThingUndo object is deleted.

130

• Once all the history is parsed, delete all the objects in the deletions list.
We couldn’t delete these objects at the point the ThingUndo object was
processed because the undo process doesn’t just affect this object; the de
pendency lists of this object’s parents and children would be affected, these
objects may have also been processed and accordingly deleted. Trying to
modify the dependency lists of deleted objects would be rather dangerous.
Now all processing is done, all can be deleted safely.

The final stage of the model update calls the modeLupdate-end function allowing
inheriting builders the opportunity to hook extra processing into this final stage.
The PMGBuilder used by the program uses this event to output some useful
debugging information regarding elements and nodes, the display is also updated
should objects have been added to, or removed from, the display.

6.2 The Specialised Parametric M odel Builder

Here follows an explanation of the PMGBuilder that inherits from the generic
GBuilder in order to provide specialised processing upon the model of the elec
trical machine. Having already introduced the functions the generic builder pro
vides in order to implement specialised post-processing on a model update, the
following serves to explain the nature of the PMGBuilder type builder and its
post-processing in the context of electrical machine design.

6.2.1 Additions To The Electrical M achine M odel

Any object that has been evaluated, this covers additions and replacements to the
model of the electrical machine, is added to a list for later use. The specialised
builder used for electrical machines knows of new evaluations by implementing
the polymorphic function, thing-evaluated, which the generic builder calls after
each evaluation; this function provides a pointer to the evaluated object.

131

6.2.2 Starting Electrical M achine Specific Post-processing

The generic builder performs some post-processing itself upon the model; at
the point this is finished, we now have in place all the desired objects, and
repercussions of these, caused by the evaluation the builder was initially asked to
complete. Now a modeLupdate-begin function is called to allow post-processing
of the static model specific to a specialised builder. For electrical machines, this
builder determines intersections between segments and also components.

Intersecting Segm ents

All modified objects, identified through the list formed with the thing-evaluated
object, are flagged as modified along with objects dependent upon these; this
is through the use of flag and flagDependents functions of the Thing interface
of chapter 3. The builder has a linear list of all objects held within the depen
dency tree, this allows easy identification of objects without the need to parse
the dependency tree avoiding multiple references to the same object. This list
is now parsed and any segment identified as being modified is added to a list
of pending segments, the same is done for components. This methods avoids
the identification of objects no longer within the dependency tree which are in
the undo history; such objects may exist within the list obtained through the
thing-evaluated if actions replaced them and then deleted them, entirely possible
considering multiple evaluations may be offered to the builder for inclusion in
one model update; in other words, perform all these evaluations sequentially and
store as a single change so that one undo of the model will revert all changes.

Now segment intersections are examined. The first segment is pulled out of the
pending segment list just constructed. That segment’s reco function is called
to ensure it’s state is up to date; segments have been identified through being
modified or dependent upon a modified object, marking them as pending recon
struction. Changes do not take immediate effect upon dependent objects within
the model, only when they are used is their state updated by calling the reco
function. This allows for more efficient operation, only incurring the overhead of
updates when objects need to be used. As a bonus the reco function also returns
the validity of the object, we check this to ensure we have an object worth testing.

132

The first segment is now intersected against all other segments held within the
builder’s linear list of objects contained within the dependency tree, the “model” .
Those segments are first checked for validity by calling their reco function, noting
that this simply returns the validity if they’re up to date, not too expensive on
processing, an additional check is then done to ensure this intersection didn’t take
place before; in order to provide consistency in the labelling of intersection points
we produce the name “J{intersectionNumber}segmentName-otherSegmentName”
where segmentName alphabetically precedes otherSegmentName, this way we re
sult in the same point name irrespective of whether we intersect segmentName
with otherSegmentName or vice-versa. For a circle and line segment, “circl” and
“linel” say, two intersections could result giving the names J l.c irc lJ in e l and
J2_circlJinel. All processed intersections within this update are stored using
the name of the intersection point, we can now check for this name in case a pre
vious intersection involved the intersection of these two intersections in reverse.

With checks completed we now intersect these two segments by asking one to
intersectWith the other. Chapter 7 details how two segments are intersected when
these segments are referenced through an abstract GSegment interface which
hides the true circle, line, or arc implementation. If one or more intersections
were found, an intersection point is constructed for each by creating an expression
for the builder to process through its process Expression interface. The names of
these intersection points are then added to the list of processed intersections in
order to avoid duplicate intersections later.

6.2.3 Adding and Rem oving Building Block O bjects

With all post-processing performed, the generic builder sets about cementing
changes in its undo history. This process is completed regardless off the success
or failure in the desired evaluation. The mechanism either restores the model
to its initial state if a failure occurred, otherwise the effect of every addition,
replacement, or deletion is recorded for prosperity. A failed evaluation at hand,
nothing is to be done by the specialised builder as the initial model state is re
stored. On success, every object that has been added to the model is announced
using the modeLupdate-adding function; every removed object is announced us
ing the modeLupdate-removing function. An object replacement is effectively an
object removal and then an addition, the replaced object is removed and the

133

replacing object is added with modeLupdate-removing and modeLupdate-adding
being called respectively. The specialised builder uses these events, taking the an
nounced objects and examining them for use of the GeometricThing specialisation
to the Thing object. This effects an inheritance, from Thing, adding functions to
display and detect objects with a geometric presence in a graphical environment.
Any such object will be accordingly added or removed from the display by calling
the respective add or remove functions a display has. GeometricThings can be
seen in chapter 7.

6.2.4 Finalising Changes To The Electrical Machine

When modeLupdate-end is called the model’s state is final. We use this event
to update the contents of the display, the change of any displayable object hav
ing set a signifying flag in the modeLupdate-adding and modeLupdate-removing
functions. As a check, the management of node and element references is ver
ified. This system is designed to maintain the ownership of a node or element
with a particular object, dependent objects then referencing inherited nodes and
elements. This system aims to alleviate replication of nodes in the final node and
element output used to solve the machine’s desired properties. When designing
higher level building block objects, the management of nodes has been subject to
a few “programmer errors” in the past. As reference builders maintain lists of all
the allocated nodes and elements, see the end of chapter 7, we can quickly parse
the list and look for out of place references. This point is the best place to do
this since this builder knows of these reference builders and the model changes
have reached a state of completion.

134

Chapter 7

Building Blocks of an Electrical
Machine

Chapter 2 introduced the building blocks used to construct an electrical machine.
We now discuss these objects in greater detail.

7.1 Communication and Representation

Lower level objects, such as values, are likely to be reused more than higher level
objects, being dependent on more objects thus specialising them more. For this
reason, lower level objects are split into two parts. The first part is communica
tive, being derived from the Thing of chapter 3, providing the generic interface
for that object family, this is the interface seen by other dependent objects ex
pecting a particular family of object, the GValue in the case of values. This part
also provides the base for object inheritance within this family of object. Objects
derived from this provide different dependencies on other objects, these concrete
representations allow the generic object, the GValue for instance, to be defined
in a number of different ways. Each concrete representation provides a different
definition of the generic object, translating the data of other objects, which they
depend upon, into the generic representation for view by the world through the
generic interface. For higher level objects, the generic interface and representa
tion are provided by the same object; the generic interface is usually just a way of

135

providing access, in a safe and protected manner, to the generic representation.
Concrete representations, the objects that actually exist within the model, have
already translated their parent objects’ data into the generic representation, the
interface they’ve inherited provides access to this. Thus for higher level objects,
where the complex nature of the generic representation makes it less reuseable,
the representation is also maintained by the communicative object providing the
interface.

Lower level objects maintain their generic representation as a separate object
within the communicative object. This collaboration allows the representation
to be passed to other objects as a copy, the data represented may be manipulated
through functions provided by the generic representation. In the case of values,
the generic representation is provided by an XValue\ this object encapsulates the
representation, ensuring other objects access it through the “correct channels”
by its interface. This allows the representation within the object to be changed,
perhaps to optimise behaviour in some way, maintaining external compatibility
by ensuring the outside world still sees the same interaction via the interface.
The functions provided to manipulate the representation ensure that this is done
so correctly, also minimising external functionality, and its repetition, by encap
sulating it within the object. For values, as an example, this method has proven
successful with the transformation of their representation from a single floating
point number into real and imaginary floating point parts. The transformation
maintained compatibility by translating this information in a way that kept the
interface consistent with the previous version, access to the extended functionality
was then provided through additional interface functions.

7.2 Values

The “roots” of the dependency tree, describing the model of an electrical machine,
will always take the form of floating point or integer values. These two types are
effectively the same, using the same representation, the integer type is simply
used when indexing is performed. Their independence, they depend on no other
objects and are without parents, places them at the root of the dependency tree;
therefore they always provide the basis of the parameterisation and can identify
all other objects within the tree, these being their children. Such values are

136

Public Methods

virtual
double
double
double
double
double
XValue
bool
virtual void
const char*

~G V alue ()
value () const
mag () const
ang () const
real () const
imag () const
xvalue () const
can W rite () const
outX (ostream &out)
family () const

Table 7.1: GValue Public Interface

thus used when saving the model in order to ensure the arguments, other objects
defining dependent objects, are saved before themselves; that way, when reading
in a model, the defining objects are established within the model before they are
referenced.

Table 7.1 shows the GValue interface. As mentioned earlier the representation
for a GValue is held within the XValue object, table 7.3 illustrates this as be
ing the sole item of data possessed by this object. The GValue is therefore an
entirely communicative object, inheriting this communication from the Thing of
chapter 3; as a result a few of the functions illustrated in table 7.1 are implemen
tations of polymorphic functions inherited from the Thing. Function canWrite
tells the outside world whether this object is capable of printing some information
about its state, outX actually performs this function so canWrite would return
true and outX would simply print the numeric values from the representation
of real and imaginary components. The last function, family, is appropriately
implemented by the GValue as all concrete representations inherit from this, it
communicates the string of “value” as its family type; this becomes useful when
replacing an object within the dependency tree with another of, what must be,
the same family, explained in chapter 5. These three functions will be found to
be implemented amongst all the object types detailed within this chapter.

A protected function, as shown in table 7.2, allows access only to derived, or
inheriting, classes, as opposed to the world wide access public functions provide.
Within table 7.2 is the constructor of the GValue object. This terminology is

137

Protected Methods

GValue (const char *str)

Table 7.2: GValue Protected Interface

Protected Attributes

XValue _xval

Table 7.3: GValue Representation

specific to the C ++ programming language, explained best by the creator of
C ++ himself[18] [19]. This function builds the object when a new instance of
a value is required, the protected nature shows that values can only be built
using one of the derived, concrete, types; derived types have public constructors,
they can be built by anything and pass, in this case, the name of the object to
the GValue object, to which they have access. Now moving back to the public
methods of table 7.1, those remaining, barring the destructor ~GValue which
is responsible for closing the object down correctly, provide various methods of
access to the generic representation. Most geometric use of values, as coordinates
for example, use the value function to gain access to the real part of the complex
value representation. Other uses, such as the setting of complex voltages, can
access either the cartesian or polar representations of the complex value through
the other functions.

7.2.1 Value Representation

Finally, the all encapsulating X Value representation itself can be extracted through
the xvalue function to allow the passing of the representation as a complete ob
ject; the public interface of this representation can be seen in table 7.4, many
of the functions are identical to those within the GValue interface which simply
call these counterparts. Other functions are responsible for initialising the object
and changing the values held within the representation.

138

Public Methods

bool
double
void

void

void
double
void
double
void
double
double
void

void

void

void

void

void

void

void

XValue ()
XValue (double val)
XValue (double real,

double imag)
XValue (const XValue &val)
com plex () const
value () const
set Value (double real)
set Value (double real,

double imag)
set Value (X Value val)
real () const
setR eal (double real)
imag () const
setlm ag (double imag)
mag () const
ang () const
neg (XValue val)
add (XValue a,

XValue b)
sub (XValue a,

X Value b)
mult (XValue a,

XValue b)
div (XValue a,

X Value b)
power (XValue a,

XValue b)
cross (const XPoint &pl,

const XPoint &p2)
dot (const XPoint &pl,

const XPoint &p2)

Table 7.4: XValue Public Interface

Protected Attributes

bool .complex
double _real
double Jmag
double _hyp

Table 7.5: XValue Protected Representation

ListEntry _previous
next

/ _start
end

/

current

(J is t Jters /

next

List

Label

Listlter

BitFieldThingList BitManager

NumberManagerTemplateList< Thing >

_parentList \
\ _childList ^

/Jabel
_bf ' _name ' bm

/ _namespace ^

\ /

xval

Thing XValue

GValue

Figure 7.1: Collaboration Diagram For GValue

140

7.2.2 Inheritance or Aggregation?

With the use of Doxygen[20], a program that directly examines source code in or
der to determine an object’s dependencies and collaborations, we can very easily
construct pictures showing the relationships involved between the value objects.
Figure 7.1 shows the inheritance of GValue from Thing using the solid line, the
dotted line shows that a GValue contains an XValue. In object oriented terms
there is a big conceptual difference between an object inheriting another object,
and thus being a specialisation of such an object, and object aggregation, having
such an object[21]. For values, either inheritance or aggregation would work and
the GValue could arguably be an XValue or contain one. The deciding factor
comes from maintaining some uniformity across our building block objects; the
segment family has members of several groups, namely circles, lines and arcs,
mirrored in the representation structure used. A GSegment must contain an
XSegment because the abstract XSegment may be one concrete representation of
many derivatives of XLineSegments, XArcSegments, and XCircleSegments. The
XSegment representation a GSegment contains may also mutate into different
segment types, for example when a three point arc’s points form a straight line
and the arc becomes a line; this is done by allowing this segment type two switch
between an arc and line representation, the segment contains two segment repre
sentations and is something of which multiple inheritance is incapable of fulfilling.

7.2.3 Concrete Representations

Again we can use doxygen to extract and illustrate the inheritances, now includ
ing the concrete representations that form the manufacturable objects for use
by the designer. Figure 7.2 allows us to show every value that currently exists,
stressing again that additional objects may be easily added without complication,
thanks to the object oriented design, without fear of breaking any of the existing
functionality and without the need to modify any existing objects. Table 7.6
shows the AddGValue object’s public interface; it consists of a constructing func
tion, by which this object is called in order to create an instance of it, and the
type function which uniquely identifies the object by the name of “add”. The

141

Thing

to D o tG V a lu e J IntG V alue N egG V alue VVGValue

A ddG V alue artesianG V alui DivGV alue M ultGValue SubG V alue

G V alue

R ealG V alueInfixGValue

P o larG V alue

V alueG V alue

P o w erG V alu e

Figure 7.2: Inheritance Diagram For GValue

Public Methods

AddG Value (GValue *argl,
GValue *arg2,
const char *str)

const char* type () const

Table 7.6: AddGValue Public Interface

only other function implemented is -reco, listed as follows:

bool
AddGValue::_reco()
{

ThingListlter iter(parentList 0);
XValue argl = ((GValue *)iter.next0)->xvalue();
XValue arg2 = ((GValue *)iter.next0) ->xvalue();
_xval.add(argl, arg2);
return true;

>

The .reco function reads the list of parents, it knows it depends upon two GValue
objects as so casts the pointers of the Things to G Values which it then reads the
XValue representations from. The XValue representation it owns is then used
to add the representations, storing the answer in its own representation. The
order of the parent list is always maintained, chapter 3, so that this casting can
be performed safely without any need to check the identity of the parents. This
casting will only identify the GValue interface of the parent objects, the identity of
the concrete representation, this could be another AddGValue or an InfixGValue,
is never known. Hence the addition of other value concrete representations can
be seen, not only to be independent of existing implementation, but also quite
straightforward with only a constructor and the -reco function to write. For
values, the constructor simply sets the object’s name and attaches the object to
the child lists of the parents. For binary value objects, those operating upon two
values, this is done by an additional layer they inherit that sits between them
and the GValue, this makes implementation of binary values ever easier, by just
a small amount.

143

AddGValue::AddGValue(GValue *argl, GValue *arg2, const char *str)
: WGValue(argl, arg2, str)

{
// reco ensures the object is updated after initial construction,
// this isn’t really necessary,
reco ();

}

VVGValue: :VVGValue (GValue *argl, GValue *arg2, const char *str)
: GValue(str)

{
// VVGValues are attached to their parent’s child lists here..
adoptParent(argl);
adoptParent(arg2);

Other value objects for use by the designer are as follows. Any value referenced
on the right hand side may be the reference to a named value, such as x or radius,
a numeric value, such as 1.23 or 3.4e-7, or a nested definition, such as mult(2,
radius), 2 * radius, or indeed any of the value types listed below:

AddGValue : addition of two values
Syntax: value-variable — add (first-value, second-value)

CartesianGValue : defines complex numbers as cartesian values
Syntax: value-variable = cartesian (reaLvalue, imaginary .value)

DivG Value : division of two values
Syntax: value-variable = div(a_value, divide.by.value)

DotG V alue : dot product of two vectors
Syntax: value-variable = dot (first_point, second_point)

InfixGValue : solves mathematical expression with the infix syntax
Syntax: value.variable = a_value + 2 / (another.value - 2)...
Understood unary operators are and ,
understood binary operators are “+ ”, V ’, “/ ” and “A” (power).

144

IntGValue : integer value
Syntax: value_variable = int(5)
Shortcuts: value_variable = 5, +/-5, (5), (+/-5)

M ultG Value : multiplication of two values
Syntax: value_variable = mult (first .value, seconcLvalue)

N egG Value : negates a value variable
Syntax: value-variable = neg(a_value)
Shortcuts: value-variable = -a, (-a)

PolarGValue : defines complex numbers as polar values
Syntax: value-variable = polar (magnitude, value, angle.value)

PowerGValue : value to the power of another value
Syntax: value_variable = power(a_value, to_power_of_value)

RealGValue : floating point value
Syntax: value_variable = real(5.5)
Shortcuts: value_variable = 5.5, +/-5.5, (5.5), (+/-5.5), +5.5e7 -5.5e-7...

SubGValue : subtraction of two values
Syntax: value.variable = sub(a_value, subtract_this_value)

ValueGValue : assignment
Syntax: value.variable = value (a_value)
Shortcuts: value.variable = a, (a)
This value will allow one value to follow the value of another.

7.3 Geometric Building Blocks

Graphically there is no representation for a value object. All the objects sub
sequently explained can be visualised and so utilise a Geometric Thing layer
of specialisation, through inheritance, with this layer being derived from the
Thing base defining the communicative properties. This layer defines additional
functions for use in the display and interaction of geometric properties. The dis
playable function, illustrated in table 7.7, can be implemented to return a pointer
used to display this object if it can be represented graphically. If this is the case,

145

Public Methods

virtual GeometricThing* displayable ()
virtual unsigned displayLayer () const
virtual void displayLabel (GDisplay &display)
virtual void displayO bject (GDisplay &display)
virtual bool selectable () const
bool selected () const
void set Selected (bool state)
virtual XPoint centre ()
virtual XBox boundingBox ()
virtual double proxim ity (const XPoint &seed)

Table 7.7: GeometricThing Public Interface

displayLayer describes a layer which allows the display to view only this type
of object, in addition to other specific layers, which simplifies the model view.
Reference to the display is then given to displayLabel and displayObject functions
so that these geometric objects can tell a display what to draw, such as draw a
point here and a segment there, without actually having knowledge of the display
implementation. This collaboration means that geometric objects do not have
detailed knowledge of display implementation or of any particular displays and
the lifetime any knowledge is just for the duration of these functions. This keeps
the geometric objects simple and allows the use of different displays; multiple
displays can be used to view different aspects of the model, perhaps focusing on
different areas of a machine, and different display implementations based on the
generic display can be used. Currently there exist two displays, one capable of
on screen representation and the other capable of the postscript output used to
illustrate objects within this writing. A display knows how to draw points and
segments, all objects being representable through these, so the geometric object
knows nothing of lower level lines and arcs which might change from one display
type to another.

The other functions within the GeometricThing interface deal with the selection
or detection of geometric objects. A point and click interface uses the proximity
function to determine the nearest object, that object can then be marked as
selected using an additional flag along the same lines as the pending and invalid
flags implemented within the Thing.

146

7.4 Points

The point objects start to lay the foundations for the node and element repre
sentation of the electrical machine by containing a node which will be referenced
by dependent objects. The layers of objects that will build on these points will
implement additional nodes with these nodes being the corner stones in their
design. Nodes are implemented at this level because the equations describing the
sought properties of the electrical machine are associated with these nodes. This
allows properties to be bound to the building block objects, such as boundary
properties, which will then be associated with these nodes and their equations.
Later, post-processing can be done on the machine by reading in answers using
the nodes to associate equations back with the original objects. Post-processing
is future work, see chapter 9.

7.4.1 The Beginnings of Nodal M anagement

GPoint’s are not constructible objects, only instances of the concrete representa
tions may be built. The protected interface of table 7.9 illustrates this by allowing
constructor access to derived classes of the object only. This constructor takes,
and stores in the generic GPoint of table 7.10, the reference to a node builder.
When a point is first built it asks the node builder for a new point. The node
builder maintains references to all points it allocates, this allows quick identifi
cation of all nodes through the node builder. Every time a node aware object
uses this point and thus its node, the node builder will increment an index of
the number of uses this node has; this allows good management of nodes because
the index should zero if all objects have relinquished their reference to the node.
If this is not the case, as is often the case during development of new objects,
there’s a failure in the node management of an object. Therefore, when this point
is deleted it tells the node builder it no longer needs this node; hence the refer
ence to the node builder which will be used in the destructor of this object. This
mechanism allows the node builder to ensure nodes are not redistributed to other
objects when objects in the undo history still reference them; these objects may
come back into play if the designer facilitates the use of the undo buffer. Position
of this node will be updated in the -reco function of the concrete representation
as the position of the point invariably changes.

147

Public Methods

virtual
const XPoint&
const Node*
bool
XPoint
XBox
double

rs-/ G Point ()
point () const
node () const
selectable () const
centre ()
boundingBox ()
proxim ity (const XPoint &seed)

GeometricThing* displayable ()

virtual void
const char*

unsigned
void
void
bool

displayLayer () const
displayLabel (GDisplay ^display)
displayO bject (GDisplay &display)
can W rite () const
outX (ostream &out)
family () const

Table 7.8: GPoint Public Interface

Protected Methods

G Point (NodeReferenceBuilder *nodeReferenceBuilder,
const char *str)

Table 7.9: GPoint Protected Interface

Protected Attributes

XPoint _xpnt
NodeReferenceBuilder* _nodeReferenceBuilder
const Node* _node

Table 7.10: GPoint Representation

148

Examination of the generic point interface, table 7.8, shows that this base object
mainly implements functions within the Thing and GeometricThing interfaces
which are applicable to all points; these basically allowing state specific informa
tion to be output and point objects to be displayed and detected within graphical
interfaces. These functions aside, all th a t’s left are interfaces to the point rep
resentation, used geometrically, and the node used for nodal construction of the
electrical machine. This is a tell tale sign that the node structure is a latter addi
tion to geometric objects, designed in parallel to the geometric system so that the
two operate together but quite independently. This becomes even more apparent
when nodes are examined and seen to be derivatives of the of the XPoint, used as
the generic representation within the communicative GPoint object. The latter
section of this chapter illustrates the design of these reference objects.

7.4.2 Point Representation

Like values, points use separate objects as part of their generic representation.
This representation can be passed to the display, telling it to draw the point at its
specific location; this simplifies displays because they need no knowledge of the
more complex communicative Thing derived objects of which the additional in
formation held is of no use to the display. Point representations can also be reused
to describe vectors, passed to other independent representations using coordinate
definitions, and passed to mapping objects which will translate the coordinates
using transformation matrices. Coordinates are so frequently used, the encapsu
lation of x, y, and z coordinate values is very useful. The number of repetitive
operations based on coordinates that need repeating for the different axes have
been reduced, in terms of repeated program code, through the inclusion of mathe
matical operators proved by the representation itself. The XPoint representation
shown in table 7.11 provides nothing but access to the coordinate representation
and mathematical operators to act upon this representation. Where integer and
floating point values, of the C ++ programming language kind, can be added,
subtracted, compared for equality and the lack of, so too can points having had
these operators defined with the operator syntax shown in the public interface.

A nice diagram illustrates the relationships of the point object, figure 7.3. The
solid line between the GPoint and Thing shows inheritance, the dotted line be
tween GPoint and XPoint shows object aggregation; the communicative GPoint

149

Public Methods

X Point ()
X Point (const XPoint &p)
X Point (double x,

double y,
double z)

double x () const
void setX (double x)
double y () const
void setY (double y)
double z () const
void setZ (double z)
void reset ()
void invert ()
XPoint operator-b (const XPoint &p) const
XPoint operator- (const XPoint &p) const
XPoint operator * (const double v) const
XPoint operator/ (const double v) const
bool op erator= = (const XPoint &p) const
bool operator!= (const XPoint &p) const
double cross (const XPoint &p) const
double dot (const XPoint &;p) const
double mag () const
double sqr () const
void normalize ()

set (double x,
void double y,

double z)
set (const XValue &x,

void const XValue &y,
const XValue &z)

void set (const XPoint &p)

Protected Attributes

double _x
double _y
double _z

Table 7.11: XPoint Public Interface and Representation

150

has an XPoint representation and, as was explained with values, it could be ar
gued that the GPoint is a point and should use inheritance instead of aggregation.
However, note the line of inheritance between the Node and XPoint; the Node is
actually a point and a reference managed point too, the Buildable part, enabling
the node specific reference builder management of this object discussed at the
end of this chapter. Inheritance can’t allow multiple inheritance of the XPoint
object which the GPoint object would require in order to be both a point and a
node.

iwt-'Sr
-‘‘'.start ,

/ .end ’

|TemplateList< Thing:

ThingList

i r
Label

current

.iters ^ .list f

f , . ^ S /
|NumberManager| [remplateList< Reference >| | Listlter next

BitField

t jsarentList i - label
\ chiidust ; -name ,V “ {.namespace /

y

|GeometricThing|

| Bit(^anager|

/
bm

EeferenceList

.references
.recycle

XPoint

/ .node

[Reference] femplateReferenceBuilder< Node 4

7
^lodeReferenceBuildei]

nodeReferenceBuilder

Figure 7.3: Collaboration Diagram For GPoint

7.4.3 C oncrete R epresentations

Now we move onto the building block point objects that the designer can actually
construct, illustrated in the inheritance diagram of figure 7.4.

PointG Point : assignment
Syntax: point-variable = point(a_point)
This allows the value of one point to follow another.

151

Thing

GPoint

SGPoint SSGPoint VVGPointPointGPoint VVVGPoint

GeometricThing

Figure 7.4: Inheritance Diagram For GPoint

SGPoint : attach a point to a segment
Syntax: point-variable = spoint(a_segment, index_value)
Internally used to create points on segments that would otherwise lack the
anchor points facilitating object connection. Chapter 6 contains a section
on additional object builds which explains this in greater detail.

SSGPoint : attach a point to the intersection of two segments
Syntax: point-variable = sspoint(first_segment, second_segment)
Another internally used type which produces a point at the position where
two segments intersect

VV GPoint : x, y coordinate
Syntax: point-variable = wpoint(x_value, y_value)
This type, and the next, will be used most frequently to provide the anchor
point for segments that will form the machine’s outline.

VVVGPoint : x, y, z coordinate
Syntax: point-variable = wvpoint(x_value, y.value, z.value)
The prototypes for VVGPoints and VVVGPoints really ought to be com
bined into a simple value dependent point. The point objects themselves
could also be combined, it is a trivial task to detect in the -reco function
whether the object uses two or three values.

152

7.5 Segments

Segments are one of the most interesting of the building block objects. Histor
ically they originated from what is now the line segment, a line defined by two
points. These lines were intersected to produce intersection points, the approach
being that the designer didn’t need to draw the detailed outline of the machine
part by placing all the points by which the lines would be connected. That
method would require parameterisation of all points, complicating the design.
Figure 7.5 shows that for the slot width to vary, the four width controlling points
would need parameterisation to allow them to slide along a tilted axis; if we also
want to vary the slot depth then we have to incorporate further parameterisa
tion into the values controlling these points to allow them to slide along another
axis. It would certainly seem a daunting task mathematically, and in effort, to
produce this parameterisation, there would need to a library encompassing many
reuseable examples for this method to become viably useable.

slot width

Figure 7.5: Parameterisation Through The Positioning Of Points

The preferred scheme uses construction lines to either form the direct outline,
or provide intersection points that will serve to allow subsequent anchorage of
construction lines. This method’s advantages lie in the fact that we’re usually
trying to modify some aspect of the electrical machine, governed by parameters
measured between lines; the slot depth and width both concern distances between
parallel lines in the example of figure 7.5, the angle of the slot, modified to alter
the number of slots within a machine, is the angle between two lines. Figure 7.6

153

shows a pattern of construction lines and arcs used to build a parameterised slot,
the central radiating line has been predominantly used to provide anchor points
from intersections with the three arcs. Figure 7.7 shows the slot outline with all
superfluous construction lines removed and labelling of the adjustable parameters.
Parameterisation based on points may still be performed, the example revolves
around a centre point upon which everything is dependent, segment intersections
simply allow a different design approach more suitable for certain applications.

i
i

v /X . / >

/ X /

Figure 7.6: Parameterisation Through The Positioning of Segments

7.5.1 Segm ents A s A Param eterised Line

As mentioned earlier, segments originated from a line dependent upon two points.
In order to intersect two segments, the quickest method was to define them as
a parameterised line. Equations 7.1 and 7.2 describe the x and y equations for
parameterised lines respectively, detailed in figure 7.8:

x = x0 + f t

y = yo + gt

154

(7.1)

(7.2)

slot_tooth_wldth

s1ot_tooth_depth

radius

Figure 7.7: Rudiments of a Parameterised Slot

155

t=l

t=0

A

g

V

Figure 7.8: Parameterised Line

start point

mid point

d2,
dl

ill il2

centre point

end point

Figure 7.9: Arc Defined Using Three Points

Arcs were then added, the first type created using a similar type to the line
segment where three points defined the start, end, and intermediate point as
shown in figure 7.9. In order to utilise the arc we had to find the centre and
radius, the figure shows how two line segments are drawn between the start point
and mid point, the mid point and the end point. Dissecting these two lines into
equal parts gives us points dl and d2 from which we can calculate the normals
to our original lines, matching their length as an arbitrary length to give the
normals. Now the normals are converted into implicit line types governed by
equation 7.3.

ax + by + c = 0 (7.3)

156

Intersecting the two implicit lines, marked ill and il2 in figure 7.9, gives us the
intersection point that is our centre.

7.5.2 Im plicit, Param eterised Lines and Segments

With implicit, parameterised and segmented lines having their place, construc
tion lines were initially thought of as being implemented through implicit lines.
Figure 7.6 shows that construction lines can have an arbitrary length, so long
as they extend outside the bounds of the slot in order to provide the necessary
intersections. Implicit lines could later be cropped to tidy the design and produce
lines of specific lengths, these being implemented through either parameterised
lines or line segments. The process of tying this into a coherent scheme proved
difficult; the inclusion of arcs into this scheme complicated matters further, espe
cially if we wanted to interchange lines with arcs. As is often the case, if a design
proves to difficult to conceive i t ’s probably taking the wrong approach.

7.5.3 The Abstract Segment

The final scheme uses abstract segments, these having a start and end point with
an arbitrary number of points in between. For a line type to be a segment, it
must be possible to parameterise it between the values of t=0 to t= l accord
ing to equations 7.1 and 7.2. Table 7.12 shows the interface functions accessing
the GSegment object. Like values and points, the constructor is protected sig
nifying that this object is not constructible within its own write; only derived
objects, the concrete representations, can be constructed. Also notable are the
lack of polymorphic functions within this interface considering its abstract na
ture. The XSegment object held within the GSegment representation, table 7.13,
is a pointer to another family of objects responsible for the representation side of
segments. This family of objects simply concern themselves with the geometric
properties of segments, without concerning themselves with the communicative
and interactive side the GSegment object deals in; in fact, of all the functions
within the GSegment interface, most functions implement aspects of the commu
nicative Thing object and the geometrically interactive GeometricThing object,
whilst the others provide access to like named functions within the interface of

157

Public Methods

virtual
X Segments

XSegment*

const XPoint&
const XPoint&
const XPoint&;
unsigned
XPoint
double
bool
unsigned
const SplitXPoint&
XlmplicitLine
bool
XPoint
XBox
double
GeometricThing*
unsigned
bool
const char*

G Segm ent ()
xsegm ent ()
copy (double start_t,

double end_t)
start () const
end () const
point (unsigned i) const
nPoints () const
point A t (double t) const
atPoint (const XPoint &p) const
closedSegm ent () const
in tersectW ith (GSegment *segment)
intersectPoint (unsigned i)
tangent (const XPoint &seed) const
selectable () const
centre ()
boundingB ox ()
proxim ity (const XPoint &seed)
displayable ()
displayLayer () const
can W rite () const
fam ily () const

Protected Methods

GSegm ent (const char *str)

Table 7.12: GSegment Interface

the geometric representation.

7.5.4 Segment Representation

Worth noting is the pointer nature of the XSegment representation within the
GSegment’s representation of table 7.13. This utilises the polymorphic nature
of the representation; the XSegment is actually an abstract class through which
segment implementations can be accessed. The pointer nature allows any imple-

158

Protected Attributes

XSegment* _xseg
XPoint .centre
bool _centre_cached
XBox -boundingBox
bool _boundingBox_cached

Table 7.13: GSegment Representation

mentation of the XSegment object, created through its inheritance, not only to be
plugged into the representation but also to be switched for another representation;
this allows an arc to be switched for a line within a GSegment implementation
that contains both these types, this may happen when three points defining an
arc form a straight line.

Looking at the XSegment interface of table 7.14, it consists almost entirely
of polymorphic functions of the form pure virtual form; in C++ nomencla
ture [18] [19], this means that an implementation will be looked for in the derived
class with there being no implementation in the base class. In other words, the
straight line, circle and arc implementations forming the real objects must im
plement these functions, the program will not compile otherwise. Half these
functions access points, points being the representation of a segment; a segment
must have two or more points describing a line that can be parameterised. Here’s
a quick explanation of some functions in the context of their use:

copy :
Given to parameters of t, we can describe any section of the line. Discrete
segments identify such a section through the identification of two points
lying upon the line. This function allows identification of this section,
producing a copy of it that can be used elsewhere.

pointA t :
To obtain the coordinates of a point on the line at a specific parameter of t,
pointAt returns the coordinate as an XPoint. Now we can see the benefit of
the point representation as a separate entity to the communicative GPoint
object.

atPoint :

159

Public Methods

virtual ^X Segm ent ()

virtual XSegment* copy (double start.t = 0, _ _
double end_t = 0)

virtual const XPoint& start () const = 0
virtual void setStart (const XPoint &s) = 0
virtual const XPoint& end () const = 0
virtual void set End (const XPoint &e) = 0
virtual const XPoint& point (int i) const = 0

virtual void set Point (int i,
const XPoint &p)

virtual int nPoints () const = 0
virtual XPoint pointA t (double t) const = 0

virtual double atPoint (const XPoint &p,
bool strict = true) = °

virtual bool closedSegm ent () const = 0
virtual int intersect W ith (XSegment ^segment) = 0
virtual int intersectW ithC ircle (XCircleSegment ^segment) = 0
virtual int intersectW ithLine (XLineSegment &segment) = 0

void addlntersect (const XPoint &xp,
double t)

void clearlntersects ()
const SplitXPoint& intersectPoint (int i) const
virtual const XPoint& centre () const = 0
virtual XBox boundingBox () const = 0
virtual double proxim ity (const XPoint &seed) const = 0
virtual XlmplicitLine tangent (const XPoint &seed) const = 0

Protected Methods

XSegm ent ()

Table 7.14: XSegment Interface

160

The reverse to the previous function, atPoint, returns the value of t for a
given coordinate that, ideally but not strictly, lies on the line.

closedSegm ent :
A circle is a closed segment, straight lines and arcs are open. Discrete
segments divide the section they describe according to a number of nodes,
n; if a closed segment is involved the last node overlaps the first and so
they can compensate for this by sectioning the length into n + 1 nodes,
connecting the nth node back to the first.

centre :
Gives the particular segment’s idea of what its centre is. This, and the next
two functions, help implement the graphical representation and detection
of objects used with the GeometricThing interface.

boundingBox :
Gives a XBox bounding box for the object. The XBox implements in
tersections of bounding boxes allowing detection of an intersection and its
union.

proxim ity :
Returns the distance from the given point to the nearest point on the seg
ment.

tangent :
Given a seed point on the segment, this calculates the tangent to the seg
ment at that point. This proves very useful in the SPVVVGLineSegment
object explained later, an object that draws a line segment at a given angle
to the tangent of a segment.

Remaining intersect functions deal with the problem of intersecting segments
through an abstract interface. The implementing functions need some knowledge
of the segment’s true nature, straight line or circle. If we ask an XSegment to
intersect with another XSegment we ultimately need to intersect between the
XLineSegment and XCircleSegment types, this is because the intersection rou
tines deal with the parameterised, Xq, yo, g , and / parameters of a line and the
centre and radius of a circle. The arcs, XArcSegment, are treated as circles. Fig
ure 7.10 shows the arc as a derivative of the circle, it simply implements a start
angle and angle of duration. The arc implements some extra functionality onto

161

the circle to ensure that, in the case of intersections, the resulting intersection of
a segment with a circle actually lies on the portion of the circle defined by the
arc.

XSegment

XArcSegment

XLineSegmentXCircleSegment

Figure 7.10: Inheritance Diagram For XSegment

Each segment type knows how to intersect itself with a line or circle segment,
hence the intersectWithLine and intersectWithCircle functions in the XSegment
interface. If we wanted to intersect two segments, I being an XLineSegment
and c being an XCircleSegment, we could do so by asking either segment to
intersectWith the other. Asking the line I to intersect with the circle we would
use:

l->intersectWith(c)

This passes the XSegment interface of c to the line object. Unable to do anything
with this abstract XSegment description of c, the line asks c to intersect itself
with a line segment:

c->intersectWithLine(this)

The line, quite aware of its own identity, can remove ambiguity by telling the
crcle, which it doesn’t know the identity of, to intersect with a line, passing
itself, this, as an argument. The circle now performs an intersection with a
line[22], storing any resultant intersection points in a cache of points held both

162

within itself and the line. The initial intersection asked the line to intersect with
the circle, ultimately the circle intersected with the line. The results are hence
stored in both objects to avoid any confusion. The circle returns the number of
intersections to the line with the intersectWithLine return value, this allows the
line to return this number through the return value of the intersectWith function.
Whatever initiated this intersection can then obtain the intersection points using
intersect Point, the caching mechanism being the only implementation held within
the XSegment object. The return type of this function, a SplitXPoint, gives a
point coordinate and the parameter of t at which the intersection occurred; this
parameter is thus specific to the intersected object as the line and the circle in
our example would intersect at points differing in their parameterisation.

I ListEntryL
/ .s ta r t

/ _end

— .previous
next

1

|TemplateList< Thing

s. .iters I

current

|NumberManager| |TemplateList< SplitXPoint >| j Listlter | .next

| ThingList | | BitField

¥
\ .parentList \

^ childList s

| Label |

. .label
.nam e

/ .nam espace /

| BitManager |

bm

t
| Thing }• XPoint

Tintersectionl \
I _intersection2 .

.pointl
* _point2

iG eom etricThingl XBox

SplitXPointList I

.ipnts

Hcentre

[XSegmentl

P
/

/ _xseg

.boundingBox

GSegment

Figure 7.11: Collaboration Diagram For GSegment

Figure 7.11 shows the collaboration between the GSegment and XSegment ob
jects. The XSegment contains a list of intersection points, its only data, the
dotted line showing ownership. Straight lines denote inheritance, the GSegment
being a GeometricThing as a specialisation of a Thing.

163

7.5.5 C oncrete R epresentations

GeometricThing

Figure 7.12: Inheritance Diagram For GSegment

The number of objects useable to the designer is of the largest with respect to
the segment family. Most of them fall into three main groups due to their type of
representation, however all are interchangeable as this representation is hidden
behind the GSegment interface. The outside world sees a line type which can be
parameterised, with non-closing line types, such as arcs and straight lines, having
terminating points with which to aid subsequent anchorage of objects. Figure 7.12
shows the three families of GArcSegment, GCircleSegment, and GLineSegment, in
addition to the SegmentGSegment, an assignment type that exists independently.
This type facilitates the importing of library components by allowing an imported
segment to depend upon an existing segment within the model, taking a copy of
its representation.

Arc Segments

The first of the three families uses an XArcSegment representation. All concrete
representations within this family convert their defining parameters into the de
fault representation of three points, a start point, intermediate point, and end
point, through which the arc passes defining its path. The GArcSegment family
currently implements three concrete types, shown in figure 7.13.

PPPG A rcSegm ent : figure 7.14

GSegment

GArcSegment

GCircleSegment

164

Thing

I
G e o m e t r i c T h i n g

| G S e c m e n t

| P P P G A r c S e g m e n t P P P V V G A r c S e g m e n t | | P V V V G A r c S e g m e n t]

Figure 7.13: Inheritance Diagram For GArcSegment

Syntax: segment-variable = ppparc(start_point, mid-point, end_point)

Dependent upon three points, this arc will find the path that takes it from
the start point, through the mid point and up to the end point. The points
defining the arc thus define its anchor points for subsequent attachment.

mid point

end point

start point

Figure 7.14: Arc Dependent Upon Three Points

PPPV V G A rcSegm ent : figure 7.15

Syntax: segment-variable = pppwarc(start_point, mid_point, end_point,
length_extension_from_start_point,
length_extension_from_end_point)

Dependent upon three points and two length values. Being similar to the
previous PPPGArcSegment, this type creates two new points extending

165

along the path of the arc from the defining start and end points. This
allows the arc to project outwards providing new anchor points, possibly
intersecting neighbouring segments. Two new points are created at these
new extents, these being of the SGPoint variety dependent upon the arc
itself.

mid point
end point

start point length >
of extension from end point_ps_a rc_name •4f length

of extension from start point

Figure 7.15: Arc Dependent Upon Three Points and Two Extension Values

PV VVG ArcSegm ent : figure 7.16

Syntax: segment-variable = pwvarc(centre_point, radius_value,
start_angle_value, through_angle_value)

This type depends upon a centre, radius and two angles. One of the most
commonly used methods for arc representation, useful for defining the fore
most construction lines where the radius matches that of the machine. The
only point used to define this arc is its centre, therefore, in order to ful
fil the specification that an arc must supply anchor points for subsequent
connection, this arc produces to dependent point at the extremities of its
path.

Circle Segments

The family of GCircleSegments uses an XCircleSegment representation to pro
vide concrete representations useful for founding construction lines within the
machine and the definition of holes in slots. It’s representation is the same as the
arc’s, the arc being a specialisation to the circle inheritance of figure 7.10. This
segment type is closed, with no start or end to the segment. Unless the concrete
representation uses points to define the path of the circle, no points will exist

166

_pe_arc_name
through angle

start angle

centre
pointradius

Figure 7.16: Arc Dependent Upon Centre Point, Radius, Starting, and Through
Angle Values

on the circle for subsequent anchorage. The intersection of the circle with other
segments produces intersection points facilitating this. Only two concrete types
exist, shown in figure 7.17.

T h i n g |

| G e o m e t r i c T h i n g |

[G S e g m e n t

P V G C i r c l e S e g m e n t

G C i r c l e S e g m e n t

Figure 7.17: Inheritance Diagram For GCircleSegment

PPPG C ircleSegm ent : figure 7.18

Syntax: segment-variable = pppcircle(start.point, mid-point, end.point)

Dependent upon three points, this circle will find the circular path that
intersects all these points.

167

mid point

end point

start point

Figure 7.18: Circle Dependent Upon Three Points

PVGCircleSegment : figure 7.19

Syntax: segment-variable = pvcircle(centre_point, radius_value)

Dependent upon a centre point and radius value. Placement of a few of
these circles around the machine’s centre will define the machine’s radius
and useful intersection points, between lines radiating from the centre, for
dependencies upon slot depth and other depth specific parameters.

Line Segments

Eere we have the largest family of segments, using the XLineSegment representa-
ton consisting of two points connecting the line. The available types of figure 7.20
are briefly describe as follows:

IPG LineSegm ent : figure 7.21

Syntax: segment-variable = ppline(start_point, end_point)

168

Figure 7.19: Circle Dependent Upon A Centre Point and Radius Value

nl
jng~l

G e o m e t r i c T h i n g

G S e g m e n t

| P P G L i n e S e g m e n t | P P V V G L i n e S e g m e n t | P V V V G L i n e S e g m e n t] | S P W V G L i n e S e g m e n t

Figure 7.20: Inheritance Diagram For GLineSegment

169

Dependent upon two points, the points defining this line also provide the
necessary anchor points.

end point

start point

Figure 7.21: Line Dependent Upon Two Points

PPVV GLineSegm ent : figure 7.22

Syntax: segment-variable = ppwline(start_point, end_point,
length_extension_from_start_point,
length_extension_from_end_point)

This types relation to the PPGLineSegment resembles the relationship of
the PPPVVGArcSegment type to the PPPGArcSegment The length of
the line can be extended along its path, beyond the extremities defined by
the two points it depends upon. This is predominantly used to extend an
existing line to the point of intersection with other segment, those points
then allowing definition of discrete segments to sub-divide an are for finer
meshing.

_pe_line_name
end point

start point

_ps_line_name

length
of extension

from start point

Figure 7.22: Line Dependent Upon Two Points and Two Extension Values

PVVVGLineSegment : figure 7.23

170

length
of extension
from end point

Syntax: segment-variable = ppvvline(origin_point, startJength, extensionJength,
angle_of_trajectory)

Dependent upon a point of origin, this line extends at a given trajectory,
relative to the 3 o’clock position. The physical line starts at the given length
from the origin, extending then by the length of extension. Anchor points
are created at the termination of the physical part of the line governed by
the start and extension lengths.

pe line name

point of

Figure 7.23: Line Dependent Upon a Point of Origin, Start Length, Extension
Length, and Angle of Trajectory

SPVVVGLineSegment : figure 7.24

Syntax: segment-variable = sppwline(segment, point,
length_extension_to_start_point,
length_extension_to_end_point,
angle_relative_to_tangent)

Produces a line segment at an angle to the tangent of a segment at a given
point. The line segment extends from this tangential point by given values
of extension for the start and end point. These points are manufactured to
provide the necessary anchorage.

origin

from start point

171

length
of extension
to end pointlength

of extension
to start point

tangential
point

on segment

rotation
from tangent

,pe_line_name

Figure 7.24: Line Dependent Upon Segment’s Tangent at the Given Point

7.6 D iscrete Segm ents

A discrete segment identifies a section of a segment, bounded by two points.
It inherits the nodes of these two points and then divides the spanned section
into 7i— l smaller sections according to a discretisation policy. Nodes are then
created, marking these divisions so that the final discrete segment contains n
nodes. A chain of discrete segments marks boundaries for meshing, the density
of nodes along this boundary dictating the mesh density. A variation on this type
allows the grouping of discrete segments, this allows several segments to appear
as one. Objects dependent on specific numbers of discrete segments can thus
span a greater number of segments using this type.

This object family is the first explained so far within this chapter not to have a
separate generic representation. All it essentially contains, see table 7.16, is an
array of node references and a reference to the node builder, used to reference
and manufacture nodes. The generic interface to this object is very simple, ta
ble 7.15 shows access functions used to read points, used geometrically within
the program, and nodes, used in the parallel node reference system. All other
functions implement its interaction, based in the implementation of functions
within the Thing and GeometricThing interfaces. The GDSegment isn’t a con
structive object, two concrete representations currently exist which inherit this
interface; hence the protected, accessible only to derived objects, nature of this
object’s constructing interface of table 7.15. These two concrete objects differ
significantly in their representation. With the simplicity of one type and the
complexity of the other, no separate representation has been used.

172

Public Methods

virtual ^G D Segm ent ()
unsigned nPoints () const
XPoint point (unsigned n) const
unsigned nNodes () const
const Node* node (unsigned n) const
bool selectable () const
GeometricThing* displayable ()
unsigned displayLayer () const
void displayLabel (GDisplay &display)
void displayO bject (G Display &;display)
bool canW rite () const
const char* family () const

Protected Methods

GDSegment (NodeReferenceBuilder *nodeReferenceBuilder,
const char *str)

Table 7.15: GDSegment Interface

Protected Attributes

NodeReferenceBuilder* _nodeReferenceBuilder
Node Array -nodes
X Point -centre
bool _centre_cached
XBox -boundingBox
bool _boundingBox_cached

Table 7.16: GDSegment Representation

173

7.6.1 T he D iscrete T ype

The SGDSegment is the main type used, initially being the sole representative of
this family. The need for a collective type cause abstraction of the GDSegment
interface with this type being sub-classed as one of two concrete types. It therefore
has a very simply inheritance structure, shows in figure 7.25.

Thing

GDSegment

SGDSegment

GeometricThing

Figure 7.25: Inheritance Diagram For SGDSegment

The following, figure 7.26, illustrates the conversion of a segment into a discrete
segment using a linear node spacing. Placement of the nodes is done using the
segments ability to be parameterised from t = 0 to t = 1. For arcs and lines
this is simply performed by taking the two parameters of t the segment returns
when asked at what parameters the bounding points lie, using the segment’s
atPoint function. The discretisation policy is told how many points are required,
it then governs how this difference is divided. Having calculated the values of
t where the intermediate points lie, all that remains is the conversion of these
parameters back into coordinates. This is performed using the segment’s point At
function. The only problems arise when we’re dealing with closed segments,
namely circles. Here the parameter t identifies the same point for t = 0 and
t = 1. In this case, regardless of their values, if the two bounding parameters
of t are equal, we assume that we want to travel the full length of the closed
segment. The other problem lies with the direction taken around the closed

174

segment. If the bounding parameters were 0.75 and 0.25 respectively, do we
increase t positively from t = 0.75, crossing the t = 1.0/0.0 boundary until
t = 0.25, or do we decrease t negatively from t = 0.75 to t = 0.25? To solve this
we introduce another assumption that we always travel counter-clockwise along
the closed segment with t increasing positively in this direction.

If we were to take the slot of figure 7.6, creating discrete segments along the
outline of the slot, figure 7.27 would show the discrete segments displayed against
the original segments. The next illustration, figure 7.28 removes the segments
from the display leaving just the discrete segments. The electrical machine is
starting to take form. Each discrete segment’s node count is multiplied by a factor
of n, allowing, ultimately, the mesh density to be tuned using this parameter.

12

11

Figure 7.26: Discrete Segment Based On An Arc Segment

7.6.2 C om posite D iscrete Segm ents

This form of discrete segment exists to masquerade two or more discrete segments
as one. Take the example of figure 7.29, the lower part of the figure forms a
triangular section of which the top, horizontal, line is divided into three discrete
segments. For a meshing object, consisting of a finite discrete segment interface,
to mesh this, these three segments need to appear as one segment. This is not
just to overcome the interface to the meshing object. We could overlay the three
discrete segments with an additional discrete segment, however this would cause
two problems. First, the new segment would create intermediate nodes that would

175

Figure 7.27: Discrete Segments Based On A Slot Example, Segments Shown

Figure 7.28: Discrete Segments Based On A Slot Example, Segments Removed

affect our node referencing by producing duplicate nodes at the same points in
space as the nodes of the other segments. Secondly, if the number of nodes in
either segment were changed so they no longer overlaid one another, the nodes
on the boundaries of the adjacent meshes would not correspond and we would
require a solver capable of overcoming this. By producing a composite discrete
segment of the form “ds_21_8_20 = cdsegment(ds21, ds8, ds20” we would avoid
this, the new discrete segment would reference the other segments nodes thus
mimicking their behaviour.

ds20ds21 ds8

Figure 7.29: Composition of Discrete Segments

Chaining Discrete Segments

Masquerading discrete segments as one involves the sorting of each individual
discrete segment into a continuous path. Adjoining discrete segments will refer
ence a common node, helping in the search, these nodes can be overlaid resulting
in a continuous chain of nodes. Some chains will close, others will remain open;
in order to ensure the best connectivity, the node furthest from all other nodes
denotes the start of an open chain. Ihbt,l®@iisbfetdks tiwothe c
nodes either side of the discontinuity are not overlaid; this effectively inserts an
extra link in the chain, this way we only every have the one, largest, discontinu
ity in any open chain. Use of a discrete segment organiser is quite prevalent in
the following objects, it has thus been created as a reuseable object which the
composite discrete segment, CGDSegment, inherits. Figure 7.30 illustrates this.
The CGDSegment inherits the GDSegmentChain object as it is indeed a chain
of segments, also it will never contain more than one such chain, a candidate for

177

the use of object aggregation.

GDSegmentChain|

Thing

GDSegment

CGDSegment

GeometricThing

Figure 7.30: Inheritance Diagram For CGDSegment

7.7 Fronts

Figure 7.31: Slot Sub Division Into Five Domains

In meshing an area we have the choice of either dividing that into manageable
domains, figure 7.31 shows the slot example with additional discrete segments
added, or of treating it as one domain, figure 7.32. The foremost method allows
greater control over the mesh, the domains are simple three or four sided areas
which can be meshed quite precisely, whilst the latter method relies on a meshing
method capable of handling the more complex geometry. Such a method very

178

Figure 7.32: Slot Treated As A Single Domain

much puts us at the mercy of the mesh generating software we have available;
many mesh generators are available within the public domain, these predomi
nantly use methods based on the Delauney Voronoi method[l][2], producing tri
angular elements. If quadrilateral elements are preferred, these will not bear the
desired results. They are however capable of handling holes within the meshed
domain. To allow the use of these schemes, fronts must be used; a front is capa
ble of grouping a chain of discrete segments into one object, a versatile way of
dealing with many segments when interfacing to the more geometrically capable
meshing methods. Interfaces to such methods are then capable of differentiating
between the different groupings of discrete segments as boundaries, allowing the
specification of holes within the mesh.

|GeometricThing

Thing

G Front

GDSegmentChain

Figure 7.33: Inheritance Diagram For GFront

We have a very convenient way of producing the front object, figure 7.33 illus
trates the reuse of the GDSegmentChain object. A front can now be specified in
terms of an arbitrary list of discrete segments, the GDSegmentChain will order

Public Methods

GFront (GDSegmentList *segs,
No deReferenceBuilder * no deReferenceB uilder,
const char *str)

~G Front ()
int iEnclose (GFront *front)
bool selectable () const
X Point centre ()
XBox boundingBox ()
double proxim ity (const XPoint &seed)
GeometricThing* displayable ()
unsigned displayLayer () const
void displayLabel (GDisplay ^display)
void displayO bject (GDisplay ^display)
bool can W rite () const
void outX (ostream &out)
const char* family () const
const char* type () const

Table 7.17: GFront Interface

these segments accordingly to try and produce a closed boundary; if the chain
fails to close, the front is marked invalid according the Thing’s invalid flag. This
prevents any dependent meshes from trying to mesh an open boundary.

The reuse of the GDSegmentChain object, in addition to it being the sole mem
ber of its family, makes the front a very straight forward object in terms of its
class hierarchy. Table 7.17 shows only a public interface, there being no generic
interface with concrete representations, with it being the first object, so far, to
implement all the required communicative and interactive functions of the Thing
and GeometricThing in one object.

7.8 M eshes

Meshes are defined using either discrete segments or fronts, the spacing of nodes
along either of these objects dictating the density of the mesh. Previous geomet
ric objects have used separate representations due to their reusability, the ability

180

Protected Attributes

NodeReferenceBuilder* _nodeReferenceBuilder
ElementReferenceBuilder* _elementReferenceBuilder
NodeArray
NodeArray2
NodeArray

-boundaryNodes
JioleNodes
_meshNodes
.elements
-centre
_centre_cached
-boundingBox
_boundingBox_cached

ElementArray
XPoint
bool
XBox
bool

Table 7.18: GMesh Representation

to encapsulate data with the mathematical operators, define higher level objects
in terms of these representations, and to interact with the display using these
representations. Therefore a parallel system can be seen in some objects imple
menting a geometric point interface alongside a node reference interface. Meshes
exist on a node, and element, representation; only the outer boundary can be de
scribed using the geometric point interface, facilitating the detection of proximity
to other objects. Like the discrete segment inherits nodes from defining points,
creating intermediate nodes for itself, the mesh inherits its boundary nodes from
the discrete segment or front, creating new nodes describing the mesh it creates.
As can be seen from the mesh’s representation, table 7.18, node references are
maintained within three groups. Boundary nodes define the outermost boundary
of the mesh, its perimeter, whilst hole nodes are held in a two dimensional array,
an array of boundaries that allows any number of holes boundaries to be defined.
Mesh nodes are again held separately. This segregation is maintained through
out the objects forming the final stages of the design. Boundary forming nodes
are carefully managed throughout the various building block objects in order to
prevent duplicate nodes from existing at the same point in space. This might be
a problem when outputting a node and element representation of the machine
where different nodes have the same coordinates and are referenced by different
elements. Components pose a problem in this scheme, explained later in their
section of this chapter, the result being that intersecting components are checked
for overlaying nodes on boundaries. Identification of boundary nodes simplifies
this check.

181

7.8.1 C oncrete R epresen tations

Thing

GMesh

SEGMesh TriangleGMesh

GeometricThing

EasymeshGMesh

Figure 7.34: Inheritance Diagram For GMesh

The inheritance diagram of figure 7.34 shows the three concrete mesh represen
tations. Meshes generators are complex in their design, therefore one type has
been written and the other two make use of third party software.

Super Element Mesh

A Super Element splits a domain into smaller, more manageable, areas, allow
ing a simpler mesh generation to be used. This type deals with triangular and
quadrilateral areas, sides to these areas are supplied in the form of discrete seg
ments. Areas bounded by a greater number of discrete segments can be meshed
by consolidating sequential segments using the CGDSegment chain object ex
plained earlier. The interface simplifies the object by using the first discrete
segment supplied as the seed for the meshing. The mesh generator propagates
a wave from this face towards the opposite face, for a quadrilateral, or point,
for a triangle. This imposes the restriction that both discrete segments either
side of the propagating face must have the same number of nodes. This type
does however produce very structured meshes using triangular and quadrilateral
elements. Figure 7.35 shows the meshed version of figure 7.31 using five super
elements.

182

Figure 7.35: Super Element Mesh Using Five Sub Domains

Easymesh

A public domain mesh generator called Easymesh[l], using the Delauney Voronoi
method, has been interface into a concrete type. The source code for this program
is freely available and was initially integrated into the program. It was found that
some geometries caused the mesh generator to fail and thus the whole program
terminated; subsequently the two programs now communicate through the node
and element file formats Easymesh understands, Easymesh being launched as
an external program. In addition to the gained stability, the infrastructure for
communication with external programs has been built that has allowed another
mesh generator, Triangle[2], to be used. This is useful in terms of the additional
mesh generation programs that could be interfaced in order to attain the quality
of mesh wanted.

Easymesh handles complex geometries containing holes, an interface of fronts is
used to describe the mesh boundary and its enclosed holes. Using the geometry
of figure 7.32, we can see the results, in figure 7.36, produced by Easymesh when
the area is meshed without the aid of further subdivision into smaller domains.
Figure 7.37 then introduces a hole into this boundary.

Triangle

Another use of third party software, Triangle[2] is much faster than Easymesh
and it gives greater control over the resulting mesh. Both the minimum an-

Figure 7.36: Easyesh Based Mesh Using One Domain

'f'-vLy'X

■ -

Figure 7.37: Easyesh Based Mesh Using One Domain With Hole

gle size within elements and the maximum area for elements can be adjusted.
Figures 7.38 and 7.39 show the meshing of geometries corresponding to those
produced by Easymesh in figures 7.36 and 7.37 respectively.

•TV

Figure 7.38: Triangle Based Mesh Using One Domain

xT/\

-<r-v

s' V \V

\ V ' X

rxA ' i

\ > A
X / / IK / J*

• \

A—

rK\
i A

/ f ' f x /i-A M
\ \ \ / / A ’yKK / \ / \ / \ / \N.

Figure 7.39: Triangle Based Mesh Using One Domain With Hole

7.9 R egions

Regions collate meshes according to material properties. The structure of node
and element references founded in the GMesh is maintained so that components
can easily identify boundary nodes. This object, like the front, has only the con
crete representation. It takes a material property in the form of a GMaterial,
whose representation simply composes of an integer material identifier. This a
generic object, simply so derived types can set the property identifier for partic
ular materials allowing the material to be entered descriptively with the likes of
“air” or “copper”. The other arguments supplied to the region are one or more
arbitrarily ordered meshes that take this material property.

185

7.10 Components and M apping

The final stage in the machine’s development collates all regions into a compo
nent. If the symmetry of the machine can be exploited, only this section needs
designing to produce the template component. This section can be copied with
a mapping policy governing the space the new component is copied to. The
GComponent object provides the interface for the component, its representation
consists of the same node and element arrays used by the GMesh and GRegion. A
RGComponent concrete object takes an arbitrary list of regions and places their
node and element references into the representation. A mapping CMGComponent
reads the GSegment interface, translating the nodes to produce a new set accord
ing to the a supplied mapping. The mapped component stores these new nodes,
and corresponding elements, in its representation, so another mapped component
could read this object instead of the original region based component. To build a
complete machine from a single slot design, a rotational mapping can be used to
map the original component onto a new component adjacent to the original; this
would use a rotational mapping, the angle parameterised according to the num
ber of desired slots. The machine can be sequentially constructed by taking the
last mapping object to translate to the next, utilising just one type of rotational
mapping for construction of the entire machine.

Three mapping objects exist, figure 7.40 shows the flipping of a component about
a line of symmetry. Figure 7.41 shows the same component rotated about a point,
finally figure 7.42 shows a method allowing any kind of translation; two segments
can be used such that the mapping is described by translating the seed segment
onto the target. This allows scaling, rotation and translation along any axis.

To complete a section of a machine, all that remains is a component mapping
for the ongoing slot example used to illustrate the various building block objects.
Figure 7.43 shows the final slot component to be used. The outer, tooth, section
is the main area of interest, so this has been meshed using four super element
meshes. This has produced some nice quadrilateral elements. The rest of the slot,
covered by mesh m5, has used the Triangle meshing scheme to allow incorporation
of a hole into this boundary. The slot angle has been parameterised, we now make
this a function of the number of slots we desire:

186

Figure 7.40: Flipping Components About A Segment

Figure 7.41: Rotating Components About A Point

188

Figure 7.42: Translating Components Using Two Segments

189

slots=12
slot_angle=360/slots

Next we define our mapping policy, this rotates the slot about a centre point in
the z-axis:

mapping=rotate(centre, 0, 0, slot_angle)

Finally, the component, named as such, is mapped for all the slots using a com
mand to show the result of figure 7.44:

cs component mapping slot_angle

Figure 7.43: Final Slot Configuration

Mapped components pose a problem in the scheme of node references. Through
out the design of the machine, objects have depended upon and overlaid one
another, from foundation points to components, in a layered design. Node refer
ences have been inherited from one object to another so that overlaying objects
don’t produce nodes on top of existing nodes. If two nodes overlaid one another on
the boundary of two meshes, the elements of one mesh would reference one node
and vice versa. The resulting node and element representation of the machine
could prove confusing to a solver. Components break this scheme. A mapped

190

Figure 7.44: Slot Mapped To Produce A Twelve Slot Section Of An Electrical
Machine

191

component knows of only one other component. The mapping may be such that
the translated component doesn’t ever share a boundary with its master. It could
at best ensure that it didn’t create new nodes along a shared boundary. However,
with a final mapping component fulfilling the symmetry of the machine, closing
the gap between two components, this component has no knowledge of compo
nent on the opposite side to its parent. Figure 7.45 illustrates this, component c\
closes the symmetry by bridging components cl and c3\ this component knows
of either c3 or cl but not of both. The situation worsens if c\ depends upon c2.

To remedy this problem, we utilise the post-processing of the specialised builder
detailed in chapter 6. Already intersecting segments affected by parameter changes,
the builder extends this to components by using the boundingBox of the Geomcr-
icThing interface to discover component intersections. Each component intersec
tion is added to a list of intersections held within the respective components. The
builder maintains these lists through the duration of the design. Only when the
node and element information is output are these intersections examined; then
the boundary nodes, which have been maintained separately through the object
node inheritance, are examined for duplications.

....
C .. / y y . \ a . /

I

i /A \ ' >
c3 C2 / ' k ' p../v

IV V v v v

•i ""•/v—x - ' / X n
/ V

ivAAz-v-

Figure 7.45: Sharing of Component Boundaries

192

Chapter 8

Conclusions

The objectives of this work have been met.

The electrical machine has been broken down into separate objects using a top-
down design that starts with the component as the largest of these objects. The
component exploits the symmetry of the electrical machine so that geometric
mapping of this object constructs the entire machine, releasing the programmer
from the repetitive process of entering the entire geometry. Region property
mapping then handles the changes in materials throughout the machine, needed
to define windings with different phase and polarity.

The component is built using a bottom-up design, starting with values that pa-
rameterise any aspect of the electrical machine. The geometry is then constructed
using the interaction of points and segments. Line, arc, and circle segments an
chor to points and in turn intersect to produce intersection points that provide
further anchorage for more segments. This process is used to construct the outline
of the component and partition it internally into a number of non-overlapping
tiles. Nodes are placed around the outline of the component and along the in
ternal boundaries between the tiles using discrete segments. The tiles are then
meshed and these mesh tiles are grouped into regions which group into the final
component.

Multiple components can be used within the design of the electrical machine, for
example an induction motor can be built from two components, one representing

193

the slot of the stator and one representing the slot of the rotor. Components are
then reuseable and can be stored in libraries for importing into future designs.
Each of the separate objects, points, segments, and so forth, is stored within a
dependency tree that can be manipulated and edited to make easy changes to
components that will ultimately propagate through the entire machine.

The object oriented approach has shown to be very useful in implementing this
framework.

Each family of object has been implemented using an abstract, generic interface.
Each object within that family, the concrete objects as seen and used in the
design, hides behind this interface. Thus a point can be defined in terms of
cartesian and polar coordinates and it can be defined by the intersection of two
lines. These different types of point are the concrete types and vary considerably
in how they are defined. The abstract interface of the point hides this. Any
object that uses a point sees the abstract interface which will provide the point’s
location, they do not see how that location is derived. This abstraction allows us
to attach a line segment to any point irrespective of its concrete type.

The functionality of the objects used in designs can be easily extended as a result
of this. If we wish to provide another means of defining a point we simply ensure
that it adheres to the abstract interface. As only the abstract interface is seen
throughout the rest of the framework we can be sure that this addition will not
break any of the existing framework. The designer has the freedom to define
geometries in the most convenient form whilst from a programming perspective
we needn’t check that each new object is capable of interacting with every other
object.

Abstract interfaces are neither restrictive in terms of the additions we can make
to these families of objects. The segment family defines types of lines, arcs, and
circles, that are described in terms of a number of points that lie along their path.
Not only can we add to the methods in which lines and arcs can be defined, using
additional concrete objects for these types, but we can also add a completely new
type of segment such as a spline.

As the basis for all families of objectt we use a class called the Thing. All the
families of derive from this Thing ancll thus can be described in terms of it. The

194

Thing forms the basis for the dependency tree used to store the relationship
between objects once they are entered into the design. When a line segment is
constructed in terms of two points it is given a name and constructed in terms of
the names of the two points. This relationship is stored in the dependency tree
and allows us to efficiently filter changes down the dependency tree that only
affect the objects that are dependent on the object being changed.

When changing an object we pluck it from the dependency tree and replace it
with one newly defined by the designer, perhaps in terms of other objects. The old
object is stored and its place in the dependency tree restored if we choose to undo
this change. The use of the Thing ensures this mechanism remains independent of
the actual objects being manipulated, knowledge of their specific type is irrelevant
and so a generic undo/redo mechanism is provided. The designer is free to take
a line segment defined by two points and replace it with a line segment that
lies tangential to an arc. The line segment can even be replaced with an arc
segment. When components are reused in new designs this flexible interchange
of objects allows easy modification of the component towards the new design and
any undesired change can be undone and subsequently redone. As a programmer
we benefit because we don’t have to implement an undo mechanism in every
object we add to the framework. Thus we don’t risk breaking the framework
because additions weren’t implemented correctly.

Naming objects gives us a descriptive language for representing the electrical
machine which has a one to one mapping on to the dependency tree. This lan
guage allows us to make design changes without the need for graphical tools. We
can visualise the dependencies between objects and clearly see what constraints
we have. With the bottom-up design we always have values at the base of the
dependency tree, thus every aspect of the machine is parameterised and can be
manipulated at the language level or using design tools.

The ease of making changes the the parameterised design, without human inter
action, lends itself to batch processing. A value, such as the slot tooth width,
can be varied in a linear manner and the modified mesh generated and solved to
see which width yields the best results.

With the additional ability to interpret data from the finite element solver we
would have the option of creating an optimisation loop that would streamline

195

this process, please see the chapter on further work.

196

Chapter 9

Future Work

This PhD has effectively become a single program which the author would like
to see reach maturity. Of the existing program code there is little that needs to
be changed. The author has confidently used this program for extensive periods
of time without incident throughout the writing of this thesis.

9.1 Graphical Interface

At one stage the program had a very useable graphical interface, effort had been
put into this in order to demonstrate reusability of the object oriented structure
with application to a graphical user interface. The building blocks of the electrical
machine became graphical widgets, like menu bars and buttons, the interaction of
these was governed by the dependency tree such that resizing the display filtered
dimensions down the dependency tree redimensioning and redrawing widgets.

The interface has since suffered due to the impact of program changes made to
improve the electrical machine design. More effort has been put into the necessary
changes than to the maintenance of the interface, which has been kept useable.
The interface is now the main obstacle that prevents this program from being
used in a production environment. Usability of the program would also benefit
from more interaction with the designer. For example the ability to point at
discrete segments and interactively change their node density would improve the

197

mesh refinement process. Such tools need a solid foundation to build on, which
doesn’t exist.

9.2 Post-processing

Post-processing of the finite element model would allow this program to become
a complete solution for the design of electrical machines. This depends greatly
on improvements to the user interface in order to represent the results visually.
However the ability to read in the results of the finite element analysis would
also allow a feedback loop to be put into place from which we could optimise the
electrical machine.

It is currently possible to batch process refinements to the mesh because the same
instructions understood during interactive use can also be deposited in files and
run automatically. This allows an element of remote control to the program,
however this not an ideal solution. Ideally the program would submit its mesh
for analysis and when ready read the results back in for graphical representation.
The program would allow specified measurements to be taken anywhere within
the model, feeding these back into an iterative optimisation loop that adjusted
a parameterised mesh before writing it out and repeating this process. The
designer would create the optimisation loop, designating what was to be measured
and what parameters were to be correspondingly varied. They would define the
relationship between the measurement and the parameters, specifying limits and
the degree of variation. The process would complete when the specified condition
was met.

198

Appendix A

An Object Oriented Approach to
Parameterized Electrical
Machine Design

Entered into the IEEE Transactions On Magnetics, Vol. 36, No.4, July 2000.

199

An Object Oriented Approach to Parameterized Electrical Machine
Design

M.B. Norton P.J. Leonard
University of Bath, Clavert.on Down, BATH BA2 7AY, UK

A b s tra c t— T his paper details th e structure and ad
vantages o f an object oriented , param eterized pre
processor for use in electrical m achine design. D e
tailed are generic ob jects that form th e m odel base
and interface ob jects that define th e design structure.
A bstractions w ith in th e design are explained detailing
additional benefits o f th e ob ject oriented m ethods.

I n t r o d u c t i o n

Object oriented methods are now demonstrating their
benefits to the programmer in the design of reusable, re
liable and maintainable programs for elect,rical machine
designfl]. There is no unique mapping from the problem
domain to the class structure, in this paper we present
our scheme which we believe has significant advantages
compared to previous schemes.

Our approach aims to fulfill the needs of both the ex
perienced and less experienced designer of an electrical
machine. The user is guided through a scripted design
process, answering initial questions detailing machine as
pects until a template is provided which provides the can
vas for the design. Experienced users can create and
modify these templates to satisfy customisation or pre
pare environments for less experienced users. Ultimately
this template takes parameterised plug in components of
a machine, either purposely designed or re-used from ear
lier sessions, and fits them into the global machine. Our
approach to designing these components is similar to that
of a Computer Aided Design package. We use the object
oriented approach to build up components in layers from
different object building blocks. The fundamental build
ing block is a value, the family of value objects allow pa-
rameterisation of machine slot numbers, dimensions and
electrical charact,eristics. Variation of the values allows
different scenarios to be tested. Building on top of the
values, segments provide the lines and arcs which form
the physical shape. Objects of a family are interchange
able by virtue of their common interface, allowing the
designer to iterate through different designs. Ultimately
mesh and region objects produce re-usable segments that
may be symmetrically exploited within the machine and
exported to libraries for future re-use. All objects are

M a n u s c r ip t , r e c e iv e d O c to b e r 2 5 ,1 9 9 9

communicative; they are the nodes of a dependency tree
which relate between object families using their generic
interface. Changes in any object will filter through the de
pendency tree updating the total model. External manip
ulation of the dependencies is possible to allow variations
in the design through its parameterisation; with feedback
this allows iterative analytical solutions to be parsed in
order to automatically find the optimised parameters.

O b j e c t d e p e n d e n c y

A dependency object forms the foundation of all the ob
ject,s seen by the user. When an object is constructed it
is supplied with a named list of objects. The construct,ed
object, reads its constraining data through the interfaces
of these objects. If their state changes, they notify this
object, and other dependent, objects of their change; de
pendent, objects are then able to update their state by
reading the new data. An object, family such as segments
is represented by lines parameterised from zero to one. A
circle segment, could be described using three points or
a centre and radius. Whichever method is chosen, the
resultant, circle can always be parameterised; this is the
generic interface. The two circle interfaces mentioned are
the concrete representations. All object families inherit,
the dependency object, and build on top of it, the interface
to that, family; this is then inherited by concrete object,s,
figure 1 details this inheritance.

Once a family interface is defined, all a concrete ob
ject, needs to do is convert, its definition into the generic
representation. The tools the designer has to work with
are now easily extendible through the addition of concrete
objects.

Figure 1 shows part, of the class hierarchy illustrating
the dependency between concrete classes and the generic
interface, defined in terms of an abstract, base class. We
have only shown some of the relationships to avoid clutter.

The user’s benefit of this aspect is in the ability to pull
one type of object out of the dependency tree so as to
replace it, with another object of the same type. Now
the user can modify a design, as demonstrated by figure
2, by interchanging objects. The design process is not,
restrained by previous actions, the user can iteratively
experiment, by interchanging concrete types at, any point,,
even after subsequent, objects have been made dependent,

200

| Multiply l- T f

cent r«, s la rl, end 3 point

P ig . 1. S u b s e t o f c la s s h ie ra rc h y s h o w in g ty p ic a l r e la t io n s h ip s b e
tw e e n c o n c re te a n d g e n e r ic o b j e c ts

opon them.

F ig . 2 . G e n e r ic o b j e c t in te rc h a n g e

O b j e c t V a l i d a t i o n

Figure 2 shows the rudiments of a slot geometry con
structed from a set of arc and line segments. The segment
family’s function is to provide some kind of parameterised
line. Segments may then he placed to intersect, points are
positioned at the intersection and regions can be defined
by walls created along segments between two points. In
tersection points are automatically created in the build
process, they take two segments and update their posi

tion according to the segment’s intersection. Should the
segments no longer intersect, the point, and any of its de
scendants, are marked invalid. Invalid objects are alerted
to the user, should they wish to delete them, otherwise
they lie inactive until the model changes such that they
can be revalidated appropriately.

P r o v i d i n g C o n s t r a i n t s

Sometimes a segment’s ends are constrained by being
attached to defining points, other segments defined differ
ently may create these points so they exist. The points
then facilitate connection to other objects. Differences in
these types lie in the order of dependency. They differ sig
nificantly in their constraining behavior. The dependency
tree governing the model filters changes down the tree so
behavior is dictated by dependency. Rather than needing
explicit constraints, the dependency relationship implic
itly defines these; a straight line dependent on two points
must vary it’s length according to the distance between
points, whereas a line defined by a start,ing point, angle
and length will create end points which must move as the
line’s length changes. This constraining effect simplifies
the desired parameterization response within a model and
it’s effects are immediate. It avoids the cast, of iterating
associated with approaches that, effect, a change, then iter
ate over the simultaneous equations, coupling all objects
until a solution is reached[3].

C o n s t r u c t i n g T h r o u g h P r o t o t y p e s

The construction of object,s is simplified through the
use of prot,ot,ypes[2]. For every concrete object, a proto
type exists. This prototype knows of the generic object,
types its counterpart, requires and understands textual ex
pressions detailing its construction. Given the expression:

p - p o in t (x ,y ,z) ,

the given variables .r, y, and z are checked by the pro
totype to ensure they are of the correct, type, additional
checks are also possible. In validation the prototype con
sults the model, should the variable not, exist, an object,
builder will try to construct it,. This allows the nesting of
further expressions within the body of the main expres
sion:

p * p o in t (x ,6 ,z) ; 1 * l in e (p o in t (x ,1 0 ,z) , p)

T h e N i c e S i d e - E f f e c t s

The prototype simply works through the expression
resolving variables, constructing where necessary. Con
structed variables are given manufactured names unique
to the main variable being constructed; should that vari
able be deleted, then the manufactured variable can be
deleted also. Obviously there comes the case where the
prototype fails to resolve the necessary variables and the
object, cannot, be constructed. For the case

201

p = point(1,2,z)

where z is non-existent,, the integer value objects for
1 and 2 will have already been constructed before the
prototype fails at z. A history mechanism is required in
order to delete these objects on failure if we’re to provide a
tidy design environment. This has a side effect; the object
builder now has a record of the objects created to allow
reversal. This provides an undo buffer, where the action
had failed it may also have succeeded with this history
being stored. Later that history can be recalled, reversed,
and the model restored to a previous state.

Taking this a step further, we have a model where
communication exists between object,s using generic inter
faces. Providing the dependency tree structure is main
tained, it, is possible to extract an object from the de
pendency tree and replace it, with an object, of the same
interface, i.e. replace an advancing front mesh with a De
launay mesh. This action is recorded in the history so
it can be undone. The designer can now interchange ob
jects of the same family. Walls of meshes may be reshaped
with the interchange of segment, types, as well as param-
eterisation. The dependency communication allows the
resolution of the mesh to be modified through the values
describing its node numbers. Every one of these actions
Ls reversible through the object, history. Reversed histo
ries simply get shuffled into another list allowing them to
he redone, the user now' has the ability to undo and then
redo any changes. The changes this implicates are filtered
down the dependent, objects amending their state. This
functionality is common to the dependency object, and
Ls inherited by our building block objects; it is generic,
no implementation specifics are required: this is unlike
other schemes requiring individual methods for concrete
r.lasses[4]. The history understands simultaneous model
changes allowing any sizeable change.

B u i l d i n c ; a S i m p l e P a r a m e t e r i s e d G e o m e t r y

Using the geometric object types to design the physical
aspects of a very basic rotor slot, figure 3, initial values can
be construct,ed. These govern the fundamental aspects of
parameterisation, they will be controlled by our global
machine. The slot angles, for example, will be set to fit
this geometry into the template machine. The following
values allow us to demonstrate the building of a simple
slot:

cen tre p o in t, radius and angles fo r th e s lo t
etr * po in t (0 , 0 , 0)
rad « 20 .5; angl “ 90; ang2 “ 90

some more v a r ia b les govern s l o t dimensions
41 * 10 ! s lo t depth
42 * 3 ! s lo t tooth depth
vl = 5 ! width between s lo t te e th
v2 » 10 ! s lo t width

F ig . 3 . B u ild o f a b a s ic s lo t g e o m e tr y

Now some construction segments are used to create the
initial framework:

11 » p v v v lin e fc tr , 1, rad+1, angl)
12 * p v v v lin e fc tr , 1, rad+1, angl+ang2/2)
13 » p v v v lin e fc tr , 1, rad+1, angl-ang2/2)
r l « r a d -d l; r2 - rad-d2
a l « p vvvarc(ctr , r l , angl-ang2/2+5, ang2+10)
a2 - p vvvarcfctr , r2 . angl-ang2/2+5, angl-ang2/2+5)
a3 * p vvvarc(ctr , rad, angl-ang2/2+6, ang2+10)
111 » s p v w l in e (a l , _ i l _ a l _ l l , w2/2, w2/2, 0)
115 - pp line(_ps_112 , _ p s _ l l l)
116 - pp line(_pe_112 , _ p e _ lll)

For geometric object,s, a point and click interface facil
itates the design process by producing the equivalent of
the above command lines. For the line:

111 - s p v v v lin e (a l , _ i i _ a l _ l l , w 2/2, w2/2, 0) ,

the J l .a l J l variable denotes the first automatically
manufactured intersection point between arc al and line
11. For the lines:

115 - pp lin e(_p s_112 , _ p s _ l l l)
116 - pp line(_pe_112, _ p e _ lll)

the _psJtt2 variable denotes the manufactured termina
tion point for the start of line segment 112, likewise the
variable .peJl2 denotes the end point manufactured for
that segment,. The next, step uses the construction seg
ments and points to define closed areas for meshing. The
point and click interface makes this much easier, however
it still constructs the same commands to next, define the
discrete segments. Here, two points are taken which lie on
a segment. This sub-segment, is given a policy of discreti
sation, linear, exponential, user supplied, which it, uses to
divide that sub-segment, into the given number of n-1 seg
ments, i.e. by defining n points. Ultimately, these are the
nodes along the edges of our mesh. The following com
mands discretise and mesh our slot of figure 3, as shown
in figure 4:

202

114 d«4
T

- m 2 -
d 12 d»9 ds3

d»239

1114

Fig. 4. Build of discrete segments from construction segments

! simple control of density through one variable
n-1
! discrete segments for larger area, mesh ml
dsl * dsegment(111, _p6_lll, _pe_lll, linear, 9n)
ds6 * dsegment(116, _ps_lll, _ps_112, linear, 6n)
ds6 * dsegment(116, _pe_lll, _pe_112, linear, 5n)
ds2 * dsegment(112, _ps_112, _ps_113, linear, 3n)
ds3 ” dsegment(112, _pe_113, _pe_112, linear, 3n)
ds9 » dsegment(112, _ps_113, _pe_113, linear, Bn)
! combine three segments into one for meshing
ds239 * cdsegment(ds2, ds3, ds9)
! super element mesh
ml - semesh(dsl, ds6, ds6, ds239)

In figure 4 a super element, mesh has been used to pre
cisely mesh the area, giving very uniform results. A fur
ther layer may be inserted between the discrete segments
and mesh; a front orders an arbitrarily ordered list of seg
ments to produce a continuous chain of nodes. Meshes
may then take fronts as arguments allowing holes within
meshes.

! create one front for the slot
frl » front(dsl, ds2, ds3, ds4, dsS, ds6, ds7, ds8)
! mesh the front using a delauney voronoi mesh
! this handles holes,
! mesh * dvmesh(boundary, holel, hole2, ...)
ml ” dvmesh(frl)
! try out an advancing front mesh instead
ml » afmesh(frl)

T h e F i n a l M a c h i n e

All that remains is to group meshes together with a
material to form a region; regions can also be grouped
together to form components, acting as containers. All
these object types can be mapped onto a new object of the
same type. This simply allows duplication of an object,
the duplicate mirroring the original so that any changes
to the original affect it’s mapped duplicates. The compo
nent object, when mapped, will allow us to exploit any
symmetry within the machine by using an appropriate
mapping, such as rotation or mirroring along a line. With
our generic object interfaces, mapped objects can further
be mapped themselves. Should we need to customise a
mapped object, because of some peculiarity, we then ex
ploit the copy on write aspect, of these objects to make

the copy into its own entity that can be modified sepa-
rately. However, a more elegant solution in line with our
machine template allows us to re-use our work in a future
project,. So far the slot, has been built, as a separate en
tity from the machine. At this point we can export, as
we could at any earlier stage, the component so it can
be inserted into any future project. The exported library
component contains the necessary information to recon
struct our geometry, along with a list of the key variables
that parameterise the geometry. For our example, this
would include the angles, centre, radius and maybe the
slot dimensions. The export process allows descriptions
of these variables to facilitate the import, at a later stage.
This allows libraries of useful geometries to be constructed
by more experienced designers for the less experienced
to re-use later. The motor templating scheme can auto
matically link in these defining variables to a global set;
geometries imported into the template become globally
controlled this way. Imported components, if modified,
can be re-exported to further enhance the library.

C o n c l u s i o n

Use of abstract mechanisms allows object, interactive
methods to be independent of implementation, interfaces,
file transfer, model construction and modification need no
knowledge of specific implementations; this allows simple
extension of object types to facilitate the design process
and accommodate the needs of the most, experienced of
users. A dependency structure allows easy understanding
of model constraints, object interchange, undo and redo
allow easy restructure of the model. Parameterization
facilitates this leading to automatic model optimization,
further aiding the design process. Templates for machine
design allow automation and customisation of machine
design to suit the level of the particular user, exploiting
the export and import, of library components to re-use
designs; these being easily modified through object re
placement and the parameterisation to adapt a re-used
design to a new scenario.

R e f e r e n c e s

[1] Renalo C.Mesquita, Renal,o P.Souza, Tiilio Pinhelro, Ana
L.C.C.Magalhaes, An Object-Oriented Platform for Teaching
Finite Element Pre-Processor Programming and Design Tech
niques, IEEE Transactions on Magnetics, Vol. 34, No. 6, pp.
3407-3410, September 1998.

[2] E.Gamma, R.IIelm, R.Johnson, J.Vlissades, ’’Design Pat
terns:” elements of reusable object orientated software, Read
ing: Addison-Wesley, 1994.

[3] C.F.Parker, J.K.Sykulski, S.C.Taylor, C.S.Biddlecombe, Para
metric Environment for EM Computer Aided Design, IEEE
Transactions on Magnetics, Vol. 32, No. 3, pp. 1433-1437, May
1996.

[4] Ana Liddy Cenni de Castro Magalhaes and Renato Cardoso
Mesquita, Requirements for a Solid Modeler Coupled to Finite-
Elemenl. Mesh Generators, IEEE Transactions on Magnetics,
Vol. 34, No. 8, pp. 3447-3450, September 1998.

203

References

[1] B. Niceno, “Easymesh: A two-dimensional quality mesh generator.”
http: / /www-dinma.univ. trieste.it/~nirftc/research/easymesh.

[2] J. R. Shewchuk, “Triangle: A two-dimensional quality mesh generator and
delaunay triangulator.” http://www.cs.cmu.edu/~quake/triangle.html.

[3] S. T. S. R Electronics and E. D. Consortium, MEGA. University Of Glasgow,
UK. http://www.speedlab.co.uk/index.html.

[4] T. J. R. I. E. T. Division, J MAG-Studio. The Japan Research Institute,
ht tp : / / www. j ri. co. j p / pro-eng/ j mag/e/j m g/.

[5] H. Assadipour, Learning AutoCAD in 20 Projects. St. Paul, MN: West
Publishing Company, 1994. ISBN 0-314-02837-4.

[6] T. J. Tautges, “The common geometry module (cgm): A generic, extensi
ble geometry interface,” Proceedings, 9th International Meshing Roundtable,
pp. 337-348, October 2000.

[7] M. J. P. R. Sahu and W. H. Gerstle, “An object-oriented virtual geometry
interface,” Proceedings, 6th International Meshing Roundtable, pp. 67-82,
October 1997.

[8] P.K.Vong, H.C.Lai, and D.Roger, “Optimization of electromagnetic devices
using parameterized templates,” IEEE Transactions on Magnetics, vol. 37,
pp. 3538-3541, September 2001.

[9] M. C. Bastarrica and N. Hitschfeld-Kahler, “An evolvable meshing tool
through a flexible object-oriented design,” Proceedings, 13th International
Meshing Roundtable, pp. 203-212, September 2004.

204

http://www.cs.cmu.edu/~quake/triangle.html
http://www.speedlab.co.uk/index.html

[10] B. R. Simpson, “Isolating geometry in mesh programming,” Proceedings, 8th
International Meshing Roundtable, pp. 45-54, October 1999.

[11] A. Telea, “An object oriented fern system.”
http://www.win.tue.nl/ alext/ALEX/PAPERS/papers.html.

[12] A. L. C. de Castro Magalhaes and R. C. Mesquita, “Requirements for a solid
modeler coupled to finite-element mesh generators,” IEEE Transactions on
Magnetics, vol. 34, pp. 3447-3450, September 1998.

[13] C.F.Parker, J.K.Sykulski, S.C.Taylor, and C.S.Biddlecombe, “Parametric
environment for em computer aided design,” IEEE Transactions on Mag
netics, vol. 32, no. 3, pp. 1433-1437, 1996.

[14] D.Roger, H.C.Lai, and P.J.Leonard, “Coupled elements for problems in
volving movement,” IEEE Transactions on Magnetics, vol. 26, pp. 548-550,
March 1990.

[15] A. E. R. Centre, MEGA. University Of Bath, UK.
http: / / www.bath.ac.uk/ Centres/AERC/mega.html.

[16] P. A. . C. Liu, DNS and BIND. Sebastopol, CA: O’Reilly & Associates, Inc,
3 ed., September 1998. ISBN 1-56592-512-2.

[17] A. Rudd, Mastering C. John Wiley & Sons, December 1993. ISBN 0-471-
60820-3.

[18] B. Stroustrup, The C++ Programming Language. Reading, Mass.: Addison-
Wesley Publishing Company, 2 ed., 1991. ISBN 0-201-53992-6.

[19] B. Stroustrup, The C++ Programming Language. Reading, Mass.: Addison-
Wesley Publishing Company, 3 ed., September 1997. ISBN 0-201-88954-4.

[20] D. van Heesch, “Doxygen.” http://www.stack.nl/~dimitri/doxygen/.

[21] E.Gamma, R.Helm, R.Johnson, and J.Vlissades, Design Patterns: elements
of reusable object orientated software. Reading, Mass.: Addison-Wesley Pub
lishing Company, July 1994.

[22] A. Bowyer and J. Woodwark, A programmer’s geometry. Butterworths, 1983.

205

http://www.win.tue.nl/
http://www.bath.ac.uk/
http://www.stack.nl/~dimitri/doxygen/

