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ABSTRACT

From Language to the Real World: Entity-Driven Text
Analytics

Boyi Xie

This study focuses on the modeling of the underlying structured semantic information in natural

language text to predict real world phenomena. The thesis of this work is that a general and uniform

representation of linguistic information that combines multiple levels, such as semantic frames and

roles, syntactic dependency structure, lexical items and their sentiment values, can support challeng-

ing classification tasks for NLP problems. The hypothesis behind this work is that it is possible to

generate a document representation using more complex data structures, such as trees and graphs, to

distinguish the depicted scenarios and semantic roles of the entity mentions in text, which can facil-

itate text mining tasks by exploiting the deeper semantic information. The testbed for the document

representation is entity-driven text analytics, a recent area of active research where large collection

of documents are analyzed to study and make predictions about real world outcomes of the entity

mentions in text, with the hypothesis that the prediction will be more successful if the representation

can capture not only the actual words and grammatical structures but also the underlying semantic

generalizations encoded in frame semantics, and the dependency relations among frames and words.

The main contribution of this study includes the demonstration of the benefits of frame semantic

features and how to use them in document representation. Novel tree and graph structured repre-

sentations are proposed to model mentioned entities by incorporating different levels of linguistic

information, such as lexical items, syntactic dependencies, and semantic frames and roles. For ma-

chine learning on graphs, we proposed a Node Edge Weighting graph kernel that allows a recursive

computation on the substructures of graphs, which explores an exponential number of subgraphs

for fine-grained feature engineering. We demonstrate the effectiveness of our model to predict price

movement of companies in different market sectors solely based on financial news. Based on a

comprehensive comparison between different structures of document representation and their cor-



responding learning methods, e.g. vector, tree and graph space model, we found that the application

of a rich semantic feature learning on trees and graphs can lead to high prediction accuracy and

interpretable features for problem understanding.

Two key questions motivate this study: (1) Can semantic parsing based on frame semantics, a

lexical conceptual representation that captures underlying semantic similarities (scenarios) across

different forms, be exploited for prediction tasks where information is derived from large scale

document collections? (2) Given alternative data structures to represent the underlying meaning

captured in frame semantics, which data structure will be most effective? To address (1), sentences

that have dependency parses and frame semantic parses, and specialized lexicons that incorporate

aspects of sentiment in words, will be used to generate representations that include individual lexical

items, sentiment of lexical items, semantic frames and roles, syntactic dependency information and

other structural relations among words and phrases within the sentence. To address (2), we incor-

porate the information derived from semantic frame parsing, dependency parsing, and specialized

lexicons into vector space, tree space and graph space representations, and kernel methods for the

corresponding data structures are used for SVM (support vector machine) learning to compare their

predictive power.

A vector space model beyond bag-of-words is first presented. It is based on a combination

of semantic frame attributes, n-gram lexical items, and part-of-speech specific words weighted by

a psycholinguistic dictionary. The second model encompasses a semantic tree representation that

encodes the relations among semantic frame features and, in particular, the roles of the entity men-

tions in text. It depends on tree kernel functions for machine learning. The third is a semantic graph

model that provides a concise and convenient representation of linguistic semantic information. It

subsumes the vector space model and the semantic tree model by using a graph data structure for a

unified representation for semantic frames, lexical items, and syntactic dependency relations derived

from frame parses and dependency parses of sentences.

The general goal of this study is to ground information derived from NLP techniques to textual

datasets in real world observations, where natural language semantics is used as a means to learn the

semantic relations that are important in the domain, to understand what is relevant for objectives of

interest of the practitioner. Experiments are conducted in a financial domain to investigate whether

our computational linguistic methodologies applied to large-scale analysis of financial news can



improve the understanding of a company’s fundamental market value, and whether linguistic in-

formation derived from news produces a consistent enough result to benefit more comprehensive

financial models. Stock price data is aligned with news articles. Two kinds of labels are assigned:

the existence of a price change and the direction of change. The change in price and polarity

tasks are formulated as binary classification problems and bipartite ranking problems. Using the

bag-of-words model and the proposed vector-space-model as benchmarks, the experiments show a

significant improvement from the use of the semantic tree model. The semantic graph model with

more expressive power outperforms both the vector space model and the tree space model. At best,

there may be a weak predictive effect of news on price for a particular data instance, which is, for

example, a company on a date, due to the fluctuation in uncertainty of financial market and the

efficient market hypothesis. However, the proposed models and their outputs can provide useful in-

formation to guide financial market price prediction and to help business analysts discover potential

investment opportunities. These advantages come from the rich expressive power of the semantic

tree model and the semantic graph space model, since the models are able to learn the semantic

relations that are important in the problem domain, and effectively discover the useful underlying

structured semantic information from large-scale textual data.



Table of Contents

List of Figures iv

List of Tables viii

I Background 1

1 Introduction 2

1.1 Language and the Real World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 A Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Literature Review 13

2.1 Entity-Driven Text Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Financial News Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Structured Document Representation and Learning . . . . . . . . . . . . . . . . . 16

3 Modeling Tools and Learning Methods 19

3.1 Dependency Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Frame Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Dictionary of Affect in Language . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Named Entity Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Kernels and Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . 22

i



II Models to Discover the Structured Semantics in Text 25

4 Vector Space 27

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Lexical Features in Vector Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Semantic Frames in Vector Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Affects in Vector Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.5 Putting It All Together for Vector Space Representation . . . . . . . . . . . . . . . 30

5 Tree Space 32

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2 Constructing Semantic Tree Representation . . . . . . . . . . . . . . . . . . . . . 33

5.3 Tree Kernels to Measure Semantic Tree Similarity . . . . . . . . . . . . . . . . . . 36

5.4 Tree Kernel on SemTree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Graph Space 40

6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2 Constructing Semantic Graph Representation . . . . . . . . . . . . . . . . . . . . 42

6.3 Variations of Semantic Graph Towards OmniGraph . . . . . . . . . . . . . . . . . 48

6.4 Graph Kernels to Measure Graph Similarity . . . . . . . . . . . . . . . . . . . . . 51

6.5 WL Graph Kernel Computation Example . . . . . . . . . . . . . . . . . . . . . . 54

6.6 Node Edge Weighting Graph Kernel . . . . . . . . . . . . . . . . . . . . . . . . . 56

III Experiments 62

7 Financial News Analytics 64

7.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.2 Corpus, Data Instances, and Labeling Methods . . . . . . . . . . . . . . . . . . . 66

7.3 Overall Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.4 Vector Space Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.5 Tree Space Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.6 Graph Space Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 83

ii



7.7 Company Mention Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8 GoodFor/BadFor Corpus Analytics 102

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8.2 Benefactive/Malefactive Identification Task . . . . . . . . . . . . . . . . . . . . . 103

8.3 Writer Attitude Detection Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

IV Conclusions 120

9 Conclusions 121

V Bibliography 125

Bibliography 126

iii



List of Figures

1.1 Example Reuters news articles where Google is mentioned. The left news item re-

ports Nokia found smartphone bugs on its latest Lumia phone, and Google is one

of its competitors in the smart phone market. This news has a positive impact on

the stock price of Google. The right news reports Oracle started a trial against

Google due to Google’s Android operating system that tramples Oracle’s intellec-

tual property rights to the Java programming language, which has a negative impact

on Google’s stock price. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Summary of financial news items, e.g. as in Figure 1.1, pertaining to Google in

April, 2012. Boxes mark up the three company mentions. The targeted company

entity is in boldface. The underlined words evoke semantic frames. Our motivation

is that entity-driven text analytics on news can predict the price movement of the

targeted company, and exploiting such textual information with the help of semantic

frames can identify information that predicts the price change event. . . . . . . . . 5

1.3 Desired features that capture the meaning from the two example sentences for the

designated entity Google. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.1 Example sentence and its frame semantic parse. . . . . . . . . . . . . . . . . . . . 28

5.1 Constructing the semantic tree for the designated entity Oracle in sentence of Fig-

ure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2 Constructing the semantic tree for the designated entity Google in sentence of Fig-

ure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

iv



5.3 SemTree representation for the designated entity Oracle in sentence: Oracle has

accused Google of violating its intellectual property rights to the Java programming

language. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.4 Subset tree kernel for k(T3, T1) and k(T3, T2). . . . . . . . . . . . . . . . . . . 38

5.5 Subset tree kernel for k(T3, T1) and k(T3, T2). . . . . . . . . . . . . . . . . . . 39

5.6 When using SemTree representation and subset tree (SST) tree kernel, (a) (b) (c) are

common tree fragments when comparing instance 3 to instance 1 (K(T1, T3) = 3),

while (c) is the only common tree fragments when comparing instance 3 to instance

2 (K(T2, T3) = 1), as shown in Figure 5.5. . . . . . . . . . . . . . . . . . . . . . . 39

6.1 Example sentence, the frame semantic parse, and the dependency parse. . . . . . . 42

6.2 Semantic frames that are evoked for the sentence of Figure 4.1. Unlike SemTree

where only the frames with designated entity are used, semantic graph representa-

tion make use of all frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.3 Eight variants of graph representation for Oracle of sentence 1 . . . . . . . . . . . 44

6.4 Eight variants of graph representation for Oracle of sentence 1 . . . . . . . . . . . 45

6.5 Eight variants of graph representation for Oracle of sentence 1 . . . . . . . . . . . 46

6.6 Eight variants of graph representation for Oracle of sentence 1 . . . . . . . . . . . 47

6.7 Example sentence, the dependency parse, and the frame semantic parse. The red

edges in the dependency parse helps recover the interactions among frames. . . . . 50

6.8 OmniGraph representation that includes lexical, dependency, and semantic infor-

mation for Humana of the sample sentence in Figure 6.7. . . . . . . . . . . . . . . 51

6.9 Toy example of the WL graph kernel . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.10 A subtree pattern of height 3 rooted at the node of Designated Entity, and the un-

folding of this subtree pattern. The dashed area is equivalent to the semantic tree of

Figure 5.2c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.11 Procedure of the computation for Weisfeiler-Lehman graph kernel with h=1 be-

tween instance 1 (G1) and instance 2 (G2) of Table 5.1. . . . . . . . . . . . . . . . 57

6.12 Procedure of the computation for Weisfeiler-Lehman graph kernel with h=1 for in-

stance 3 of Table 5.1 (G3). (a) Assign initial labels; (b) After iteration 0; (c) Sorted

and prefixed multiset-label; (d) Label compression; and (e) After iteration 1. . . . . 58

v



6.13 Subgraph features up to 2 degree of neighbors that are explored by Node Edge

Weighting graph kernel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.14 Toy example of the node edge weighting (NEW) graph kernel . . . . . . . . . . . . 60

7.1 Pipeline of our experiments on Reuters news data. . . . . . . . . . . . . . . . . . . 67

7.2 Parametrizing OmniGraphNEW for companies in Consumer Staples sector. It shows

a) the breakdown by stepsize for each of the 26 companies, and b) the total propor-

tion across companies of node-edge weights for each feature type. . . . . . . . . . 71

7.3 Sample OmniGraph features (OG) that have predictive power within or across sec-

tors, compared with those from vector space (VS), from dependency trees (DT), and

from SemTree (ST). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.4 Best performing SemTree fragments for increase (+) and decrease (-) of price for

consumer staples sector across training years. . . . . . . . . . . . . . . . . . . . . 79

7.5 ROC curves for the polarity task. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.6 Ratio of feature types at top 100 and top 1000 ranked list by information gain for

2010 polarity prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.7 Example company and news sentences. . . . . . . . . . . . . . . . . . . . . . . . 88

7.8 Framework of the text mining on financial news for stock market price prediction. . 91

8.1 Example sentence, its benefactive/malefactive annotation, and the frame semantic

parse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.2 SemTree representation for the object a National Institute for Health and Clinical

Effectiveness of the sample sentence in Figure 8.1. . . . . . . . . . . . . . . . . . . 105

8.3 The dependencies among semantic frames, which is constructed based on syntactic

dependency parsing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.4 OmniGraph representation that includes lexical, dependency, and semantic infor-

mation for the object a National Institute for Health and Clinical Effectiveness of

the sample sentence in Figure 8.1. . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.5 Example sentence and its writer attitude annotation. . . . . . . . . . . . . . . . . . 107

8.6 SemTree representations for the agent and the object, respectively. . . . . . . . . . 107

8.7 OmniGraph representations for the agent and the object, respectively. . . . . . . . 108

vi



8.8 Distribution of semantic frames that are identified in the GoodFor/BadFor dataset.

The trendline is a log fit, with R2 = 0.856. . . . . . . . . . . . . . . . . . . . . . . 110

8.9 Number of the top 100 ranked features requiring each feature type for the Benefec-

tive/Malefective task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.10 Number of the top 100 ranked features requiring each feature type for the Writer

Attitude task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.11 Graph features that predicts a positive polarity for the Object Entity in the Benefac-

tive/Malefactive task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.12 Graph features that predicts a positive polarity for the Object Entity in the Benefac-

tive/Malefactive task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.13 Graph features that predicts a negative polarity on the Designated Entity in the

Writer Attitude task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

vii



List of Tables

4.1 FWD features (Frame, bag-of-Words, part-of-speech DAL score) and their value

types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 Sample sentences with designated entities. . . . . . . . . . . . . . . . . . . . . . . 32

7.1 Description of news data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.2 Mean accuracy by sector for the majority class baseline, three benchmarks, and

two graph kernel learnings on OmniGraph. The cases where the sector mean is

significantly better than the baseline are marked by *. OmniGraph is significantly

better than all three benchmarks in all cases. . . . . . . . . . . . . . . . . . . . . . 69

7.3 FWD results for consumer staples sector for test year 2010. . . . . . . . . . . . . . 77

7.4 Average MCC for the change and polarity tasks by feature representation, for 2008-

2010; for 2011-2012; for all 5 years and associated p-values of ANOVAs for com-

parison to BOW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.5 Evaluation that concentrates on positive and negative predictions by Precision@TopK,

DCG, MRR, and PNorm (lower is better). . . . . . . . . . . . . . . . . . . . . . . 81

7.6 A breakdown of performance by stepsizes (h) using WL graph kernels for 4 variants

of SemGraph. It shows the leave-one-out accuracies for some sample companies in

the Energy sector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.7 The means and standard deviations of the leave-one-out accuracy over the com-

panies in each of the eight GICS sectors. The performance of all variations of

OmniGraph are shown. Boldface values are the best performance across different

OmniGraphs. ∗ indicates a p-value<.05 compared to baseline. . . . . . . . . . . . 86

viii



7.8 Description of news data for company mention detection. . . . . . . . . . . . . . . 90

7.9 A manual evaluation for company detection in a preliminary experiment. . . . . . . 95

7.10 Counts of company mentions by sentence. . . . . . . . . . . . . . . . . . . . . . . 95

7.11 Averaged test accuracy for each company by sector that uses 80% of the data for

training 20% for testing. Boldface identifies a higher CMD mean and ∗ identifies

the CMD that is significantly better than the Initial NER with p-value < 0.05. . . . 97

8.1 Top 50 most frequent frames in GoodFor/BadFor dataset. . . . . . . . . . . . . . . 111

8.2 Frame targets (lexical items that evoked the frames) for the top 10 most frequent

frames (part 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.3 Frame targets (lexical items that evoked the frames) for the top 10 most frequent

frames (part 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.4 Mean accuracy for Benefactive/Malefactive event and Writer Attitude tasks. . . . . 114

ix



Acknowledgments

First and foremost, I wish to express my deepest gratitude to my advisor, Rebecca Passonneau. I

had the great good fortune to have an advisor who gave me the freedom to explore so many areas of

the field at the beginning of my studies and under whose guidance I was able to direct my energies

into research that shaped up to be a promising and thought provoking thesis topic. She has always

been there to listen and advise. Under her tutelage I learned to question thoughts and express ideas

and formulate hypotheses that were then written up. I am grateful for her careful reading and

commentary regarding the countless revisions of this manuscript. Her patience and support helped

me overcome many difficulties and finish this dissertation. This thesis would not exist if not for her

insightful comments, constructive criticisms, and encouragement proffered at various stages of my

research.

I wish to thank the members of my thesis committee: Kathleen McKeown introduced me to

the exciting area of Natural Language Processing and helped me with many thoughtful comments

and suggestions which contributed to the progress of my research work. Owen Rambow was a

penetrating critic who asked probing questions while providing sound advice at the same time.

Smaranda Muresan gave my thesis a close reading and provided invaluable feedback. Dragomir

Radev provided perceptive criticism and inspiration when I needed it along with career guidance.

Michael Collins taught me machine learning in NLP and served on my candidacy exam committee.

I had the good fortune to work with several talented and generous collaborators. Germán

Creamer provided critical advice on preparing the framework for financial news analytics. Dingquan

Wang helped with the research on kernel learning for ranking problems. Tifara Ramelson worked

with me on research into Named Entity Recognition.

I was fortunate to participate in many research projects. I wish to express my profound gratitude

to all those who helped me grow as a researcher and a person. I have fond memories of working

on the power grid project with Axinia Radeva and Ashish Tomar. I will miss the many discus-

x



sions and meetings in which I learned so much. I am indebted to Cynthia Rudin who taught me

ranking and optimization. I learned to mine Electronic Health Records while working with Ansaf

Salleb-Aouissi. Haimonti Dutta afforded me the opportunity to learn the intricacies of machine

learning while assisting her with research on her digital library project. Roger Anderson allowed

me to work on his power grid project for a semester. Bob Carpenter tutored me in probabilistic

models. Nizar Habash and Mona Diab inspired me with their passion for the subject matter, high

intellectual standards and cutting edge research. David Waltz, Albert Boulanger, Ashish Gagneja,

Hatim Diab, Manoj Pooleery, Arfath Pasha, Ramy Eskander, Yassine Benajiba, Daniel Alicea, Idrija

Ibrahimagic, Derrick Lim, Kathy Hickey, and many others inspired and encouraged me and made

the research lab feel like a second home.

In the intellectually stimulating environment of Columbia University I was fortunate to study

and grow along with some brilliant fellow students. Special thanks go out to Apoorv Agarwal. Our

discussions and collaboration allowed me to build a foundation in the field of structured document

representation. Ilia Vovsha taught me much about machine learning, support vector machines, and

we share the joy of teaching. To Ahmed El Kholy, Mohammed Altantawy, Daniel Bauer, Vinod-

kumar Prabhakaran, Heba Elfardy, Noura Farra, Faiza Khan Khattak, Mohammed Sadegh Rasooli,

Wael Salloum, Hooshmand Shokri Razaghi, Sara Rosenthal, Sara Alkuhlani, Joshua Gordon, David

Elson, Or Brian, Kapil Thadani, Wei-Yun Ma, Yin-Wen Chang, Karl Stratos, Jessica Ouyang, Bob

Coyne, Christopher Kedzie, Shen Wang, Wei Liu, Hao Dang, and Changyin Zhou, among many.

My fellow townsman Weiwei Guo was my buddy and lab mate. Working at his side provided me

with many wonderful memories. Leon Wu helped me to adjust to life in New York and provided

priceless advice concerning both life and career issues. Special thanks to William Hurt whose inter-

est in the future of Artificial Intelligence inspired and motivated me.

To my friends with whom I crossed the Pacific to the United States: we shared both a great

passion for learning and wonderful experiences in New York. Thanks to: Fengwei Zhang, Shanghao

Li, Yi Wang, Cheng Cheng, Maoliang Huang, Junxiong Jia, Bai Xiao, Sinan Xiao, Hai Wang, Yuan

Yuan, Fan Lin, Keng He, Bing Liu, Zhemin Zhang, Xintong Zhou, Xin Wang, Xiangrong Kong, Jia

Li, Shih-hao Liao, Jun Hu, Peng Liu, Hao Li, Qi Li, Xiaorui Sun, Wei Xu, Jocelyn Lu, Lina Lu, Li

An, Shimeng Sun, Juan Li, Liwei Wang, Xuwei Yang, and many that I cannot list them all.

None of my accomplishments would have been possible without the unconditional love and

xi



support of my family. I thank my parents Yaoguang Xie and He Gu for setting me an example of

integrity and hard work by encouraging my youthful dreams and for motivating me to explore the

world around me and reminding me that whatever I do and wherever I go there will always be a

place for me at home.

For the past 9 years I have shared my joys and sorrows with my wife Sharrie (Yunchun) Xu.

Though separated by the wide Pacific, and once the Atlantic Ocean, her love, support and encour-

agement kept a smile on my face, my spirits up, and allowed me to face the challenges life set before

me. One person walks fast; two people walk further. With her I start my next chapter.

xii



To my parents Yaoguang Xie and He Gu, and my wife Sharrie.

xiii



1

Part I

Background



CHAPTER 1. INTRODUCTION 2

Chapter 1

Introduction

1.1 Language and the Real World

The relationship between language and the real world, and consequently our ability to use words to

refer to entities in the world, provides a foundation for linguistic communication. Few current nat-

ural language processing systems are designed to make direct predictions on real world outcomes

by semantic information discovery from natural language text. However, by linking text to real

world outcomes of entity mentions there are many opportunities for NLP research to mine. Exam-

ple problems include a financial application that predicts the situation of a company involved in a

lawsuit from the ways of narrating evidence stories in news reports, a survey tool that understands

the public’s opinions of an ongoing government act from the orientation of words, and a healthcare

system that predicts a patient’s illness by the word choice of symptom descriptions in doctor’s notes.

Facilitating these predictions through natural language understanding motivates this research.

Although document level analysis of various kinds, such as topical categorization of news and

sentiment analysis of social media, is well-studied, there is still a need for a fine-grained approach

that uses semantic and relational information to analyze the entities mentioned in documents. De-

pending on the domain, certain entities can be designated for different purposes of study. For

example, in the political domain, a designated entity can be a candidate in an election or a pending

congressional bill [Gerber et al., 2009]. In product reviews, a designated entity can be a product

(e.g. I like the design of iPod video) [Scheible and Schütze, 2013]. Designated entities can also

be social issues, government acts, new events, or opinions (e.g., Shiite leaders accused Sunnis of
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a mass killing of Shiites in Madaen, south of Baghdad) [O’Connor et al., 2013]. In the financial

domain, a designated entity can be a company in the stock market, which is of interest to investors

and traders (e.g., Facebook bought WhatsApp for $19 billion; Oracle sued Google over Android)

[Feldman et al., 2011a]. These are all examples of entity-driven text analysis.

In entity-driven text analysis, where we specify the designated entity of interest, we can use

the information and signals from the real world to label entity mentions and make predictions.

Although real world events are objective in one sense, they are often placed on a scale that is at least

partly subjective or relative. We can quantify the impact of the information in a document using the

scale of the impact of the real world event. By analyzing the relationship between the real world

phenomenon and the natural language text, a model can be built to connect the two. This model can

in turn automate the process of information discovery and real world event outcome prediction.

In this study, documents and the entities to be modeled are encoded in linguistically enriched

vector space, and novel tree and graph representations. These representations preserve a large

amount of rich linguistic information, such as the entities and their semantic roles, semantic frames

and the dependencies among frames, and lexical items. They use natural language semantics as

a means to an end, where the end goal is to learn the semantic relations that are important in the

domain, to understand what is relevant for entities of interest. Our focus is on how to construct

the essential picture of an entity from textual sources in order to predict the outcomes of real world

entities.

1.2 A Motivating Example

Words are the presentation of knowledge and information. However, the ability of humans to inter-

pret words, to generalize similarity of meanings, and to interpret text goes far beyond understanding

the individual words. Such understanding requires the ability to analyze the structures and meanings

behind words, and how all linguistic features, i.e. lexical items, syntactic dependencies, and seman-

tic information, cooperate to reflect the writer’s purpose. What is more, given successful large-scale

pattern recognition of deep semantic information, retrospective analysis of predictive features can

provide insights into the entities of interest and the domain.

As mentioned in the previous section, we have seen the potential of entity-driven text analytics
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Figure 1.1: Example Reuters news articles where Google is mentioned. The left news item reports

Nokia found smartphone bugs on its latest Lumia phone, and Google is one of its competitors in the

smart phone market. This news has a positive impact on the stock price of Google. The right news

reports Oracle started a trial against Google due to Google’s Android operating system that tramples

Oracle’s intellectual property rights to the Java programming language, which has a negative impact

on Google’s stock price.
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On Wednesday, April 11th, 2012, Google Inc announced its first quarterly earnings report, a

week before the April 20 options contracts expiration in contrast to its history of reporting a

day before monthly options expirations. In the news of the same day, Google is reviewed for

its aggressive reposition to mobile gadgets and online social network service, aggressive hiring,

and swelling cash coffers. Additionally, Nokia found smartphone bugs on its latest Lumia 900

that benefits Google’s Android phone market. The stock price of Google surged 3.85% from

April 10th’s $626.86 to 12th’s $651.01. On Friday, April 13th, news reported Oracle Corp

would sue Google Inc, claiming Google’s Android operating system tramples its intellectual

property rights. Jury selection was set for the next Monday. Google’s stock price tumbled

4.06% on Friday, and continued to drop in the following week.

Figure 1.2: Summary of financial news items, e.g. as in Figure 1.1, pertaining to Google in April,

2012. Boxes mark up the three company mentions. The targeted company entity is in boldface. The

underlined words evoke semantic frames. Our motivation is that entity-driven text analytics on news

can predict the price movement of the targeted company, and exploiting such textual information

with the help of semantic frames can identify information that predicts the price change event.
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in a variety of domains, e.g. health care [Salleb-Aouissi et al., 2011] and energy [Xie et al., 2012],

where text analytics that focus on very different domain entities (e.g. a medical symptom or a utility

structure that come with text descriptions) are used to help knowledge discovery or real world

forecast. A question is: what makes a good model for such knowledge discovery or real world

forecast? Is it purely because of a high prediction accuracy, or is there something more?

A good model should be highly predictive, explainable, and also able to provide insights into

the problem domain for the end user. Let’s consider a scenario. A financial advisor’s responsibility

is to acquire and analyze information in the market, and provide investment recommendations to

her client investors. One day, she, the financial advisor, puts together recent market events from

newspapers for a portfolio. Based on her decades of experience in the financial industry, she told

her client that she would change her recommendation grade for a company from BUY to SELL,

because she expects the stock price for that company will go down in the following trading day.

One of her clients has known her for a long time and has been following her advice to invest for

many years, earning good money. He would just follow her advice without any questioning. There

is another client who just switched to her because of her reputation in the industry. However, he is

interested in more than just knowing the recommendation, so he started to question: How did you

come up with this recommendation? What is the reason behind the prediction procedure? Is there

a story or any market events that happened related to the company that helped make the decision?

A good financial advisor should be able to answer these questions, explain the reasons behind the

prediction, and inform the client by bringing insights to the problem domain. So should an NLP

model.

Figure 1.2 shows a constructed example based on extracts from financial news about Google

in April, 2012. It illustrates how a series of events reported in the news precedes and potentially

predicts a large change in Google’s stock price. Google’s early announcement of quarterly earnings

possibly presages trouble, and its stock price falls soon after reports of a legal action against Google

by Oracle. To produce a coherent story, the original sentences were edited for Figure 1.2, but they

are in the style of actual sentences from our dataset, e.g. Reuters news as shown in Figure 1.1.

Accurate detection of events and relations that might have an impact on stock price should benefit

from document representation that captures sentiment in lexical items (e.g., drop) combined with

the conceptual relations captured by FrameNet [Ruppenhofer and Rehbein, 2012]. FrameNet is a
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lexical conceptual representation that can be used to capture key relationships of who does what to

whom, and can generalize the same role relations for different words, e.g. stock surged versus stocks

rose, or tumbled and drop in the example in Figure 1.2. A frame in frame semantics [Fillmore, 1976]

is a lexical semantic representation of the conceptual roles played by parts of a clause, and relates

different lexical items (e.g., report, announce) to the same situation type. In Figure 1.2, some of the

words that evoke frames have been underlined, and company entities of interest are in boldface.

Two key sentences in Figure 1.2 describe market events that drove Google’s price up and down.

(1) Nokia found smartphone bugs on its latest Lumia 900 that benefits Google’s Android phone

market.

(2) Oracle Corp would sue Google Inc, claiming Google’s Android operating system tramples

its intellectual property rights.

There are many challenges to process the above text to model the outcome of the entity. These

include (1) named entity recognition, e.g. company mention detection for Nokia, Google, and

Oracle; (2) sentiment analysis, e.g. benefits; (3) influential events that are not expressed in sentiment

words, e.g. the lawsuit scenario; (3) distinctions between the roles of entities, e.g. who is the

beneficiary, who is the plaintiff and who is the defendant; (4) generalization of word meanings for

different lexical items, e.g. sue and accuse. To address these challenges motivates this study, and we

propose solutions based on models that take advantage of linguistic resources and NLP techniques

to integrate lexical, syntactic, and semantic analysis as needed. A desired goal is to obtain a rich

feature representation that preserves the meaning of the sentence. Machine learning applied to this

representation can not only make predictions but also allow the users to interpret the model.

Google

is-a

beneficiary

Google

in

statement

is-a

plaintiff

Figure 1.3: Desired features that capture the meaning from the two example sentences for the des-

ignated entity Google.
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Figure 1.3 shows two graphs corresponding to the desired features that capture the meaning

from the two example sentences. The feature on the left captures that Google is a beneficiary in

sentence 1. The feature on the right captures that Google is mentioned in a statement and is the

plaintiff in sentence 2. The questions of whether structured features such as these are useful for

text forecasting, and how to come up with useful features, motivate our study of linguistically-rich,

structured data representation for feature engineering.

Another aspect that motivates this study is the problem domain of financial analytics, which pro-

vides many opportunities for NLP research. Many news organizations that feature financial news,

such as Reuters, the Wall Street Journal, and Bloomberg, devote significant resources to the analysis

of corporate news. Much of the data that would support studies of a link between the news media

and the market are publicly available. Among the debates of the predictability of financial news

on stock prices, [Tetlock et al., 2008] pointed out that linguistic communication is a potentially

important source of information about firms’ fundamental values. Because very few stock market

investors directly observe firms’ production activities, they get most of their information second-

hand. Their three main sources are analysts’ forecasts, quantifiable publicly disclosed accounting

variables, and textual descriptions of firms’ current and future profit-generating activities. If analyst

and accounting variables are incomplete or biased measures of firms’ fundamental values, linguistic

variables may have supplementary explanatory power for firms’ future earnings and returns [Tetlock

et al., 2008].

Our examples come from finance, a field driven by the acquisition of information to evaluate

financial instruments. This study investigates the role of NLP to analyze financial news. We discuss

how this NLP research can potentially benefit the existing quantitative-based financial models, how-

ever, we do not directly test whether our results can improve those financial models. Quantitative

models in finance evaluate the underlying value of financial instruments, and are mainly based on

numerical data. Such models include the popular Capital Asset Pricing Model (CAPM) [Sharpe and

Sharpe, 1970] in portfolio management, and a more recent Fama-French model [Fama and French,

1993] that incorporates the explanation of market behavior, and the Copula Model [Li, 2000] for PD

(probability of default) estimation in modeling credit risk. These quantitative models often fail to

meet the desire from fundamental analysts to know what happened and why it happened, alongside

quantitative analyses. In fundamental analysis, financial advisors, credit analysts, and traders need
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to read hundreds of articles everyday to look for risks or investment opportunities. Therefore, a

more explainable quantitative model that can tell the stories of market events would meet analysts’

needs for information acquisition. Natural language processing that mines financial news provides a

bridge, and can also benefit existing models. For example, the ADS model [Rydberg and Shephard,

2003] decomposes stock price analysis of financial data into three parts - activity (a binary process

modeling the price move or not), direction (another binary process modeling the direction of the

moves) and size (a number quantifying the size of the moves). Our work looks into two binary

classification tasks for news - price change and polarity, which are analogous to the ADS model’s

activity and direction components. The Binomial Model [Cox et al., 1979], a discrete numeric

method for the famous Black-Scholes Model [Black and Scholes, 1973], estimates option pricing

with the assumption that price changes over time are brownian motions. Implementations often rely

on Monte Carlo simulation of price movement, based on the volatility estimated over a historical

time frame. The outcome of our study that estimates the impact of news for price change at each

timestamp can potentially be used to improve the Binomial Model. For example, the Binomial

Model uses a single probability of price change (e.g. up or down) to simulate the price movement

over time for option pricing, whereas use of text forecasting based on news could potentially pro-

vide more accurate probabilities of whether the price is going up or down for each moment when a

news item is released.

There has been a debate on whether conventional news can be used to predict changes in the

stock market. This work contributes to this question. In the efficient market hypothesis, all available

information is incorporated in price, and investors cannot make excess profits from the market.

However, earlier works have shown that stock prices appear to under-react to the market [Chan,

2003], and that there is a one-day delay of the price to react to the news [Tetlock, 2007]. We carry

out a formal study that applies natural language processing techniques that rely on semantic features

to model news articles, and predict changes in stock price of specific companies. Price information

of the companies mentioned is used to label the financial news data. Our experiments test several

document representations for document classification and ranking tasks. Our results show that the

market may not be that ‘efficient’, and price has not fully incorporated all information, but can be

partially predicted by news.

Our study not only shows that price movements can be predicted more accurately by leveraging
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rich linguistic features, but also structured document representations based on lexical items, syn-

tactic dependencies, and frame semantics can provide interpretable features, which is beneficial to

investors for information discovery in the financial market.

1.3 Main Contributions

This study on text analytics exploits rich linguistic features. We hypothesize that rich structured

representation of text is crucial for entity-driven text analytics, where it is important to detect what

situations the entity participates in, and in what role. BOW is still in most general use and has been

highly effective for tasks such as classification of financial documents [Purda and Skillicorn, 2014;

Wintrode and Khudanpur, 2014]. This work aligns with much recent work on representation for

text classification that builds on linguistically informed features, such as syntactic and semantic

information. For example, [Sayeed et al., 2012] use syntactic structures for word-level sentiment

detection. [Kim and Hovy, 2006] use semantic role labeling to label opinion holders and topics to

mine online news. These works have shown promising results of the incorporation of richer lin-

guistic information into feature space, e.g. syntactic dependencies or semantic frames. However, no

fundamental paradigm is proposed for a coherent and extensible way to combine all this linguistic

information for text, and to learn the structured and relational information from the uniform repre-

sentation, as we do here. We study a variety of representation schemas, including vector, tree, and

graph structures, and propose a principled document representation that can include different levels

of linguistic information, such as lexical, syntactic, and semantic features, in a uniform way. Our

experiments address a challenging real world text forecasting problem that predicts price movement

of individual companies in the stock market. We also test the representation and learning method on

a fine-grained sentiment analysis corpus that predicts object benefits and writer attitudes. We find

that our proposed structured representation and learning method achieve significant improvements

over the baselines and traditional text modeling methods.

As an overview, the main contributions of this thesis include:

1. A demonstration of the benefits of frame semantic features and how to use them in documen-

tation representation. Results show that frame semantic features are very useful and predictive for

polarity detection and sentiment analysis in the financial domain.
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2. A novel tree structured representation to model entity driven text analytics problems, where

the root of the tree is the entity to be modeled and the other nodes along the trees are its semantic

roles and semantic frame features. The semantic tree representation is used with a vector space

of lexical items and part-of-speech-specific psycholinguistic dictionary-based features for machine

learning.

3. A rich and principled graph-based document representation of mentioned entities that in-

corporates different levels of linguistic information, such as lexical items, syntactic dependencies,

and semantic frames and roles. We proposed a new graph kernel learning for use with our graph

document representation. Like some other graph kernels, it allows a recursive computation on the

substructures of graphs. Our kernel exploits different weightings on different node and edge feature

types for fine-grained feature exploration.

4. A contribution to the novel area of text forecasting, where text is linked to designated entities,

and natural language learning on text is used to predict the outcome of real world entities. We

demonstrate the effectiveness of NLP to predict price movement of companies in different market

sectors solely based on financial news, which is a very challenging task.

5. Demonstration that our linguistically-rich graph structured representation with graph kernel

learning outperforms several baselines on a new fine-grained sentiment analysis dataset - the Good-

For/BadFor corpus in MPQA (multi-perspective question answering), where two polarity classifi-

cation tasks are involved.

6. A comprehensive comparison between different structures of documentation representation

and their corresponding learning methods, e.g. vector, tree, and graph space models. We found that

the application of a rich semantic feature learning can lead to interpretable features from trees and

graphs.

7. Experiments on coreference resolution on company mentions in financial news that shows

coreference does not benefit the structured representation for the price prediction task.

1.4 Organization of the Thesis

The thesis is organized as follows. Chapter 1 introduces the study background of entity driven text

analytics, and provide a motivating example. Chapter 2 discusses the related work on entity driven
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text analytics, financial news analytics, and structured document representation and learning. Chap-

ter 3 introduces the linguistic resources and related NLP tools that our models build on, including

syntactic dependency parsing, frame semantics and semantic parsing, DAL - a linguistic resource

that provides valence score, named entity recognition, and kernels based machine learning. Chap-

ters 4, 5, 6 introduce our main methods. They seperately describe our data representation in vector,

tree, and graph space, and their corresponding learning methods for different representations. Chap-

ter 7 describes the results and discussions in financial news analytics where Reuters news are used

to predict the price change of companies in different market sectors. Chapter 8 presents the exper-

iments on a new fine-grained sentiment analysis dataset - the GoodFor/BadFor corpus. Chapter 9

concludes the thesis.
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Chapter 2

Literature Review

2.1 Entity-Driven Text Analytics

Entity-driven text analytics, where large collections of documents are analyzed to study the entity

mentions in text, has recently become an active research topic in NLP. These studies usually asso-

ciate the texts that describe entities of interest to the relations or outcomes of those entities in real

world phenomenon. This analysis can facilitate better understanding of the entity mentions, or make

predictions, as in the more specific area that has recently been called text forecasting. [O’Connor et

al., 2013] associate the textual data with the real world political information to learn international

relations. The entities in their study are countries, and the textual data are newswire articles, e.g.,

Pakistan prompt accused India. Their data instance includes country entities at a timestamp. Their

model consists of the temporal information and a tuple of two entities that form a relation or par-

ticipate in an event. They use dependency structure information to distinguish the roles of entities

mentioned in sentences. This work is similar to theirs in that we also focus on the analysis of news

articles on a predefined set of entities. Rather than learning the relations between countries in the

political domain, we learn the stock market performance of company entities in a financial domain.

[Bamman et al., 2013] analyze movie plot summaries to predict the personas for characters. They

use rich linguistic features such as syntactic and semantic parses to capture the stereotypical actions

of which character entities are the agent and patient, as well as attributes by which they are de-

scribed. Our study also explores rich linguistic features, such as syntactic dependency relations and

frame and semantic role information, but to make predictions about company entities. [Scheible and
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Schütze, 2013] work on entity-oriented sentiment analysis to identify the relevance of sentiment to

entities and the polarity of the sentiment. Their approach focuses on subjective text where adjec-

tives or verbs reveal attitude. This study not only works on entity-driven sentiment analysis but also

aims to model the impact of objective events and how they affect the perceived status of an entity

in addition to sentiment. For example news of mergers & acquisitions can affect perception of the

companies involved.

A key question for entity analysis is how to form data instances that are based on real world

entities, what data structure to use to represent the data instances, how to label the data instances,

and how to build models to perform learning. Much recent research relies on real world phenomena

to automate the process of data instance labeling, in contrast to most of the traditional studies in NLP

where human annotations are used. This research exploits the use of supervision from real world

phenomenon on data instances about real world entities. It is related to work on distant learning

or weakly supervised learning where existing knowledge bases are used as source of supervision

and little human annotation is required for relation extraction. [Mintz et al., 2009] in their recent

work use distant learning to heuristically align the given knowledge base, Freebase, to text and

rely on this alignment to learn a relation extractor. Their approach is based on the assumption

that if two entities participate in a relation, all sentences that mention these two entities express

that relation. In later studies, distant learning is improved to solve practical problems involved

in real world datasets in order to tolerate noisy labels [Riedel et al., 2010], to support multiple

relations [Hoffmann et al., 2011; Surdeanu et al., 2012], and to estimate the probabilities of a pattern

showing relations [Takamatsu et al., 2012; Min et al., 2013]. Although this study is not for relation

extraction, it uses domain knowledge as a source of supervision to learn relations between the

entities mentioned in text and real world outcomes on the entities, and models entities by structured

features based on meaning.

The benefit of analyzing the entities in texts based on real world problems is that we can acquire

more knowledge about the entities of interest through mining natural language text, and can further

make predictions about the outcomes to the entity. An advantage is that we can use real world

phenomena to label documents while traditional NLP problems usually require a significant amount

of annotation. One of our prior works can be found in the study of [Salleb-Aouissi et al., 2011] in a

healthcare domain. Electronic Health Records (EHRs) are mined to help the study of infant colic -
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a poorly-understood condition defined as persistent inconsolable crying in healthy babies between 2

weeks and 4 months of age, where the baby seems to be in great discomfort and is difficult to soothe.

Another example of our prior work that connects language and real world phenomena lies in the

energy domain. The study of [Xie et al., 2012] works with Con Edison to assess the vulnerability

of power grids to maintain the reliability of the secondary electrical grid in New York City. The

goal of the project is to develop interpretable models to rank power grid structures (manholes and

service boxes) with respect to their vulnerability to a serious event, such as fire or explosion.

Our work is closely related to text forecasting, which is an emerging collection of problems

in which text documents are used to make predictions about measurable phenomena in the real

world [Kogan et al., 2009]. In [Smith, 2010], text forecasting is defined as a challenge for natural

language processing and machine learning: Given a body of text T pertinent to a social phenomenon,

make a concrete prediction about a measurement M of that phenomenon, obtainable only in the fu-

ture, that rivals the best known methods for forecasting M. Our study aligns with text forecasting:

we build NLP models that rely on financial news to predict the future price movement of the com-

pany mentions. However, our goal is not only to make predictions from text, but also to build models

that allow flexible feature engineering to generate interpretable features, and to provide insights to

the problem domain.

2.2 Financial News Analytics

The financial domain is an area with a lot of recent active research. A growing literature evaluates

the financial effects of media on the market [Tetlock, 2007; Stromberg, 2004; Gentzkow, 2006;

Gerber et al., 2009; Gentzkow and Shapiro, 2010; Engelberg and Parsons, 2011]. Recent work has

applied NLP techniques to various financial media (conventional news, tweets) to detect sentiment

in conventional news [Devitt and Ahmad, 2007; Haider and Mehrotra, 2011] or message boards

[Chua et al., 2009], or to discriminate expert from non-expert investors in financial tweets [Bar-

Haim et al., 2011]. [Kogan et al., 2009] analyze quarterly earning reports to predict stock return

volatility and to predict whether a company will be delisted. [Luss and d’Aspremont, 2008] use text

classification to model price movements of financial assets on a per-day basis. They tried to predict

the direction of return and abnormal returns, defined as an absolute return greater than a predefined
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threshold. [Schumaker et al., 2012] propose a stock price prediction system based on financial news.

They represent documents by boolean valued BOW and named entities. [Wang et al., 2011] present

a framework for mining the relationships between news articles and financial instruments using

a rule-based expert system. [Schumaker et al., 2012] treat stock price prediction as a sentiment

analysis problem to distinguish positive and negative financial news. [Tetlock, 2007] and [Tetlock

et al., 2008] quantify pessimism of news using General Inquirer (GI), a content analysis program.

[Feldman et al., 2011b] apply sentiment analysis on financial news using rule-based information

extraction and dictionary-based prior polarity scores. In this study, we work on the financial domain

and our goal is to ground information derived from NLP techniques to financial news in real world

stock market observations. Most of the active research, as described above, explores the financial

instruments where mining news can be beneficial. However, none of these focuses on document

representation with rich linguistic features, and they rarely go beyond a BOW model. A main focus

of the study is on the development of data representation for entities in documents that can not only

provide effective and efficient learning but also facilitate model interpretation.

2.3 Structured Document Representation and Learning

Two questions guide our study: 1) what linguistic features are necessary for text representation, e.g.

words, topics, syntactic or semantic features, and 2) what data structures should be used to encode

such linguistic information. The representation for document classification in most general use

is vector-based bag-of-words (BOW) model, which has been highly effective [Forman, 2003]. It is

difficult to surpass for many document classification tasks, but cannot capture relational information

or semantic similarity. Methods to investigate semantic similarity that have proven successful for

paraphrase detection [Deerwester et al., 1990; Dolan et al., 2004] include latent variable models

that simultaneously capture the semantics of words and sentences, such as latent semantic analysis

(LSA) [Deerwester et al., 1990] or latent Dirichlet allocation (LDA) [Blei et al., 2003]. However,

our task differs from paraphrase detection, and our focus is beyond the semantic similarity measures

based on word co-occurrence patterns.

Although a vector space model can contain rich features such as bag-of-words, bag-of-frames,

and word affect based on a psycholinguistic dictionary, representing text as a set (bag), disregard-
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ing ordering and syntax, cannot express relational or structural information such as subject-object

relations or predicate argument structures. Tree representation has been used to encode relational

and structural linguistic information. [Wilson et al., 2009] construct phrase-level modification fea-

tures using syntactic parses, such as whether a word modifies or is modified by a subjective lex-

icon. [Sayeed et al., 2012] use grammatical structure by constructing a suffix-tree data structure

to represent syntactic relationships between opinion targets and opinion-bearing words for word-

level sentiment detection. Their use of grammatical structure can discriminate between parts of the

structure that are relevant to target-opinion word relations and those that are not. [Kim and Hovy,

2006] exploit the semantic structure of a sentence, anchored to an opinion bearing verb or adjec-

tive. They use semantic role labeling as an intermediate step to label opinion holders and topics

for opinion mining on online news. [Agarwal et al., 2014] use features derived from semantic an-

notations based on FrameNet to construct semantic trees for social network extraction. [Agarwal

et al., 2011] use trees to represent short texts for sentiment analysis on Twitter data. They rely on

tree kernels for machine learning. Tree kernels have been proven to be an effective way to automate

the exploration of syntactic and semantic information in text. The tree kernel [Moschitti, 2006;

Collins and Duffy, 2002] is a function of tree similarity based on common substructures (tree frag-

ments). Fast algorithms for kernel computation run in linear time on average, either by dynamic

programming [Collins and Duffy, 2002], or pre-sorting production rules before training [Moschitti,

2006]. This benefits the application of tree kernels on NLP problems to efficiently learn linguis-

tic phenomena and patterns in sub-tree structures. However, there are topological constraints on

trees, such as no allowance of cycles and the distinction between root and leaf nodes that hinder the

development of additional feature engineering. This motivates a more general data representation.

Graphs provide a more general, flexible and efficient data structure for problems as diverse as

prediction of toxicity based on molecular structure [Wale et al., 2008], analysis of 3-D scenes in

virtual environments [Fisher et al., 2011], and social network analysis [Ediger et al., 2010]. They

have been used in many NLP tasks, such as polarity of words [Hassan and Radev, 2010], opinion

bearing words and opinion targets [Sayeed et al., 2012], coreference [Nicolae and Nicolae, 2006],

and dependency parsing [McDonald et al., 2005a]. The problem of how to construct a meaningful

graph representation and how to measure the similarity of graphs is at the core of learning on graphs.

Most of the studies on graphs are based on the assumption that data instances with similar structure
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have similar outcomes. This motivates our study on graph-structured semantic information derived

from texts. We have found little if any work that applies graphs to large-scale semantic analysis

of documents. This work is to study the representation of rich linguistic information, including

semantic frames and syntactic dependency for large-scale text mining.

Several studies have focused on the learning on graph structures, and different graph kernels

have been defined in machine learning. Graph kernels can be categorized into three classes: graph

kernels based on walks [Kashima et al., 2003; Gärtner et al., 2003] and paths [Borgwardt and

Kriegel, 2005], graph kernels based on limited-size subgraphs [Horváth et al., 2004; Shervashidze

et al., 2009], and graph kernels based on subtree-like patterns [Mahé and Vert, 2009]. Among

them, Weisfeiler-Lehman graph kernel [Shervashidze et al., 2011] based on subtree-like patterns,

short for WL graph kernel, is the one of particular interest. It can effectively measure the similarity

between graphs, and subsumes tree kernel learning on tree structures. WL graph kernel also has a

lower computational complexity compared to other graph kernels. Its computation is based on the

Weisfeiler-Lehman test of isomorphism [Weisfeiler and Lehman, 1968], which iteratively compares

the similarity of graphs based on an incremental size of node neighborhoods. This study uses

WL graph kernel for machine learning to extract and benefit from the relational structures in a

semantic graph representation with rich linguistic information. WL graph kernel is efficient at

neighborhood augmentation but often results in coarse-grained features, because all neighbors of

a node are expanded all together during the augmentation, and without distinguishing the node or

edge types. We develop a novel node edge weighting (NEW) graph kernel that iteratively augments

each of the neighboring nodes, and weights nodes and edges based on their feature types. NEW

graph kernel generates finer-grained features that allow partial match of graph substructures, and

provides a complimentary approach to WL kernel.
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Chapter 3

Modeling Tools and Learning Methods

This chapter describes a set of tools and learning methods used in this thesis. Some of them have

been widely applied in natural language processing: frame semantics and FrameNet for meaning

analysis, dependency parsing for syntactic analysis on sentences, support vector machines for ma-

chine learning, and convolution kernels that measure the similarity of structured data.

3.1 Dependency Parsing

Dependency parsing, or dependency-based syntactic parsing, is an approach to automatic syntactic

analysis of natural language inspired by the theoretical linguistic tradition of dependency gram-

mar. Dependency parsing’s advantages can be attributed to 1) its transparent encoding of predicate-

argument structure, 2) its ability to parse flexible or free word orders, and 3) its utility as an inter-

mediate representation for semantic parsing.

The basic assumption underlying dependency grammar is the idea that syntactic structure es-

sentially consists of words linked by binary, asymmetrical relations called dependency relations (or

dependencies for short). A dependency relation holds between a syntactically subordinate word,

called the dependent, and another word on which it depends, called the head.

The information encoded in a dependency structure representation is different from the infor-

mation captured in a phrase structure representation of a syntactic parse. Phrase structure represents

the grouping of words into phrases, classified by structural categories such as noun phrase (NP) and

verb phrase (VP), while dependency structure represents head-dependent relations between words,
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classified by functional categories such as subject (SBJ) and object (OBJ).

In our experiments, we use the MST dependency parser [McDonald et al., 2005b] that imple-

ments the Eisner algorithm [Eisner, 1996]. It provides an efficient and robust performance on our

dataset.

3.2 Frame Semantics

Frame semantics [Fillmore, 1976] aims for a conceptual representation that generalizes from words

and phrases to abstract scenarios, or frames, that capture explicit and implicit meanings of sen-

tences. The central idea of frame semantics is that word meanings must be described in relation

to semantic frames - schematic representations of the conceptual structures and patterns of belief,

practices, institutions, or images, that provide a foundation for meaningful interaction in a given

speech community [Fillmore et al., 2003].

FrameNet is a computational lexicography project that extracts information about the linked

semantic and syntactic properties of English words from large electronic text corpora, using both

manual and automatic procedures, and presents this information in a variety of web-based reports.

FrameNet identifies and describes semantic frames, and analyzes the meanings of words by directly

appealing to the frames that underlie their meanings.

The primary units of lexical analysis in FrameNet are the frame and the lexical unit [Cruse,

1986], defined as a pairing of a word with a sense, for example, the hot of temperature and the

hot of taste experiences are two among the many lexical units associated with the adjective hot.

Generally speaking, the separate senses of a word correspond to the different semantic frames that

the word can participate in. When a word’s sense is based on a particular frame, we say that the

word evokes the frame: thus, the word hot is capable of evoking a temperature scale frame in some

contexts and a particular taste experience frame in others. Interpreting a sentence containing this

word requires assumptions about which frame is relevant in the given context.

Based on the theory of frame semantics, there has been much research on semantic frame-

based semantic parsing. The parser used in this study is SEMAFOR1 [Das and Smith, 2011;

Das and Smith, 2012]. It is a statistical parser that uses a rule-based frame target identification,

1 http://www.ark.cs.cmu.edu/SEMAFOR.

http://www.ark.cs.cmu.edu/SEMAFOR
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a semi-supervised model that expands the predicate lexicon of FrameNet for semantic frame classi-

fication, and a supervised model for argument identification. The algorithm takes into account var-

ious linguistic constraints, such as relationships between pairs of semantic roles, and has seen sig-

nificantly better frame-semantic parsing performance on unobserved, out-of-domain lexical units.

This parser achieved the state-of-the-art results on the SemEval 2007 benchmark dataset.

3.3 Dictionary of Affect in Language

The Dictionary of Affect in Language (DAL) [Whissel, 1989] is a psycholinguistic resource de-

signed to quantify the nuances of emotional words. The dictionary grew out of a tradition of lexical-

emotional research. After a revision in 1998, it was extended to 8,742 words that were annotated

for three dimensions: Pleasantness (Pls), Activation (Act), and Imagery (Img). The documentation

of DAL lists the mean and standard deviation of all words belonging to each of the three categories,

and provides a standardized scoring method to illustrate the possible ways to use the resources. Ear-

lier works introduced DAL to natural language processing, and it has been proven to be an effective

resource for sentiment analysis. [Agarwal et al., 2009] introduced part-of-speech specific DAL fea-

tures for sentiment analysis. We follow their approach to create vector space features in DAL by

averaging the pleasantness, activation, and imagery scores for all words, verb only, adjective only,

and adverb only words.

3.4 Named Entity Recognition

Coreference resolution is the task of finding all expressions that refer to the same entity in a dis-

course. It is important for natural language understanding tasks like summarization, question an-

swering, and information extraction [Lee et al., 2013].

The long history of coreference resolution has shown that the use of highly precise lexical and

syntactic features is crucial to high quality resolution [Ng and Cardie, 2002; Lappin and Leass,

1994; Poesio et al., 2004; GuoDong and Jian, 2004; Bengtson and Roth, 2008; Haghighi and Klein,

2009]. Recent work has also shown the importance of global inference - performing coreference

resolution jointly for several or all mentions in a document - rather than greedily disambiguating

individual pairs of mentions [Morton, 2000; Luo et al., 2004; Yang et al., 2004; Culotta et al., 2007;
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Yang et al., 2008].

We experiment with the coreference resolution system of Stanford CoreNLP [Manning et al.,

2014] for entity mention detection. This system implements the multi-pass sieve coreference res-

olution (or anaphora resolution) system described in [Lee et al., 2011; Raghunathan et al., 2010;

Lee et al., 2013; Recasens et al., 2013]. Their system is a collection of deterministic coreference

resolution models that incorporate lexical, syntactic, semantic, and discourse information. All these

models use global document-level information by sharing mention attributes, such as gender and

number, across mentions in the same cluster [Lee et al., 2011]. In overall, the Stanford CoreNLP

Coreference Resolution System consists of three main stages: mention detection, followed by coref-

erence resolution, and post-processing. In the mention detection step, mentions are extracted and

relevant information about mentions, e.g., gender and number, is prepared for the next step. The

coreference resolution stage implements a system that performs entity-centric coreference, where

all mentions that point to the same real-world entity are jointly modeled, in a rich feature space

solely using simple, deterministic rules [Lee et al., 2013]. Sieves in this stage are sorted from high-

est to lowest precision. For example, the first sieve (i.e., highest precision) requires an exact string

match between a mention and its antecedent, whereas the last one (i.e., lowest precision) imple-

ments pronominal coreference resolution. Post-processing is performed to adjust our output to the

task specific constraints, e.g., removing singletons [Lee et al., 2011].

3.5 Kernels and Support Vector Machines

Support vector machines (SVMs) are hyperplane learning algorithms that 1) map the training data

into a higher dimensional feature space, and 2) construct a separating hyperplane with maximum

margin in that feature space. This yields a nonlinear decision boundary in input space. The key step

is to use kernel functions as similarity measures. It is possible to compute the separating hyperplane

without explicitly carrying out the map into the feature space. For a function Φ that maps a data

point x in feature spaceH, and kernel k, we have:

Φ : X → H (3.1)

x 7→ x := Φ(x) (3.2)
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k(x, x′) = 〈Φ(x),Φ(x′)〉 (3.3)

In practice, a separating hyperplane may not exist, e.g. when there is an overlap of data points

of different classes. To allow examples that are not strictly separable, one introduces slack variables

ξ. This results in a soft margin classifier obtained by minimizing the objective function

minimize τ(w, ξ) =
1

2
||w||2 + C

m∑
i=1

ξi (3.4)

subject to

ξi ≥ 0 for all i = 1, ...,m (3.5)

yi(〈w,xi〉+ b) ≥ 1− ξi for all i = 1, ...,m (3.6)

where the constant C > 0 determines the trade-off between margin maximization and training error

minimization. Incorporating a kernel, and rewriting it in terms of Lagrange multipliers, leads to the

problem of maximizing

maximize W (α) =
m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyjk(xi, xj) (3.7)

subject to

0 ≤ αi ≤ C for all i = 1, ...,m, and
m∑
i=1

αiyi = 0 (3.8)

where αi are the Lagrange multipliers.

The main contribution of this dissertation is to develop data representations and their corre-

sponding kernel functions for natural language text using semantic information, which is related

to Equations (3.1)-(3.3). In particular, embedding data into H via the mapping Φ provides us the

freedom to choose a non-linear map Φ that transforms the original data representation into one that

is more suitable for a given set of problems. In many NLP tasks the input domain cannot be neatly

formulated as a subset of Rd. Instead, the objects being modeled are strings, trees or other dis-

crete structures which require some mapping Φ to convert them into feature space for convenient

similarity measures [Collins and Duffy, 2001]. This study explores the possible mapping Φ that ex-

tend vector space bag-of-words model to semantic tree space model, and an even more generalized

semantic graph space model, together with psycholinguistic dictionary based models for semantic
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orientation and semi-supervised topic models. These kernels on trees or graphs that involve a recur-

sive calculation over the parts of the data structure are instances of convolution kernels, which were

introduced by[Haussler, 1999] and [Watkins, 2000].
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Part II

Models to Discover the Structured

Semantics in Text



26

Although the focus of the study is not on semantic parsing, we explore different approaches to

utilize frame semantic parses to construct rich-featured data representations and to perform feature

engineering. We compare three approaches for the use of semantic frames. The first is a rich vector

space model based on semantic frame attributes. The second uses a tree representation that encodes

semantic frame features, and depends on tree kernels for learning. The third is a more general form

based on graphs derived from semantic frames, and uses graph kernels for support vector learning.
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Chapter 4

Vector Space

4.1 Motivation

Bag-of-words (BOW) has been proven to be efficient and effective and provides strong baselines

for many NLP tasks such as text categorization, information retrieval, and sentiment analysis. The

limited expressiveness of BOW, however, makes it difficult to identify the underlying scenarios

in text by generalizing the meanings of words when the word forms are different (e.g. sue and

accuse both indicate a judgment communication scenario), or distinguish the word senses for the

same word form (e.g. right for correctness versus a legal entitlement). Our vector space model that

incorporates features from FrameNet aims to generalize word meanings and provide rich semantics

for document representation.

Consider the following sentences:

b Oracle Communicator c b sued Judgment communication c b Google Evaluee c b in August 2010

T ime c, b saying Statement c b Google’s Android mobile operating system infringes its copyrights

and patents for the Java programming language Message c. (a)

b Oracle Communicator c has b accused Judgment communication c b Google Evaluee c of b violat-

ing its intellectual property rights to the Java programming language Reason c. (b)

bOracle Communicator c has b blamed Judgment communication c bGoogle Evaluee c and b alleged

Statement c that b the latter has committed copyright infringement related to Java programming

language held by Oracle Message c. (c)

b Oracle’s Ellison Speaker c b says Statement c b couldn’t sway Google on Java Message c. (d)
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Sentences a, b and c are semantically similar, but lexically rather distinct: the shared words are

the company names and Java (programming language). Bag-of-Words (BOW) document represen-

tation is difficult to surpass for many document classification tasks, but cannot capture the degree of

semantic similarity among these sentences. Methods that have proven successful for paraphrase de-

tection [Deerwester et al., 1990; Dolan et al., 2004], as in the main clauses of b and c, include latent

variable models that simultaneously capture the semantics of words and sentences, such as latent

semantic analysis (LSA) or latent Dirichlet allocation (LDA). However, our task goes beyond para-

phrase detection. The first three sentences all indicate an adversarial relation of Oracle to Google

involving a negative judgement. It would be useful to capture the similarities among all three of

these sentences, and to distinguish the role of each company (who is suing and who is being sued).

Further, these three sentences potentially have a greater impact on market perception of Google in

contrast to a sentence like d, that refers to the same conflict more indirectly, and whose main clause

verb is say. We hypothesize that semantic frames can address these issues.

Sentence: Oracle sued Google, saying Google’s Android system infringes its patents for Java.

Frame semantic parse:

[OracleJC.Communicator,Stmt.Speaker] [suedJudgment communication] [GoogleJC.Evaluee],

[sayingStatement] [Google’s Android [systemGizmo] [infringesHindering] its [patentsDistinctiveness]

for Java Stmt.Message].

Figure 4.1: Example sentence and its frame semantic parse.

4.2 Lexical Features in Vector Space

Vector space representation is a typical representation for natural language processing and machine

learning. Bag-of-words (BOW) representation is a typical vector space representation where a data

instance is represented by a collection of words, and it has achieved high performance in many NLP

tasks such as text categorization and sentiment analysis.
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4.3 Semantic Frames in Vector Space

Here we use frame attributes instead of word tokens to construct the feature space. The basic

components of frame semantics include frame names, frame targets (lexical units that evoke the

frames), and frame elements (semantic roles). These three components can be used to represent

documents. A data instance can thus be represented as a vector of a pre-defined length of M , and

be mapped to a point in this M -dimensional space where each feature forms a dimension. As an

analogy to BOW, we call it bag-of-frames (BOF) model.

Figure 4.1 shows a sentence with its semantic parse. Two frames, Judgment communication

and Statement, are evoked by lexical units sued and saying respectively. For the Judgment com-

munication frame, two elements are filled: Communicator and Evaluee. For the Statement frame,

two elements are also filled: Speaker and Message. To construct a BOF vector space for this sen-

tence, we have the following features: FRAME NAME-Judgement communication, FRAME NAME-

Statement, FRAME TARGET-Judgement communication-sue, FRAME TARGET-

Statement-say, FRAME ELEMENT-Judgement communication-Communicator, FRAME ELEMENT-

Judgement communication-Evaluee, FRAME ELEMENT-Statement-Speaker, and FRAME ELEMENT-

Statement-Message.

4.4 Affects in Vector Space

Semantic orientation of words has been proven effective in tasks such as sentiment analysis and

opinion mining. These dictionary-based scoring features have been widely used in sentiment-based

classification tasks. The dictionaries are usually developed by psycholinguists. The tasks often

focus on classifying the semantic orientation of individual words or phrases or documents using lin-

guistic heuristics, pre-selected sets of seed words, or human labeling. For example, General Inquirer

(GI) is a dictionary-based content analysis program that quantifies texts by counting the words in

a predetermined set of 77 categories, including 2 large valence categories - positive and negative,

and some other categories such as pleasure and plain, strong and weak, active and passive. [Goyal

and Daumé, 2011] used GI as a benchmark to evaluate the semantic orientation of words. [Moham-

mad and Turney, 2010] used GI to help create a high-quality, moderate-sized emotion lexicon using

Mechanical Turk. [Tetlock, 2007] utilizes GI to quantitatively measure the interactions between the
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media and stock market.

As described in Section 3.3, the Dictionary of Affect in Language (DAL) [Whissel, 1989] is a

psycholinguistic resource designed to quantify the undertones of emotional words. It contains 8,742

words that were annotated for three dimensions: Pleasantness (Pls), Activation (Act), and Imagery

(Img). Earlier works introduced DAL to natural language processing, and it has been proven to be

an effective feature space for sentiment analysis. For example, [Agarwal et al., 2009] introduced

part-of-speech specific DAL features for sentiment analysis. We follow their approach to create

vector space features in DAL by averaging the pleasantness, activation, and imagery scores for all

words, verb only, adjective only, and adverb only words. This vector space representation in affects

can be conveniently incorporated to BOW and BOF to form a linguistically rich representation.

4.5 Putting It All Together for Vector Space Representation

Table 4.1 lists 24 types of features, including semantic Frame attributes, bag-of-Words, and scores

for words in DAL by part of speech (part-of-speech DAL, or pDAL). We refer to these features as

FWD features. Note that semantic frame attributes include frame names (F), frame targets (FT),

and frame elements (FE).

Although boolean values are often used to indicate the presence of the features in vector space,

weighted versions can also be used to scale the value of the frame attributes. For example, fre-

quency and inverse-document-frequency are two of many possible weighting schemas. We de-

fine idf -adjusted weighted frame features, such as wF for attribute F in document d as wFF,d =

f(F, d)× log |D|
|d∈D:F∈d| , where f(F, d) is the frequency of frame F in d, D is the whole document

set and |·| is the cardinality operator.
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Category Features Value type

Frame F, FT, FE N

attributes wF, wFT, wFE R≥0

BOW UniG, BiG, TriG N

wUniG, wBiG, wTriG R≥0

pDAL all-Pls, all-Act, all-Img R∼µ=0,std=1

VB-Pls, VB-Act, VB-Img R∼µ=0,std=1

JJ-Pls, JJ-Act, JJ-Img R∼µ=0,std=1

RB-Pls, RB-Act, RB-Img R∼µ=0,std=1

Table 4.1: FWD features (Frame, bag-of-Words, part-of-speech DAL score) and their value types.
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Chapter 5

Tree Space

5.1 Motivation

id DE Text Label

tr
ai

n

1 Oracle
Oracle sued Google in August 2010, saying Google’s Android mobile operating

system infringes its copyrights and patents for the Java programming language.
+

2 Google
Oracle sued Google in August 2010, saying Google’s Android mobile operating

system infringes its copyrights and patents for the Java programming language.
-

te
st

3 Oracle
Oracle has accused Google of violating its intellectual property rights to the Java

programming language.
+

4 Google
Oracle has accused Google of violating its intellectual property rights to the Java

programming language.
-

Table 5.1: Sample sentences with designated entities.

In the previous section semantic frames are used as features in vector space, however, repre-

senting text as a set (bag), disregarding ordering and syntax, provides no relational or structural

information, such as subject-object relations or predicate argument structure. For instance, consider

the example data instances in Table 5.1. Assume instances 1 & 2 are training data and instances

3 & 4 are test data. Notice that instances 1 & 2 have the same text but the designated entities (in

blue) are different, and the same for instances 3 & 4. It motivates us to design a data representa-

tion that can distinguish the different designated entities for the same text and capture the semantic
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information about the designated entity. We also want a similarity measure (i.e. a type of kernel

function) that can be applied to the data representation and achieve the desired similarity score. For

example, to correctly classify the test data, we want a kernel function that measures instance 3 to

instance 1 with a higher similarity score than to instance 2, and measures instance 4 to instance 2

with a higher similarity score than to instance 1. We hypothesize that the structural information in

frame semantics can be better exploited using a tree data representation and a tree kernel that fulfills

the similarity measure requirement.

5.2 Constructing Semantic Tree Representation

We developed a semantic tree (SemTree) data representation, where the frame semantic information

is encoded in trees. SemTree aims at a general method to represent a named entity (e.g. a company)

that the text (e.g. financial news) is about.

Consider the example in Figure 4.1, which is a sentence from a Reuters news article on April

17th, 2012 that describes a lawsuit in the Information Technology sector between the company

Oracle and Google. The semantic frame parse of a sentence is a collection of frame structures. For

example, for the two frames (Judgment communication and Statement) detected from the example

sentence of Figure 4.1, each has a target and a number of frame elements. Each frame can be

represented in the form of a tree, where the root is the frame name, one child is the target word, and

the other children are frame elements, as shown in the left subfigures of Figure 5.1(a) and (b).

SemTree can be constructed to encode the original frame structure and its leaf words and phrases,

and highlights a designated entity at a particular node as follows. For each frame evoked by a

lexical item (target word), a backbone is found by extracting the path from the root to the role filler

mentioning a designated entity via the semantic role (frame element) node; the backbone is then

reversed to promote the designated entity to the root node. If multiple frames have been assigned to

the same designated entity, their backbones are merged. Lastly, the frame elements and frame targets

are inserted at the frame node. As will be described in section 7.2, a data instance corresponds to

all the news associated to a company on a day. For this SemTree representation, the backbones of

all frames with the same designated entity mentioned in news for a given day are merged at the root

to create a single data instance.
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Judgment communication

FE.Evaluee

Google

FE.Communicator

Oracle

Judgment communication.Target

sue

Designated Entity

FE.Communicator

Judgment communication

(a) Extracting the backbone for Judgment communication frame for the designated entity Oracle.

Statement

FE.Message

Google’s Android ... language

FE.Speaker

Oracle

Statement.Target

say

Designated Entity

FE.Speaker

Statement

(b) Extracting the backbone for Statement frame for the designated entity Oracle.

Designated Entity

Speaker

Statement

FE.MessageFE.SpeakerStatement.Target

say

Communicator

Judgment communication

FE.EvalueeFE.CommunicatorJC.Target

sue

(c) Merging the backbones at the root for a tree representation for the designated entity Oracle in sentence of

Figure 4.1.

Figure 5.1: Constructing the semantic tree for the designated entity Oracle in sentence of Figure 4.1.
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Judgment communication

FE.Evaluee

Google

FE.Communicator

Oracle

Judgment communication.Target

sue

Designated Entity

FE.Evaluee

Judgment communication

(a) Extracting the backbone for Judgment communication frame for the designated entity Google.

Statement

FE.Message

Google’s Android ... language

FE.Speaker

Oracle

Statement.Target

say

Designated Entity

FE.Message

Statement

(b) Extracting the backbone for Statement frame for the designated entity Google.

Designated Entity

Message

Statement

FE.MessageFE.SpeakerStatement.Target

say

Evaluee

Judgment communication

FE.EvalueeFE.CommunicatorJC.Target

sue

(c) Merging the backbones at the root for a tree representation for the designated entity Google in sentence

of Figure 4.1.

Figure 5.2: Constructing the semantic tree for the designated entity Google in sentence of Figure 4.1.
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Designated Entity

Communicator

Judgment communication

FE.EvalueeFE.CommunicatorJC.Target

accuse

Figure 5.3: SemTree representation for the designated entity Oracle in sentence: Oracle has ac-

cused Google of violating its intellectual property rights to the Java programming language.

For the example sentence in Figure 4.1 for the designated entity Oracle, the semantic parse has

two frames, one corresponding to the main clause (verb sue), and the other for the tenseless adjunct

(verb say). The reversed paths extracted from each frame root to the designated entity Oracle

become the backbones (Figures 5.2a & 5.2b). After merging the two backbones we get the resulting

SemTree, as shown in Figure 5.2c. By the same steps, this sentence would also yield a SemTree with

Google at the root, in the role of EVALUEE, as shown in Figure 5.2.

5.3 Tree Kernels to Measure Semantic Tree Similarity

The tree kernel [Moschitti, 2006; Collins and Duffy, 2002] is a function of tree similarity, based

on common substructures (tree fragments). There are two types of substructures. A subtree (ST)

is defined as any node of a tree along with all its descendants. A subset tree (SST) is defined as

any node along with its immediate children and, optionally, part or all of the children’s descendants.

Each tree is represented by a d dimensional vector where the i’th component counts the number of

occurrences of the i’th tree fragment. SST has a finer granularity than ST when measuring similarity,

while ST has a lower computational complexity.

Define the function hi(T ) as the number of occurrences of the i’th tree fragment in tree T , so

that T is now represented as h(T ) = (h1(T ), h2(T ), ..., hd(T )). We define the set of nodes in

trees T1 and T2 as NT1 and NT2 respectively. We define the indicator function Ii(n) to be 1 if the

subtree i is seen rooted at node n, and 0 otherwise. It follows that hi(T1) =
∑

n1∈NT1
Ii(n1) and
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hi(T2) =
∑

n2∈NT2
Ii(n2). Their similarity can be efficiently computed by the inner product,

K(T1, T2) = h(T1) · h(T2)

=
∑

i hi(T1)hi(T2)

=
∑

i(
∑

n1∈NT1
Ii(n1))(

∑
n2∈NT2

Ii(n2))

=
∑

n1∈NT1

∑
n2∈NT2

∑
i Ii(n1)Ii(n2)

=
∑

n1∈NT1

∑
n2∈NT2

∆(n1, n2)

where ∆(n1, n2) is the number of common fragments rooted in the nodes n1 and n2. If the produc-

tions of these two nodes (themselves and their immediate children) differ, ∆(n1, n2) = 0; otherwise

iterate their children recursively to evaluate ∆(n1, n2) =
∏|children|
j (σ+∆(cjn1 , c

j
n2)), where σ = 0

for ST kernel and σ = 1 for SST kernel.

The kernel computational complexity is O(|NT1 | × |NT2 |), where all pairwise comparisons are

carried out between T1 and T2. However, there are fast algorithms for kernel computation that run

in linear time on average, either by dynamic programming [Collins and Duffy, 2002], or pre-sorting

production rules before training [Moschitti, 2006].

5.4 Tree Kernel on SemTree

For the example data instances in Table 5.1, assume instances 1 & 2 are training data and instances

3 & 4 are test data. To correctly classify the test data, we want a kernel function that measures

instance 3 to instance 1 with a higher similarity score than to instance 2 (k(T3, T1) > k(T3, T2)),

and measures instance 4 to instance 2 with a higher similarity score than to instance 1 (k(T4, T2) >

k(T4, T1)). SemTree representation with SST tree kernel achieves our requirement. As shown in

Figure 5.5, using SST tree kernel, when comparing instance 3 with instance 1: k(T3, T1) = 3,

while comparing instance 3 with instance 2: k(T3, T2) = 1.
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Figure 5.4: Subset tree kernel for k(T3, T1) and k(T3, T2).



CHAPTER 5. TREE SPACE 39

Figure 5.5: Subset tree kernel for k(T3, T1) and k(T3, T2).

FE.Communicator

Judgment communication

(a)

FE.Communicator

Judgment communication

FE.EvalueeFE.CommunicatorJC.Target

(b)

Judgment communication

FE.EvalueeFE.CommunicatorJC.Target

(c)

Figure 5.6: When using SemTree representation and subset tree (SST) tree kernel, (a) (b) (c) are

common tree fragments when comparing instance 3 to instance 1 (K(T1, T3) = 3), while (c) is the

only common tree fragments when comparing instance 3 to instance 2 (K(T2, T3) = 1), as shown in

Figure 5.5.
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Chapter 6

Graph Space

6.1 Motivation

In this section, we extend the structured semantic representation from a tree space to a semantic

graph space, and apply a graph kernel as a similarity measure for machine learning. SemTree in the

previous section captures information about designated entities through semantic role and frame in-

formation derived from semantic parses. It encodes a subset of semantic frames where a designated

entity fills a role. The root of the tree is the designated entity and the tree has a pre-defined depth.

The frames without a designated entity as a role filler are discarded. In a preliminary experiment, we

found that incorporating SemTree in the vector space model improved the performance but SemTree

alone did not. The question is, can we do better than SemTree using a topologically more general

representation (e.g. allow cycles and no distinction between root and leaf nodes)?

Graphs are a flexible and efficient data structure for problems as diverse as prediction of toxicity

based on molecular structure [Wale et al., 2008], analysis of 3-D scenes in virtual environments

[Fisher et al., 2011], and social network analysis [Ediger et al., 2010]. They have been used in

many NLP tasks, such as polarity of words [Hassan and Radev, 2010], opinion bearing words and

opinion targets [Sayeed et al., 2012], coreference [Nicolae and Nicolae, 2006], and dependency

parsing [McDonald et al., 2005b]. We have found, however, little if any work that applies graphs

to large-scale semantic analysis of documents. Most of the studies on graphs are based on the

assumption that data instances with similar structure have similar outcomes. The problem of how

to construct a meaningful graph representation and how to measure the similarity of graphs is at
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the core of learning on graphs. This motivates our study on graph-structured semantic information

derived from texts.

Consider the following 3 sentences selected from news articles:

“The accreditation renewal also underscores the quality of our work with Humana members, customers,

clients, payors and health care providers by confirming our compliance with national standards for PBM

services,” said William Fleming, vice president of Humana Pharmacy Solutions. (a)

“The testing program highlighted the abilities of the Navy, Raytheon Missile Systems and NASA to

effectively partner on this very complicated testing program and deliver what would have been previously

unobtainable data,” said Don Nickison, chief of the NASA Ames Wind Tunnel operations division. (b)

“The initiation of a dividend and the renewed share repurchase authorization underscore the board and

management’s confidence in Symantec’s long-term business outlook and ability to generate significant free

cash flow on a consistent basis,” said Symantec’s executive vice president and chief financial officer, James

Beer. (c)

Each of the above three sentences mentions a company in a different market sector, Humana

in Healthcare (a), Raytheon in Industrials (b), and Symantec in Information Technology (c). They

describe different events and use diverse words in their own domains. Interestingly, the stock price

of all three companies went up the next day after the news. All three sentences describe a scenario

that a leader in an organization is making a statement that conveys the importance of some aspect

of the company’s capability. The relevant frames include Leader, Statement, Convey importance,

and Capability. These semantic frames are related to and depend on one another. We hypothesize

that such intra-sentence dependencies among frames can be modeled through syntactic dependency

parses, and they provide important features for semantic frame-based document representation.

In this section we present a flexible and extensible graph representation that not only subsumes

SemTree, but is also able to incorporate syntactic information to model the intra-sentence depen-

dencies among semantic frames. It provides a unified data representation for bag-of-words, frame

semantic features, and syntactic dependencies. For machine learning on graphs, we apply a graph

kernel that can capture similarities within various degrees of node neighborhood.

We start from a graph representation that builds on frame semantic features which extends

SemTrees, and we name it Vanilla SemGraph. We then introduce other feature types that can be in-

corporated into this flexible graph representation, such as syntactic dependencies (SemDepGraph),

and lexical items (SemLexGraph). At the end, we combine all these feature types and we present
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our resulting graph representation as SemDepLexGraph, or simply OmniGraph.

Sentence: Oracle sued Google, saying Google’s Android system infringes its patents for Java.

Frame semantic parse:

[OracleJC.Communicator,Stmt.Speaker] [suedJudgment communication] [GoogleJC.Evaluee],

[sayingStatement] [Google’s Android [systemGizmo] [infringesHindering] its [patentsDistinctiveness]

for Java Stmt.Message].

Dependency parse:

Oracle sued Google , saying Google ’s Android system infringes its patents for Java .

ROOT

SUB OBJ
P
VMOD

VMOD

SUB
OBJNMOD

NMOD
NMOD NMOD NMOD NMOD

Figure 6.1: Example sentence, the frame semantic parse, and the dependency parse.

6.2 Constructing Semantic Graph Representation

Our semantic graph aims at a concise and convenient representation of linguistic semantic informa-

tion. For each sentence that mentions an entity of interest, the representation should identify the

frame, and should include the semantic relations that the entity participates in. Criteria that guided

our design decisions were to 1) focus on a designated entity; 2) capture semantic roles and other

semantic features of the entities; 3) have a more general topology than trees, e.g., with cycles, and

no distinctive root or leaf nodes; and support feature engineering through 4) extensibility and 5) use

of an efficient and flexible kernel.

Frames, frame targets (lexical units that evoke frames), frame elements (roles), and the entity

of interest appear as nodes in a Vanilla SemGraph. The entity to be modeled is the Designated

Entity (DE; e.g. Oracle of the sentence in Figure 6.1). Figure 6.3a) shows an example Vanilla

SemGraph for the sentence in Figure 6.1. For readability, nodes in the figure are distinguished by

shape: ellipses for entities, boxes for frames, rounded boxes for frame targets, and diamonds for
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Judgment communication

FE.Evaluee

Google

FE.Communicator

Oracle

Judgment communication.Target

sue

(a) Judgment communication frame where two frame elements have been filled. The designated entity Oracle

fills the Communicator role.

Statement

FE.Message

Google’s Android ... language

FE.Speaker

Oracle

Statement.Target

say

(b) Statement frame where two frame elements have been filled. The designated entity Oracle fills the Speaker

role.

Gizmo

FE.null

null

Gizmo.Target

system

Hindering

FE.null

null

Hindering.Target

infringe

Distinctiveness

FE.null

null

Distinctiveness.Target

patent

(c) Three other frames that are identied in the sentence. No frame elements are filled for these three frames.

Figure 6.2: Semantic frames that are evoked for the sentence of Figure 4.1. Unlike SemTree where

only the frames with designated entity are used, semantic graph representation make use of all

frames.
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(a) Vanilla SemGraph representation.

(b) Directed Vanilla SemGraph representation.

Figure 6.3: Eight variants of graph representation for Oracle of sentence 1
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(a) SemDepGraph representation.

(b) Directed SemDepGraph representation.

Figure 6.4: Eight variants of graph representation for Oracle of sentence 1
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(a) SemLexGraph representation.

(b) Directed SemLexGraph representation.

Figure 6.5: Eight variants of graph representation for Oracle of sentence 1
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(a) SemDepLexGraph, or OmniGraph, representation.

(b) Directed SemDepLexGraph, or OmniGraph, representation.

Figure 6.6: Eight variants of graph representation for Oracle of sentence 1
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frame elements. For the Vanilla SemGraph, an edge connects two nodes in the following cases:

(1) a frame target and the frame it evokes (e.g. 〈sue and Judgment Communication〉); (2) a frame

element and the frame it belongs to (e.g. 〈Speaker and Statement〉); and (3) an entity and the frame

element it fills (e.g. 〈Designated Entity and Speaker〉). Other frames identified in this sentence,

such as the Hindering frame evoked by infringe, are listed as independent subgraphs. Other variants

of our semantic graph, as will be described in the next section, have different nodes and edges.

6.3 Variations of Semantic Graph Towards OmniGraph

The inherent extensibility of Vanilla SemGraph enables us to engineer variant representations with

ease.

SemDepGraph captures intra-sentence syntactic dependencies among frames. In the example sen-

tence, the Statement frame is evoked by the main clause verb, Convey importance is evoked by the

verb underscore of the embedded statement, and Capability is evoked by the head noun of the direct

object of underscore. These dependencies are partly represented as nested frames, but are more

generally recoverable from the dependency parse. In Figure 6.4a), the edges in red derive from the

dependency parse in Figure 6.1. Modeling the dependencies among frames also allows us to reduce

the size of the graph. For example, SemDepGraph can retain frames that are along a dependency

path from a designated entity mention to the root of the dependency tree. In this way, frames that

are syntactically more subordinate can be dropped because they are semantically peripheral.

SemLexGraph: Vanilla SemGraph and SemDepGraph express lexical information only in the

nodes that represent the frame targets. To investigate the contribution of other lexical material,

for every phrase that fills a frame element, SemLexGraph contains nodes for each content word in

the phrase. An edge connects each such lexical node to the frame element. As shown in Figure 6.5a),

here the additional lexical nodes consist of accreditation, renewal, our, work, and members.

SemDepLexGraph, or simply OmniGraph, incorporates both the lexical items and the syntactic

dependency information.

Directed Graphs exist for all our semantic graph variations listed above, where all edges become

directed. The direction of an edge is determined by syntactic dependency as follows: 1) the frame

in a subordinate clause depends on a frame in its superordinate clause; 2) frame elements depend on
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their frames; 3) words that fill a frame element depend on the frame element; 4) designated entity

nodes depend on the frame element where they are the role filler. Figure 6.6b) shows the directed

OmniGraph for the sample sentence.

Figure 6.8 demonstrates another example of OmniGraph construction for a more complex sen-

tence. Recall that the criteria that guided our design decisions for OmniGraph were to 1) represent

lexical, syntactic and frame semantic information; 2) have a more general topology than trees, e.g.,

with cycles, and no distinctive root or leaf nodes; and support feature engineering through 4) ex-

tensibility and 5) use of an efficient and flexible kernel. OmniGraph consists of three levels of

linguistic features: words, syntactic dependencies, and frame semantics. These three levels of rep-

resentation have independently been found useful for text classification and opinion mining. In

particular, frame semantics [Fillmore, 1976], which generalizes from words and phrases to abstract

scenarios, or frames, has proved useful for diverse tasks, including polarity classification of finan-

cial news [Xie et al., 2013], opinion mining [Kim and Hovy, 2006], and social network analysis

[Agarwal et al., 2014].



CHAPTER 6. GRAPH SPACE 50

Se
nt

en
ce

:“
T

he
ac

cr
ed

ita
tio

n
re

ne
w

al
un

de
rs

co
re

s
th

e
qu

al
ity

of
ou

rw
or

k
w

ith
H

um
an

a
m

em
be

rs
,”

sa
id

H
um

an
a’

s
pr

es
id

en
t.

D
ep

en
de

nc
y

pa
rs

e:

“T
he

ac
cr

ed
ita

tio
n

re
ne

w
al

un
de

rs
co

re
s

th
e

qu
al

ity
of

ou
r

w
or

k
w

ith
H

um
an

a
m

em
be

rs
,”

sa
id

H
um

an
a’

s
pr

es
id

en
t.

ro
ot

vm
od

su
b

ob
j

nm
od

nm
od

nm
od

nm
od

pm
od

nm
od

nm
od

pm
od nm

od
su

b
nm

od

Fr
am

e
se

m
an

tic
pa

rs
e:

[“
T

he
ac

cr
ed

ita
tio

n
re

ne
w

al
[u

nd
er

sc
or

es
C
o
n
v
ey

im
p
o
r
ta
n
ce

]
[t

he
[q

ua
lit

y C
a
p
a
bi
li
ty

]
of

ou
r

w
or

k
w

ith
H

um
an

a

m
em

be
rs
C
o
n
v
ey

im
p
o
r
ta
n
ce
.M

es
sa
g
e
],”
S
tm
t.
M
es
sa
g
e
][

sa
id
S
ta
te
m
en
t]

[H
um

an
a’

s
[p

re
si

de
nt
L
ea
d
er
sh
ip

] S
tm
t.
S
p
ea
k
er

].

Fi
gu

re
6.

7:
E

xa
m

pl
e

se
nt

en
ce

,t
he

de
pe

nd
en

cy
pa

rs
e,

an
d

th
e

fr
am

e
se

m
an

tic
pa

rs
e.

T
he

re
d

ed
ge

s
in

th
e

de
pe

nd
en

cy
pa

rs
e

he
lp

s
re

co
ve

rt
he

in
te

ra
ct

io
ns

am
on

g
fr

am
es

.



CHAPTER 6. GRAPH SPACE 51

Figure 6.8: OmniGraph representation that includes lexical, dependency, and semantic information

for Humana of the sample sentence in Figure 6.7.

6.4 Graph Kernels to Measure Graph Similarity

Among a variety of graph kernels as described in Section 2.3, we selected the Weisfeiler-Lehman

(WL) graph kernel [Shervashidze et al., 2011] for SVM learning and extensive feature exploration.

It can measure similarity between graphs with respect to different neighborhood sizes specified by

the user. This allows us to test many classes of SemGraph features for minimal engineering cost. It

also has a lower computational complexity compared to other graph kernels.

The idea behind the WL graph kernel is that at each degree n of neighborhood, all nodes are re-

labeled with their neighborhoods, then graph similarity is measured. For example, to represent first

degree neighbors, the immediate neighborhood of the Convey importance node is used to relabel

the node as {Convey importance→Capability, Message, Statement, underscore}. We first illustrate

with a toy example, then provide the algorithm.

Figure 6.9 illustrates how to calculate the WL graph kernel between graphs G and G′ for degrees

of neighbor up to 1 (h=1). Iteration i=0 for degree of neighbor 0 (stepsize 0) compares only the

nodes of the original graphs. Nodes with label 0 have one match; nodes with label 1 have two

matches. This gives a total similarity of three. The neighborhoods for each node are then augmented

to compute similarity when iteration i=1, which compares the nodes and their first degree neighbors.
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New labels (i.e. 3, 4, and 5) are assigned as shown in the figure, and similarity is computed for the

relabeled nodes. Therefore, kh=1(G,G′) = k(G0, G
′
0) + k(G1, G

′
1) = 3 + 2 = 5.

The WL kernel computation is based on the Weisfeiler-Lehman test of isomorphism [Weisfeiler

and Lehman, 1968], which iteratively augments the node labels by the sorted set of their neighboring

node labels, and compresses them into new short labels, called multiset-labels. WL graph kernel

applies the idea of neighbor augmentation to iteratively measure the similarity between graphs using

dynamic programming.

Define the n-degree neighborhood of a node v as the set of nodes exactly n steps away from v.

For graph G = (V,E, `) = (V,E, l0) denote a graph of i-degree neighbor as Gi = (V,E, li). Define

WL graph sequence of degree up to h {G0, G1, ..., Gh} = {(V,E, l0), (V,E, l1), ..., (V,E, lh)}, where

V are vertices, E are edges, l are labels of vertices, and G0 = G. Note that neither V nor E ever

change in this sequence, but only the labels l.

The general WL graph kernel with up to h degree neighbor is defined as k
(h)
WL(G,G′) =

k(G0, G
′
0)+k(G1, G

′
1)+...+k(Gh, G

′
h) , where {G0, ..., Gh} and {G′0, ..., G′h} are the WL sequences of

graphs G and G′ respectively. k is the kernel that counts the number of common subgraph patterns.

In the kernel computation between graphs G and G′, define Σi ⊆ Σ as a set of strings that occur

as node labels in the ith iteration for the i-degree neighbor computation. In particular, Σ0 is the set of

original node labels of G and G′. Without loss of generality, assume that every Σi = {σ(i)
1 , ..., σ

(i)
|Σi|}

is ordered. ci(G, σ
(i)
j ) is the number of occurrences of the string σ(i)

j in the graph G. σ(i)
j is used as

an id for a substructure in the ith iteration (of the i-degree neighbor graph). It serves as a storage of

computed information in dynamic programming.

Algorithm 1 summarizes the procedure to compute the kernel matrix for N graphs. It takes

Figure 6.9: Toy example of the WL graph kernel
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Algorithm 1: Weisfeiler-Lehman graph kernel

1 Procedure compute WL graph kernel({G1, ..., GN}, h)

2 for i ∈ 0 : h do

3 for each node v in {G1, ..., GN} do

4 // multiset-label determination

5 if i == 0 then

6 M0(v)← l0(v) = `(v)

7 else

8 Assign a multiset-label Mi(v) to v, which consists of the multiset {li−1(u)|u ∈ N (v)}.

9 end

10

11 // sorting each multiset

12 Sort elements in Mi(v) in ascending order and concatenate them into a string si(v).

13 Add li−1(v) as a prefix to si(v), i.e. si(v)← li−1(v)+si(v).

14 end

15

16 // label compression

17 Sort all of the strings si(v) for all v in {G1, ..., GN} in ascending order.

18 Map each string si(v) to a new compressed label using a function f : Σ∗ → Σi such that f(si(v)) = f(si(w)) if and

only if si(v) = si(w), where Σi is the set of newly added labels at iteration i, and Σi = {σ(i)
1 , ..., σ

(i)
|σi|
}.

19

20 // relabeling

21 Set li(v)← f(si(v)) for all nodes v in {G1, ..., GN}.

22

23 // augment feature space

24 F ← F ∪ Σi;

25 end

26 for each pair of graphs (Gi, Gj ) in {G1, ..., GN} do

27 k
(h)
WL(Gi, Gj) =< Φ

(h)
WL(Gi),Φ

(h)
WL(Gj) >,

28 where Φ
(h)
WL(G) = (c0(G, σ

(0)
1 ), ..., c0(G, σ

(0)
|Σ0|

), ..., ch(G, σ
(h)
1 ), ..., ch(G, σ

(h)
|Σh|

))

29 end
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into account different levels of the node-labelings, from the original labelings to increasingly large

h-degree neighborhoods (stepsizes). The full kernel for a given h is then the sum of the kernel

computations for each stepsize from 0 to h.

Analysis of Complexity For N graphs, let m be the maximum number of edges of a graph, and

n be the maximum number of nodes. Determining the multiset-labels takes O(Nm). Sorting each

multiset takesO(Nn+Nm), which can be done via counting sort. Computing Φ
(h)
WL on allN graphs

in h iterations is thus O(Nhm), assuming m>n. To get pairwise k(h)
WL requires O(N2hn), as each

Φ
(h)
WL of a graph has at most hn non-zero entires. It brings the overall runtime toO(Nhm+N2hn).

Relation to SemTree Our constructed semantic graph with Weisfeiler-Lehman graph kernel learn-

ing is a natural extension to the semantic tree representation. Figure 6.10a shows a subtree pattern

of h = 3 rooted at the node of Designated Entity. Colored arrows are shown for different step sizes.

Unfolding of this subtree pattern results in the substructure of Figure 6.10b. The dashed area is

equivalent to the semantic tree of Figure 5.2c.

6.5 WL Graph Kernel Computation Example

We use the same set of data instances in Table 5.1 as an example. SemGraph representation with WL

Graph Kernel learning is also able to achieve the requirement that measures instance 3 to instance 1

with a higher similarity score than to instance 2 (k(G3, G1) > k(G3, G2)), and measures instance

4 to instance 2 with a higher similarity score than to instance 1 (k(G4, G2) > k(G4, G1)).

Figure 6.11 shows the procedure for computing the kernel between instance 1 and instance 2.

Figure 6.11a & 6.11b assign initial labels (l0) to the original graphs show, and it results in the

graphs (Figure 6.11c & 6.11d) after iteration 0. The kernel for iteration 0 is a comparison between

the two graphs only by nodes:

Φ
(0)
WLsubtree(G1) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

Φ
(0)
WLsubtree(G2) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

k
(0)
WLsubtree(G1, G2) =< Φ

(0)
WLsubtree(G1),Φ

(0)
WLsubtree(G2) >= 10

In iteration 1, the 1 degree neighbor connectivity is included. Multiset-labels are created, sorted,

prefixed, and assigned to the nodes (Figure 6.11e &6.11f). With label compression (Figure 6.11g), a
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Designated Entity

Communicator Speaker

Judgment_communication

Evaluee sue

Statement

Message say

Other Entity

(a) A subtree pattern of the semantic graph in Figure 6.3a, rooted

at node Designated Entity with subtree pattern of height 3.

(b) Unfolding the subtree pattern of height 3 rooted at node Designated Entity, generated from (a).

Figure 6.10: A subtree pattern of height 3 rooted at the node of Designated Entity, and the unfolding

of this subtree pattern. The dashed area is equivalent to the semantic tree of Figure 5.2c.
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new set of labels (l1) are created and assigned to the nodes, and it results in the graphs (Figure 6.11h

& 6.11i) after iteration 1. The kernel is a comparison consists of both the nodes and their one-degree

neighbor:

Φ
(1)
WLsubtree(G1) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1)

Φ
(1)
WLsubtree(G2) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1)

k
(1)
WLsubtree(G1, G2) =< Φ

(1)
WLsubtree(G1),Φ

(1)
WLsubtree(G2) >= 14

Suppose we have instance 3 of Table 5.1. Figure 6.12 shows the procedure for kernel computa-

tion up to 1 degree neighbor. The kernel between instance 3 & 1, and the kernel between instance 3

& 2 are:

Φ
(1)
WLsubtree(G3) = (1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1)

Φ
(1)
WLsubtree(G1) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0)

k
(1)
WLsubtree(G3, G1) =< Φ

(1)
WLsubtree(G3),Φ

(1)
WLsubtree(G1) >= 7

Φ
(1)
WLsubtree(G3) = (1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1)

Φ
(1)
WLsubtree(G2) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0)

k
(1)
WLsubtree(G3, G2) =< Φ

(1)
WLsubtree(G3),Φ

(1)
WLsubtree(G1) >= 5

Consistent with our aims, instance 3 has a higher similarity score to instance 1 than instance 2.

6.6 Node Edge Weighting Graph Kernel

WL kernel is efficient at neighborhood augmentation but often results in coarse-grained features.

For instance, in Figure 6.6, all nodes are treated equally and there is no distinction between different

node types. The 1-degree WL feature for the Designated Entity (DE) node is<DE→Spkr,Msg,Msg>,

i.e. DE fills a Speaker and two Message elements (one for the Statement frame and the other for



CHAPTER 6. GRAPH SPACE 57

(3) Targeted Entity

(5) Communicator (7) Speaker

(1) Judgment_communication

(6) Evaluee (9) sue

(2) Statement

(8) Message (10) say

(4) Other Entity

(a) Assign initial labels (l0) to G1.

(3) Targeted Entity

(6) Evaluee (8) Message

(1) Judgment_communication

(5) Communicator (9) sue

(2) Statement

(7) Speaker (10) say

(4) Other Entity

(b) Assign initial labels (l0) to G2.

3

5 7

1

6 9

2

8 10

4

(c) After iteration 0, G1

with l0.

3

6 8

1

5 9

2

7 10

4

(d) After iteration 0, G2

with l0.

3-5,7

5-1,3 7-2,3

1-5,6,9

6-1,4 9-1

2-7,8,10

8-2,4 10-2

4-6,8

(e) In iteration 1, G1

with sorted and prefixed

multiset-labels.

3-6,8

6-1,3 8-2,3

1-5,6,9

5-1,4 9-1

2-7,8,10

7-2,4 10-2

4-5,7

(f) In iteration 1, G2

with sorted and prefixed

multiset-labels.

1-5,6,9→ 11 5-1,4→ 19

2-7,8,10→ 12 5-1,4→ 20

3-5,7→ 13 5-1,4→ 21

3-6,8→ 14 5-1,4→ 22

4-5,7→ 15 5-1,4→ 23

4-6,8→ 16 5-1,4→ 24

5-1,3→ 17 5-1,4→ 25

5-1,4→ 18 5-1,4→ 26

(g) Label compression.

13

17 21

11

20 25

12

24 26

16

(h) After iteration 1, G1 with l1.

14

19 23

11

18 25

12

22 26

15

(i) After iteration 1, G2 with l1.

Figure 6.11: Procedure of the computation for Weisfeiler-Lehman graph kernel with h=1 between

instance 1 (G1) and instance 2 (G2) of Table 5.1.
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(3) Targeted Entity

(5) Communicator

(1) Judgment_communication

(6) Evaluee (27) accused

(4) Other Entity

(a)

3

5

1

6 27

4

(b)

3-5

5-1,3

1-5,6,27

6-1,4 27-1

4-6

(c)

1-5,6,27→ 28

3-5→ 29

4-6→ 30

27-1→ 31

(d)

29

17

28

20 31

30

(e)

Figure 6.12: Procedure of the computation for Weisfeiler-Lehman graph kernel with h=1 for in-

stance 3 of Table 5.1 (G3). (a) Assign initial labels; (b) After iteration 0; (c) Sorted and prefixed

multiset-label; (d) Label compression; and (e) After iteration 1.

the Convey importance frame). No credit for partial matching is given when this graph instance is

compared to another instance where DE just fills the Message element of the Convey importance

frame. In order to generate finer-grained features to allow partial match, and to take advantage of

the type information of nodes and edges, we propose the node edge weighting (NEW) graph kernel.

Node edge weighting graph kernel also measures subgraph similarities through neighborhood

augmentation. It explores OmniGraph by progressively evaluating the subgraphs of different de-

grees of neighborhood. Therefore, a huge amount of features are automatically being evaluated.

For example, Figure 6.13 displays a sample of features that are evaluated by Node Edge Weighting

graph kernel for the OmniGraph in Figure 6.8. Specifically, the neighborhoods for each node start

with the individual nodes, and are augmented to each of their first degree neighbors, and then to

higher degree neighbors.

The kernel computation can be broken down into node kernels and edge kernels, which measure

the similarity for both nodes and edges. Node and edge kernels are weighted Kronecker delta kernels

(δ(·, ·)) that return whether the two objects being compared are identical. Define wFn
for the weight

of node n of feaure type F , node label L, and w<Ffr→Fto> for the weight of edge e with from-node

of feature type Ffr and to-node of feature type Fto. We have
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Sample Feature Explored for OmniGraph for Figure 6.8:

Degree Example Features

0

1

2

Figure 6.13: Subgraph features up to 2 degree of neighbors that are explored by Node Edge Weight-

ing graph kernel.
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knode(n, n
′) = wFn · δ(Fn,Fn′) · δ(Ln,Ln′) (6.1)

kedge(e, e
′) = w<Ffr→Fto> · δ(Ffr,Ffr′) · δ(Fto,Fto′) (6.2)

.

Define kp(G,G′) to be the basis kernel for p-degree neighborhood, the kernel between graph G

and G′ is computed by recursion as in Equation 6.3.

kp(G,G′) =
∑

all paths of length p ∈G,G′
knode(n

G
p , n

G′
p )

p−1∏
i=1

kedge(e
G
i , e

G′
i )knode(n

G
i , n

G′
i )

(6.3)

Dynamic programming can be used to improve the efficiency. Each entry in the dynamic program-

ming table is a tuple of <G,G′, nGi , nG
′

i >, where nGi and nG
′

i are nodes in graph G and G′.

Figure 6.14: Toy example of the node edge weighting (NEW) graph kernel

The toy example in Figure 6.14 illustrates how to calculate the NEW graph kernel between

graphs G and G′. As with WL GK, NEW GK compares different degrees of node neighborhoods

up to p degrees of neighbors, and the final kernel is a sum of all basis kernels. For p=0 degree of

neighborhood, only the nodes of the original graphs are compared. Nodes with labels DE, Msg

and ConImp all have one match. With node weighting, kp=0=0.3+0.7+0.9=1.9. For p=1, each

node plus its one-degree neighbors are compared, and the relations between the nodes. Path DE

→Msg has a match. With node and edge weighting, kp=1=0.3∗0.4∗0.7=0.084. For the same reason,

kp=2=0.3∗0.4∗0.7∗0.6∗0.9=0.045. There is no match for three degrees of neighbors, kp=3=0.
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Each basis kernel that corresponds to different neighborhood sizes is then normalized by the

maximum of the evaluation between each graph and itself. For each graph kernel kpG we have a

normalized graph kernel k̂pG:

k̂p(G,G′) =
kp(G,G′)

max(kp(G,G), kp(G′, G′)
(6.4)

This normalization ensures that a graph will always match itself with the highest value of 1 and

other graphs with values between 0 and 1. The final kernel is an interpolation of basis kernels:

k(G,G′) =
∑
p

αpk̂
p(G,G′) (6.5)

where
∑

p αp=1. Combining basis kernels is a common problem in machine learning and several

multiple kernel learning techniques have been developed to allow benefits from multiple kernels

[Smits and Jordaan, 2002; Bach et al., 2004]. It is also analogous to the decay function in the tree

kernel of [Moschitti, 2006] where longer paths from the root get assigned lower weights. Here we

do not restrict our model to a fixed decay rate, but allow more flexible weighting that can be learned

from cross-validating training examples.

Our graph kernel learning is a general technique that measures the similarity between graphs.

The algorithm can also be applied to other graph representation of data instances, such as AMR, or

Abstract Meaning Representation [Cai and Knight, 2013; Banarescu et al., 2013; Flanigan et al.,

2014].
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Part III

Experiments
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Our general goal is to ground information derived from NLP techniques applied to textual

datasets in real world observations. Natural language semantics is used as a means to learn the

semantic relations that are important in the real world domain, to understand what is relevant for

the objectives of the practitioner. The benefit of entity-driven text analysis on real world problems

allows us to model entities through text and can help predict outcomes for the entities.

In Chapter 7, we describe our experiments in a financial domain to investigate whether our

methodology applied to large-scale analysis of financial news can improve our understanding of a

company’s fundamental market value, and whether linguistic information derived from news pro-

duces a consistent predictive power with the potential to benefit more comprehensive financial mod-

els. We align stock price data with news articles for companies in S&P500 - the Standard & Poor’s

500 is an equity market index that includes 500 large companies listed on NYSE1 and NASDAQ.2

We formulate the task in two ways: binary classification and bipartite ranking problems. The task

is to predict a company’s change of price on a given day, based on the news from the previous day.

This setting is aligned with many existing NLP research in the financial doamin that predicts price

change from news articles, e.g. [Luss and d’Aspremont, 2008], and [Feldman et al., 2011b]. Pre-

dicting the price change from news is also analogous to sentiment analysis, but encompasses a more

general semantic analysis.

In Chapter 8, we present another experiment to test the performance of our methods for fine-

grained sentiment analysis. We work on a recently introduced sentiment analysis dataset - the

GoodFor/BadFor (gfbf) corpus, which is part of MPQA (multi-perspective question answering).3

Based on the two annotation tasks in the dataset, we formulate two classification problems. One task

is to classify whether the agent and the event mentioned in the sentence is benefactive or malefactive

on the affected entity (the object). The other task is to identify if the writer has a positive or negative

attitude towards the agent and the object in the sentence.

1New York Stock Exchange.

2National Association of Securities Dealers Automated Quotations.

3MPQA: http://mpqa.cs.pitt.edu/.



CHAPTER 7. FINANCIAL NEWS ANALYTICS 64

Chapter 7

Financial News Analytics

In this chapter we describe our experiments in a financial domain to investigate whether our methods

can be used for entity-driven text analytics, and forecast real world phenomenon in the stock market.

More specifically, we use textual news articles to forecast the price change of the company mentions

in the news. We test if our methods applied to large-scale analysis of financial news can produce

a consistent predictive power, and improve our understanding of a company’s fundamental market

value. We hypothesize that the mileage to be gained by frame semantic feature is significant. We

compare different representations and learning methods to determine experimentally what is the

best way to explore and make use of these frame semantic features.

Most of the NLP literature on semantic frames addresses how to build robust semantic frame

parsers, with intrinsic evaluation against gold standard parses. There have been fewer applications

of semantic frame parsing for extrinsic tasks. To test for measurable benefits of semantic frame

parsing, this study poses the following questions:

1. Are semantic frames useful for document representation of financial news on a large scale?

2. What aspects of frames are most useful?

3. What is the relative performance of document representation that relies on frames comparing

to conventional data representations?

4. What improvements could be made to best exploit semantic frames?

We will first provide a background of our problem domain, and introduce our dataset and la-

beling methods. We then present the results and discussions of our methods in vector, tree, and

graph-based representation and learning. We found that a rich structured representation that incor-
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porates different levels of linguistic information, such as lexical items, syntactic dependencies, and

semantic frames leads to a significant improvement over the baseline and benchmark methods. At

the end, we also present a task on company mention detection that tests if coreference resolution is

necessary in this domain.

7.1 Background

There has been a long-running debate on the relation between the media and the market, whether

news can move the price of publicly traded companies or whether the market already incorporates

news information. Evidence that the media can influence the market was presented in an influen-

tial paper by [Tetlock, 2007], where he quantified the impact of news pessimism on both price and

trading volume, using a valence dictionary to measure pessimism. Because financial media provide

a rich vein for NLP to mine, recent research has been investigating the use of NLP techniques for

financial analysis tasks, such as price prediction for individual companies [Feldman et al., 2011b;

Lee et al., 2014], for market sectors [Xie et al., 2013] or for sets of stocks [Bar-Haim et al., 2011;

Creamer et al., 2013], and default risk analysis based on financial reports [Kogan et al., 2009].

This study looks at prediction of the price change from news for a large set of companies across

market sectors. We hypothesize that detecting the semantic roles of targeted companies and the lan-

guage used to describe company-involved events can benefit the price prediction task, and improve

analysts’ understanding of the status of companies.

One of the biggest challenges of the financial domain is the unpredictability of the market. In

general, the work in NLP that uses news to predict price does well if it achieves better than 50%

accuracy [Lee et al., 2014; Bar-Haim et al., 2011; Creamer et al., 2013; Xie et al., 2013]. Unlike

many other domains, however, low accuracy can have great value in a high-volume trading strategy.

This work is also related to sentiment analysis. We mine opinions about entities of interest,

which later feeds a ranking model. [Schumaker et al., 2012] treat stock price prediction as a sen-

timent analysis problem to distinguish positive and negative financial news. [Tetlock, 2007] and

[Tetlock et al., 2008] quantify pessimism of news using General Inquirer (GI), a content analysis

program. [Feldman et al., 2011b] applies sentiment analysis on financial news using rule-based in-

formation extraction and dictionary-based prior polarity scores. In this study, our model addresses
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a fine-grained sentiment analysis task that distinguishes different entities mentioned in the same

sentence, and their distinct roles in sentiment bearing semantic frames.

7.2 Corpus, Data Instances, and Labeling Methods

GICS Sector C N S I N/I S/I

10 Energy 39 1,823.42 3,440.00 690.74 2.64 4.92

15 Materials 27 1,276.07 3,225.86 605.93 2.11 5.32

20 Industrials 44 2,373.53 5,120.67 716.93 3.31 7.14

25 Consumer Discretionary 67 2,869.31 5,375.37 825.67 3.48 6.51

30 Consumer Staples 26 2,332.89 3,892.81 832.71 2.80 4.67

35 Health Care 39 1,962.20 2,978.71 725.22 2.71 4.11

45 Information Technology 49 3,554.90 6,161.49 857.64 4.14 7.18

55 Utilities 30 1,194.24 3,290.64 653.24 1.83 5.04

Table 7.1: Description of news data.

Reuters is an international news agency and a provider of financial market data. A typical

Reuters news is generated through a sequence of processes. When a newsworthy event occurs,

the first part of a story may be an alert, a short sentence in upper-case that contains the facts and

essential detail. Often several alerts are filed in quick succession. A newsbreak is generally created

5-20 minutes after any alerts. Newsbreaks comprise a headline (often different from the alert) and

perhaps two to four paragraphs of body text putting the facts into BODY context and making them

meaningful. An update may be filed 20-30 minutes after a newsbreak. Updates comprise a headline

(sometimes different to the headline in the original newsbreak) and 6-20 paragraphs of body text

with further information about the event. The update may be refreshed as the story develops each

subsequent update replaces the previous update, but the original alert(s) and newsbreak remain.

This news provide us a high quality large-scale textual dataset.

An information extraction pipeline is used to process the data, as shown in Figure 7.1. News

full text is extracted from HTML. Full text is analyzed into sentences for tokenization, dependency

parsing and semantic parsing. The timestamp of the news is extracted for a later alignment with

stock price information, which will be discussed in a later section.



CHAPTER 7. FINANCIAL NEWS ANALYTICS 67

Figure 7.1: Pipeline of our experiments on Reuters news data.

Reuters news data from 2007 to 2013 that covers eight GICS (Global Industry Classification

Standard) sectors are used in our experiments. GICS is a standardized classification system for

equities developed jointly by Morgan Stanley Capital International (MSCI) and Standard & Poor’s

(S&P). The GICS structure consists of 10 sectors, 24 industry groups, 68 industries and 154 sub-

industries into which S&P has categorized major public companies. The Financial sector (GICS40)

is not included in this study. This sector is usually excluded from financial analytics because prices

are usually not associated to market events and are not often used as investment instruments. The

Telecommunications sector (GICS50) yields insufficient data because there are few companies, and

companies are added and removed to the S&P 500 during our time frame. Table 7.1 describes our

data. C is the number of companies being modeled in each sector;N is the average number of news

items per company; S is the average number of sentences per company; I is the average number

of data instances per company. In our experiment, a data instance I is all the news associated to a

company on a day; the number of I depends on the number of days that the company is mentioned

in the news. N/I is the average number of articles per data instance (one day of news); and S/I is

the average number of sentences per data instance. As shown, the average number of sentences per

data instance (S/I: sentences about a company on a given day) ranges from four to seven.

A data instance is a 〈Company,Date〉 tuple that corresponds to all the news associated to a

company on a day. We align publicly available daily stock price data from Yahoo Finance with
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the Reuters news using a method to avoid back-casting. In particular, we use the daily adjusted

closing price - the price quoted at the end of a trading day (4PM US Eastern Time), then adjusted by

dividends, stock split, and other corporate actions. We create two types of labels for news documents

using the price data, to label the existence of a change and the direction of change.

change =

 +1 if
|pt(0)+∆t−pt(−1)|

pt(−1)
> r

−1 otherwise

polarity =

 +1 if pt(0)+∆t > pt(−1) and change = +1

−1 if pt(0)+∆t < pt(−1) and change = +1

pt(−1) is the adjusted closing price at the end of the last trading day, and pt(0)+∆t is the price of the

end of the trading day after the ∆t day delay. Only the instances with price change are included in

the polarity task. Based on the finding of a one-day delay of the price response to the information

embedded in the news by [Tetlock et al., 2008], we use ∆t = 1 in our experiment. In this study, we

use the threshold (r) of 2% that corresponds to a moderate fluctuation.

7.3 Overall Experiments

Reuters news data from 2007 to 2013 for the eight GICS1 sectors shown in Table 7.1 are used in our

experiments.2

An OmniGraph is created for each data instance consisting of a forest of the graphs for each

sentence about a company on a given date. For all data instances of a company, we use cross-

validation on 80% of the data for training to parametrize the model, and test on the 20%. Grid

search is used to determine the weights of the basis kernels that correspond to different sizes of

relational features and the types of features. The experiment consists of a first phase to determine

the best parameters for each company. In the second phase, the selected parameters are used to test

the prediction performance for each company. We report average accuracy per company for each

sector, along with the majority baseline accuracy and three benchmarks, as described below.

1Global Industry Classification Standard.

2Two sectors are not included in this study. The Financial sector (GICS40) is usually excluded from financial ana-

lytics because prices are usually not associated to market events and are not often used as investment instruments. The

Telecommunications sector (GICS50) yields insufficient data.
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Baseline and Benchmark Methods

We use the majority class label as a baseline. We also introduce three benchmark methods for

comparison. (1) BOW-a vector space model that contains unigrams, bigrams, and trigrams. (2)

DepTree-a tree space representation where dependency parse of the document are encoded into a

tree representation. (3) SemTreeFWD-an enriched hybrid of vector and tree space model that con-

tains semantic frames, lexical items, and part-of-speech-specific psycholinguistic dictionary-based

features based on [Xie et al., 2013], trained with Tree Kernel SVM [Moschitti, 2006]. SemTree

results on a smaller dataset are presented in Section 7.5.

Results

OmniGraph with NEW GK learning shows a strong impact of relational features. Figure 7.2

summarizes the results for the GICS30 Consumer Staples - a sector with medium size of news data.

The stacked bar chart in Figure 7.2a) gives the breakdown for each company of the basis kernel

coefficients of all stepsizes from 0 to 3, learned from the training data. Stepsizes greater than 0

correspond to relational features. On average, only 9% of the features are non-relational (p=0).

The proportion of all companies that use each of the following seven feature types appears in

Figure 7.2b). The most important features are frame names (FN) and frame elements (FE): more

than 60% of the companies need them to obtain the best performance. The next most required

features are about entities - designated entities (DE) and other entities (OE). The importance of both

DE and OE suggests that relations between companies are useful in the price prediction task. More

than one third of the companies need the feature for dependencies between frames (FDEP), often

involving complex sentences where multiples frames are evoked. The lexical item features (LI)

have a contribution similar to FDEP. Note that LI features from OmniGraph are more than words;

they include dependencies of words and the frame elements that they fill (p=1), and the frames to

which the frame elements belong (p=2). Consistent with our expectation, frame target (FT) is the

least preferred feature, because it is the lexical unit that has been generalized by the frame name.

The other sectors show the same general trends.

Table 7.2 summarizes the average accuracy for all eight sectors of the majority class baseline,

three benchmarks, and the two OmniGraph models. All models are trained on 80% of the data and

tested on 20% for each company. Model parametrization is done by cross-validation on the training

data. Both versions of OmniGraph significantly outperform the three benchmarks. The cells with
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(a) Stepsizes (i.e. degrees of relational features) by companies:

p0 is for non-relaitonal features; p>0 are for relational features.

(b) Percentage of companies requiring each feature

Figure 7.2: Parametrizing OmniGraphNEW for companies in Consumer Staples sector. It shows

a) the breakdown by stepsize for each of the 26 companies, and b) the total proportion across

companies of node-edge weights for each feature type.
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asterisks represent a difference from the baseline that is statistically significant. OmniGraphWL

beats the baseline with statistical significance in six out of eight sectors, and OmniGraphNEW does

so in seven out of eight sectors. Note that none of the benchmarks outperforms the baseline.

Despite the excellent performance of BOW for topical classification tasks, for this price predic-

tion task it does poorly. Both DepTree and SemTreeFWD outperform BOW, which indicates that

features derived from dependency syntax and semantic frame parsing improve performance. Dep-

Tree directly represents the dependency parse with both dependencies and words as nodes, without

semantic information. The limitation of SemTree comes from its entity-centric representation, the

root node is the designated entity. The semantic frames without DE mentions are discarded. A

heterogeneous combination of trees and vectors are used for learning. In contrast, OmniGraph with

graph kernel learning learns a model in a more uniform and effective way. Between WL and NEW

learning on OmniGraph, NEW produces the best results. We suspect this is due to the high granular-

ity of the features it generates, and its flexibility in assigning different weights to nodes and edges,

depending on the node and edge feature types.

Discussion

To understand the difference in performance across document representations, we analyzed pre-

dictive features from each kind of document representation investigated here. Using mutual infor-

mation to rank features for each method, we found that the more expressive the representation, the

more insight the features provide. This is illustrated in Figure 7.3, which presents predictive features

from vector space (VS), the dependency tree (DT); SemTree (ST); OmniGraph (OG).

Consider features 1, 2, 3, each of which is predictive due to news that refers to a company’s

change of price. Feature 1 is an individual lexical item (fell). Feature 2, a frame name triggered

by lexical units such as fell, is somewhat more general. Neither captures the important relational

information represented in features 3 and 5. Feature 3, which also has the lexical item fell, captures

the important dependency relation that the designated entity (or its shares) should be the subject.

Feature 4 is a SemTree feature that simultaneously illustrates the benefit of frame semantics and

relational features: although the sentence mentions soaring prices, the important feature from this

sentence is that the designated entity fills the victim role of the Cause Harm frame.

The OmniGraph features 5 and 6 illustrate the superior expressivity of this representation. Fea-

ture 5 is a 2-degree neighbor subgraph that consists of three frames and their inter-dependencies.
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Graph Features Feature Types Example Sentences Label

1 VS fell Lexical item
Exxon Mobil fell 2.8 percent to $86.49

and led the S&P 500’s decline. GICS10

2 VS Frame
Wyndham have seen profits soar in re-

cent years. GICS25

3 DT

Syntactic

dependency,

Entity,

Lexical item

Exxon Mobil fell 2.8 percent to $86.49

and led the S&P 500’s decline.

After the bell, a number of high-profile

tech companies reported results, includ-

ing International Business Machines,

whose shares fell 3.5 percent to $200.01.

GICS10

GICS45

4 ST
Frames, Frame

elements

Hershey has been hurt by soaring prices

from cocoa, energy and other commodi-

ties.
GICS30

5 OG
Dependencies

among frames

Wyndham have seen profits soar in re-

cent years as robust demand has allowed

them to steadily raise rates.

Family Dollar and Walmart are also

expected to see same store sales growth

over the next 60 days.

GICS25

GICS30

6 OG

Frames, Frame

elements,

Dependencies

among frames

“This milestone highlighted the Boe-

ing KC-767’s ability to perform refuel-

ing operations under all lighting condi-

tions,” said George Hildebrand, Boeing

KC-767 Japan program manager.

“This benchmark underlines how Intel

can collaborate to innovate and drive

real performance and total cost of own-

ership benefits for our clients,” said

Nigel Woodward, Global Director, Fi-

nancial Services for Intel.

GICS20

GICS35

GICS45

Figure 7.3: Sample OmniGraph features (OG) that have predictive power within or across sectors,

compared with those from vector space (VS), from dependency trees (DT), and from SemTree (ST).
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This feature represents that the designated entity experiences a change over a time period. Note

that it applies to the same sentence shown with Feature 2. It is more reliably predictive, how-

ever, than a lexical item or dependency relation because it is more precise. Although the frame

Change position on a scale alone does not specify the polarity (e.g. evoked by soar or fell), this

relational feature as a whole does not predict a negative class. We found that the language pattern

of this feature rarely occurs in a negative description, and this could be a benefit of our relational

features. Feature 6 is a very complex positive feature that generalizes over multiple sectors, and it

is the feature that corresponds to the example sentences in Motivation section.

The example sentence with Feature 4 illustrates the potential limitations of BOW for the classi-

fication task addressed here, to predict the price change of companies. It contains the lexical item

soar, which can be predictive of positive price change, as illustrated by Feature 2. However, the

more important information is that the designated entity (Hershey) has been hurt by rising prices of

the commodities it depends on. In contrast, OmniGraph Feature 5, a stepsize 2 feature that would

co-occur with the sorts of stepsize 0 features illustrated by Feature 1 and Feature 2, captures a

pattern in which reference to soaring prices is predictive when it is part of a perceived trend.

We use the standard model in SEMAFOR for frame semantic parse without retraining the model.

In an evaluation of the semantic parse quality, in general, SEMAFOR parses capture most of the

important frames for our purposes. On a randomly selected 40 sample sentences, two researchers

working independently evaluated the semantic parses, with approximately 80% agreement. Some of

the inaccuracies in frame parses result from errors prior to the SEMAFOR parse, such as tokeniza-

tion or dependency parsing errors. The average sentence length for the sample was 33.3 words, with

an average of 14 frames per sentence, 3 of them with a GICS company as a role filler. For the frames

containing a designated object (company), on average, about half the frames with a designated ob-

ject were correct, and two thirds of those frames we judged to be important. Besides errors due to

incorrect tokenization or dependency parsing, we observed that about 8% to 10% of frames were

incorrectly assigned to due word sense ambiguity. We also notice there is much room for improve-

ment to have a domain-specific semantic model. Another 200 randomly selected sentences were

further evaluated, and the similar trend is observed. Given the satisfying performance of the general

purpose semantic parser, we project that a domain-specific semantic parser can further reduce the

noise and get better frame structure patterns. For example for sentence Citigroup raises Monster to
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buy. The current parse is [CitigroupGoods] raises [ Monster Buyer] to [buyCommerce buy]. However,

buy here is an analyst’s recommendation rating for investment from Citigroup on company Mon-

ster, rather than Monster being the buyer in a Commerce buy scenario. Future work can create an

annotated corpus on financial news, and retrain a domain-specific parser to improve the semantic

parsing results.

Our use of natural language processing in financial news has a potential impact on the existing

financial models. For example, it can be used to bridge financial analysts who are doing funde-

mental analysis and quants who are doing quantitative modeling. In fundemental analysis, financial

advisors, credit analysts, or traders read financial articles to look for investment opportunities, while

quantitative analysts apply mathematical models to explain financial market and to make predica-

tions. Application of NLP on financial news to price prediction could ultimately provide a discovery

mechanism to generate hypotheses to better explain how news about companies affects their price.

A potential application is for the Binomial Option Pricing Model [Cox et al., 1979], a numerical

method based on a binomial tree that spans the option’s valuation date and the expiration date with

a fixed time interval and a fixed probability for upward and downward price change. The use of

financial news to predict price movement allows a dynamic price change prediction and arbitrary

time intervals based on the release of news. A possible improvement of the experimental setup is

to incorporate the movement of the market, in contrast to the use the absolute change of price for

labeling. Partly because we are predicting the short term price movement, i.e. price change of a

one day delay, incorporation of the market movement does not exhibit significant difference in a

preliminary experiment.

The next few sections describe side experiments that improve our understandings of different

representations and learnings on financial news, and a study on name entity recognition and coref-

erence resolution for company mention detection.

7.4 Vector Space Results and Discussion

To better understand more detailed performance of the vector space and the tree space models, we

ran a set of experiments on three sectors: Consumer Staples, Information Technology and Telecom-

munication. The choice of the three sectors is due to our familiarity with the companies in these
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sectors and an expectation of different characteristics they may exhibit. Table 7.3 summarizes the

results for the vector space model. FWD performs nearly as well as the BOW baseline on the change

task, and outperforms BOW on the polarity task. We observe that frames whose names are discrim-

inative are consistent with predictive BOW features: e.g., the Offering frame versus the unigram

offer; the Earnings and losses frame versus the bigram quarterly profit; the Commerce sell frame

versus the trigram disappointing december sales. Comparing frame names (F) and frame targets

(FT), F is predictive in the change task and F+FT gives good performance in the polarity task. For

example, for sentences (a) Private equity group Champ sees strong upside for the Constellation

Brands business and (b) Walgreens posted weaker-than-expected August sales at stores open more

than a year, Exertive force frame (F) alone is effective to identify both sentences to have an in-

fluence on change, but the frame targets (FT) of strong and weaker-than-expected further specify

the polarity. Inverse document frequency (IDF) adjusted weights do not improve the performance.

This may be indicative of an interesting difference from typical topic-based text categorization and

information retrieval tasks. Prior-polarity-like pDAL features alone do not have a consistent pattern,

but they often lead to improvement when combined with other features.

7.5 Tree Space Results and Discussion

Classification and ranking tasks are designed to experiment with and evaluate the performance of

the following models:

1. Vector space model with bag-of-words, bag of semantic frame features (including frame

names, lexical units, and frame elements), and word affect features based a psycholinguistic dictio-

nary (i.e. Dictionary of Affect in Language, DAL).

2. Semantic tree (SemTree) model with the designated entity to be the root of the tree with its

semantic roles and frame information appended as additional features.

Classification Task and Evaluation Metrics

The classification experiments are carried out in two settings: (1) use full dataset and run cross-

validation; (2) split the data into training and test and report the performance on the test set. We

test the influence of news to predict (1) a change in stock price (change task), and (2) the polarity of

change (increase vs. decrease; polarity task).
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change polarity

methods class pre rec f1 acc MCC pre rec f1 acc MCC

BOW + 37.73 44.39 40.79 60.43 0.1146 52.88 50.63 51.73 52.4 0.0482

- 73.27 67.54 70.29 51.94 54.19 53.04

BOW+pDAL + 38.26 44.86 41.30 60.78 0.1221 53.53 51.16 52.32 53.09 0.0620

- 73.47 67.85 70.55 52.67 55.03 53.83

F + 41.3 19.76 26.73 66.68 0.0949 53.88 58.33 56.02 53.92 0.0781

- 71.06 87.53 78.44 53.96 49.45 51.61

F+pDAL + 41.17 21.38 28.15 66.42 0.0984 53.86 57.84 55.78 53.77 0.0769

- 71.22 86.43 78.09 53.86 49.83 51.77

F+FT + 36.38 37.86 37.10 60.52 0.0836 55.27 54.73 54.99 54.93 0.0987

- 71.89 70.59 71.23 54.61 55.15 54.88

F+FT+pDAL + 36.13 38.72 37.38 60.10 0.0816 55.55 53.86 54.69 55.10 0.1023

- 71.88 69.59 70.72 54.68 56.36 55.51

F+FT+FE + 35.72 39.50 37.52 59.53 0.0772 55.12 55.14 55.13 54.84 0.0968

- 71.80 68.43 70.07 54.56 54.54 54.55

F+FT+FE+pDAL + 35.73 39.99 37.74 59.41 0.0780 55.03 53.11 54.06 54.58 0.0917

- 71.85 68.04 69.89 54.15 56.06 55.08

F+FT+FE+BOW+pDAL + 36.44 46.88 41.01 58.51 0.0997 55.08 54.69 54.88 54.77 0.0953

- 72.96 63.68 68.01 54.45 54.84 54.65

Table 7.3: FWD results for consumer staples sector for test year 2010.

In this experiment setup where one year is used for training and to predict the following year,

there is high variance across years in the proportion of positive labels, and often highly skewed

classes in one direction or the other. The average ratios of +/- classes for change and polarity over

the six years data are 0.73 (std=0.35) and 1.12 (std=0.25), respectively. Because the time frame for

our experiments includes an economic crisis followed by a recovery period, we note that the ratio

between increase and decrease of price flips between 2007, where it is 1.40, and 2008, where it is

0.71. Accuracy is very sensitive to skew: when a class has low frequency, accuracy can be high

using a baseline that makes prediction on the majority class. Given the high data skew, and the large

changes from year to year in positive versus negative skew, we use a more robust evaluation metric,

Matthews correlation coefficient (MCC) [Matthews, 1975], to avoid the bias of accuracy due to data

skew, and to produce a robust summary score independent of whether the positive class is skewed to

the majority or minority. MCC = TP ·TN−FP ·FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

, where TP, FP, TN and
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FN are for true or false positive or negative.

Bipartite Ranking Task and Evaluation Metrics

We assume that at best, there may be a weak predictive effect of news on price for a particular

data instance, e.g. a company on a date, based on results found in previous work [Lee et al., 2014;

Bar-Haim et al., 2011; Creamer et al., 2013]. A ranking task is proposed to solve more practical

problems. For example, given a particular date, investors (or traders) want to know which company

will have an upward or downward movement. We cast the problem as a bipartite ranking task that

ranks companies in two directions according to their probability to affect the direction of change in

price. Bipartite ranking positions data points in a sequential order according to the probability that

a data instance is classified as the positive class. Data at the top of the ranked list correspond to the

positive class predictions, and data at the bottom are the negative class.

SVM outputs f(x) =
∑N

i=1 yiαik(xi,x) − b, which is an uncalibrated weight that indicates

the distance from the hyperplane computed by SVM classifier. This value can be converted into a

probabilistic score for ranking. We follow [Wahba and Wahba, 1998] to use the logistic function to

convert the general output for SVM into probabilistic form:

p(yi = 1|f(xi)) =
1

1 + exp(−f(xi))

where f(x) is the standard output for SVM.

The evaluation metrics for this ranking task include receiver operating characteristic (ROC)

curves. In addition, we quantify the performance at the two ends of the bipartite ranked list, such

as precision@top-K, which is a standard evaluation in information retrieval to assess query result

rankings. For example, when K = 100 for the positive class, we report the precision of the top

100 items of the ranked list, while for the negative class, we report the precision of the bottom 100

items. The other three metrics include mean reciprocal rank (MRR), discounted cumulative gain

(DCG), and PNorm scores [Rudin, 2009].

MRR(f) =
∑
i

1

Rank(i)
=

∑
i

1∑
k 1[f(xi)≤f(x̃k)] +

∑
i 1[f(xi)≤f(xi)])

(7.1)
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DCG(f) =
∑
i

1

ln(1 +Rank(i))
=

∑
i

1

ln(1 +
∑

k 1[f(xi)≤f(x̃k)] +
∑

i 1[f(xi)≤f(xi)])
(7.2)

Rp,`(f) =
K∑
k=1

(
I∑
i=1

`(f(xi)− f(x̃k)))
p (7.3)

MRR (eq. 7.1) and DCG (eq. 7.2) are two weighted versions of AUC that favor the top (or the

bottom) of the list. Higher values are preferred. PNorm score (eq. 7.3) corresponds to the loss of

the lp-norm objective function, where p controls the degree of concentration at the top (or one end)

of the ranked list. The set of instances with positive labels is {xi}i=1,...,I . The negative instances

are {x̃k}k=1,...,K . At the heart of this derivation, lp-norm is used to interpolate between the l1-norm

(the AUC), and the l∞-norm (the values of Rmax). Lower values are preferred.

Results

Our results have shown advantages of the tree space model, as shown in Table 7.4. The features

encoded in this tree representation can capture interesting characteristics in different datasets (e.g.

news articles about the companies in different sectors). Our post-analysis of the model also shows

the benefits of semantic structural features.

To analyze which were the best performing features within sectors, we extracted the best per-

forming frame fragments for the polarity task using a tree kernel feature engineering method pre-

sented in [Pighin and Moschitti, 2009]. The algorithm selects the most relevant features in accor-

dance with the weights estimated by SVM, and uses these features to build an explicit representation

of the kernel space. Figure 7.4 shows the best performing SemTree fragments of the polarity task

for the consumer staples sector.

Figure 7.4: Best performing SemTree fragments for increase (+) and decrease (-) of price for con-

sumer staples sector across training years.
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Change Polarity

test years BOW sLDA FWD SemTreeFWD BOW sLDA FWD SemTreeFWD

Consumer Staples Consumer Staples

2008-2010 0.1015 0.0774 0.1079 0.1426 0.0359 0.0383 0.0956 0.1054

2011-2012 0.1663 0.1203 0.1664 0.1736 0.0938 0.0270 0.1131 0.1285

5 years 0.1274 0.0945 0.1313 0.1550 0.0590 0.0338 0.1026∗ 0.1147∗

Information Technology Information Technology

2008-2010 0.0580 0.0585 0.0701 0.0846 0.0551 0.0332 0.0697 0.0763

2011-2012 0.0894 0.0681 0.1076 0.1273 0.0591 0.0516 0.0764 0.0857

5 years 0.0705 0.0623 0.0851 0.1017 0.0567 0.0405∗ 0.0723∗ 0.0801∗

Telecommunication Services Telecommunication Services

2008-2010 0.1501 0.1615 0.1497 0.2409 0.0402 0.0464 0.0821 0.0745

2011-2012 0.2256 0.2084 0.2191 0.4009 0.0366 0.0781 0.0611 0.0809

5 years 0.1803 0.1803 0.1774 0.3049 0.0388 0.0591 0.0737∗ 0.0770∗

Table 7.4: Average MCC for the change and polarity tasks by feature representation, for 2008-2010;

for 2011-2012; for all 5 years and associated p-values of ANOVAs for comparison to BOW.

(a) Raw SVM: Full ROC.

(b) Raw SVM: Head ROC. (c) Raw SVM: Tail ROC.

Figure 7.5: ROC curves for the polarity task.
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Data Representation P@10 P@20 P@50 P@100 MRR DCG PNorm64

positive class (increase of price)

W+DAL 0.7 0.5 0.52 0.46 0.354 298.167 7.31E+220

FTE+DAL 0.6 0.45 0.38 0.45 0.355 298.245 7.87E+220

W+FTE+DAL 0.8 0.45 0.44 0.46 0.354 298.189 7.90E+220

SemTree+W+FTE+DAL 0.5 0.5 0.54 0.55 0.357 298.414 6.46E+220

negative class (decrease of price)

W+DAL 0.6 0.55 0.54 0.46 0.350 294.502 3.14E+220

FTE+DAL 0.6 0.75 0.54 0.49 0.351 294.594 2.87E+220

W+FTE+DAL 0.8 0.6 0.54 0.51 0.351 294.530 3.08E+220

SemTree+W+FTE+DAL 1.0 0.75 0.68 0.63 0.353 294.777 1.87E+220

Table 7.5: Evaluation that concentrates on positive and negative predictions by Precision@TopK,

DCG, MRR, and PNorm (lower is better).

(a) top 100. (b) top 1000.

Figure 7.6: Ratio of feature types at top 100 and top 1000 ranked list by information gain for 2010

polarity prediction.

Recall the hypothesis that there exist differences in semantic frame features across sectors.

This shows up as large differences in the strength of features across sectors. More strikingly,

the same feature can differ in polarity across sectors. For example, in consumer staples, (EVAL-

UEE(Judgment communication)) has positive polarity, compared with negative polarity in the infor-

mation technology sector. The examples we see indicate that the positive cases pertain to aggressive

retail practices that lead to lawsuits with only small fines, but whose larger impact benefits the bot-

tom line. A typical case is the sentence, The plaintiffs accused Wal-Mart of discriminating against

disabled customers by mounting “point-of-sale” terminals in many stores at elevated heights that

cannot be reached. Lawsuits in the IT sector, on the other hand, are often about technology patent
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disputes, and are more negative.

SemTree features capture the differences between semantic roles for the same frame, and be-

tween the same semantic role in different frames. For example, the PERCEIVER AGENTIVE role of

the Perception active frame contributes to prediction of an increase in price, as in R.J. Reynolds is

watching this situation closely and will respond as appropriate. Conversely, a company that fills the

PHENOMENON role of the same frame contributes to prediction of a price decrease, as in Investors

will get a clearer look at how the market values the Philip Morris tobacco businesses when Altria

Group Inc. “when-issued” shares begin trading on Tuesday. When a company fills the VICTIM

role in the Cause harm frame, this can predict a decrease in price, as in Hershey has been hurt

by soaring prices for cocoa, energy and other commodities, whereas filling the VICTIM role in the

Defend frame is associated with an increase in price, as in At Berkshire’s annual shareholder meet-

ing earlier this month, Warren Buffett defended Wal-Mart, saying the scandal did not change his

opinion of the company.

We compare the ranking performance of using all features against other combinations of features

without SemTree features. Figure 7.5a illustrates the receiver operating characteristic (ROC) curves

of the full ranked list from different data representations. It also presents the Area Under the ROC

Curve (AUC) that corresponds to each representation. As can be seen, the representation with

SemTree features has higher AUC scores than the others. Its curve starts out slightly better and

more stable, neck-and-neck with the other three curves at the beginning, and gradually outperforms

the others all the way to the bottom of the ranked list. Figure 7.5b and 7.5c zoom in to the head and

tail of the full ranked list.

The head of the ranked list is associated to the positive class (increase of price) and the tail of the

list is associated to the negative class (decrease of price). The predictions at these extremes are more

important than at the middle of the ranking. The second to the fifth columns of Table 7.5 provide

the precision at top K for both classes. For predicting the positive label, W+FTE+DAL correctly

captures 8 instances from its top 10 items, which is the best among all methods; while SemTree

features starts to lead the performance after P@20. Prediction on the negative class is generally

better than prediction on the positive class. In 3 out of 4 cases, SemTree features are 20% better than

the second best method. We quantify the performance at the two ends of the bipartite ranked list

by reporting mean reciprocal rank (MRR), discounted cumulative gain (DCG), and PNorm scores
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[Rudin, 2009]. MRR and DCG are two weighted versions of AUC that favor the top (or the bottom)

of the list. Higher values are preferred. PNorm score corresponds to the loss of the lp-norms

objective function, where p controls the degree of concentration to the top (or the end) of the ranked

list. Lower values are preferred. As can be seen in Table 7.5, the proposed method has better ranking

performance for these metrics.

For feature analysis, we compare the ratios of feature types by their discriminative power. As

shown in Figure 7.6, SemTree features represent 21% of the top 1000 features ranked by information

gain for polarity classification in 2010. This is representative for the other classifiers as well.

7.6 Graph Space Results and Discussion

This experiment investigates the potential of a variation of semantic graph representations for large-

scale semantic analysis. Because the WL kernel facilitates exploration of a wide range of features

that differ regarding the neighborhood of the graph, the first phase of the experiment tests the ef-

ficacy of different stepsizes for each of the eight semantic graph variants (undirected and directed

versions of vanilla SemGraph, SemDepGraph, SemLexGraph, and full OmniGraph). Stepsizes from

0 to 3 are used here to provide a more direct comparison to the SemTree representation. Paths from

the root node of SemTree loosely correspond to paths of up to stepsize 3 from the designated entity

nodes in vanilla SemGraph. The WL kernel, however, considers the neighborhood three steps from

all nodes, not just the designated entity nodes.

The second experiments assess average performance across companies in a sector, using the

best stepsize identified for each pairing of an OmniGraph with a given company in the first phase.

The goal is to identify which configurations of OmniGraph perform best in a sector. Both phases

evaluate with leave-one-out cross-validation.

Our current results in Table 7.6 show the advantage of OmniGraph’s ability to efficiently capture

a wide range of semantic dependencies, as well as the ease of testing different extents of the graph

around the nodes of interest. Table 7.6 shows the undirected version of the 4 variants of OmniGraph,

for a few companies from the Energy sector. Numbers in boldface identify the best performing step-

size for each OmniGraph variant; the underlined values are the best performance across all variants

for a given company. For example, the best performance for ConocoPhillips (COP) for each variant
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uses h=3, and SemDepGraph performs best among the 4 variants of OmniGraph. In a majority

of cases there is improvement after including at least 1-degree neighbors, and sometimes the best

performance is at h=1 or h=2. No single stepsize consistently performs best across companies, or

across OmniGraph variants. In a statistical test for all companies in this sector, including at least

1-degree neighbors performs significantly better than using only 0-degree neighbors.

Table 7.7 presents Phase II results that test which OmniGraph variant performs best for a sector.

Numbers in boldface identify which of the 8 variants has the best mean accuracy for the sector. T-

tests that compare the means of each OmniGraph to the baseline indicate that in 4 out of 8 sectors,

at least one OmniGraph variant has significantly better accuracy than the baseline. Not shown

in the table, we observe that the benchmarks, BOW and SemTreeFWD, never beat the baseline.

With a higher accuracy in the majority of cases, no single variation of OmniGraph consistently

significantly outperforms the baseline. More expressiveness representation does not always lead

to higher accuracy. Including syntactic dependency information alone (SemDepGraph) helps more

often than including lexical information alone (SemLexGraph): SemDepGraph leads to higher mean

accuracy in 3 of the 8 sectors, while SemLexGraph accuracy is superior in only 1 of the sectors. T-

tests to compare mean accuracy of SemDepGraph and SemLexGraph indicate that SemDepGraph

is significantly better in 4 of the 16 cases (8 sectors, directed versus undirected graphs), and vanilla

SemLexGraph is never significantly better than SemDepGraph.

The directed versions of OmniGraph achieve the best mean accuracy in 3 of 8 sectors, and in

one of these cases (GICS15: Energy), the difference is statistically significant. One advantage to the

directed versions is efficiency. They reduce the kernel computation asymptotically by a half, since

they only allow the flow of information to pass edges through one direction.
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7.7 Company Mention Detection

The goal of this task is to study the performance of named entity recognition (NER) for com-

pany mention detection in financial news analytics. The two issues we address are 1) to resolve

variant names to the same company (e.g., Eli Lilly and Company, Eli Lilly, Eli Lilly & Co., Lilly

& Co.), and 2) to resolve coreferent expressions consisting of noun phrases and pronouns (e.g.,

Eli Lilly and Company is an American global pharmaceutical company with headquarters in In-

dianapolis, Indiana. The company also has offices in Puerto Rico and 17 other countries. Their

products are sold in 125 countries. It was founded in 1876.). We refer to this task as company

mention detection.

Improved company mention detection will not necessarily improve price prediction from news.

This is an extremely challenging prediction problem with many confounding factors. For exam-

ple, news items that provide novel information about a company potentially have more impact on

price than news items that provide old information. Accurate company mention detection might

incorporate a higher proportion of sentences that provide old information, which could hurt rather

than benefit prediction of price change. Given the complexity of factors involved in testing whether

more accurate company mention detection improves prediction of stock price change, it is possible

that results would vary, depending on the type of feature representation used. To make our test

more general, we use our same framework to compare alternative document representations as de-

scribed in the previous sections. Because this framework compares several kinds of vector and tree

space representations, it serves as a more general test of the impact of improved company mention

detection.

One of the challenges in mining financial information from news is that the domain of publicly

traded corporate entities is extremely heterogeneous. For example, the features that prove predictive

vary markedly across sectors, and can even predict opposite direction of price change in different

sectors, such as retail versus industrials. It is also well known that the performance of NLP tech-

niques varies across domains. Domain adaptation has been addressed in parsing [Ravi et al., 2008;

McClosky et al., 2010; Roux et al., 2012] and language modeling [Bulyko and Ostendorf, 2003;

Sarikaya et al., 2005]. Sensitivity to domain is undoubtedly true as well of NER and coreference.

This suggested to us that to evaluate the effect on performance of existing NLP tools for improving

company mention detection, it is important to assess performance sector by sector. We find that



CHAPTER 7. FINANCIAL NEWS ANALYTICS 88

Company name: Baker Hughes Inc

Ticker: BHI

Company divisions: Baker Hughes Drilling Fluids, Baker Oil Tools, Baker Petrolite, etc.

———————Example sentence 1 (a company found by named entity recognition) ——————-

<company ticker=‘BHI’ type=‘SP500’ sector=‘energy’>Baker Hughes Inc</company> lowered

estimates in mid-July to $1.12-$1.14 per share.

——————Example sentence 2 (company divisions found by named entity recognition) ————-

Wall, 54, comes from <company ticker=‘BHI’ type=‘SP500’ sector=‘energy’>Baker

Hughes</company>, where he served since 2005 as group president, completion & production, re-

sponsible for the combined activities of <company ticker=‘BHI’ type=‘SP500’ sector=‘energy’>Baker

Oil Tools</company> and <company ticker=‘BHI’ type=‘SP500’ sector=‘energy’>Baker Petro-

lite</company> divisions.

———————Example sentence 3 (company found by coreference resolution) ————————

<company ticker=‘BHI’ type=‘SP500’ sector=‘energy’>Baker Hughes</company> said <company

ticker=‘BHI’ type=‘SP500’ sector=‘energy’>it</company> supplied products to customers in Myan-

mar. ... Although <company ticker=‘BHI’ type=‘SP500’ sector=‘energy’>it</company> did not have

an office or operations there, <company ticker=‘BHI’ type=‘SP500’ sector=‘energy’>it</company>

was constantly reviewing <company ticker=‘BHI’ type=‘SP500’ sector=‘energy’>its</company>

presence in nations around the globe.

Figure 7.7: Example company and news sentences.
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extension of the NER component of our framework and integration of a coreference toolkit dramat-

ically improves recall, but much more so for one sector in particular. Manual assessment of samples

of the data suggests that precision remains high. The impact on prediction, however, is not uniform.

Predictive accuracy improves primarily for one of the three sectors, using the more expressive tree

space representation. Improving prediction is not necessarily dependent on the number of mentions

captured, but rather on the quality of the content surrounding company mentions.

Motivation

Company mention detection is a challenging task. Consider the example in Figure 7.7. Baker

Hughes Inc is a company that provides oil and gas services in the Energy sector. Example sentence

1 mentions the full name of the company and an exact match can identify it. The challenges occur

when companies mentioned in the articles are referred to by a more abbreviated version of their

full name, such as Baker Hughes or Baker, as in example sentence 2. Further problems lie in the

fact that some of these abbreviated mentions name other entities, such as a person, or are generic

words, such as the word baker, when it introduces a person of that occupation. We had to consider

if increasing the recall to capture these cases would outweigh the negative effect of a decrease in

precision. Accordingly, we looked at how frequently abbreviated name strings are in fact used to

refer to a company versus a different entity. Additionally, there are instances where sub-branches

of a company are mentioned, and it is questionable as to whether these are important instances to

capture. Baker Hughes, in example sentence 2, has divisions Baker Oil Tools and Baker Petrolite,

which are mentioned in the same news article, but an exact match by full name cannot capture these

mentions. The question of whether news reports about subsidiary units affect the main company’s

price is a complex one that we do not address here.

Further improvement of company mention detection requires coreference resolution, especially

to detect mentions in different sentences, as shown in example sentence 3 of Figure 7.7. Coreference

resolution was not used in many previous studies on financial news analytics, including [Rosenfeld

and Feldman, 2007; Feldman et al., 2011a]. We found that the Stanford CoreNLP coreference

parser [Lee et al., 2013], a state-of-art coreference resolution toolkit that works well on the CoNLL

Shared Task, does not lead to good results when directly applied. It introduces many mention chains

that are irrelevant to the company entities, and some chains contain heterogeneous noun phrases that

are not appropriate for our company mention annotation task. However, it has a modular design that
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GICS Sector C N S T

10 Energy 40 5,373 109,277 2,014,085

15 Materials 26 2,295 53,595 953,133

20 Industrials 58 8,325 238,570 3,780,129

Table 7.8: Description of news data for company mention detection.

supports relatively easy re-design, as described below.

Related Work

This experiment on company mention detection focuses on improving the processing pipeline to

improve the overall knowledge discovery framework for financial news. Capturing named entities

is essential for making accurate predictions because we rely on named entity recognition to select

company relevant news information for price modeling. Named entity recognition is a major area of

interest in text mining. A large resource that supports this task is the Heidelberg Named Entity Re-

source, a lexicon that links many proper names to named entities [Wolodja Wentland and Hartung,

2008]. It is not used in our study because its coverage is limited: it fails to capture enough men-

tions for our targeted company list, which is based on the S&P 500. As a result, we require a more

general and comprehensive method. In addition to named entity recognition, we also incorporated

a coreference resolution step to further improve the performance of text mining procedure. There

are coreference parsers that use various approaches in attempts to attain optimal performance. The

coreference resolution model that our method builds on is the Stanford CoreNLP parser [Manning

et al., 2014]. Named entity recognition and coreference resolution are the two key components in

our company mention detection task. We leverage state-of-art tools to maximize compatibility and

stock market predictability for the financial news domain.

Data

Our company mention detection experiment relies on a subset of our financial news dataset for

the year 2007 on the first three sectors in GICS: 40 companies in GICS 10 of Energy such as Hess

and Exxon Mobile, 26 companies in GICS 15 of Materials such as Du Pont, and 58 companies in

GICS 20 of Industrials such as Boeing and General Electric. Table 7.8 describes our data. C is

number of companies in each sector;N is the number of news items; S is the number of sentences;

and T is the number of words.
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Framework

We rely on a framework introduced in the previous section to test the effectiveness of company

mention detection. This framework to capture news impact on the financial market consists of three

main components, as shown in Figure 7.8: (1) text processing, (2) data instance formation, and

(3) model learning and evaluation. In the text processing component, a four-stage NLP pipeline is

used. The title and full text of the news article are first extracted from the HTML documents from

Reuters News Web Archive. The sentence segmentation stage splits the full text into sentences.

The company mention detection stage then identifies if any company of interest is mentioned in the

sentence. In this study, we focus on a finite list of companies in the S&P 500.

Figure 7.8: Framework of the text mining on financial news for stock market price prediction.

The sentences with at least one S&P 500 company mention are parsed and used for text min-

ing. Therefore, the company mention detection task provides the data foundation for the whole

framework. How to improve the coverage of the company mention detection in a way that improves

prediction is the main focus in this experiment.

After text processing, we align public available daily stock price data from Yahoo Finance with

the textual news data. Recall that the task is to predict the change in price of a company on a date

based on the analysis of the preceding day’s news. A data instance is all the news associated with

a company on a given day, and consists of the companies whose price changed above a threshold

between the closing price on the day of the news and the closing price on the following day.
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In the learning and evaluation component, rich vector space models are used to test the price

prediction performance. These vector space models include bag-of-words models, semantic frame

features, and part-of-speech based word affective features. A model that encodes rich structured

semantic information, SemTreeFWD, is also used for model learning and evaluation. It is an en-

riched hybrid of vector and tree space models that contains semantic frames, lexical items, and

part-of-speech-specific affective features trained with Tree Kernel SVM [Moschitti, 2006].

Company Mention Detection

Our Company Mention Detection module attempts to identify all named entities, variants of

these names, and coreferential expressions, then replaces the original strings with a unique identifier.

For the identifiers, we use the company tickers, character codes between length of one to five, to

identify publicly traded companies. Our initial NLP pipeline used a rule-based method for partial

matching on the full company names that only recognized a limited number of the variant names for

a company. We have expanded its NER (Named Entity Recognition) rules to capture a much wider

range of name variants. We also tested the Stanford CoreNLP coreference parser, and modified it to

achieve optimal performance for our domain. This section describes the original and our new NER

module, and the changes we made to Stanford coreference parser.

To obtain a lower bound for NER, we used an Exact Match method, defined as matching the

exact string to the official names of the S&P 500 companies. This ensures 100% precision, but

recall is low. Our initial approach for NER relies on a few conservative rules. These rules focus

on the structure of the company names, which can consist of two types of tokens. The words that

make up the unique name of the company are the general name elements. The second type are

the generic endings, a predefined set of possible suffixes that are optionally included in company

names. A generic ending, when included, will be the last token of a company name. It uses the

generic endings Company, Corporation, Incorporation, and Limited, as well as their abbreviations.

Our initial NER module applies three rules, Exact Match to the company official name, a rule

for the generic endings in the Exact Match, and one for the name elements. The second rule applies

if there is a generic ending: the program substitutes, one at a time, each generic element in our

predefined list for the original generic element, and finally a null element, and searches for each of

these new candidate name strings in the text; note that if the null element is substituted, then the new

search string consists only of a sequence of name elements with no generic ending. The third rule,
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which triggers after the second, truncates the sequence of name elements by iteratively removing

the last name element unless the sequence of name elements is length two. After each truncation

step, the second rule is re-applied. The process terminates at the first word of a company name.

The proposed Company Mention Detection module incorporates the initial NER module de-

scribed above, but extends the set of rules so that it does not terminate when the sequence of name

elements is length one. Through random sampling and visual inspection, we found that it would be

beneficial to include the first word. To maintain high precision, we hard-coded rules for companies

where there was a strong possibility that the first token of their names could be mistaken for another

entity.

The proposed Company Mention Detection module also incorporates the Stanford CoreNLP

parser, which outputs lists of entities that corefer, called coreference chains [Manning et al., 2014].

The Stanford parser was trained on various corpora where the average F-measure was about 60%,

which is considered a high score for this task. Furthermore, this parser was intended to be easy for

others to modify, either by removing or adding methods to capture coreference patterns. Initially,

the Stanford parser seemed ineffective for our dataset due to some inaccuracies in the results. It

captured many more instances than it should have, thus decreasing precision. By observing the

list of entities in the coreference chains, we noticed that there were some incorrect linkings. First,

distinct companies were sometimes linked with each other, such that an incorrect ticker was assigned

to one of the companies. Second, the parser captured predicate nominative instances, which are not

relevant for our purposes. Third, there were general incorrect linkings between company names and

other words in the text.

To address these issues, we re-structured the components of the Stanford CoreNLP coreference

parser. The original algorithm goes through ten passes, or sieves, to capture different kinds of coref-

erence phenomena for each iteration [Lee et al., 2013]. By exploring the sieves in the coreference

toolkit, we were able to identify the ones causing problems in our data, and to manually tune the

parser to meet our needs. The three passes that decreased the accuracy of the mention detection

algorithm are called Precise Constructs, Strict Head Match 3 and Relaxed Head Match. There are a

few rules incorporated into Precise Constructs, but the main one causing issues in our data was the

predicate nominative condition, which, when capturing an entity, also captures the text following a

linking verb [Lee et al., 2013]. For example, a sentence that mentions the ConocoPhillips company
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says, ConocoPhillips is an international, integrated petroleum company with interests around the

world. Precise Constructs gives the output ConocoPhillips is ConocoPhillips.

Strict Head Match 3 removes a word inclusion constraint used in Strict Head Match 1, where all

the non-stop words of one entity must match the non-stop words that appear in the previous one. By

removing this sieve and thereby imposing this constraint, our program avoids generating incorrect

linkages between entities. Strict Head Match 3 removes this constraint since the score for the dataset

the Stanford team tested it on improved. Relaxed Head Match allows any word in the main entity

to match with entities in other coreference chains. As a result, for the company Air Products, the

original algorithm incorrectly recognized these products to be the company entity. Once these three

sieves were eliminated, we observed a significant improvement.

The passes that remained in the coreference parser include Speaker Identification, Exact String

Match, Relaxed String Match, Strict Head Match 1, Strict Head Match 2, Proper Head Word Match

and Pronoun Match. The Speaker Identification sieve detects the speakers in the text and captures

any pronouns that refer to them. In Exact String Match, the parser captures the exact string of

entities, similar to the idea of our Exact Match method, but with the additional property of including

modifiers and determiners. Relaxed String Match removes the text following the head words of two

entities, and links them together if the remaining strings match. Strict Head Match 1 uses the heads

of the entities and imposes contraints to determine if the mentions are coreferent. Strict Head Match

2 eliminates a restriction used in Strict Head Match 1, where in this property, modifiers in one entity

must match the modifiers in the previous entity in order to be linked together. Proper Head Word

Match links proper nouns that have the same head word, but also has specific restrictions imposed

on these entities. Pronoun Match focuses on pronominal rules and imposes agreement constraints

to capture the entities that are compatible. These seven sieves [Lee et al., 2013] provided the results

we needed for capturing additional correct instances.

Experiment

Before conducting our experiment with the Company Mention Detection module, we did some

probes on the data to shape our expectations for performance gains. Taking a randomly selected

company, and ten randomly selected documents that mention the company, we counted how many

company mentions were captured by each of the three methods: Exact Match, the Initial NER

and the proposed Company Mention Detection (CMD). Percentage results for the 54 mentions this
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Methods Precision Recall F-measure

Exact Match 100.0% 17.0% 29.0%

Initial NER 100.0% 57.4% 72.9%

CMD 90.0% 76.6% 82.8%

Table 7.9: A manual evaluation for company detection in a preliminary experiment.

yielded are displayed in Table 7.9. As shown, CMD yielded greatly improved recall at a reasonable

sacrifice in precision, and an overall increase in F-measure of 13.6%, compared to the Initial NER.

Interestingly, the incorrect instances for CMD were not entirely wrong: they all referred to units

within the company. We count them as incorrect, however, because of our focus on predicting stock

price for the S&P 500 (parent) companies. As noted above, what happens to one unit of a company

may not necessarily affect public perception of the company as a whole. We, therefore, do not

regard sub-companies as correct instances for the purposes of our experiment.

The Exact Match method has a very low F-measure since it only captures the full name of

a company. Except for the first time it is mentioned in a news article, a company is usually not

referred to by its full name. Instead, variations of company names are frequently used. Clearly, the

Initial NER method far outperforms this baseline, yet leaves much room for improvement in recall.

As described in section 7.7, CMD further expanded the NER so as to search for abbreviated

name strings that include only the first word of the full named entity string of the companies. For the

company Baker Hughes Inc., this would lead to the inclusion of mentions by the single name Baker.

Although in the general case, this could introduce imprecision, if a document already contains the

GICS Initial NER CMD Increase

10 8,646 11,252 30.14%

15 5,445 6,336 16.36%

20 15,286 17,865 16.87%

Total 29,377 35,453 20.68%

Table 7.10: Counts of company mentions by sentence.
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full company name, it is likely that use of the first name token in the full name (e.g., Baker) would be

a company mention. In addition, CMD also captures many coreferential expressions for company

mentions. For example, one article says, Baker Hughes said it supplied products to customers;

where the original NER rules capture Baker Hughes. CMD also captures it. As shown in Table 7.10,

CMD captures many additional instances of company mentions. This also leads to some gains in

stock price prediction, as will be reported in the next section.

The experiment uses as input the data described in Table 7.8 consisting of all the news in three

market sectors from Reuters news archive for 2007. Recall, we use the framework described in

Section 7.7 because it allows us to test the impact of improved F-measure for CMD across multiple

document representations. The five document representations we test in the experiment are: 1)

BOW, which refers to bag-of-words with unigram counts; 2) BOW (n-gram), for BOW with unigram,

bigram and trigram counts; 3) FW which is like BOW (n-gram) but also includes Frame Semantic

elements (see next paragraph); 4) FWD consists of FW plus a prior polarity on words from the

Dictionary of Affect in Language (DAL score; see next paragraph); 5) and lastly, SemTreeFWD,

which is a tree structure that uses the FWD features combined with a tree kernel.

Three of the five document representations make use of features from frame semantics [Fill-

more, 1976]. Frame semantics aims for a conceptual representation that generalizes from words

and phrases to abstract scenarios, or frames, that capture explicit and implicit meanings of sen-

tences. The three basic feature types from frame semantics are frame name, frame target, and frame

element. Each frame is evoked by a frame target, or lexical unit, for example, sue or accuse evoke

the Judgement Communication frame, which describes a lawsuit scenario. Its frame elements, or

semantic roles, are Communicator, Evaluee, and Reason. FW and FWD uses bag-of-frames (in-

cluding frame names, frame targets, and frame elements) features in a vector space representation,

while SemTreeFWD encodes relational structures between the company entity and the semantic

frame features in a tree representation, in addition to FWD. The semantic parsing we use to extract

frame features is SEMAFOR3 [Das and Smith, 2011; Das and Smith, 2012], a statistical parser

that uses a rule-based frame target identification, a semi-supervised model that expands the predi-

cate lexicon of FrameNet for semantic frame classification, and a supervised model for argument

identification.

3http://www.ark.cs.cmu.edu/SEMAFOR
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GICS Sector type BOW BOW (n-gram) FW FWD SemTreeFWD

10 Energy
Initial NER 59.94±16.38 61.18±15.43 59.99±14.46 59.05±16.58 64.26±14.95

CMD 58.54±17.32 61.11±15.34 58.67±15.76 58.44±18.40 64.87±15.04

15 Materials
Initial NER 58.23±15.53 59.74±14.33 62.10±14.24 62.69±15.28 68.62±14.72

CMD 61.82±15.18 60.63±15.33 63.23±13.71 63.12±15.01 67.18±13.37

20 Industrials
Initial NER 56.70±14.81 55.47±13.86 53.86±13.43 54.29±14.31 57.25±16.88

CMD 60.13±14.04∗ 58.19±13.44∗ 55.37±13.31 55.75±13.54 56.36±18.38

Table 7.11: Averaged test accuracy for each company by sector that uses 80% of the data for train-

ing 20% for testing. Boldface identifies a higher CMD mean and ∗ identifies the CMD that is

significantly better than the Initial NER with p-value < 0.05.

FWD and SemTreeFWD contain word affect features based on DAL, the Dictionary of Affect in

Language [Whissel, 1989]. It is a psycholinguistic resource designed to quantify the undertones of

emotional words that includes 8,742 words annotated for three dimensions: pleasantness, activation,

and imagery. We use the average scores, in terms of the three dimensions, for all words, verbs,

adjectives, and adverbs in a vector space for feature representation.

The experiments assess the performance of predicting the direction of price change across com-

panies in a sector. Recall that a data instance in our experiment is all the news associated with a

company on a given day, and consists of the companies whose price changed above a threshold

between the closing price on the day of the news and the closing price on the following day. In

this experiment, we use the threshold of 2% that corresponds to a moderate fluctuation. A binary

class label {-1, +1} indicates the direction of price change on the next day after the data instance

was generated from the news. For each company, 80% of the data is used for training and 20% for

testing. We report the averaged accuracy and standard deviation of the test data for both the Initial

NER, as a benchmark, and our CMD on a sector-by-sector basis.

Results

The experiment addresses two questions: 1) Does CMD improve the coverage of company

mentions in the domain of interest? 2) Does our Company Mention Detection improve accuracy

of prediction on the task to identify the direction of price change? Based on our probe of the data

where we could manually assess precision (Table 7.9 in section 7.7), we expected a large increase

in coverage. Projecting from the results of this manual probe, we assume that an increase in recall
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comes with an acceptable (small) degradation in precision. Yet, because there is no gold standard

data set, we cannot assess precision of CMD for the full dataset. Prediction accuracy is the true

test of performance on the benefit of increased coverage of company mentions using CMD, but is

only a very indirect measure of precision. As noted above, stock price prediction from news is a

challenging task with a great deal of noise in the input. Results presented here show a substantial

increase in coverage, and statistically significant increases in prediction accuracy for some but not

all of the experimental conditions.

As background to interpret the results, it is important to consider the relation between the in-

creased number of mentions versus the number of data instances per company, and the differences

across sectors in the average number of data instances per company. Again, each data instance

consists of all the news for a given company on a given day. Therefore, new data instances will be

added only if CMD identifies news for a given company on a day that was not identified before. If

new sentences for a given day are identified, however, then we expect that BOW and BOW (n-gram)

are very likely to be enriched, and prediction could improve in these two cases. If new mentions

in an existing sentence are identified, this should not improve BOW and BOW (n-gram) because

all the relevant feature positions in the vector (unigram, n-gram) will already have had values, and

the values will not change. In contrast, if new mentions occur not in the same sentence but in new

clauses within or across sentences, the representations that use semantic frame parsing (FW, FWD,

SemTreeFWD) could be enriched if the new clauses contain words that trigger new frames, and the

new mentions fill their roles.

We found that CMD did not increase the number of data instances. This result suggests that if

a news item mentions a relevant company, at least one mention will be either an exact match to the

full name string, or a near match based on the conservative NER rules. On the other hand, there

were substantial gains in the total number of sentences. Table 7.10 reports the absolute numbers

of sentences with company mentions from the original NER module compared with those for the

Company Mention Detection module. At increases of between 16% and 17%, the Materials and

Industrials sectors already show large increases; the increase for the energy sector is nearly double

that of the two other sectors. This difference between the GICS 15 and 20 versus GICS 10 reflects

the underlying domain differences from sector to sector, which accounts to some degree for the

difficulty of the prediction task. We further note that the number of data instances per company
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differs substantially across the three sectors. The mean and standard deviation for each sector are as

follows, respectively: GICS 10, µ = 24.37, σ = 15.80; GICS 15 µ = 20.80, σ = 15.52; GICS

20: µ = 16.16, σ = 18.96. Based on these figures, we expect the gains for GICS 15 and 20 to be

similar, and the gains for GICS 10 to be larger for the semantic frame representations.

Table 7.11 gives the average accuracy per sector of the CMD combined with the five document

representation methods introduced in the previous section. (Note: None of these results signifi-

cantly beat the baseline accuracy given by the average over the majority class for each company, but

the standard deviations for this baseline–as for the results in Table 7.11–are quite high. This does

not diminish the comparison of the different representations, and the question of whether CMD can

improve performance.) Prediction accuracy improved for the BOW representations. The numbers

in boldface are the cases where the average accuracy for CMD is higher than for the original NER,

and the cells with an asterisk indicate cases where a t-test of the difference is statistically signifi-

cant. As shown, the two cases where there is a statistically significant improvement are for the two

BOW representations for the sector with the fewest average data instances per company, namely

Industrials. When using NER, the BOW representations already had very competitive performance,

and CMD increases their performance. This suggests that the new sentences that are identified with

CMD add new vocabulary that is predictive. The two vector-based representations with frames also

have higher accuracy, but the increase is not statistically significant. For the tree-based represen-

tation (SemTreeFWD), the performance degrades somewhat. The performance of the frame-based

representations suggests that the new sentences for Industrials do not add new frames, or possibly

add new frames that have semantic conflicts with the frames that were found earlier. The same

general pattern holds for the Materials sector.

The one case where the SemTreeFWD performance improves is for the Energy sector, but the

improvement is not statistically significant. We can only speculate that this sector is the only one

where SemTreeFWD shows greater accuracy because this is the sector where the number of addi-

tional sentences is substantially larger.

The two questions posed by our experiment can be answered briefly as follows: 1) CMD im-

proves the coverage of company mentions dramatically at the sentence level: the number of ad-

ditional sentences per sector increases on average by over 20%. This does not, however, increase

the number of data instances; 2) CMD has a statistically significant impact on predictive accuracy
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only for the Industrials sector, for the two BOW representations. In the next section we discuss the

ramifications of these results.

Conclusion on Company Mention Detection

Evaluation of coreference performance generally involves assessment of the accuracy of coref-

erence as an independent module. Here we provide an evaluation of coreference as an independent

module (intrinsic), and as part of an end-to-end system that aims at a real world prediction task

(extrinsic). The results presented in the preceding section provide a very dramatic and concrete

demonstration that large gains for coreference as a stand-alone module do not necessarily result

in system gains. They also demonstrate the importance of considering the overall integration of

information for data representation.

Of the fifteen conditions in Table 7.11, the two conditions where we find statistically significant

improvements from CMD pertain to the two data representations that are relatively less rich, BOW

and BOW (n-gram), for the sector with the fewest data instances. There are marginal improvements

that are not statistically significant for FW and FWD, and a degradation for SemTreeFWD. This

indicates to us that the new sentences added for the Industrials sector add new features to the BOW

feature vector, but do not add as much in the way of frame features. Continuing with this sec-

tor, the differences between the five document representations are not as great for NER as they are

with CMD, and the unigram BOW representation in the CMD condition ends up with the highest

accuracy for the ten conditions. The same general trend for the vector representations holds in Ma-

terials as for Industrials, but without statistical significance. For Materials, however, SemTreeFWD

remains the representation with the highest accuracy among all five.

Energy, which had a much more substantial gain in number of sentences, has a different pattern.

There are no gains for the vector based representations. Energy is also the sector with the greatest

number of data instances per company. Here we speculate that the addition of new sentences does

not add new vocabulary: with such a large number of data instances per company already, vocabu-

lary coverage was perhaps already high. SemTreeFWD shows a small gain in accuracy that is not

statistically significant.

In our view, rich semantic and pragmatic data mining for large scale text mining should aim for

information that supports more informed decision making, or in other words, is actionable. To sum-

marize the results of the experiment presented here, a substantial increase in coverage for the task of
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detecting mentions of relevant entities on a large scale prediction task does not necessarily translate

to gains in the actionable value of the information gained. Further, the experiment demonstrates the

interdependence of semantic and pragmatic data mining with feature representation, and with the

end goals of the data mining task.
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Chapter 8

GoodFor/BadFor Corpus Analytics

To test the performance of our representation and learning methods on entity driven analytics, we

experimented on a recently introduced, publicly available dataset - the GoodFor/BadFor Corpus1

[Deng et al., 2013], which is part of MPQA. MPQA, multi-perspective question answering, is a

corpus that contains news articles from a wide variety of news sources manually annotated for

opinions and other private states. The original MPQA dataset is created to facilitate the research on

general sentiment analysis and opinion mining, which contains documents of foreign and U.S. news

sources that were identified by human searches and by an information retrieval system. The dataset

we use in this study is an newly introduced GoodFor/BadFor dataset in MPQA. The annotation

of the GoodFor/BadFor dataset investigates whether the event mentioned in a sentence has either

positive or negative affect on the the event object. The creation of the dataset is to facilitate the

research on fine-grained sentiment analysis that distinguish the opinion holder and the object.

We first introduce the GoodFor/BadFor dataset, then describe two classification tasks related to

the two annotation tasks on this corpus. We then present our results followed by discussions.

8.1 Introduction

Sentiment analysis is a popular topic and a fast growing area in NLP research. Traditional sentiment

analysis is interested in classifying the overall sentiment of a document, where bag-of-words and

dictionary based valence scoring are often used. While recent studies are on fine-grained sentiment

1http://mpqa.cs.pitt.edu/corpora/gfbf/
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analysis, for example, to identify the opinion and the opinion holder and the target object, which

requires more of a deeper understanding of the syntactic and semantic level analysis. This work

on entity-driven text analytics also contributes to the fine-grained sentiment analysis. Our methods

can be applied to the sentiment analysis task that targets at an object of interest, e.g. designated

entities, in a sentence, and we make use of lexical, syntactic dependency, and semantic information.

In particular, our models even allow us to create different representations for different designated

entities for the same sentence, which has been shown successful in financial news analytics in

the previous experiment. To test the generality of the methods, we here experiment on a recently

introduced, publicly available dataset in sentiment analysis - the GoodFor/BadFor dataset2 [Deng et

al., 2013], which is part of the MPQA corpus.

GoodFor/BadFor dataset is an annotated corpus created for the study of fine-grained opinion

mining and sentiment analysis. Two annotation tasks are involved in the GoodFor/BadFor (gfbf)

corpus: 1) benefactive/malefactive event annotation, and 2) writer attitude annotation. The benefac-

tive/malefactive task asks annotators to identify the affected entity (the object) and the entity causing

the event (the agent), and label either the agent and the event has a positive or negative affect to the

object. For ease of communication, the terms GoodFor and BadFor are used for benefactive and

malefactive events, respectively. On other other hand, the writer attitude task asks annotators to

identify the writer’s attitude towards the agents and toward the objects. We derived two binary clas-

sification tasks from these two annotation scheme. The first task is to classify the benefactive or

malefactive affect on the object, and the second task is to identify the positive or negative writer

attitude towards both the agent and the object. The next two sections will provide some example

annotations, and introduce how we create our data representation for each of the classification tasks.

8.2 Benefactive/Malefactive Identification Task

Our first classification task is to identify whether the agent and the event mentioned in the sentence

are benefactive (good for) or malefactive (bad for) to the object. When the corpus is being annotated,

annotators are asked to interpret sentences and words with respect to the context in which they

appear, and do not take words out of context but just judge them as they are being used in that

2http://mpqa.cs.pitt.edu/corpora/gfbf/
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particular sentence. Many of the circumstances should be judged by intuition based on the most

common fundamental ethical values. There are also several guidelines for the annotation tasks

[Deng et al., 2013], and these include:

- To exist is good.

(1) This strategy has already failed in Britain, where [politiciansAgent] desper-

ate to tame rising health costs created [a National Institute for Health and Clinical

EffectivenessObject←BENEFACTIV E].

(2) Then [heAgent] would help [usObject←BENEFACTIV E] develop the creative new ideas

that would allow us to work together to face the big issues, not sidestep them.

- To destroy is bad.

(3) By utilizing peer review practices which would not stand muster under standard consti-

tutional law, [hospital and health systemsAgent] can label anyone a disruptive, unruly or unco-

operative physician and destroy [their ability to workObject←MALEFACTIV E].

(4) On the other hand, we have [an oppositionAgent] that wants to get rid of the law - and

then dismantle [Medicare and MedicaidObject←MALEFACTIV E] along with it,” Sebelius said.

- To assist is good.

(5) Despite a lot of noise and confusion over opponents’ claims, a quick look at the facts

shows that [this reform lawAgent] is well on its way to helping protect [working families and

the middle classObject←BENEFACTIV E].

(6) Then [heAgent] would help [usObject←BENEFACTIV E] develop the creative new ideas

that would allow us to work together to face the big issues, not sidestep them.

Annotators are also asked to interpret sentences and words with respect the context in which

they appear, and do not take words out of context but just judge them as they are being used in that

particular sentence.
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To create SemTrees or OmniGraphs for the experiment, we treat the Object in the annotated sen-

tence as the designated entity. For example, for sentence This strategy has already failed in Britain,

where politicians desperate to tame rising health costs created a National Institute for Health and

Clinical Effectiveness, the semantic parsing is in Figure 8.1. The SemTree and OmniGraph rep-

resentation for the target object is illustrated in Figure 8.2 and 8.4. Note that the dependencies

among frames in OmniGraph are recovered as shown in Figure 8.3, which is constructed based on

the syntactic dependency parsing.

Sentence: This strategy has already failed in Britain, where politicians desperate to tame rising health

costs created a National Institute for Health and Clinical Effectiveness.

Benefective/Malefective Annotation:

This strategy has already failed in Britain, where [politiciansAgent] desperate to tame rising health costs

created [a National Institute for Health and Clinical EffectivenessObject←MALEFACTIV E].

Frame semantic parse:

[This strategySuccess or failure.Agent] has already [failedSuccess or failure] [in Britain, where

[politiciansDesiring.Experiencer] [desperateDesiring] [to [tameConquering] [risingMotion directional]

health [costsMotion directional.Theme]Desiring.Event] [createdIntentionally create] [a National Institute

for Health and Clinical EffectivenessIntentionally create.Created entity]Success or failure.Goal].

Figure 8.1: Example sentence, its benefactive/malefactive annotation, and the frame semantic parse.

Figure 8.2: SemTree representation for the object a National Institute for Health and Clinical Ef-

fectiveness of the sample sentence in Figure 8.1.
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Dependency among frames:

Figure 8.3: The dependencies among semantic frames, which is constructed based on syntactic

dependency parsing.

Figure 8.4: OmniGraph representation that includes lexical, dependency, and semantic information

for the object a National Institute for Health and Clinical Effectiveness of the sample sentence in

Figure 8.1.

8.3 Writer Attitude Detection Task

The other classification task is to detect the positive or negative writer attitude towards the agent and

the object. In the annotation, annotators are asked to mark whether there is a positive or negative

attitude of the writer revealed in that particular sentence. Similar to the benefactive/malefactive

task, the annotation requires the annotators not to ’over’ use their world knowledge, and only find

mark those that reveal the speaker’s attitude within the sentences.

Figure 8.5 shows an example sentence with its annotation for both the agent and the object.
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Sentence: This strategy has already failed in Britain, where politicians desperate to tame rising health

costs created a National Institute for Health and Clinical Effectiveness.

Writer Attitude Annotation:

This strategy has already failed in Britain, where [politiciansAgent←NEGATIV E] desperate to tame rising

health costs created [a National Institute for Health and Clinical EffectivenessObject←NEGATIV E].

Figure 8.5: Example sentence and its writer attitude annotation.

SemTree Representation for the Agent:

SemTree Representation for the Object:

Figure 8.6: SemTree representations for the agent and the object, respectively.
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OmniGraph Representation for the Agent:

OmniGraph Representation for the Object:

Figure 8.7: OmniGraph representations for the agent and the object, respectively.
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8.4 Experiments and Results

The experiment includes two classification tasks introduced in the previous sections. Our goal is

to test if our structured representation and learning can improve the traditional word based vector

space model, and lead to good performance on this fine-grained sentiment analysis task.

We extracted the sentences from the corpus annotation. We ran MST parser for dependency

parsing, and SEMAFOR for frame-based semantic parsing. The coverage of semantic frames

in this dataset is wide. A total of 604 distinct frames are identified, and they approximately

follow the Zipf’s law. Figure 8.8 shows the plot of the distribution of the frames, the R2 of

the log fit is 0.856. Table 8.1 shows the top 50 most frequent frames. These frames cover a

wide range of scenarios. For example, the Frequency, Quantity, Increment (top 3 frames), and

Cause change of position on a scale (8th ranked) frames are related to numbering and frequency

generalizations. The Medical conditions (4th), Education teaching (7th), Law (19th) and Reform-

ing a system (34th) frames reflect the topics in this corpus. Purpose (16th), Intentionally act (21st),

Intentionally create (45th), and Desirability (46th) are related to behaviors and intentions. We hy-

pothesize that these generalization of the frames and the charaterization of the lexical items (frame

targets) that evoked the frames are useful to the classification task. We further look into the frame

targets (lexical items that evoked the frames) and Table 8.2 shows the frame targets distribution for

each of the top 10 most frequent frames. We can see there is a wide variety of lexical items. Recall

that some annotation guidelines are relevant to the quantities, e.g. to exist is good (none and never

may have a negative affect), gain is good and loss is bad (more and increase may be positive while

reduce and few may be negative). We expect the inclusion of semantic frame related features in data

representation to be beneficial to the classification task.

In the experiment setup, we use the percentage of the majority class as the baseline, and compare

the same five methods in our previous experiment. (1) BOW - a vector space model that contains

unigrams, bigrams, and trigrams. (2) DepTree - a tree space representation where dependency

parse of the sentence is encoded into a tree representation. (3) SemTreeFWD - an enriched hybrid of

vector and tree space model that contains semantic frames, lexical items, and part-of-speech-specific

psycholoinguistic dictionary-based features, trained with Tree Kernel SVM [Moschitti, 2006]. (4)

& (5) - OmniGraph representation trained with Weisfeiler-Lehman graph kernel and Node Edge

Weighting graph kernel.
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Figure 8.8: Distribution of semantic frames that are identified in the GoodFor/BadFor dataset. The

trendline is a log fit, with R2 = 0.856.
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Rank Frame Name Freq Rank Frame Name Freq

1 Frequency 471 26 Commerce pay 160

2 Quantity 437 27 Businesses 157

3 Increment 376 28 Likelihood 138

4 Medical conditions 333 29 Grant permission 132

5 Expensiveness 284 30 Causation 132

6 Statement 270 31 Possession 131

7 Education teaching 259 32 Topic 116

8 Cause change of position on a scale 252 33 Required event 111

9 Buildings 249 34 Reforming a system 110

10 Capability 245 35 Cure 104

11 Political locales 230 36 Age 101

12 People 214 37 Removing 100

13 Project 196 38 Observable body parts 100

14 Temporal collocation 190 39 Importance 99

15 Continued state of affairs 186 40 Expertise 99

16 Purpose 184 41 Desiring 97

17 Relational quantity 183 42 Fields 96

18 Cardinal numbers 181 43 Relative time 93

19 Law 179 44 Locale by use 93

20 Calendric unit 176 45 Intentionally create 91

21 Intentionally act 175 46 Desirability 91

22 Leadership 169 47 Sufficiency 87

23 Change position on a scale 166 48 Cause to make progress 87

24 Time vector 164 49 Protecting 86

25 Assistance 164 50 Measure duration 85

Table 8.1: Top 50 most frequent frames in GoodFor/BadFor dataset.



CHAPTER 8. GOODFOR/BADFOR CORPUS ANALYTICS 112

Rank Frame Name (Freq) Frame Target (Freq)

1 Frequency(471)

not(89), n’t(70), also(52), even(48), just(30), every(20), really(12), actu-

ally(12), rate(11), annual(10), instead(9), Even(8), Not(8), Instead(8),

often(7), else(6), ever(6), easily(5), never(5), annually(4), exactly(4),

simply(4), once(3), regular(3), definitely(3), Also(3), Once(2), al-

ways(2), typically(2), merely(2), generally(2), forever(2), surely(1), ei-

ther(1), Never(1), Nevertheless(1), usually(1), ...

2 Quantity(437)

all(63), no(43), many(43), any(26), trillion(22), those(20), number(19),

both(18), these(15), millions(15), several(11), No(10), amount(9),

All(8), majority(8), nothing(8), hundreds(7), thousands(7), billions(6),

fair(5), either(5), These(5), few(4), masses(4), measure(4), a few(4),

transparent(4), a lot(4), numbers(3), none(3), percentage(3), size(3),

dozen(2), amounts(2), also(2), lots(2), Few(2), None(2), ...

3 Increment(376)

more(125), that(96), other(55), That(22), further(18), additional(17),

another(10), others(6), More(4), significantly(4), Other(4), Further(3),

Others(2), fewer(2), targeted(2), Medicare-paid(1), nothing(1), some-

thing(1), Additional(1), extra(1), supplemental(1)

4 Medical conditions(333)

health(244), sick(29), cancer(10), illness(8), ill(5), healthy(5), dis-

eases(4), welfare(4), cold(3), syndrome(3), plaguing(2), illnesses(2),

flu(2), obesity(2), hospitalizations(2), well-being(1), disease(1),

pregnancy(1), hangover(1), intact(1), disabilities(1), exposure(1),

headaches(1)

5 Expensiveness(284)

costs(91), cost(35), premiums(35), benefits(19), affordable(17), avail-

able(15), spending(13), free(12), cheaper(4), cost-containment(4), de-

ductibles(4), costly(4), expensive(4), expenses(4), free-market(3), con-

troversial(2), expense(2), exorbitant(2), Costs(1), fees(1), pricy(1), unaf-

fordable(1), cost-reduction(1), costing(1), Cost(1), affordability(1), pre-

mium(1), attractive(1), overhead(1), government-subsidized(1), bene-

fit(1), deductible(1)

Table 8.2: Frame targets (lexical items that evoked the frames) for the top 10 most frequent frames

(part 1).
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Rank Frame Name (Freq) Frame Target (Freq)

6 Statement(270)

said(42), denying(29), deny(20), claims(16), add(12), added(11),

says(11), denied(10), adding(8), announced(7), explain(6), report(6),

say(5), claim(4), proposed(4), Adding(4), saying(4), comment(4),

warns(3), proposal(3), insist(3), affirmed(3), acknowledge(3), notes(2),

observed(2), warning(2), warned(2), explained(2), reported(2), re-

porting(2), contend(2), declared(2), reports(1), contends(1), main-

tain(1), invoke(1), semantics(1), claiming(1), States(1), declares(1),

proclaimed(1), state(1), credit(1), recounting(1), propose(1), Says(1),

talked(1), remarking(1), touted(1), dismissing(1), denial(1), states(1),

decrees(1), upheld(1), uphold(1), statement(1), confirms(1), explains(1),

caution(1), adds(1), attributed(1), declaration(1), Denying(1), sug-

gested(1), recommends(1), writes(1)

7 Education teaching(259)

care(157), medical(56), health-care(13), counseling(11), education(2),

student(2), educating(2), training(2), Medical(2), tech(1), educa-

tional(1), environmental(1), technical(1), learn(1), graduates(1), stu-

dents(1), teaching(1), teaches(1), graduate(1), educate(1), lessons(1)

8
Cause change of posi-

tion on a scale(252)

reduce(51), cut(31), reducing(27), increase(26), cuts(16), raise(12), pro-

mote(8), raising(8), push(7), boost(7), increased(6), promoting(5), re-

duces(4), lowering(4), limiting(4), increasing(4), growth(4), lowers(3),

decreasing(3), reductions(2), layoffs(2), increases(2), limited(2), re-

duced(2), diminish(2), Increasing(1), eroding(1), inflation(1), lessen(1),

Boost(1), pushing(1), CUTS(1), Pushing(1), Reducing(1), boosts(1)

9 Buildings(249)

insurance(163), benefits(28), health-insurance(9), hospitals(5), b(5),

bonus(4), entitlement(4), salaries(4), housing(3), building(3), hotels(3),

bureaucracy(3), hospital(3), shed(2), B(2), houses(2), benefit(1), Insur-

ance(1), buildings(1), hotel(1), grapple(1), Hospital(1)

10 Capability(245)

can(118), could(39), ca(27), able(24), ability(11), would(7), worthy(3),

quality(3), eligible(3), accountable(2), responsible(2), potential(2), hard-

pressed(2), Can(1), incapable(1)

Table 8.3: Frame targets (lexical items that evoked the frames) for the top 10 most frequent frames

(part 2).



CHAPTER 8. GOODFOR/BADFOR CORPUS ANALYTICS 114

Benefective/Malefective Writer Attitude

Baseline 56.65 55.61

BOW 67.13±2.68 66.61±1.90

DepTree 72.10±2.41 66.16±1.76

SemTreeFWD 72.51±2.22 65.32±2.05

OmniGraphWL 83.17±1.93 73.10±1.64

OmniGraphNEW 82.42±2.04 74.24±1.58

Table 8.4: Mean accuracy for Benefactive/Malefactive event and Writer Attitude tasks.

Table 8.4 summarizes the performance. For Benefactive/Malefactive task, BOW obtains a 10%

improvement over the baseline. Structured representations significantly improves the vector based

BOW. SemTreeFWD, which incorporates the semantic features and sentiment dictionary further

improves the performance by another 5%. The dependency tree performs similar with a tiny lower

average a bigger standard deviation. OmniGraphs with graph kernel learning (WL or NEW kernels)

performs much better. The writer attitude task is a more difficult one. The baseline is a little lower,

dependency trees and semantic trees representation haven’t been able to improve BOW. However,

OmniGraphs with both graph kernel learnings still have a significant improvement.

We conduct feature analysis to understand what types of features that contribute to the high per-

formance of OmniGraphs. We linearize the OmniGraph features generated by Node Edge Weighting

graph kernel, and rank features based on mutual information. We look at the top 100 features and

count the number features that require each feature type, e.g. frame name or lexical item. Shown in

Table 8.9 is the distribution of the counts for the Benefative/Malefactive task, and Table 8.10 is for

the Writer Attitude task. We see that frame name is consistently the most frequent feature type for

both tasks, and the frame element (semantic role) is the second. These two types of features are the

major boost of the performance for our semantic frame based model. They have been effectively

used to generalize the meanings of different lexical items, and result in high predictive capability.

Table 8.11 and 8.12 show example top ranked features for the Benefactive/Malefactive task, and

Table 8.13 shows an example top ranked feature for the Writer Attitude task.

For the time being, there has been some work on goodFor/badFor dataset. [Deng and Wiebe,

2014a] described a rule-based conceptual framework for representing and analyzing opinion im-
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plicatures. To understand implicatures, their system recognizes implicit sentiments (and beliefs)

toward various events and entities in the sentence. [Deng and Wiebe, 2014b] applied Loopy Belief

Propagation to propagate sentiments among entities. [Deng et al., 2014] incorporate the inferences

developed by implicature rules into Integer Linear Programming to jointly improve sentiment detec-

tion toward entities and disambiguate components of gfbf events. Their work cover multiple tasks

on the dataset, such as detecting the sentiment spans for gfbf events, identifying which the noun

phrase is the agent and which is the theme, and given a gfbf text span, which is its polarity, positive

or negative? Our work only focus on the polarity detection task, and the different experimental

setup may not allow a direction comparison. For example, they use a train/test split while we use

cross-validation. [Deng and Wiebe, 2014a] does not report performance. Even though [Deng et al.,

2014] is not strictly comparable, none of their accuracies are above 0.7. We do not use rule-based

framework for the representation of opinion implicatures as in [Deng and Wiebe, 2014a] and [Deng

et al., 2014]. However, our use of FrameNet to generalize the meaning of words and the use of

graph kernel on OmniGraph automates the process of rich feature engineering, with a coverage of

lexical items, semantic frame features, and dependencies among frames. The extracted semantic

graph-based features can also faciliates the understanding of the problem domain and the relations

between the target entity and the theme, such as in Figure 8.11, 8.12, and 8.13. These advantages

may be the contribution that leads to the high accuracy. [Choi and Wiebe, 2014] addressed methods

for creating a lexicon of positive/negative effect events to support opinion inference. They selected

lexical units from FrameNet, such as assemble, create of the Creating frame to build a graph-based

model in which each node is a WordNet sense, and edges represent semantic WordNet relations

between sense. While our use of graph kernel learning on OmniGrpah automates the lexicon ex-

traction for positive/negative effect events. In addition, our engineered features are not restricted to

lexicons but contains relational features that combines lexical items, frame names, frame elements,

and the designated entities. The above related work have been work on the Benefactive/Malefactive

task, and our experiment also covers the Writer Attitude task in the GoodFor/BadFor corpus.
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Figure 8.9: Number of the top 100 ranked features requiring each feature type for the Benefec-

tive/Malefective task.

Figure 8.10: Number of the top 100 ranked features requiring each feature type for the Writer

Attitude task.
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Feature Types:
Object Entity Frame Name Frame Target Frame Element Lexical Item Frame Dependency

X X X

Example Sentences:

[These programsAgent] bolster [nursing education at all levelsObject], from entry-level prepara-

tion through the development of advanced practice nurses.

Bennet went on the record weeks ago saying [heAgent] would support [the billObject] even if it

cost him his job.

Figure 8.11: Graph features that predicts a positive polarity for the Object Entity in the Benefac-

tive/Malefactive task.
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Feature Types:
Object Entity Frame Name Frame Target Frame Element Lexical Item Frame Dependency

X X X

Example Sentences:

Looking ahead to the benefits health care reform will bring in future years, the law also estab-

lished [a pregnancy assistance fundAgent] that will provide $250 million over the next decade to

help [pregnant and parenting women and teens with child care, housing, education and services

for those victimized by domestic or sexual violenceObject].

To sell ObamaCare and manufacture support, [desperate DemocratsAgent] pandered to [the col-

lege set and their parentsObject].

Figure 8.12: Graph features that predicts a positive polarity for the Object Entity in the Benefac-

tive/Malefactive task.
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(a) A predictive feature for

the Agent.

(b) A predictive feature for

the Object.

Feature Types:
Designated Entity Frame Name Frame Target Frame Element Lexical Item Frame Dependency

X X X

Example Sentences:

By utilizing peer review practices which would not stand muster under standard constitutional

law, [hospital and health systemsAgent] can label anyone a disruptive, unruly or uncooperative

physician and destroy [their ability to workObject].

Figure 8.13: Graph features that predicts a negative polarity on the Designated Entity in the Writer

Attitude task.
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Chapter 9

Conclusions

This thesis presents the study on entity-driven text analytics, where we specify the designated entity

of interest, and use the information and signals from the real world to label entity mentions and

make predictions. This work is also closely related to text forecasting and sentiment analysis. The

methods we proposed build on frame semantics, a conceptual representation that generalizes from

words and phrases to abstract scenarios, or frames, that capture explicit and implicit meaning of

sentences. We demonstrate different approaches to incorporate the semantic features that make use

of structures of data representation and learning models, including vectors, trees, and graphs.

The hypotheses behind our vector space model are that it is possible to 1) identify the underlying

scenarios in text by generalizing the meanings of words when the word forms are different (e.g. sue

and accuse both indicate a judgment communication scenario); 2) distinguish the word senses for

the same word form (e.g. right for correctness or a legal entitlement); 3) capture the semantic

roles (e.g. Communicator, Evaluee, and Reason roles in Judgement Communication frame); 4)

improve sentiment-related tasks by incorporating the semantic orientations in words based on a

psycholinguistic dictionary (e.g. Dictionary of Affect in Language, DAL). To test the hypotheses,

we carry out experiments to incrementally combine different types of features and evaluate the

classification performance. Our result in Table 7.3 shows our vector space features bring advantages

over bag-of-words, and different features have different predictive power for different tasks (e.g.

frame names is good for change task while frame target is good for polarity task).

The hypotheses behind our semantic tree space model are that, given a designated entity, it is

possible to identify not only the scenario the entity locates in, but also the semantic role(s) it fills
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(e.g. the designated entity Oracle fills both the Communicator and Speaker roles in sentence Oracle

sued Google, saying Google’s Android mobile operating system infringes the copyrights of Java).

Both the semantic roles (frame elements) and scenarios (frames) can be neatly encoded in a tree

structure where the designated entity is the root node, the semantic roles it fills are its immediate

children, and the frames are the children of the semantic roles. We also hypothesize that the use

of tree kernel learning on our tree space model can effectively measure the similarities between

sentences with entity mentions and distinguish entities with different semantic roles, although they

have the same features in vector space (e.g. to distinguish the different roles of Oracle and Google

in sentence Oracle sued Google, which bag-of-words and bag-of-frames are incapable of). To test

the hypotheses, we evaluate our tree space model against 1) bag-of-words model, 2) enriched vec-

tor space model that contains additional bag-of-frames and part-of-speech-specific psycholinguistic

dictionary features, and 3) supervised topic models. We found that including SemTree on top of

vector space model outperformed all three benchmarks (Table 7.4). We also carried out a post-hoc

analysis by linearizing the tree kernel features and found that the tree structured semantic informa-

tion provide insights for problem understanding and convenient model interpretation.

The hypotheses behind our graph space model are that, compared to trees, graphs provide a

more flexible data structure with fewer topological constraints (e.g. allow cycles and no distinction

between root and leaf nodes) that can encode fine-grained and richly varied features, such as seman-

tic frames, semantic roles, word forms and dependency structures among frames. We can accurately

measure data similarity using a fast kernel method, with improved classification performance. Also,

through a fast linearization of graph kernel features, complex features with hierarchical structure

can be extracted for model interpretation and feature selection. An advantage of the graph represen-

tation over trees is that in a graph any single node or group of nodes can be conveniently extracted

and measured without treating their topological roles differently, such as root or leaf nodes. A sub-

structure in trees is often a parent node with all its direct children or all descendants, depending on

whether subset tree or subtree kernel is used. However, each node in a graph can be treated as a root

node. The structural features from a graph can therefore include different sizes of the neighborhood

when centered at each node. Another advantage of OmniGraph over SemTree is that the root node

of SemTree is designated to be the single entity node and is used as a joint to connect the frame

features (e.g. semantic roles, and frame names) of that entity, and the features of the frames without
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a designated entity mention will not be included. OmniGraph is able to use all frames, even those

without any entity mention. This can be done by connecting frames using the dependencies among

them. These dependencies can be extracted based on syntactic dependency parsing. In SemTree, in-

cluding dependencies among frames introduces loops. Furthermore, specifying the directions of the

edges among nodes of different feature types based on syntactic dependencies allows us to obtain a

more precise encoding of structural features by restricting the propagation of relational information

through a particular pattern. For example, this can require that the frame feature in the subordinate

clause depends on the frame feature in the main clause but not vice versa, or the words that fill a

frame element should depend on the frame element but not that the frame element depends on the

words. To test the hypotheses and the projected benefits of OmniGraph, we carry out experiments

to compare a variety of realizations of OmniGraph to vector space model and tree space model by

incrementally adding features in OmniGraph.

In the experiment of this study, we break down the components of the graph and analyze the

contributing factors of each component. This analysis will provide us with an in-depth understand-

ing of the model, and can also provide explanation about the real world phenomena that the model

tries to predict. Our OmniGraph provides a unified representation of different types of features,

and relies on a convolution graph kernel, a type of kernel that iteratively measures sub-parts of the

graph, for support vector machine learning. Features are encoded in graphs as nodes and edges.

The types of nodes include (1) entities, (2) frames names, (3) frame targets, (4) frame elements, and

(5) lexical items. The types of edges include (1) 〈entity, semantic role (frame element)〉 relations,

(2) 〈frame target, frame〉 relations, (3) 〈frame element, frame〉 relations, (4) 〈lexical item, frame

element〉 relations, and (5) 〈frame, frame〉 (dependency) relations. The edges can be undirected

or directed. When directed edge is applied, we use the syntactic dependencies to specify the di-

rection of edges. Based on the characteristics of our graph structured representation, we select the

Weisfeiler-Lehman (WL) graph kernel for machine learning and feature exploration. WL graph ker-

nel efficiently measures the similarities among graphs by breaking down the similarity caculation

for different neighborhood sizes. For 0-degree neighborhood, WL kernel measures the overlap of

individual nodes, which is analogous to the bag-of-X model. For K-degree neighborhoods, where

K > 0, WL kernel measures the similarity of the nodes that are K edges away. The procedure is

also called neighborhood augmentation. We observe that different node types (i.e. feature types of
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the node, e.g. frame name, lexical item, etc.) and edge types (i.e. feature types of the relations

between nodes, e.g. a designated entity fills a semantic role, dependencies among frames, etc.)

have different contribution to the prediction task with different predictive ability. We propose a

novel node edge weighting (NEW) graph kernel that allows the exploration of finer-grained sub-

graph features. NEW graph kernel assigns different weights to nodes and edges according to their

feature types, and allows partial match on neighborhood comparisons when it calcualtes subgraph

similarities.

We conduct experiments in financial news analytics to test the benefits of our proposed meth-

ods, which cover different feature types and different data representations and learning methods.

We align stock price data with news articles for companies in S&P500, and use financial news to

predict the price movement of company mentions in news. Our results show that our OmniGraph

representation with WL and NEW graph kernel learning exhibit superior performance. The advan-

tages of OmniGraph stem from the use of semantic frame features to generalize word meanings in

a flexible and extensible graph structure, where rich relational linguistic information can be mod-

eled and learned. In feature analysis, we found that the expressiveness of our subgraph features are

much beyond the vector space word-based model. These structured features also bring insights to

the problem domain. The superior performance of our graph structured representation and learning

also exhibit in the GoodFor/BadFor dataset, where two tasks are involved. One task is to classify

whether the agent and the event mentioned in the sentence is benefactive or malefactive on the af-

fected entity (the object). The other task is to identify if the writer has a positive or negative attitude

towards the agent and the object in the sentence. OmniGraph with WL and NEW graph kernel

significantly outperform the baseline and the other benchmarks that rely on vectors and trees. Our

methods can provide an exemplary approach for other fine-grained sentiment analysis tasks.
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