133 research outputs found

    Design and Analysis of Air-Stiffened Vacuum Lighter-Than-Air Structures

    Get PDF
    Lighter-than-air (LTA) systems have been developed for numerous applications and have taken several forms. Airships, aerostats, blimps, and balloons are all part of this family of systems, which uses Archimedes principle to achieve neutral and positive buoyancy in air by replacing an air volume with LTA gases. These lifting gases stiffen the otherwise compliant envelope structures, allowing them to sustain the pressure difference brought by the displaced air. The compliance of these structures is a byproduct of the weight requirement, materials and geometrical arrangement of which these structures are built from, typically resulting in dimensionalities that exhibit low or virtually non-existent in-plane bending stiffness. The former has constrained the development of LTA structures that utilize an internal partial vacuum, rather than a lifting gas, to achieve positive buoyancy, where the structure would be subjected to a pressure differential near atmospheric pressure. Given the above limitation, this research presents the development trajectory and structural characterization of air stiffened designs, which utilize air to shape and serve as the core of a set of enclosing envelopes. The development trajectory established a simulation framework that enables the structural characterization of air-stiffened designs under a variety of geometric and loading conditions. Such framework allowed for the development of finite element solutions that included geometric, fluid-structure and contact nonlinearities, with capacity for further generalization. Given the developed framework, the structural characterization of the Helical Sphere and Icoron air-stiffened designs demonstrated a reduction of material modulus and strength requirements compared to membrane-over-frame designs, and showed the capability of air-stiffened designs to be tailored for specific material strength limits

    Theory of the microfluidic channel angular accelerometer for inertial measurement applications

    Get PDF
    Please read the abstract in the front pages of the file named 00dissertationDissertation (MEng (Mechanical))--University of Pretoria, 2007.Mechanical and Aeronautical Engineeringunrestricte

    Using DEM-CFD method at colloidal scale

    Get PDF
    The aim of this work is to look into the applicability of Discrete Element Modelling (DEM) coupled to Computational Fluid Dynamics (CFD) to simulate micro-scale colloidal particles immersed in fluid. Numerical methods were implemented through the commercial framework of EDEM2.3. As opposed to dissolved matter, which behaves as a continuum within the fluid medium, particulate matter is made of discrete entities that interact amongst themselves, and with the fluid and any physical boundaries. Particulate matter is ubiquitous in many purification processes that would beneficiate from having an easy way to model particle dynamics immersed in water. In an effort to understand better the dynamics of particle deposition under surface forces and hydraulic forces, a micro-scale numerical model was built adopting both a mechanistic and a statistical approach to represent the forces involved in colloidal suspension. The primary aim of the model was to simulate particle aggregation, deposition and cluster re-suspension in real world micro-systems. Case studies include colloidal flocculation in a constricted tube, and colloidal fouling around membrane filtration feed spacers. This work used a DEM-CFD coupling method that combined the DEM particle flow simulation with hydrodynamics forces from a velocity field computed through CFD. It also implemented boundary-particle and particle-particle interactions by enabling the modelling of surface and interfacial forces. Two kinds of coupling method were considered: two-way and one-way coupling. Two-way coupling is suitable for high particle concentration flow where particle loading affects the hydrodynamics. One-way coupling is suitable for dispersed particle configuration where the flow field is assumed to be undisturbed by the particles. The advantages and drawbacks of both techniques for micron-size particles were investigated. EDEM 2.3 was customised with plug-ins to implement Van der Waals forces and Brownian forces and its post-processing features offered the ability to investigate easily the microparticles behaviour under the influence of fluid forces. In this context, DEM-CFD modelling using EDEM 2.3 represents an improvement on previously published works as it enables higher visibility and reproducibility along with increasing the number of potential users of such modelling. Emphasis was given in presenting original findings and validation results that illustrate DEMCFD applicability, with respect to modelling of hydraulically mediated colloidal surface interaction; while highlighting factors that limit the ability of the technique. For instance, the effect of particle disturbance on the surrounding medium currently proves difficult to model

    The 29th Aerospace Mechanisms Symposium

    Get PDF
    The proceedings of the 29th Aerospace Mechanisms Symposium, which was hosted by NASA Johnson Space Center and held at the South Shore Harbour Conference Facility on May 17-19, 1995, are reported. Technological areas covered include actuators, aerospace mechanism applications for ground support equipment, lubricants, pointing mechanisms joints, bearings, release devices, booms, robotic mechanisms, and other mechanisms for spacecraft

    Micro/Nano Manufacturing

    Get PDF
    Micro manufacturing involves dealing with the fabrication of structures in the size range of 0.1 to 1000 µm. The scope of nano manufacturing extends the size range of manufactured features to even smaller length scales—below 100 nm. A strict borderline between micro and nano manufacturing can hardly be drawn, such that both domains are treated as complementary and mutually beneficial within a closely interconnected scientific community. Both micro and nano manufacturing can be considered as important enablers for high-end products. This Special Issue of Applied Sciences is dedicated to recent advances in research and development within the field of micro and nano manufacturing. The included papers report recent findings and advances in manufacturing technologies for producing products with micro and nano scale features and structures as well as applications underpinned by the advances in these technologies

    Proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress

    Get PDF
    Published proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress, hosted by York University, 27-30 May 2018

    Tribology of Machine Elements

    Get PDF
    Tribology is a branch of science that deals with machine elements and their friction, wear, and lubrication. Tribology of Machine Elements - Fundamentals and Applications presents the fundamentals of tribology, with chapters on its applications in engines, metal forming, seals, blasting, sintering, laser texture, biomaterials, and grinding

    Advances of Italian Machine Design

    Get PDF
    This 2028 Special Issue presents recent developments and achievements in the field of Mechanism and Machine Science coming from the Italian community with international collaborations and ranging from theoretical contributions to experimental and practical applications. It contains selected contributions that were accepted for presentation at the Second International Conference of IFToMM Italy, IFIT2018, that has been held in Cassino on 29 and 30 November 2018. This IFIT conference is the second event of a series that was established in 2016 by IFToMM Italy in Vicenza. IFIT was established to bring together researchers, industry professionals and students, from the Italian and the international community in an intimate, collegial and stimulating environment

    ICARVS - Inter-planetary Craft for Advanced Research in the Vicinity of the Sun

    Get PDF
    Advanced solar probe design - ICARU

    Assessment of a prototype energy-dissipating orthosis for the measurement and management of upper extremity intention tremor

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1992.Includes bibliographical references (leaves 236-242).by Allison Suzanne Arnold.M.S
    • …
    corecore