2,594 research outputs found

    Agent-orientated auction mechanism and strategy design

    Get PDF
    Agent-based technology is playing an increasingly important role in today’s economy. Usually a multi-agent system is needed to model an economic system such as a market system, in which heterogeneous trading agents interact with each other autonomously. Two questions often need to be answered regarding such systems: 1) How to design an interacting mechanism that facilitates efficient resource allocation among usually self-interested trading agents? 2) How to design an effective strategy in some specific market mechanisms for an agent to maximise its economic returns? For automated market systems, auction is the most popular mechanism to solve resource allocation problems among their participants. However, auction comes in hundreds of different formats, in which some are better than others in terms of not only the allocative efficiency but also other properties e.g., whether it generates high revenue for the auctioneer, whether it induces stable behaviour of the bidders. In addition, different strategies result in very different performance under the same auction rules. With this background, we are inevitably intrigued to investigate auction mechanism and strategy designs for agent-based economics. The international Trading Agent Competition (TAC) Ad Auction (AA) competition provides a very useful platform to develop and test agent strategies in Generalised Second Price auction (GSP). AstonTAC, the runner-up of TAC AA 2009, is a successful advertiser agent designed for GSP-based keyword auction. In particular, AstonTAC generates adaptive bid prices according to the Market-based Value Per Click and selects a set of keyword queries with highest expected profit to bid on to maximise its expected profit under the limit of conversion capacity. Through evaluation experiments, we show that AstonTAC performs well and stably not only in the competition but also across a broad range of environments. The TAC CAT tournament provides an environment for investigating the optimal design of mechanisms for double auction markets. AstonCAT-Plus is the post-tournament version of the specialist developed for CAT 2010. In our experiments, AstonCAT-Plus not only outperforms most specialist agents designed by other institutions but also achieves high allocative efficiencies, transaction success rates and average trader profits. Moreover, we reveal some insights of the CAT: 1) successful markets should maintain a stable and high market share of intra-marginal traders; 2) a specialist’s performance is dependent on the distribution of trading strategies. However, typical double auction models assume trading agents have a fixed trading direction of either buy or sell. With this limitation they cannot directly reflect the fact that traders in financial markets (the most popular application of double auction) decide their trading directions dynamically. To address this issue, we introduce the Bi-directional Double Auction (BDA) market which is populated by two-way traders. Experiments are conducted under both dynamic and static settings of the continuous BDA market. We find that the allocative efficiency of a continuous BDA market mainly comes from rational selection of trading directions. Furthermore, we introduce a high-performance Kernel trading strategy in the BDA market which uses kernel probability density estimator built on historical transaction data to decide optimal order prices. Kernel trading strategy outperforms some popular intelligent double auction trading strategies including ZIP, GD and RE in the continuous BDA market by making the highest profit in static games and obtaining the best wealth in dynamic games

    Agent-orientated auction mechanism and strategy design

    Get PDF
    Agent-based technology is playing an increasingly important role in today’s economy. Usually a multi-agent system is needed to model an economic system such as a market system, in which heterogeneous trading agents interact with each other autonomously. Two questions often need to be answered regarding such systems: 1) How to design an interacting mechanism that facilitates efficient resource allocation among usually self-interested trading agents? 2) How to design an effective strategy in some specific market mechanisms for an agent to maximise its economic returns? For automated market systems, auction is the most popular mechanism to solve resource allocation problems among their participants. However, auction comes in hundreds of different formats, in which some are better than others in terms of not only the allocative efficiency but also other properties e.g., whether it generates high revenue for the auctioneer, whether it induces stable behaviour of the bidders. In addition, different strategies result in very different performance under the same auction rules. With this background, we are inevitably intrigued to investigate auction mechanism and strategy designs for agent-based economics. The international Trading Agent Competition (TAC) Ad Auction (AA) competition provides a very useful platform to develop and test agent strategies in Generalised Second Price auction (GSP). AstonTAC, the runner-up of TAC AA 2009, is a successful advertiser agent designed for GSP-based keyword auction. In particular, AstonTAC generates adaptive bid prices according to the Market-based Value Per Click and selects a set of keyword queries with highest expected profit to bid on to maximise its expected profit under the limit of conversion capacity. Through evaluation experiments, we show that AstonTAC performs well and stably not only in the competition but also across a broad range of environments. The TAC CAT tournament provides an environment for investigating the optimal design of mechanisms for double auction markets. AstonCAT-Plus is the post-tournament version of the specialist developed for CAT 2010. In our experiments, AstonCAT-Plus not only outperforms most specialist agents designed by other institutions but also achieves high allocative efficiencies, transaction success rates and average trader profits. Moreover, we reveal some insights of the CAT: 1) successful markets should maintain a stable and high market share of intra-marginal traders; 2) a specialist’s performance is dependent on the distribution of trading strategies. However, typical double auction models assume trading agents have a fixed trading direction of either buy or sell. With this limitation they cannot directly reflect the fact that traders in financial markets (the most popular application of double auction) decide their trading directions dynamically. To address this issue, we introduce the Bi-directional Double Auction (BDA) market which is populated by two-way traders. Experiments are conducted under both dynamic and static settings of the continuous BDA market. We find that the allocative efficiency of a continuous BDA market mainly comes from rational selection of trading directions. Furthermore, we introduce a high-performance Kernel trading strategy in the BDA market which uses kernel probability density estimator built on historical transaction data to decide optimal order prices. Kernel trading strategy outperforms some popular intelligent double auction trading strategies including ZIP, GD and RE in the continuous BDA market by making the highest profit in static games and obtaining the best wealth in dynamic games.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Practical Strategic Reasoning with Applications in Market Games.

    Full text link
    Strategic reasoning is part of our everyday lives: we negotiate prices, bid in auctions, write contracts, and play games. We choose actions in these scenarios based on our preferences, and our beliefs about preferences of the other participants. Game theory provides a rich mathematical framework through which we can reason about the influence of these preferences. Clever abstractions allow us to predict the outcome of complex agent interactions, however, as the scenarios we model increase in complexity, the abstractions we use to enable classical game-theoretic analysis lose fidelity. In empirical game-theoretic analysis, we construct game models using empirical sources of knowledge—such as high-fidelity simulation. However, utilizing empirical knowledge introduces a host of different computational and statistical problems. I investigate five main research problems that focus on efficient selection, estimation, and analysis of empirical game models. I introduce a flexible modeling approach, where we may construct multiple game-theoretic models from the same set of observations. I propose a principled methodology for comparing empirical game models and a family of algorithms that select a model from a set of candidates. I develop algorithms for normal-form games that efficiently identify formations—sets of strategies that are closed under a (correlated) best-response correspondence. This aids in problems, such as finding Nash equilibria, that are key to analysis but hard to solve. I investigate policies for sequentially determining profiles to simulate, when constrained by a budget for simulation. Efficient policies allow modelers to analyze complex scenarios by evaluating a subset of the profiles. The policies I introduce outperform the existing policies in experiments. I establish a principled methodology for evaluating strategies given an empirical game model. I employ this methodology in two case studies of market scenarios: first, a case study in supply chain management from the perspective of a strategy designer; then, a case study in Internet ad auctions from the perspective of a mechanism designer. As part of the latter analysis, I develop an ad-auctions scenario that captures several key strategic issues in this domain for the first time.Ph.D.Computer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/75848/1/prjordan_1.pd

    NASA technology utilization program: The small business market

    Get PDF
    Technology transfer programs were studied to determine how they might be more useful to the small business community. The status, needs, and technology use patterns of small firms are reported. Small business problems and failures are considered. Innovation, capitalization, R and D, and market share problems are discussed. Pocket, captive, and new markets are summarized. Small manufacturers and technology acquisition are discussed, covering external and internal sources, and NASA technology. Small business and the technology utilization program are discussed, covering publications and industrial applications centers. Observations and recommendations include small business market development and contracting, and NASA management technology

    Produktutvikling av ROV ramme, elektronikk hus og flyter

    Get PDF
    Denne bachelpor oppgaven har som mĂ„l Ă„ designe, produsere og konstruere en ROV-ramme, elektronikk hus og en vitenskapelig flyter ved hjelp av produktutviklingsprosessen. Oppgaven er en del av et stĂžrre prosjektsamarbeid med Ă„tte andre bacheloroppgaver fra tre fagomrĂ„der knyttet sammen gjennom studentorganisasjonen UiS Subsea. De endelige produktene fra det overordnede prosjektet vil konkurrere i TAC- og MATE-challenge i juni 2023. UiS Subsea er en organisasjon med faste etiske retningslinjer og et begrenset budsjett. Derfor dreier oppgaven seg om Ă„ minimere kostnadene, miljĂžpĂ„virkningen og tidsskjemaet for hver beslutning som er involvert i produkt- og produktutviklingsprosessen, samtidig som de tar hensyn til de andre delproduktene i oppgavene. Produktutvikling er en metode som er konstruert for Ă„ designe og utvikle nye produkter pĂ„ en tidseffektiv og kostnadseffektiv mĂ„te. I denne oppgaven blir de de viktigste fasene implementert: planlegging, konseptutvikling, systemdesign pĂ„ overordnet nivĂ„, detaljdesign og testing og forbedring, med alle fasene som inneholder mindre delfaser og trinn relevante for produktet. Ettersom UiS Subsea allerede hadde fullfĂžrt deler av planleggingsfasen fĂžr prosjektstart, handlet denne fasen om Ă„ undersĂžke og forske pĂ„ de ulike mĂ„lene og begrensningene de ulike interessentene hadde for prosjektet, inkludert UiS Subsea selv og MATE ROV-konkurransen. Denne forskningen gjorde det enklere og mer tidseffektivt Ă„ utvikle konseptene, ettersom behovene og forventningene ble utforsket og etablert. Konsepter kunne dermed effektivt utvikles, forkastes og velges basert pĂ„ mĂ„lspecifikasjonen, beregninger og simuleringer. Systemdesignet kunne deretter fokusere pĂ„ Ă„ koble sammen og montere alle delene som trengs til et fungerende endelig produkt. Etter Ă„ ha utviklet en fungerende montering pĂ„ systemnivĂ„, fokuserte detaljdesignet pĂ„ endelige forbedringer, fastsettelse av endelige dimensjoner gjennom analyse og simuleringer, valg av materiale for hver komponent, og beregninger knyttet til oppdrift og stabilitet. Alle valg av materiale og endelige dimensjoner ble verifisert for Ă„ vĂŠre sterke nok til Ă„ tĂ„le alle forventede krefter og belastninger, samtidig som de oppfylte produktets krav til styrke, oppdrift, miljĂžpĂ„virkning og kostnader. NĂ„r det ble verifisert, ble de endelige delene produsert, montert og gjennomgikk ikke-destruktiv testing. Basert pĂ„ resultatene fra testene, ble forbedringer og endringer gjort for Ă„ produsere best mulig produkt. Alt i alt hjalp produktutviklingsprosessen med planlegging, koordinering, kreativitet og den generelle strukturen i prosjektet, noe som var til nytte i et tverrfaglig prosjekt. Den standardiserte produktutviklingsprosessen hadde mange trinn som ikke var nĂždvendige for hvert prosjekt, sĂ„ hver bedrift og hvert prosjekt bĂžr velge trinnene som passer best for deres prosjekt for Ă„ utnytte metoden best mulig. For denne avhandlingen innebar det Ă„ utlede egne mĂ„l og mĂ„lsettinger for hver fase basert pĂ„ innholdet i den standardiserte prosessen og streve for Ă„ oppfylle disse mĂ„lene. De endelige produktene var tilfredsstillende totalt sett, presterte godt under testing og fullfĂžrte nĂždvendige oppgaver for Ă„ kvalifisere seg for MATE-konkurransen. Produktene er designet og passer godt for neste Ă„rs avgangsstudenter for Ă„ oppgradere og forbedre produktene.This thesis aspires to design, manufacture and construct a ROV frame, an electronic enclosure, and a scientific float by using the product development process. The thesis is part of a larger project collaboration with eight other bachelor theses from three disciplines connected through the student organization UiS Subsea. The final products of the overall project will compete in TAC and MATE challenge in June 2023. UiS Subsea is an organization with set moral guidelines and a limited budget. Therefore the thesis revolves around minimizing the cost, environmental impact, and timetable of every decision involved in the product and product development process while accommodating the other theses sub-products. Product development is a method constructed for designing and developing new products in a timely and cost-efficient way. This thesis includes its main phases: planning, concept development, system level design, detail level design, and testing and refinement, with all phases containing smaller sub-phases and steps relevant to the product. As UiS Subsea already had completed parts of the planning phase before the start of the project, this phase revolved around investigating and researching the different targets and limitations the different stakeholders had for the project, including UiS Subsea themselves and the MATE ROV competition. This research made the concept development phase easier and time efficient since the needs and expectations were explored and established. Concepts could therefore be effectively created, discarded, and selected based on the target specification, calculations, and simulations. The system level design could thereby focus on connecting and assembling all the parts needed together into a functioning final product. After developing a functioning assembly in system level design, the detail design focused on final improvements, setting final dimensions through analysis and simulations, material choice for each component, and calculations surrounding buoyancy and stability. All material choices and final dimensions were verified to be strong enough to withstand all expected forces and loads while fulfilling the product’s strength, buoyancy, environmental and cost requirements. When verified, the final parts were manufactured, assembled, and underwent non-destructive testing. Based on the results of the tests and improvements, altercations were made to the final products. Overall, the product development process helped with planning, coordination, creativity, and overall structure of the project, which were beneficial during an interdisciplinary project. The standard product development process had many steps that were not necessary for every project, so each company and project should select the steps best suited to their project for the best utilization of the method. For this thesis, that included deriving each phase’s own targets and goals based on the standard process’s contents and striving to fulfill these goals. The final products were satisfactory overall, did well during testing, and completed the necessary tasks to qualify for the MATE competition. However, improvements and altercations could always be made to enhance the products further. The products are designed and well-suited for next year’s graduates to upgrade and improve

    Produktutvikling av ROV ramme, elektronikkhus og float

    Get PDF
    Denne bachelpor oppgaven har som mĂ„l Ă„ designe, produsere og konstruere en ROV-ramme, elektronikk hus og en vitenskapelig flyter ved hjelp av produktutviklingsprosessen. Oppgaven er en del av et stĂžrre prosjektsamarbeid med Ă„tte andre bacheloroppgaver fra tre fagomrĂ„der knyttet sammen gjennom studentorganisasjonen UiS Subsea. De endelige produktene fra det overordnede prosjektet vil konkurrere i TAC- og MATE-challenge i juni 2023. UiS Subsea er en organisasjon med faste etiske retningslinjer og et begrenset budsjett. Derfor dreier oppgaven seg om Ă„ minimere kostnadene, miljĂžpĂ„virkningen og tidsskjemaet for hver beslutning som er involvert i produkt- og produktutviklingsprosessen, samtidig som de tar hensyn til de andre delproduktene i oppgavene. Produktutvikling er en metode som er konstruert for Ă„ designe og utvikle nye produkter pĂ„ en tidseffektiv og kostnadseffektiv mĂ„te. I denne oppgaven blir de de viktigste fasene implementert: planlegging, konseptutvikling, systemdesign pĂ„ overordnet nivĂ„, detaljdesign og testing og forbedring, med alle fasene som inneholder mindre delfaser og trinn relevante for produktet. Ettersom UiS Subsea allerede hadde fullfĂžrt deler av planleggingsfasen fĂžr prosjektstart, handlet denne fasen om Ă„ undersĂžke og forske pĂ„ de ulike mĂ„lene og begrensningene de ulike interessentene hadde for prosjektet, inkludert UiS Subsea selv og MATE ROV-konkurransen. Denne forskningen gjorde det enklere og mer tidseffektivt Ă„ utvikle konseptene, ettersom behovene og forventningene ble utforsket og etablert. Konsepter kunne dermed effektivt utvikles, forkastes og velges basert pĂ„ mĂ„lspecifikasjonen, beregninger og simuleringer. Systemdesignet kunne deretter fokusere pĂ„ Ă„ koble sammen og montere alle delene som trengs til et fungerende endelig produkt. Etter Ă„ ha utviklet en fungerende montering pĂ„ systemnivĂ„, fokuserte detaljdesignet pĂ„ endelige forbedringer, fastsettelse av endelige dimensjoner gjennom analyse og simuleringer, valg av materiale for hver komponent, og beregninger knyttet til oppdrift og stabilitet. Alle valg av materiale og endelige dimensjoner ble verifisert for Ă„ vĂŠre sterke nok til Ă„ tĂ„le alle forventede krefter og belastninger, samtidig som de oppfylte produktets krav til styrke, oppdrift, miljĂžpĂ„virkning og kostnader. NĂ„r det ble verifisert, ble de endelige delene produsert, montert og gjennomgikk ikke-destruktiv testing. Basert pĂ„ resultatene fra testene, ble forbedringer og endringer gjort for Ă„ produsere best mulig produkt. Alt i alt hjalp produktutviklingsprosessen med planlegging, koordinering, kreativitet og den generelle strukturen i prosjektet, noe som var til nytte i et tverrfaglig prosjekt. Den standardiserte produktutviklingsprosessen hadde mange trinn som ikke var nĂždvendige for hvert prosjekt, sĂ„ hver bedrift og hvert prosjekt bĂžr velge trinnene som passer best for deres prosjekt for Ă„ utnytte metoden best mulig. For denne avhandlingen innebar det Ă„ utlede egne mĂ„l og mĂ„lsettinger for hver fase basert pĂ„ innholdet i den standardiserte prosessen og streve for Ă„ oppfylle disse mĂ„lene. De endelige produktene var tilfredsstillende totalt sett, presterte godt under testing og fullfĂžrte nĂždvendige oppgaver for Ă„ kvalifisere seg for MATE-konkurransen. Produktene er designet og passer godt for neste Ă„rs avgangsstudenter for Ă„ oppgradere og forbedre produktene.This thesis aspires to design, manufacture and construct a ROV frame, an electronic enclosure, and a scientific float by using the product development process. The thesis is part of a larger project collaboration with eight other bachelor theses from three disciplines connected through the student organization UiS Subsea. The final products of the overall project will compete in TAC and MATE challenge in June 2023. UiS Subsea is an organization with set moral guidelines and a limited budget. Therefore the thesis revolves around minimizing the cost, environmental impact, and timetable of every decision involved in the product and product development process while accommodating the other theses sub-products. Product development is a method constructed for designing and developing new products in a timely and cost-efficient way. This thesis includes its main phases: planning, concept development, system level design, detail level design, and testing and refinement, with all phases containing smaller sub-phases and steps relevant to the product. As UiS Subsea already had completed parts of the planning phase before the start of the project, this phase revolved around investigating and researching the different targets and limitations the different stakeholders had for the project, including UiS Subsea themselves and the MATE ROV competition. This research made the concept development phase easier and time efficient since the needs and expectations were explored and established. Concepts could therefore be effectively created, discarded, and selected based on the target specification, calculations, and simulations. The system level design could thereby focus on connecting and assembling all the parts needed together into a functioning final product. After developing a functioning assembly in system level design, the detail design focused on final improvements, setting final dimensions through analysis and simulations, material choice for each component, and calculations surrounding buoyancy and stability. All material choices and final dimensions were verified to be strong enough to withstand all expected forces and loads while fulfilling the product’s strength, buoyancy, environmental and cost requirements. When verified, the final parts were manufactured, assembled, and underwent non-destructive testing. Based on the results of the tests and improvements, altercations were made to the final products. Overall, the product development process helped with planning, coordination, creativity, and overall structure of the project, which were beneficial during an interdisciplinary project. The standard product development process had many steps that were not necessary for every project, so each company and project should select the steps best suited to their project for the best utilization of the method. For this thesis, that included deriving each phase’s own targets and goals based on the standard process’s contents and striving to fulfill these goals. The final products were satisfactory overall, did well during testing, and completed the necessary tasks to qualify for the MATE competition. However, improvements and altercations could always be made to enhance the products further. The products are designed and well-suited for next year’s graduates to upgrade and improve

    Produktutvikling av ROV ramme, elektronikkhus og flyter

    Get PDF
    Denne bachelpor oppgaven har som mĂ„l Ă„ designe, produsere og konstruere en ROV-ramme, elektronikk hus og en vitenskapelig flyter ved hjelp av produktutviklingsprosessen. Oppgaven er en del av et stĂžrre prosjektsamarbeid med Ă„tte andre bacheloroppgaver fra tre fagomrĂ„der knyttet sammen gjennom studentorganisasjonen UiS Subsea. De endelige produktene fra det overordnede prosjektet vil konkurrere i TAC- og MATE-challenge i juni 2023. UiS Subsea er en organisasjon med faste etiske retningslinjer og et begrenset budsjett. Derfor dreier oppgaven seg om Ă„ minimere kostnadene, miljĂžpĂ„virkningen og tidsskjemaet for hver beslutning som er involvert i produkt- og produktutviklingsprosessen, samtidig som de tar hensyn til de andre delproduktene i oppgavene. Produktutvikling er en metode som er konstruert for Ă„ designe og utvikle nye produkter pĂ„ en tidseffektiv og kostnadseffektiv mĂ„te. I denne oppgaven blir de de viktigste fasene implementert: planlegging, konseptutvikling, systemdesign pĂ„ overordnet nivĂ„, detaljdesign og testing og forbedring, med alle fasene som inneholder mindre delfaser og trinn relevante for produktet. Ettersom UiS Subsea allerede hadde fullfĂžrt deler av planleggingsfasen fĂžr prosjektstart, handlet denne fasen om Ă„ undersĂžke og forske pĂ„ de ulike mĂ„lene og begrensningene de ulike interessentene hadde for prosjektet, inkludert UiS Subsea selv og MATE ROV-konkurransen. Denne forskningen gjorde det enklere og mer tidseffektivt Ă„ utvikle konseptene, ettersom behovene og forventningene ble utforsket og etablert. Konsepter kunne dermed effektivt utvikles, forkastes og velges basert pĂ„ mĂ„lspecifikasjonen, beregninger og simuleringer. Systemdesignet kunne deretter fokusere pĂ„ Ă„ koble sammen og montere alle delene som trengs til et fungerende endelig produkt. Etter Ă„ ha utviklet en fungerende montering pĂ„ systemnivĂ„, fokuserte detaljdesignet pĂ„ endelige forbedringer, fastsettelse av endelige dimensjoner gjennom analyse og simuleringer, valg av materiale for hver komponent, og beregninger knyttet til oppdrift og stabilitet. Alle valg av materiale og endelige dimensjoner ble verifisert for Ă„ vĂŠre sterke nok til Ă„ tĂ„le alle forventede krefter og belastninger, samtidig som de oppfylte produktets krav til styrke, oppdrift, miljĂžpĂ„virkning og kostnader. NĂ„r det ble verifisert, ble de endelige delene produsert, montert og gjennomgikk ikke-destruktiv testing. Basert pĂ„ resultatene fra testene, ble forbedringer og endringer gjort for Ă„ produsere best mulig produkt. Alt i alt hjalp produktutviklingsprosessen med planlegging, koordinering, kreativitet og den generelle strukturen i prosjektet, noe som var til nytte i et tverrfaglig prosjekt. Den standardiserte produktutviklingsprosessen hadde mange trinn som ikke var nĂždvendige for hvert prosjekt, sĂ„ hver bedrift og hvert prosjekt bĂžr velge trinnene som passer best for deres prosjekt for Ă„ utnytte metoden best mulig. For denne avhandlingen innebar det Ă„ utlede egne mĂ„l og mĂ„lsettinger for hver fase basert pĂ„ innholdet i den standardiserte prosessen og streve for Ă„ oppfylle disse mĂ„lene. De endelige produktene var tilfredsstillende totalt sett, presterte godt under testing og fullfĂžrte nĂždvendige oppgaver for Ă„ kvalifisere seg for MATE-konkurransen. Produktene er designet og passer godt for neste Ă„rs avgangsstudenter for Ă„ oppgradere og forbedre produktene.This thesis aspires to design, manufacture and construct a ROV frame, an electronic enclosure, and a scientific float by using the product development process. The thesis is part of a larger project collaboration with eight other bachelor theses from three disciplines connected through the student organization UiS Subsea. The final products of the overall project will compete in TAC and MATE challenge in June 2023. UiS Subsea is an organization with set moral guidelines and a limited budget. Therefore the thesis revolves around minimizing the cost, environmental impact, and timetable of every decision involved in the product and product development process while accommodating the other theses sub-products. Product development is a method constructed for designing and developing new products in a timely and cost-efficient way. This thesis includes its main phases: planning, concept development, system level design, detail level design, and testing and refinement, with all phases containing smaller sub-phases and steps relevant to the product. As UiS Subsea already had completed parts of the planning phase before the start of the project, this phase revolved around investigating and researching the different targets and limitations the different stakeholders had for the project, including UiS Subsea themselves and the MATE ROV competition. This research made the concept development phase easier and time efficient since the needs and expectations were explored and established. Concepts could therefore be effectively created, discarded, and selected based on the target specification, calculations, and simulations. The system level design could thereby focus on connecting and assembling all the parts needed together into a functioning final product. After developing a functioning assembly in system level design, the detail design focused on final improvements, setting final dimensions through analysis and simulations, material choice for each component, and calculations surrounding buoyancy and stability. All material choices and final dimensions were verified to be strong enough to withstand all expected forces and loads while fulfilling the product’s strength, buoyancy, environmental and cost requirements. When verified, the final parts were manufactured, assembled, and underwent non-destructive testing. Based on the results of the tests and improvements, altercations were made to the final products. Overall, the product development process helped with planning, coordination, creativity, and overall structure of the project, which were beneficial during an interdisciplinary project. The standard product development process had many steps that were not necessary for every project, so each company and project should select the steps best suited to their project for the best utilization of the method. For this thesis, that included deriving each phase’s own targets and goals based on the standard process’s contents and striving to fulfill these goals. The final products were satisfactory overall, did well during testing, and completed the necessary tasks to qualify for the MATE competition. However, improvements and altercations could always be made to enhance the products further. The products are designed and well-suited for next year’s graduates to upgrade and improve

    Government Information Quarterly. Volume 7, no. 2: National Aeronautics and Space Administration Scientific and Technical Information Programs. Special issue

    Get PDF
    NASA scientific and technical information (STI) programs are discussed. Topics include management of information in a research and development agency, the new space and Earth science information systems at NASA's archive, scientific and technical information management, and technology transfer of NASA aerospace technology to other industries

    Automated Bidding in Computing Service Markets. Strategies, Architectures, Protocols

    Get PDF
    This dissertation contributes to the research on Computational Mechanism Design by providing novel theoretical and software models - a novel bidding strategy called Q-Strategy, which automates bidding processes in imperfect information markets, a software framework for realizing agents and bidding strategies called BidGenerator and a communication protocol called MX/CS, for expressing and exchanging economic and technical information in a market-based scheduling system

    ACUTA Journal of Telecommunications in Higher Education

    Get PDF
    In This Issue Roundtable Discussion: Convergence: Dealing with Change Convergence: A Framework for Change Planning for Competition and Convergence Voice and Telephony over IP: Risk Dimensions and Solutions Cybervandals: Fending Off Attacks Why Vendors See Colleges as a Key Market Segment Campus Profile: Clarion University of Pennsylvania Called to Serve: The Conscripted Consultant Column
    • 

    corecore