40 research outputs found

    Structured learning with latent trees: a joint approach to coreference resolution

    Get PDF
    This thesis explores ways to define automated coreference resolution systems by using structured machine learning techniques. We design supervised models that learn to build coreference clusters from raw text: our main objective is to get model able to process documentsglobally, in a structured fashion, to ensure coherent outputs. Our models are trained and evaluated on the English part of the CoNLL-2012 Shared Task annotated corpus with standard metrics. We carry out detailed comparisons of different settings so as to refine our models anddesign a complete end-to-end coreference resolver. Specifically, we first carry out a preliminary work on improving the way features areemployed by linear models for classification: we extend existing work on separating different types of mention pairs to define more accurate classifiers of coreference links. We then define various structured models based on latent trees to learn to build clusters globally, andnot only from the predictions of a mention pair classifier. We study different latent representations (various shapes and sparsity) and show empirically that the best suited structure is some restricted class of trees related to the best-first rule for selecting coreference links. Wefurther improve this latent representation by integrating anaphoricity modelling jointly with coreference, designing a global (structured at the document level) and joint model outperforming existing models on gold mentions evaluation. We finally design a complete end-to-endresolver and evaluate the improvement obtained by our new models on detected mentions, a more realistic setting for coreference resolution

    Entity-centric knowledge discovery for idiosyncratic domains

    Get PDF
    Technical and scientific knowledge is produced at an ever-accelerating pace, leading to increasing issues when trying to automatically organize or process it, e.g., when searching for relevant prior work. Knowledge can today be produced both in unstructured (plain text) and structured (metadata or linked data) forms. However, unstructured content is still themost dominant formused to represent scientific knowledge. In order to facilitate the extraction and discovery of relevant content, new automated and scalable methods for processing, structuring and organizing scientific knowledge are called for. In this context, a number of applications are emerging, ranging fromNamed Entity Recognition (NER) and Entity Linking tools for scientific papers to specific platforms leveraging information extraction techniques to organize scientific knowledge. In this thesis, we tackle the tasks of Entity Recognition, Disambiguation and Linking in idiosyncratic domains with an emphasis on scientific literature. Furthermore, we study the related task of co-reference resolution with a specific focus on named entities. We start by exploring Named Entity Recognition, a task that aims to identify the boundaries of named entities in textual contents. We propose a newmethod to generate candidate named entities based on n-gram collocation statistics and design several entity recognition features to further classify them. In addition, we show how the use of external knowledge bases (either domain-specific like DBLP or generic like DBPedia) can be leveraged to improve the effectiveness of NER for idiosyncratic domains. Subsequently, we move to Entity Disambiguation, which is typically performed after entity recognition in order to link an entity to a knowledge base. We propose novel semi-supervised methods for word disambiguation leveraging the structure of a community-based ontology of scientific concepts. Our approach exploits the graph structure that connects different terms and their definitions to automatically identify the correct sense that was originally picked by the authors of a scientific publication. We then turn to co-reference resolution, a task aiming at identifying entities that appear using various forms throughout the text. We propose an approach to type entities leveraging an inverted index built on top of a knowledge base, and to subsequently re-assign entities based on the semantic relatedness of the introduced types. Finally, we describe an application which goal is to help researchers discover and manage scientific publications. We focus on the problem of selecting relevant tags to organize collections of research papers in that context. We experimentally demonstrate that the use of a community-authored ontology together with information about the position of the concepts in the documents allows to significantly increase the precision of tag selection over standard methods

    A Survey on Semantic Processing Techniques

    Full text link
    Semantic processing is a fundamental research domain in computational linguistics. In the era of powerful pre-trained language models and large language models, the advancement of research in this domain appears to be decelerating. However, the study of semantics is multi-dimensional in linguistics. The research depth and breadth of computational semantic processing can be largely improved with new technologies. In this survey, we analyzed five semantic processing tasks, e.g., word sense disambiguation, anaphora resolution, named entity recognition, concept extraction, and subjectivity detection. We study relevant theoretical research in these fields, advanced methods, and downstream applications. We connect the surveyed tasks with downstream applications because this may inspire future scholars to fuse these low-level semantic processing tasks with high-level natural language processing tasks. The review of theoretical research may also inspire new tasks and technologies in the semantic processing domain. Finally, we compare the different semantic processing techniques and summarize their technical trends, application trends, and future directions.Comment: Published at Information Fusion, Volume 101, 2024, 101988, ISSN 1566-2535. The equal contribution mark is missed in the published version due to the publication policies. Please contact Prof. Erik Cambria for detail

    Context Aware Textual Entailment

    Get PDF
    In conversations, stories, news reporting, and other forms of natural language, understanding requires participants to make assumptions (hypothesis) based on background knowledge, a process called entailment. These assumptions may then be supported, contradicted, or refined as a conversation or story progresses and additional facts become known and context changes. It is often the case that we do not know an aspect of the story with certainty but rather believe it to be the case; i.e., what we know is associated with uncertainty or ambiguity. In this research a method has been developed to identify different contexts of the input raw text along with specific features of the contexts such as time, location, and objects. The method includes a two-phase SVM classifier along with a voting mechanism in the second phase to identify the contexts. Rule-based algorithms were utilized to extract the context elements. This research also develops a new contextË—aware text representation. This representation maintains semantic aspects of sentences, as well as textual contexts and context elements. The method can offer both graph representation and First-Order-Logic representation of the text. This research also extracts a First-Order Logic (FOL) and XML representation of a text or series of texts. The method includes entailment using background knowledge from sources (VerbOcean and WordNet), with resolution of conflicts between extracted clauses, and handling the role of context in resolving uncertain truth

    Linking named entities to Wikipedia

    Get PDF
    Natural language is fraught with problems of ambiguity, including name reference. A name in text can refer to multiple entities just as an entity can be known by different names. This thesis examines how a mention in text can be linked to an external knowledge base (KB), in our case, Wikipedia. The named entity linking (NEL) task requires systems to identify the KB entry, or Wikipedia article, that a mention refers to; or, if the KB does not contain the correct entry, return NIL. Entity linking systems can be complex and we present a framework for analysing their different components, which we use to analyse three seminal systems which are evaluated on a common dataset and we show the importance of precise search for linking. The Text Analysis Conference (TAC) is a major venue for NEL research. We report on our submissions to the entity linking shared task in 2010, 2011 and 2012. The information required to disambiguate entities is often found in the text, close to the mention. We explore apposition, a common way for authors to provide information about entities. We model syntactic and semantic restrictions with a joint model that achieves state-of-the-art apposition extraction performance. We generalise from apposition to examine local descriptions specified close to the mention. We add local description to our state-of-the-art linker by using patterns to extract the descriptions and matching against this restricted context. Not only does this make for a more precise match, we are also able to model failure to match. Local descriptions help disambiguate entities, further improving our state-of-the-art linker. The work in this thesis seeks to link textual entity mentions to knowledge bases. Linking is important for any task where external world knowledge is used and resolving ambiguity is fundamental to advancing research into these problems
    corecore