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Abstract 

Lighter-than-air (LTA) systems have been developed for numerous applications 

and have taken several forms. Airships, aerostats, blimps, and balloons are all part of this 

family of systems, which uses Archimedes principle to achieve neutral and positive 

buoyancy in air by replacing an air volume with LTA gases. These lifting gases stiffen the 

otherwise compliant envelope structures, allowing them to sustain the pressure difference 

brought by the displaced air. The compliance of these structures is a byproduct of the 

weight requirement, materials and geometrical arrangement of which these structures are 

built from, typically resulting in dimensionalities that exhibit low or virtually non-existent 

in-plane bending stiffness. The former has constrained the development of LTA structures 

that utilize an internal partial vacuum, rather than a lifting gas, to achieve positive 

buoyancy, where the structure would be subjected to a pressure differential near 

atmospheric pressure. 

Given the above limitation, this research presents the development trajectory and 

structural characterization of air-stiffened designs, which utilize air to shape and serve as 

the core of a set of enclosing envelopes. The development trajectory established a 

simulation framework that enables the structural characterization of air-stiffened designs 

under a variety of geometric and loading conditions. Such framework allowed for the 

development of finite element solutions that included geometric, fluid-structure and 

contact nonlinearities, with capacity for further generalization. Given the developed 

framework, the structural characterization of the Helical Sphere and Icoron air-stiffened 
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designs demonstrated a reduction of material modulus and strength requirements compared 

to membrane-over-frame designs, and showed the capability of air-stiffened designs to be 

tailored for specific material strength limits. 
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DESIGN AND ANALYSIS OF AIR-STIFFENED VACUUM 

LIGHTER-THAN-AIR STRUCTURES 

I. INTRODUCTION 

“If a solid lighter than a fluid be forcibly immersed in it, the solid will be driven 

upwards by a force equal to the difference between its weight and the weight of the fluid 

displaced.” 

Archimedes of Syracuse 

LTA systems have been developed throughout history for a multitude of 

applications and have taken several forms and names. Airships, aerostats, blimps, and 

balloons are all part of this family of systems, which use Archimedes principle to achieve 

neutral and positive buoyancy in air by replacing an air volume with LTA gases, commonly 

known as lifting gases. Helium being the most common nowadays, these lifting gases are 

contained within an LTA system’s envelope (i.e., the outermost membrane acting as the 

barrier between the lifting gas and the atmosphere). These lifting gases stiffen the otherwise 

compliant structures, allowing them to sustain the pressure difference brought by the 

displaced air in order to achieve positive buoyancy. The compliance of these structures is 

a byproduct of the weight requirement, materials (and their air permeability), and the 

geometrical arrangement of which these structures are built from, resulting in 

dimensionalities that exhibit low or virtually non-existent in-plane bending stiffness [1]. 

The former has constrained the development of LTA systems that utilize an internal 

partial vacuum, rather than a lifting gas, to achieve positive buoyancy, where the envelope 

would be subjected to a pressure differential near atmospheric pressure. In other words, 

without a lifting gas to counteract the inward pressure exerted by the displaced air, a 
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vacuum lighter-than-air structure (LTAS) would rely solely on the structural configuration 

and material stiffness and strength to sustain such forces. Recent vacuum LTAS (VLTAS) 

research has therefore focused on using membrane-over-frame designs to provide the 

bending stiffness required to overcome the pressure differential. These efforts suggest that 

positively buoyant VLTAS are achievable with membrane-over-frame designs composed 

of thin hollow beams and membranes with stiffness moduli and strength requirements 

similar to those found in high end materials, such as graphene [2–6]. However, scaling 

such material properties and producing the required thicknesses has hindered the 

manufacturing of representative prototypes. In other words, the large density disparity 

between air and those materials exhibiting low air permeability often results in highly void 

VLTAS, with features containing dimensions in the order of 1/10,000 of their characteristic 

length [7]. VLTAS development is yet an attractive notion with the potential of yielding 

innovative structures and furthering LTA system utilization. 

Two paths are envisioned to follow these efforts: {1} develop manufacturing 

processes that enable such complex designs; or {2} explore alternate designs that 

compensate the lack of material stiffness thru other means. The latter motivated the 

following question: can air be used to stiffen the otherwise gossamer envelope such that a 

LTAS achieves positive buoyancy without the use of an LTA gas? With the above in mind, 

this research aims at developing and characterizing air-stiffened designs as potential 

VLTAS, encompassing the following facets: 

1. Geometrical characterization of air-stiffened designs 

2. Development of structural simulation framework 

3. Structural characterization of air-stiffened designs 
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1.1. Motivation 

In the last three decades, several United States (U.S.) and international agencies 

have shown interest and/or supported the development of LTA systems for high-altitude, 

long-endurance sensorial applications [8–10]. The regained interest in these systems is 

primarily associated with their long endurance capability and potential economics, 

compared to current heavier-than-air (HTA) systems. 

As sponsor of this research, the Air Force Office of Scientific Research supports 

innovative concepts that enable the Department of Defense (DoD) ability to counteract 

emerging threats. Design solutions of VLTAS with the potential for positive buoyancy in 

atmospheric air will not only be an innovative breakthrough, but more importantly, expand 

the usability of LTA systems. Additionally, the current depletion of Helium, a 

nonrenewable source and commonly-used lifting gas in LTAS [11,12], and the logistics 

associated with LTA gases, motivates the efforts of finding feasible VLTAS. Helium is in 

the List of Critical Minerals 2018, along with 34 other minerals the U.S. considers critical 

to our economy and defense [13]. Moreover, global demand has risen 100% over the past 

decade [12], where the U.S. accounted for 40% of the global consumption in 2010 [14]. 

1.2. Research Scope 

The subject of VLTAS opens the door to many inquiries within air vehicles, 

including structures, aeroelasticity, flight dynamics, controls, and optimization, all 

underpinned by the capability of the structure to remain buoyant in quasi-static conditions. 

Such capability is dictated by its stability under the pressure differential as a result of 

displacing an amount of air weight larger than its own. 
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From a design perspective, the problem can be framed as follows: consider the 

weight of air displaced as a function of the system’s external geometry and operating 

altitude, given the standard atmosphere model [15]. Then consider the weight-to-buoyancy 

(W/B) ratio as a function of the air weight, air pressure loading, system’s weight and 

manufacturability. The requirement for neutral and positive buoyancy is a W/B ratio equal 

and less than one, respectively. Eq. 1 provides a generalized representation. 

 
𝑊

𝐵
=

∑𝑉𝑐𝜌𝑐  

𝑉𝑎𝜌𝑎

= 𝑓 (air weight, loading, envelope weight, manufacturability) ≤ 1 (1) 

 

where: 𝑉𝑐  = system component volume 𝑉𝑎 = displaced air volume 

𝜌𝑐 = system component density 𝜌𝑎 = displaced air density 

 

 

These four design factors are pictorially represented in Fig. I-1, with the W/B ratio 

at the center. Each factor is related to different design variables, such as geometry, altitude 

and atmosphere model in the case of displaced air weight.  

 

Fig. I-1. Depiction of the lighter-than-air structure design space. 
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For example, a specific structure and components therein dictate its weight and the 

volume of air displaced. At this point, the structure’s existence implies manufacturability. 

A specific atmospheric location, or more generally an altitude, provides an air density and 

pressure, which dictates the weight of air volume displaced by the structure and the 

structural loading, respectively. It is important to note that structural responses are highly 

dependent on geometry and material. Out of these design factors, the development and 

characterization of air-stiffened designs presented in this dissertation focus on the 

{1} displaced air weight and loading resulting from sea level altitude air properties and 

{2} envelope weight given material properties associated with material known to be 

commercially available today and of prior use in LTA applications. 

The terms air-stiffened designs and air-stiffening stated through this dissertation 

intend to represent a subset of designs that utilizes air to shape and serve as the core of a 

set of enclosing envelopes, as such providing structural support to the VLTAS upon 

loading. Specifically, the subset of designs considered are represented by two membranes 

enclosing a low-pressure region with pressurized air in-between and membrane-to-

membrane connectivity. Fig. I-2 shows a generalized representation of such designs with 

the cross-section cut representing the connected membranes sandwiched between the air 

‘core’; the latter of which encloses a low-pressure region. 
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Fig. I-2. Generalized representation of air-stiffened designs. 

Membrane-to-membrane connectivity is based on the premise that membrane 

stresses are reduced by adjusting the distance between connections such that the membrane 

post-loading local radius is small enough for the stresses away from the connections to fall 

below allowable stress levels. Connection-to-connection distance is premised on 

membrane stresses following Eq. 2, where 𝑟 is the local membrane radius, ℎ is the 

membrane thickness and Δ𝑃 is the differential pressure. Such stress control approach is the 

basis for the National Aeronautics and Space Administration’s (NASA) pumpkin-shaped 

super-pressure balloon design [16,17]. 

 𝜎 = Δ𝑃 (
𝑟

ℎ
) (2) 

 

where: Δ𝑃 = pressure differential   𝑟  = local radius 

ℎ  = membrane, or film, thickness 

 

 

Two specific air-stiffened designs are considered in this dissertation, namely the 

Helical Sphere and Icoron discussed in Chapters V and VI, respectively. Representations 

of both designs are shown in Fig. I-3, where the Icoron can be seen as an incremental design 
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development that displays improved symmetry characteristics over the Helical Sphere. 

Both serve as geometric bases to study the characterization of air-stiffened VLTAS, 

including the utilization of membrane connectivity distance to target stress levels below 

material limits. The latter enables the consideration of material properties resembling 

commercially-available polymer films, specifically Polyethylene Terephthalate (PET). 

  
(a) Helical Sphere (b) Icoron 

Fig. I-3. Representations of air-stiffened designs considered. 

1.3. Dissertation Outline 

This dissertation is organized following the trajectory that led to the development 

and characterization of air-stiffened designs. This trajectory is summarized in Fig. I-4, 

starting from the development of collapse solutions of the classical cylindrical shell of 

various thicknesses to the Icoron air-stiffened design proposed as an improvement over the 

Helical Sphere. Each phase served to progressively answer questions that produced the 

simulation methodology and structural characterizations. 
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Fig. I-4. Air-stiffened design development trajectory summary. 

This dissertation contributes the following towards the goal of developing feasible 

VLTAS: 

- Chapter II provides background on LTA systems, including recent efforts 

involving the use of LTA gases and those efforts that focused on VLTAS potential. 

Furthermore, it presents structural modeling and simulation (M&S) methods and 

structural stability, which served as pillars to the simulation framework developed; 

- Chapter III reports on collapse solutions of the circular cylindrical shell under a 

compressive force in order to characterize effects on the collapse path associated 

with increasingly small thicknesses, as well as shell-to-membrane transition; 
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- Chapter IV presents the consideration of a coated spherical shell, the use of 

topology optimization to search the solution space and the validation of the hoop, 

or circumferential, stress (Eq. 2) as a design parameter for stress control. Each of 

these design paths provided aspects that led to the consideration of air-stiffened 

designs and the simulation framework needed for such designs; 

- Chapter V describes the Helical Sphere as an air-stiffened design, the simulation 

framework used to produce quasi-static structural solutions, and the simulation 

results that support the evaluation of its potential as a VLTAS; 

- Chapter VI describes the Icoron as an air-stiffened design, detailing the 

modifications made to the simulation framework in order to characterize its 

structural response, and discussing its potential as VLTAS; 

- Chapter VII summarizes the development of air-stiffened designs and the 

simulation framework developed to evaluate their potential as VLTAS. This 

chapter concludes with contributions and future work. 
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II. BACKGROUND AND RELATED WORK 

Chapter I introduced the air-stiffened design concept and summarized the path that 

led to its development, stating the importance of structural characterization for VLTAS as 

a driver for the quantification of their potential as VLTAS. Such path was influenced by 

the background and related work presented in this chapter. As such, this chapter begins 

with the types, current use, and development of LTA systems to understand the basic 

principles behind LTA flight, as well as the motivation behind the regained interest. The 

development of NASA’s balloons follows, contrasting the benefits and challenges of two 

balloon design types. Recent VLTAS research findings are then briefly discussed. 

Structural M&S techniques and procedures are described thereafter, which are used as 

foundation for the simulation framework shaped through Chapters III-VI. The chapter 

closes with a discussion on structural stability, and a brief surface stress discussion. 

2.1. Lighter-than-Air Systems 

Airships, aerostats, blimps, and balloons are all part of this family of systems, which 

uses Archimedes principle1 to achieve neutral and positive buoyancy in air by replacing an 

air volume with LTA gases, notably helium, contained within the system’s envelope2. In 

the last three decades, many U.S. and international agencies have shown interest and/or 

supported the development of these systems for high-altitude, long-endurance sensorial 

applications, such as communications relay, weather forecasting, and intelligence, 

 
1 Archimedes principle states that a body is acted upon by a ‘buoyant’ force with direction opposite to gravity, 

and magnitude equal to the weight of the fluid displaced by and in which said body is submerged in. Said 

force is negative, neutral or positive if its magnitude is lesser, equal or larger than that of gravity [147]. 
2 Envelope in this context, and throughout this dissertation, refers to the outermost membrane acting as the 

barrier between the lifting gas, or enclosed volume, and ambient air [10]. 
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surveillance and reconnaissance (ISR) [8–10]. The regained interest on these systems is 

primarily associated with their long endurance capability and potential economics, 

compared to current HTA systems. Fig. II-1 shows how LTA systems can serve as a relay 

among satellite communications and employed systems, to include aircraft, ground, and 

personnel-carried systems. 

 

Fig. II-1. Example of lighter-than-air system applications for the intelligence, surveillance and 

reconnaissance mission set, 2012 [18]. 

LTA systems can be categorized as unpowered and powered, as shown in Fig. II-2. 

Unpowered systems, such as balloons (untethered) and aerostats (tethered), rely 

exclusively on buoyant forces for lift, and are typically comprised of an envelope and 

detachable payloads. Balloons tend to be free-floating with disposable envelopes, while 

aerostats operate from a fixed location with reusable envelopes. On the latter, the tether 



 

12 

acts as a continuous connection between the base and the system, proving power, altitude 

control, communications, etc. In contrast, powered systems, or airships, are 

aerodynamically-controlled vehicles, subcategorized into conventional and hybrid. 

Conventional systems rely exclusively on buoyant forces for lift, while hybrid systems 

supplement them with aerodynamic forces [10,18]. The VLTAS designs proposed here 

resemble the untethered balloons envelopes, which exclude (the weight associated with) 

support systems such as control surfaces and power. 

 

Fig. II-2. Lighter-than-air system categorization, 2012 [18]. 

Aerostats and airships are currently utilized or under development by, or in support 

of, the DoD and Department of Homeland Security [19]. As of 2012, the DoD was utilizing 

or actively developing nine aerostat and eight airship systems3. While many aerostats have 

been fully developed and operated, the Navy’s MZ-3A was the only fully developed airship 

then, which operated as a flying laboratory until 2017 [20]. These 17 systems were being 

 
3 Refer to pages 13-60 of Ref. [18] for details on each of these 17 aerostat and airship systems. 
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developed to operate at altitudes outside 6-18 km (20,000-60,000 ft), with payloads 

between 8-1247 kg (18-2750 lbf), and endurances up to 30 days; 10 years for the Integrated 

Sensor Is Structure airship system being developed then by the Defense Advanced 

Research Projects Agency and U.S. Air Force [18]. In contrast, the MQ-9 Reaper 

unmanned air vehicle (UAV) has a 15 km (50,000 ft) ceiling, maximum takeoff of 4,763 

kg (10,500 lbf), and an endurance of approximately 26 hours [21,22]. The development of 

these systems arises from the search of solutions that can extend the endurance of current 

UAVs, primarily for ISR missions. 

 Interestingly, a significant amount of insight into the design of VLTAS is gained 

from balloons. Arguably the simplest of LTAS categories from a system of systems 

perspective, high-altitude balloons are being developed and deployed for scientific and 

commercial purposes by organizations such as NASA and Loon LLC (traced back to a 

Google® project) [23,24]. The NASA efforts have been extensively documented in 

journals and NASA websites. Particularly, balloon envelope design, optimization, material 

characterization, modeling at multiple complexity levels, and testing have been published 

over the last two to three decades [16,23,33–35,25–32]. To build on this aspect of LTA 

systems, the thought process behind the operational altitude selection is discussed next, 

followed by a summary of the NASA’s ultra-long duration balloons (ULDB) relevant 

findings, as well as recent VLTAS efforts. Takeaways important to the scope of this 

research are amassed lastly. 
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 Operational Altitude Ranges 

While long endurance enables the economics of LTA systems, size, weight, and 

speed bound the operational altitudes to ranges currently unexploited by HTA systems and 

space systems. From an aircraft dynamics point of view, the buoyancy-driven size and 

weight make added mass significant, and skin-friction the primary drag contributor [36]. 

As an object moves through a fluid, the fluid is forcibly displaced by the volume of 

the object since they cannot coexist in the same physical space simultaneously. The mass 

of fluid displaced adds to the object’s inertia, hence added mass. From an energy 

perspective, added mass is the work done by the object to accelerate the fluid displaced. 

From an aerodynamic perspective, it can be seen as the drag due to fluid acceleration [36].  

For example, consider a sphere moving through an inviscid and incompressible 

fluid. Using kinetic energy (KE), continuity, and work, Crowe, et al. [37]4 showed that the 

added mass force, 𝐹𝐴𝑀, or force required to accelerate the fluid, can be represented by Eq. 

3. Note that the force is dependent on the fluid’s density, as well as the relative acceleration. 

 𝐹𝐴𝑀 =
𝜌𝑓𝑉𝑠

2
(

𝐷𝑣𝑓

𝐷𝑡
−

𝑑𝑣𝑠

𝑑𝑡
) (3) 

 

where: 𝜌𝑓 = density of the fluid   𝑣𝑠  = velocity of the sphere 

𝑣𝑓 = velocity of the fluid  
𝐷

𝐷𝑡
 = material derivative 

𝑉𝑠  = volume of the sphere 

 

 

 
4 The authors defined 𝐹𝐴𝑀 as a function of the work rate required to change the kinetic energy of the fluid 

being displaced by the sphere. Given kinetic energy, 𝐾𝐸 =
1

2
𝜌𝑓 ∫ 𝑣𝑓

2
𝑉𝑠

𝑑𝑉𝑠 = ⋯ =
𝜌𝑓𝑉𝑠𝑣𝑓

2

4
 , the work rate is 

given by 𝑣𝑓𝐹𝐴𝑀 =
𝑑𝐾𝐸

𝑑𝑡
=

𝜌𝑓𝑉𝑠

2
(𝑣𝑓

𝑑𝑣𝑓

𝑑𝑡
), such that 𝐹𝐴𝑀 =

𝜌𝑓𝑉𝑠

2
(

𝑑𝑣𝑓

𝑑𝑡
). The material derivative then comes into 

play when considering that the relative acceleration of the fluid with respect to the acceleration of the sphere 

can generally be described as �̇�𝑓 − �̇�𝑠 (: =
𝑑𝑣𝑓

𝑑𝑡
), such that �̇�𝑓 =

𝐷𝑣𝑓

𝐷𝑡
. The material derivative therefore 

describes the Eulerian velocity 𝑣𝑓 in Lagrangian description. Further details found in section 4.3.4 of 

Ref. [37]. 
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Consequently, the momentum equation for the sphere is expressed in Eq. 4. The 

term (𝑚𝑠 +
𝜌𝑓𝑉𝑠

2
) represents the total mass of the systems, from a dynamic point of view. 

The term (
𝜌𝑓𝑉𝑠

2

𝐷𝑣𝑓

𝐷𝑡
) is the force contribution due to the added mass. In other words, the 

sphere moves as if it was carrying half of fluid displaced, 
𝜌𝑓𝑉𝑠

2
, with a force contribution 

due to the resulting acceleration, 
𝜌𝑓𝑉𝑠

2

𝐷𝑣𝑓

𝐷𝑡
. 

 𝑚𝑠

𝑑𝑣𝑠

𝑑𝑡
= ∑𝐹 +

𝜌𝑓𝑉𝑠

2
(

𝐷𝑣𝑓

𝐷𝑡
−

𝑑𝑣𝑠

𝑑𝑡
)        →        (𝑚𝑠 +

𝜌𝑓𝑉𝑠

2
)

𝑑𝑣𝑠

𝑑𝑡
= ∑𝐹 +

𝜌𝑓𝑉𝑠

2

𝐷𝑣𝑓

𝐷𝑡
 (4) 

 
where: 𝑚𝑠 = mass of the sphere 

∑𝐹 = summation of other force terms, such as gravity, drag, lift and Basset force
5
 

 

 

Added mass is typically not considered in HTA system dynamics since it does not 

contribute significantly to the equations of motion. In contrast, added mass is significant in 

LTA system dynamics since its mass has the same order of magnitude as the air mass it 

displaces. This and their typically low speeds make mean wind speed and its deviations, 

such as gusts and turbulence, a significant component in the equations of motion [36]. 

The wind velocity field vs altitude and location can be described by mean values 

and time-dependent variations. As an example, Fig. II-3 shows the average wind speeds 

over Kabul, Afghanistan (left), and the seasonal wind speed over Baghdad, Iraq (right). 

The 6-18 km (20,000-60,000 ft) range is identified as inoperable for LTA system due do 

the high speeds encountered. Nonetheless, it is important to realize that there are seasonal 

deviations from the mean, where for example, winds remain below 21 m/s (40 knots or 46 

 
5 Basset force results from the relative velocity between the object and the boundary layer of the fluid. In 

other words, it results from “the temporal delay in boundary layer development as the relative velocity 

changes with time” [37]. 
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mph) for several altitudes up to 21 km (68,000 ft) during part of July above Baghdad 

[18,38]. These wind effects are one reason why recent aerostat and balloon programs have 

operational altitudes outside 6-18 km (20,000-60,000 ft). There are several incentives for 

untethered systems to have operational altitudes above 18 km (60,000 ft), such as: 

constituting unregulated airspace, remaining outside many air defense systems, and 

providing increasingly larger coverage areas and improved lines of sight [16,18]. However, 

high altitudes have its challenges. 

 

Fig. II-3. Average and seasonal wind speeds vs altitude and time of year over Kabul, Afghanistan and 

Baghdad, Iraq, 2011 [38]. 

It is commonly known that the atmospheric pressure, density, and temperature 

generally decrease as altitude increases. Fig. II-4a and Fig. II-4b show the geopotential 

altitude6 vs these, as well as speed of sound, up to 37 km (120,000 ft.). At 18.3 km 

(60,000 ft.), the pressure and density are 7.1% and 9.4% of sea level values, respectively. 

 
6 The geopotential altitude is the atmospheric altitude measured from, and perpendicular to, the mean sea 

level; the latter loosely referred here as sea level [15]. 
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The temperature moves from 15°C (59°F) down to -56.5°C (-69.7°F) between 11-20 km 

(36,000-65,600 ft.). The temperature (and ergo speed of sound) plateau and reversion 

above 10 km (Fig. II-4b) is associated with the absorption of sun ultraviolet radiation by 

the ozone layer; the later located within the stratosphere (formally the second atmospheric 

layer above the troposphere) [15]. 

  
a) Altitude vs air pressure and density b) Altitude vs air temperature and speed of sound 

Fig. II-4. Air density, pressure, temperature and speed of sound as a function of altitude [15,39]. 

An LTA system, particularly the structural material thereof, needs to accommodate 

these drastic atmospheric changes as it moves from deployment to operational altitudes, 

and while pressure reductions alleviate loading, the resulting density and temperature 

changes constrain buoyancy and limit material selection. These pressure, density and 

temperature changes need to be considered during VLTA structure design, particularly 

when predicting W/B ratio and loading changes with altitude. 
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The tradeoff between altitude and buoyancy can be represented by the capability of 

an object to achieve neutral buoyancy. Eq. 5 expresses Newton’s second law on a spherical 

object with gross weight, 𝑊𝑠, displacing air mass 𝑉𝑠𝜌𝑎. Solving for the spherical diameter 

results in Eq. 6. Fig. II-5 then shows the resulting diameters required for neutral buoyancy 

as altitude increases, where each curve represents a gross mass. Increases in diameter from 

those required at sea level are driven by the exponential changes in air density with altitude. 

This is yet another representation of the altitude effects in LTA applications. 

 𝑊𝑠 = 𝑉𝑠𝜌𝑎𝑔 =
4

3
𝜋𝑟𝑠

3𝜌𝑎𝑔 (5) 

 𝑑𝑠 = 2 (
𝑚𝑆

4
3⁄ 𝜋𝜌𝑎

)

1
3⁄  

 (6) 

 

where: 𝜌𝑎 = altitude-dependent air density 𝑔  = gravitational acceleration 

𝑉𝑠   = volume of sphere  𝑊𝑠 = gross weight of sphere 

𝑟𝑠 , 𝑑𝑠 = radius, diameter of sphere 𝑚𝑠 = gross mass of sphere 

 

 

 

Fig. II-5. Spherical diameter required for neutral buoyancy vs altitude for four masses [15,39]. 
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Therefore, operational altitude selection is a tradeoff among several LTAS design 

factors. Table III-1 summarizes the factors considered through this subsection. Low 

altitudes can result in smaller-sized systems with lesser temperature and environmental 

constraints, at the cost of potential higher material stiffness and strength requirements. On 

the other hand, high altitudes allow for operational benefits not previously available with 

low structural loading. At these high altitudes however, the low temperatures, high ozone 

concentration and intense ultraviolet light can cause materials, particularly polymeric, to 

become brittle, and loose strength and permeability7 due partly to the material reaching 

their embrittlement (i.e., glass transition temperature8) [10]. 

Table II-1. Lighter-than-air structure design factors dependent on operational altitude. 

Factors
9
\Altitude 0 to 6,096 m (0 to 20,000 ft) 18,288+ m (60,000+ ft) 

Air Temperature 15 to -24.6 °C (59 to -12.3 °F) ≥ -56.5°C (-69.7°F) 

Air Pressure 
101.3 to 46.6 kPa 

(14.7 to 6.8 psi) 

≤ 7.2 kPa  

(1.04 psi) 

Air Density 

1.2 to 0.65 kg/m3  

(0.077 to 0.041 lbm/ft3) 

(i.e., high weight-to-envelope size) 

≤ 0.1153 kg/m3 

(0.0072 lbm/ft3) 

(i.e., low weight-to-envelope size) 

Wind Speed Low, ≤ 12.9 m/s (28.9 mph) Low, 10.3-15.4 m/s (23-34.4 mph) 

Added Mass Significant Significant 

Others 
High probability of detection, 

regulated airspace. 

Low probability of detection, unregulated 

airspace, larger sensorial coverage area, 

harsh stratospheric environment [10]. 

 
7 ASTM D4850-13 defines air permeability as “the rate of air flow passing perpendicular through a known 

area under a prescribed air pressure differential between the two surfaces of a material” [148]. Standard air 

density at sea level is 1.225 kg/m3, while density of polymers, carbon, and typical metals ranges between 800 

kg/m3 and 7700 kg/m3 [149,150]. Air permeability is a function of material composition, manufacturing 

process and dimensionality [151]. 
8
 Glass transition temperature, Tg, dictates when a material transitions from a glassy to a rubbery state; the 

latter being where the molecular freedom is enough to allow the material to sustain significant strain. 

Flexibility and toughness increase above Tg, while tensile strength and elastic modulus decrease [10]. 
9 Temperature and pressure follow Ref. [15,39]; wind speed follows averages on Fig. II-3. 
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 Ultra-Long Duration Balloons 

The NASA ULDB project, established in 1998, has been developing pumpkin-

shaped super-pressure balloons (SPB) with the ultimate goal of lofting 900 kg (1,984 lbm) 

in instruments and developing technologies at near-constant altitudes greater than 33 km 

(108,268 ft) for 100 days [34,35,40]. Publications discussing SPB designs, modeling, 

materials and testing as part of the ULDB project show similarities with the VLTAS 

designs proposed in this dissertation. 

 Balloons are categorized as zero-pressure and super-pressure. Zero-pressure 

balloons (ZPB) maintain pressure equilibrium at the operating altitude via vent ducts that 

release excess gas to the atmosphere. Temperature changes through the daily cycles result 

in altitude cycles of as much as 9-15 km (30,000-50,000 ft). when ballast is not released. 

As they maintain zero-pressure, the envelope requires enough thickness to support the 

payload, and unsteady pressure differentials. On the other hand, SPB maintain a positive 

internal pressure differential, typically of 150-200 Pa (0.022-0.029 psi), by conserving the 

excess gas at the operating altitude, which allows near-constant altitudes during daily 

cycles at the expense of a higher strength requirement. At deployment, both are partially 

filled with enough helium for positive buoyancy, and gas expansion proceeds as it rises 

until it fills the envelope at the operating altitude, and pressurizes, in the case of the SPB. 

Fig. II-6 shows a pictorial representation of both designs. Fig. II-7 shows the inflation of a 

SPB at the Wanaka, New Zealand airport (left), and a fully deployed 532,200 m3 

(18,794,466 ft3) SPB (right). The improved endurance and altitude stability, as well as the 

lack of ballast, have made the SPB the preferred choice for ULDB [40,41]. 
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Fig. II-6. Zero-pressure and super-pressure balloons comparison [41]. 

  

Fig. II-7. Super-pressure balloon inflation (left) and deployment, 2015 [40]. 

Even though other designs have been explored [42,43], the pumpkin-shaped design, 

shown in Fig. II-8, is the current choice for NASA’s ULDB due to its ability to increasingly 

meet the high altitudes requirements [16]. The pumpkin-shaped SPB design is an oblate 

spheroid, where its height is approximately 60% of its diameter, made up of two 
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components: separate panels, or gores, running pole-to-pole and tendons running in 

between. The gores are lobed10 to reduce their local radius of curvature, significantly 

reducing the hoop stress (Eq. 2 on page 6)11. The tendons sustain the longitudinal stresses. 

This reduction in hoop stress allows the use of film thicknesses and materials, such as linear 

low-density Polyethylene (LLDPE), that would otherwise yield at similar conditions [41]. 

 

Fig. II-8. Pumpkin-shaped balloon rendition, 2007 [27]. 

NASA has utilized StratoFilm (SF) 372, 420 and 430 throughout the development 

of the pumpkin-shaped SPB. SF is produced for NASA by Charter NEX Films using Dow® 

DOWLEX™ LLDPE resin. The SF420 and SF430 films are 38 µm (1.5 mil) thick, three-

layered, coextruded films with a 20/60/20 composition12, where 60% of the center is 

LLDPE, and the rest is composed of an ultraviolet inhibitor (UVI) for radiation damage at 

high altitudes. Of the three, SF420 is further characterized in literature [41,44–46]. 

 
10 Each lobe is a membrane portion divided along the axis of revolution, with radii smaller than the spherical. 
11 Hoop stress refers to the circumferential stress historically describing small deformation observed circular 

cylindrical pressure vessels, and it is associated with the force perpendicular to the axis of symmetry and 

radius. It represents a component of the first Piola-Kirchhoff stress since the stress area follows the initial 

configuration as the reference configuration. Any ‘hoop stress’ in this dissertation follows this definition. 
12 SF430 data was found in Refs. [28,44,152]. While [28,44] report a 38 µm thickness, [152] reported 36.6 

µm [13.2 (UVI) + 10.2 (LLDPE) + 13.2 (UVI), or 36/28/36 composition]. Furthermore, Ref. [44] reports that 

SF430 “is essentially the same as SF420, but without an additive for protection from ultraviolet light”. 
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NASA chose LLDPE because of its toughness and tear resistance at low 

temperatures (e.g., Tg = −95°C [-139°F]), as well as its low density (i.e., 900-1040 kg/m3 

[56.2-64.9 lbm/ft3]) and heat-sealing capacity [28,46–48]. Nonetheless, this material 

choice opened the door to viscoelastic, strain rate, anisotropy, temperature, and 

nonlinearity considerations, some of which are observed on the SF420 plots in Fig. II-9. 

  
(a) Nominal stress vs engineering strain (𝜖) during 

uniaxial tension tests at 𝜖̇ = 0.1% 𝑠−1 in machine 

direction [46]. 

(b) Nominal stress vs engineering strain during 

uniaxial tension tests at 𝜖̇ = 0.1% 𝑠−1 in transverse 

direction [46]. 

  
(c) Nominal stress vs engineering strain during 

uniaxial tension tests at 𝜖̇ = 1% 𝑠−1 [45]. 

(d) Nominal stress vs time for relaxation tests; 

elongated at 𝜖̇ = 1% 𝑠−1 for 300 s, then constant 

for 3700 s at 3% engineering strain [45]. 

Fig. II-9. SF420 LLDPE film stress vs strain, time, temperature and direction at strain rates of 

0.1% s-1 and 1% s-1, 2016 [46], 2018 [45]. 
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The LLDPE film temperature dependence is observed in the machine direction 

(MD) (Fig. II-9a) and transverse direction (TD) (Fig. II-9b) at strain rates of ϵ̇ = 0.1% s−1, 

where nonlinearity is prominent with decreasing temperature and yielding occurs at 

approximately 7% strain for 10°C and 3% strain for -50°C [46]. Strain rate dependence is 

deduced by comparing Fig. II-9a and Fig. II-9b with Fig. II-9c, where the latter shows tests 

at ϵ̇ = 1% s−1 with increased film stresses across the strain range compared to 0.1% s−1 

[45]. Furthermore, film stress relaxation (Fig. II-9a) showed significant relaxation, 

predominant at lower temperatures; the latter is based on a film sample elongated at 𝜖̇ =

1% 𝑠−1 for 300 s and kept constant at 3% engineering strain for 3700 s [45]. Strain rate 

and temperature dependence are important considerations for whole flight simulations13 

and required for accurate ULDB modeling, from low strain rates (𝜖̇ ≤ 0.1% 𝑠−1) during 

inflation up to day-night loading cycles at operational altitudes [45]. 

A SF420 material model found in literature, by Li et al. [46]  as well as Bosi and 

Pellegrino [45], describes the LLDPE material through a plane stress orthotropic nonlinear 

thermoviscoelastic model with strain rate and thermal anisotropy effects. Plane stress is a 

simplification resulting from the membrane’s thicknesses. Orthotropy is a result of the 

extrusion direction during the film blowing process. Nonlinearities capture dilatational and 

distortional (i.e., shearing effects) with large strains up to where non-recoverable 

deformation starts. The model is based on the Boltzmann superposition integral (Eq. 7), 

where nonlinearities are included via the time shift factor (based on the free volume model). 

 
13 Whole flight simulations intend to represent structural and flight behaviors during LTAS flight; an aspect 

not evaluated and presented in this dissertation but relevant, as polymeric membranes are the primary target 

material considered. 
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 𝜖(𝑡) = ∫ 𝐷(𝑡′ − 𝑠)
𝑑𝜎

𝑑𝑠
 𝑑𝑠

𝑡′

0

+ ∫ 𝛼
𝑑𝑇

𝑑𝑠
𝑑𝑠

𝑡′

0

 (7) 

 

where: 𝜖 = strain vector  𝜎 =  stress vector (one-dimensional case) 

   𝑡′ = reduced time  𝛼 =  coefficients of thermal expansion vector 

   𝑇 = temperature  𝐷 =  time-dependent creep compliance tensor 

 

 

The Boltzmann superposition integral is a representation of the Boltzmann 

superposition principle using hereditary integrals. The Boltzmann superposition principle 

states that the strain output due to a combination of two arbitrary but different stress inputs 

applied at different times is equal to the sum of strain outputs resulting from each stress 

input applied separately (e.g., 𝜖(𝜎1 + 𝜎2) = 𝜖(𝜎1) + 𝜖(𝜎2)) [49]. In other words, the 

material response at 𝑡 (or 𝑡′) due to individual load cases is the sum of the responses 

generated individually by each load case. Additionally, hereditary integrals are history-

dependent integrals such that the resulting solution is dependent on the history of any prior 

input variable. Lastly, the concept of reduced time, 𝑡′, relates strain responses at different 

temperatures by shifting the timescale in which the stress response is integrated over, or 

vice versa. Reduced time is a reflection of the time-temperature superposition principle, 

which states that strain responses associated with a temperature change corresponds to a 

time shift. In practice, reduced time allows the natural timescale of a process to be 

shortened or extended while predicting the same material response. 

Nonetheless, simpler models, such as the time-hardening creep power law shown 

in Eq. 8, have been used to characterize the LLDPE time-dependent response. These can 

provide an accurate material representation at specific stresses and temperatures. The 

appeal of the power law lies in its capability of being fitted with a relatively simple curve 

fitting process to find parameters 𝐴, 𝑚, and 𝑛. Many of the viscoelastic phenomena 
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observed in LLDPE are shared by a variety of polymer films, and are therefore presented 

above to expose some of the material modeling aspects required once the Hookean 

approximations used for such films demonstrate potential in VLTAS [44]. 

 𝜖̅̇𝑐𝑟 = 𝐴𝜎𝑛𝑡𝑚 (8) 

 

where: 𝜖̅̇𝑐𝑟 = √
2

3
𝜖̇𝑐𝑟: 𝜖̇𝑐𝑟 = uniaxial equivalent creep strain rate 

𝐴, 𝑚, 𝑛 = parameters fitted to creep data at nominal stress and temperature 

𝜎   = uniaxial equivalent deviatoric stress 

": " = double tensor inner product  

𝑡   =  time 

 

 

Sterling and Fairbrother [48] tested six films that were commercially available in 

thickness of 15 µm (0.6 mil) or less for potential use in ULDB and Gossamer space 

structures. They tested LLDPE, PET, PEN, polyimide, and polyamide for their modulus, 

yield14 strength, toughness, and tear propagation at 190 K (-83°C, -118°F) and 300 K 

(26°C, 80°F). Table II-2 shows the specific film brands tested and their results. Polyamide 

films testing was not completed as they became brittle at 213 K (-60°C, -76°F), which was 

above their anticipated operating temperature. PET and Polyethylene Naphthalate (PEN) 

had the highest modulus and yield strength, but poor toughness and tear propagation. The 

opposite can be said about LLDPE. All exhibited modulus and yield strength increases 

when going from 300 K to 190 K. PET, PEN and polyimide had densities in the 1140-1450 

kg/m3 (71.2-90.5 lbm/ft3) range [50,51]. Interestingly, they note that several PET balloons 

intended for Mars exploration were damaged during inflation tests and aerial deployments. 

An important distinction between a SPB and a VLTAS is the magnitude of the pressure 

differential. While NASA’s ULDB are subjected to pressure differentials up to 150-200 Pa 

 
14 Yield stress, in this case, corresponds to the point where the stress-strain curve slope decreases below 20% 

of the maximum slope [48]. 
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(0.022-0.029 psi), VLTAS are likely to be subjected to considerably higher values to 

achieve positive buoyancy. 

Table II-2. Polymeric films properties for lighter-than-air applications, 2004 [48]. 

 

 Recent Vacuum Lighter-Than-Air Structure Efforts 

With the intent of overcoming the stringent strength and stiffness requirements that 

a “perfect” spherical shell imposes on the realization of a VLTAS, efforts have focused on 

evaluating unconventional geometric configurations. These geometries trade 

manufacturing ease with geometric stiffness, structurally optimal dimensionalities, and 

properties found in high-end materials, such as carbon nanotubes (CNT), all in order to 



 

28 

theoretically achieve feasibility. These efforts have yielded valuable findings concerning 

the stability and limitations of such geometries. This subsection, then, intends to briefly 

describe them, focusing on those found germane to the path presented in this document. 

Several geometric configurations were studied throughout the theoretical 

development of a VLTAS; the three most studied shown in Fig. II-10. The icosahedron 

was first proposed for this application by Metlen and Palazotto [2,52] with the intent of 

overcoming the instability and high strength required by the spherical thin shell.  

 
Icosahedron [53] 

 
Hexakis Icosahedron [7] 

 
Celestial Icosahedron [54] 

Fig. II-10. Previous vacuum lighter-than-air structure designs. 

They poised that this geodesic frame of frequency15 one, composed of cylindrical 

beams with a membrane over it, could reduce the strength required and result in a feasible 

design. Their work and the nonlinear responses observed led to nonlinear quasi-static and 

dynamic analyses, as well as uniaxial tension and vibrational experimental tests of the 

frame, and dimensional studies of the full design. It was found, among many others, that 

{1} the static and dynamic stability is largely dependent on the frame’s stiffness; {2} large 

membrane displacements do not significantly affect the predicted buoyancy; and {3} the 

 
15 The icosahedron is a 20-sided polyhedron, also defined as a geodesic sphere of frequency one. Higher 

integer frequencies denote the number of times the sides, or beams in this case, are divided. The division 

points, referred as vertices, are placed in the circumscribing sphere along with previous vertices. 
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structural response is significantly affected by the beams thickness-to-radius ratio and the 

material properties of the membrane [7,53,55,56]. 

The icosahedron was followed by the hexakis icosahedron. From a structural 

perspective, the hexakis icosahedron takes advantage of the stiffness benefits seen in the 

icosahedron while reducing the strength requirement through shorter beams and hence 

smaller membrane sections. First proposed for this application by Cranston [2], and further 

analyzed by Schwemmer, Snyder, Castello, and Palazotto [3,57], the hexakis icosahedron 

showed a larger feasible design space over that of the icosahedron. Schwemmer proposed 

1.2 m (4 ft)- and 4.6 m (15 ft)-diameter designs with membrane and beam thicknesses 

within 0.2-0.7 mm (8-28 mil), based on Hookean stiffness and strength approximations of 

CNT16, graphene17 and Spectra®18. Although both the icosahedron and the hexakis 

icosahedron exhibited chaotic behavior, the hexakis icosahedron’s frame exhibited less 

chaos that the icosahedron’s frame; attributed to the rigidity of the shorter beams. 

The celestial icosahedron, first proposed by Cranston and studied by Moore [54] 

and Graves et al. [4], takes advantage of the stability that a frame provides as well as of the 

optimal surface area-to-volume ratio that a sphere provides19. They studied the quasi-static 

behavior as well as initial fluid-structure interactions via wind tunnel testing of additively 

manufactured models. They found buoyancy capability when a 0.85 µm (0.03 mil)-thick 

membrane is utilized. The challenge left ahead by these efforts is the development of 

 
16 CNT approximations: modulus = 293 GPa, yield = 3.8 GPa, Poisson’s ratio = 0.33 [114]. 
17 Graphene approximations: modulus = 500 GPa, yield = 50 GPa, Poisson’s ratio = 0.1 [114]. 
18 Spectra® is a ultra-high molecular weight polyethylene fiber, typically used for their high strength [153]; 

approximations: modulus = 172 GPa, yield = 3.0 GPa, Poisson’s ratio = 0.33 [114]. 
19 The sphere’s surface area-to-volume ratio optimality is explained through the Isoperimetric Problem [154]. 
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manufacturing processes that connect realized material properties with the Hookean 

assumptions made. 

2.2. Structural Modeling and Simulation 

 Structural M&S is conducted using Abaqus, a general-purpose finite element (FE) 

package capable of modeling nonlinear structural problems considered static, quasi-static, 

and dynamic using both implicit and explicit integration techniques [58]. The review 

focuses on those techniques intended for the structural representation of LTAS subjected 

to differential pressures up to sea level pressure. Fig. II-11 shows the implicit and 

optimization processes that exemplify the solution methods used in this research. Is 

important to note that explicit solutions were also considered when convergence difficulties 

prevented a significant load history to be developed. Specific methodology is discussed in 

each chapter as associated to the solutions being presented. 

 Model Definitions 

Starting on the top right side of Fig. II-11, model definitions are part of any 

preprocessing, and most of these are required for the three processes presented. Geometry 

is largely dependent on the specific study being conducted, but is associated with the 

general subset of stiffened designs presented in Chapter I. In terms of material definitions, 

there are several models that provide a useful representation. The first and simplest of all 

is the Hookean representation, shown in Eq. 9 [59]. Abaqus allows for material properties 

to be defined with anisotropic and temperature-dependent effects. 

 𝝈 = 𝑫𝑒𝑙: 𝝐𝑒𝑙  (9) 

 
where: 𝝈  = total or Cauchy stress  𝝐𝑒𝑙  = total elastic strain 

𝑫𝑒𝑙 = fourth-order elasticity tensor 
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Fig. II-11. Abaqus topology optimization and implicit analysis process diagram. 

Another model potentially useful for this application is the creep power law (Eq. 8 

on page 26). Presented in the Abaqus documentation under the *CREEP routine, it was 

used by Gerngross et al. [44] to estimate the viscoelastic20 response of pumpkin-shaped 

SPB lobes. To this effect, Fig. II-12 compares experimental results of SF372 LLDPE at 

 
20 While Ref [44] uses the *CREEP routine to represent a viscoelastic response (i.e., a rate-dependent elastic 

behavior), creep (i.e., strain accumulation at constant stress conditions over time) is typically observed in the 

inelastic range and associated with viscoplasticity (i.e., rate-dependent inelastic behavior) [49]. 
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4 MPa with the Abaqus *CREEP21 and *VISCOELASTIC22 routines along with the 

Schapery–Rand model23 [29]. They reported that *CREEP predicted strains up to 10% 

lower than the experiment. 

 

Fig. II-12. SF372 LLDPE film viscoelastic response at 4 MPa, 2004 [44]. 

Material models unavailable in Abaqus, such as the Schapery–Rand and the 

thermoviscoelastic models described by Li et al. [46], and Bosi and Pellegrino [45], are 

applied through the user-defined subroutine UMAT. The user-defined subroutine is called 

at every iteration of every increment for all material points associated with the material 

model, and provided with the increment size, Δ𝑡, material state (stress, temperature, etc.) 

and deformation gradients. UMAT then returns the new material state as well as the 

material Jacobian matrix. The accuracy of the Jacobian matrix depends on the integration 

 
21 The *CREEP routine generally represents strain hardening, where its parameters are based on a constant 

stress condition representing equivalent uniaxial deviatoric stress states of elements in the FE model. As 

such, any stress-dependent variations of its parameters are not included across the time span of the solution, 

limiting its range [58]. 
22 The *VISCOELASTIC routine uses creep or relaxation (i.e., stress reduction at constant strain conditions 

over time) test data based on a linearized Schapery constitutive equation to represent linear viscoelastic 

behavior. Consequently, the latter neglects stress-dependent nonlinearities observed in LLDPE films [29]. 
23 Schapery–Rand models nonlinear viscoelastic behavior by adding the elastic response to the transient 

response and capturing nonlinearities through stress- and temperature-dependent parameters [44]. 
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process use inside UMAT,  playing a key role in convergence during implicit time 

integration [28,44,59,60]. 

Another key model definition is the element selection. Two types of elements are 

primarily used in this research: membrane and solid, or their respective axisymmetric or 

plane strain representations. Membranes are thin sheets that carry tensile and compressive 

stresses parallel to the middle surface of the element, in a state of plane stress. In other 

words, they transmit in-plane forces with no bending stiffness. Abaqus offers membrane 

elements that can be used for two-dimensional (2D) and three-dimensional (3D) 

discretization, categorized as shown in Fig. II-13. General membrane elements include 

three- and six-node triangles, and four-, eight- and nine-node quadrilaterals. Reduced 

integration24 is available on four- and eight-node quadrilaterals [58,59]. 

 
General 

 
Cylindrical 

 

 
Axisymmetric 

Fig. II-13. Abaqus membrane elements, 2016 [59]. 

 
24 All Abaqus elements are integrated numerically (e.g., the virtual work integral is replaced with a 

summation, ∫ 𝜎: 𝛿𝐷 𝑑𝑉
𝑉

→ ∑ 𝜎𝑖: 𝛿𝐷𝑖𝑉𝑖
𝑛
𝑖=1 , where 𝐷 is the deformation rate tensor, 𝜎 is the Cauchy’s stress 

tensor, and 𝑛 is the number of integration points). In quadrilateral and hexahedral elements, the integration 

points can be reduced such that the strain field is one order less than the interpolation order, called reduced 

integration. The zero-deformation modes that can result from reduced integration (i.e., hourglass modes) are 

counteracted by an artificial stiffness matrix that Abaqus adds to the reduced integration elements [58]. 
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Similarly, Abaqus provides general, cylindrical and axisymmetric solid elements. 

General solid elements include isoparametric ‘brick’, triangular, tetrahedron, and wedge 

shapes. For efficient and accurate stress analysis of thin geometries subjected to bending, 

Abaqus recommends second-order (quadratic interpolation) elements to avoid: 

{1} shear-locking and constant (vs linear) strain fields of first-order triangular and 

tetrahedral elements, and {2} slow mesh convergence observed in first-order elements. 

Except for elements C3D27R and C3D27RH25, second-order reduced integration brick 

elements generally avoid the volumetric and shear locking observed in fully integrated 

elements, while reducing computational time, and are therefore suggested for 3D solutions 

[58,59]. An exception is finite strains of second-order reduced integration brick elements, 

as they can lead to volumetric locking of near-incompressible materials; typically solved 

by mesh refinement in areas displaying finite strain [59]. Ultimately, the element types 

chosen depend on the intended analysis (e.g., 2D plane strain or axisymmetric, or 3D with 

membrane and/or solid elements), the computational time and mesh size (e.g., linear vs 

quadratic formulations), and whether implicit or explicit integration is used. 

Another key model definition is contact surface interaction. Abaqus offers a variety 

of options to define surface pairings, interaction formulation, treatment of overclosures and 

thickness, and implementation or condition enforcement. The general contact algorithm 

provides the most robust capability often at a higher computational cost compared to 

specified contact pairs, while being somewhat restrictive when used in Abaqus/Explicit 

(e.g., kinematically enforced contact is only available using the contact pair algorithm). A 

 
25 Elements C3D27R and C3D27RH show three hourglass modes when all 27 nodes are unconstrained. 
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comprehensive description of the contact capabilities offered in Abaqus for both implicit 

and explicit analyses is presented in Chapter 7 of Ref. [61]. With respect to the research 

presented in this dissertation, general contact provided representative membrane-to-

membrane interactions as deformation developed in the air-stiffened designs. Specific 

interaction definitions used are discussed in Chapters V and VI. 

 Implicit and Explicit Analyses 

Solutions integrated implicitly, as exemplified by the implicit dynamic analysis 

process at the right center of Fig. II-11, are conducted in Abaqus under Abaqus/Standard. 

Abaqus/Standard uses the Newton’s method to implicitly integrate the equations of motion 

to guarantee equilibrium within a tolerance (set by default to 0.5% of an average force in 

the structure, averaged over time [59]). On the other hand, solutions integrated explicitly 

are conducted in Abaqus under Abaqus/Explicit. Abaqus/Explicit uses the central 

difference integration rule to integrate the equations of motion utilizing diagonal lumped 

mass matrices for computational efficiency. The conditional stability of the central 

difference rule limits the time step size to the same order of the element size [62], which 

tends to increase the number of increments required to find the end state, compared to an 

implicit integration. However, the iterations required per increment to implicitly solve 

nonlinear equations can be computationally expensive and non-convergent at times. Both 

Abaqus/Standard and Abaqus/Explicit are used to find the solutions presented in this 

dissertation, prioritizing Abaqus/Standard as it {1} guarantees equilibrium within 

tolerance, {2} topology optimization is unavailable in Abaqus/Explicit, and {3} offers a 

wider range of mesh and material definitions. Nonetheless, lack of convergence in 
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Abaqus/Standard required the use of Abaqus/Explicit for the solutions presented in 

Chapter VI. 

Geometric Nonlinearity and Strain Measures 

Geometric nonlinearity, opposed to the linearity assumption, has a significant effect 

on large strain and rotation problems. This is simply observed thru the Green strain tensor, 

expressed in Eq. 10 [62]. The linearity assumption removes the quadratic components, 

𝜕𝑢𝑘

𝜕𝑋𝑖

𝜕𝑢𝑘

𝜕𝑋𝑗
, undercutting strain and causing nonzero components in rigid body rotations. 

 𝐸𝑖𝑗 =
1

2
(𝐹𝑖𝑘

𝑇 𝐹𝑘𝑗 − 𝛿𝑖𝑗) =
1

2
(

𝜕𝑢𝑖

𝜕𝑋𝑗

+
𝜕𝑢𝑗

𝜕𝑋𝑖

+
𝜕𝑢𝑘

𝜕𝑋𝑖

𝜕𝑢𝑘

𝜕𝑋𝑗

) (10) 

 

where: 𝐸𝑖𝑗 = Green strain tensor components  𝑋 = material coordinates   

𝐹𝑖𝑗 =  
𝜕𝑥𝑖

𝜕𝑋𝑗
= deformation gradient  𝑥  = Eulerian coordinates 

𝑢𝑖  = displacement    𝛿𝑖𝑗 = Kronecker delta 

 

 

 Generally, constitutive definitions in Abaqus are formulated such that the stress and 

strain definitions form a conjugate pair, which allows the resulting strain energy to be a 

scalar-valued energy potential in the virtual work (“weak form”) statement of equilibrium. 

In other words, stress and strain (second-order) tensors are chosen such that their 

contraction becomes a scalar representing the internal energy of the system, formally 

referred to as being conjugate in power [62]. Such restriction, combined with the fact that 

some history-dependent constitutive expressions are strictly defined in strain and stress 

rates, leads Abaqus to identify “the rate of Kirchhoff stress for use in constitutive equations 

as an appropriate stress measure for stress-sensitive materials”; hyperelasticity is one of 

the exceptions where a total (rather than a rate) formulation is used [58]. 
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Conjugate pairs, such as Kirchhoff stress and logarithmic strain tensors, replace the 

Cauchy stress26 and deformation rate tensors (also conjugate pairs) in the virtual work 

statement of equilibrium, and their main purpose is simply to enable accurate and 

computationally-efficient formulations of constitutive models. Nonetheless, for some cases 

outside the scope of the problems considered in this dissertation, the accuracy of the latter 

statement has been challenged in terms of energy consistency violations in association to 

the stress and strain rates used to establish the rate form of the constitutive equations within 

the updated Lagrangian formulation27 that Abaqus (and most commercially-available finite 

element (FE) codes) uses [63]. That is because there are structural cases in which the stress-

strain rate pairs used by Abaqus (i.e., Jaumann and Green-Naghdi rates of the Kirchhoff 

stress [58]) combined with the constitutive definition can lead to large errors (e.g., buckling 

loads of thick orthotropic structures can be significantly overpredicted). Refs. [64–68] 

describe the different stress-strain formulations and exemplify where the errors lie, 

indicating errors can be avoided by switching to the Truesdell rate and its conjugate, the 

Green’s Lagrangian finite strain rate. These rare errors are associated with nonconjugate 

stress and strain increments, and become unimportant for thin-walled structures such as the 

ones considered in this dissertation [66]. Is relevant to note that Abaqus reports stress 

outputs as Cauchy stress regardless of the stress tensor used internally by the solver. 

Abaqus formulations and further details are found in Chapters 1 and 4 of Ref. [58]. 

 
26 The Cauchy (“true”) stress is a symmetric tensor defined in the current configuration (i.e., deformed state, 

or in a spatial description) and represents actual traction on the material element. The Kirchhoff stress tensor 

is also described in the current configuration. Rate forms of the Kirchhoff stress and logarithmic strain tensors 

are used as they allow for the modeling of history dependent material behavior [62]. 
27 An updated Lagrangian formulation refers a formulation where the variables are calcualted with respect to 

the reference configuration, where, in incremental analyses, the latter is the state of the system at the previous 

increment, rather than the initial (user-defined) state. 
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Green strain is the default strain measure for small-strain formulations of shells and 

beam, in which small-strain but large rotations may be experienced. On the other hand, 

integrated strain (Eq. 11) is the default strain measure for most finite strain analyses in 

Abaqus/Standard. Logarithmic strain (Eq. 12) and nominal strain (Eq. 13) can be requested 

on geometrically nonlinear analyses within both Abaqus/Standard and Abaqus/Explicit. 

Logarithmic strain is the default on Abaqus/Explicit, and any hyperelastic analyses. Eqs. 

11-13 are described from a material description and are detailed in Ref. [59]. 

 휀𝑛+1 = Δ𝑅 ∙ 휀𝑛 ∙ Δ𝑅𝑇 + Δ휀 (11) 

 휀𝑁 = √𝐹 ∙ 𝐹𝑇 − 𝐼 (12) 

 휀𝐿 = ln √𝐹 ∙ 𝐹𝑇 (13) 

 

where: Δ𝑅 = incremental rotation tensor (i.e., average rotation change over increment) 

Δ휀 = ∫ 𝐷
𝑡𝑛+1

𝑡𝑛 𝑑𝑡 = total strain increment, where D is the deformation rate 

휀𝑛+1, 휀𝑛 = total strain at increments 𝑛 + 1, 𝑛 

√𝐹 ∙ 𝐹𝑇 = left stretch tensor 

 

 

Enabling geometric nonlinearity also enables thickness variation of shell and 

membrane elements by assuming plane stress conditions. The development is shown in Eq. 

14 [58]. For incompressible materials (i.e., 𝜈 = 0.5), the thickness becomes a linear 

function of the area ratio, 
𝐴

𝐴0
. The thickness remains constant for 𝜈 = 0. This exponential 

dependency of thickness with element surface area becomes a significant contribution to 

the true stress in finite strain analyses as significant strain will reduce the elements’ cross-

sectional area. 
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𝜖33 = −
𝜈

1 − 𝜈
(𝜖11 + 𝜖22) → ln (

𝑡

𝑡0

) = −
𝜈

1 − 𝜈
[ln (

𝑙1

𝑙1
0 ) + ln (

𝑙2

𝑙2
0 )] = −

𝜈

1 − 𝜈
ln (

𝐴

𝐴0
)

→ 𝑡 = 𝑡0 (
𝐴

𝐴0
)

−
𝜈

1−𝜈
 

(14) 

 

where: 𝜈 = Poisson ratio   𝑡0, 𝑡  = initial, final thickness 

𝜖33 = thru-the-thickness strain 𝑙𝑖
0, 𝑙𝑖  = initial, final length 

𝜖11, 𝜖22 =  strains in directions 1,2 𝐴0, 𝐴 = initial, final area 

 

 

Convergence of Nonlinear Solutions 

 Lack of convergence of static and quasi-static problems solved implicitly is largely 

associated with mesh distortion, global instabilities, and/or local instabilities. Mesh 

distortion is typically observed in solutions subjected to large strains and/or material loss. 

Several meshing techniques can minimize this, to include user-defined mesh definitions 

and convergence as well as adaptivity techniques. Global stabilities (i.e., load-displacement 

response with negative stiffness) can be representative of buckling and collapse, in which 

case displacement-controlled or Riks procedures can be employed; the latter is detailed in 

section 6.2.4 of Ref. [59]. Local instabilities, on the other hand, result in transfers of strain 

energy from the instability region to its neighboring elements. These problems can be 

solved either dynamically, which is discussed in the next subsection, or statically by using 

artificial damping to stabilize the solution. Abaqus provides adaptive automatic 

stabilization within its nonlinear static procedures. When the solution becomes unstable, 

automatic stabilization adds viscous forces to the equilibrium equations of the form 

described in Eq. 15, where the damping factor, 𝑐, is user-defined or calculated by Abaqus 

[59]. 
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 𝑃 − 𝐼 − 𝐹𝑣 = 0 → 𝑃 − 𝐼 − 𝑐𝑀∗𝜈 = 0 (15) 

 

where: 𝑃 = external force vector 𝑐   = damping factor  

𝐼  = internal force vector 𝑀∗ = unity-density artificial mass matrix 

𝐹𝑣 = viscous force vector  𝑣   =
Δ𝑢

Δ𝑡
= nodal forces vector / time incr. 

 

 

Abaqus calculates the damping factor based on a damping energy to strain energy 

ratio, referred to as dissipated energy fraction and defaulted to 2E-4, and assuming that the 

solution is stable at the first increment. Automatic stabilization by itself applies damping 

constantly throughout the model. Adaptive automatic stabilization tries to reduce its effect 

on the solution while preserving convergence by varying the damping factor both spatially 

and incrementally based on the convergence history and dissipated energy fraction. The 

dissipated energy fraction is then subject to a global accuracy tolerance, defaulted to 0.05, 

to ensure that inaccuracies resulting from incremental energy calculations do not produce 

unnecessary damping [59]. 

Implicit Dynamic Solutions 

The Abaqus implicit dynamic procedure within Abaqus/Standard uses 

Hilber-Hughes-Taylor (HHT) and backward Euler methods to setup numerical integration 

frameworks, allowing the Newton’s method to iterate until convergence at a time step. 

Both integration methods provide numerical damping to the solution of various degree; 

backward Euler providing the most. The implementation of the HHT into the equilibrium 

equation is shown in Eqs. 16-19. Eqs. 16 and 17 show the continuous and discrete 

representations of the equilibrium equation, respectively. Eqs. 18 and 19 show the 

displacement and acceleration, respectively.  
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 𝑀𝑁𝑀�̈�𝑀 + 𝐼𝑁 − 𝑃𝑁  = 0 (16) 

 𝑀𝑁𝑀�̈�𝑀|𝑡+Δ𝑡 + (1 + 𝛼)(𝐼𝑁|𝑡+Δ𝑡 − 𝑃𝑁|𝑡+Δ𝑡) − 𝛼(𝐼𝑁|𝑡 − 𝑃𝑁|𝑡) + 𝐿𝑁|𝑡+Δ𝑡 = 0 (17) 

 𝑢|𝑡+Δ𝑡 = 𝑢|𝑡 + Δ𝑡�̇�|𝑡 + Δ𝑡2 [(
1

2
− 𝛽) �̈�|𝑡 + 𝛽�̈�|𝑡+Δ𝑡] (18) 

 �̇�|𝑡+Δ𝑡 = �̇�|𝑡 + Δ𝑡[(1 − 𝛾)�̈�|𝑡 + 𝛾�̈�|𝑡] (19) 

 

where: 𝑀𝑁𝑀 = the mass matrix   𝑁, 𝑀 = degrees of freedom 

𝐼𝑁     = internal force vector   −
1

2
≤ 𝛼 ≤ 0 

𝑃𝑁    = external force vector    𝛽 =
1

4
(1 − 𝛼)2 > 0 

𝐿𝑁     = Lagrange multiplier forces sum  𝛾 =
1

2
− 𝛼 ≥

1

2
 

𝑡       = time    �̇� = velocity 

𝑢      = displacement   �̈� = acceleration 

 

 

The HHT method extends Newmark’s method by adding the parameter 𝛼 to Eq. 

17, such that the numerical integration achieves second-order accuracy while allowing 

numerical damping. This is based on the fact that the Newmark’s method either achieves 

second-order accuracy by becoming the trapezoidal rule at 𝛽 = 1/2 and 𝛾 = 1/4 (which 

does not have numerical damping), or adds numerical damping outside these 𝛽 and 𝛾 values 

[69]. Eqs. 18 and 19 are identical for both Newmark’s and HHT methods. Note that an 𝛼 =

0 results in zero damping, reducing to the trapezoidal rule, while an 𝛼 = −1/3 results in 

maximum damping (e.g., 6% damping ratio when the time increment is 40% of the 

oscillation period of the mode considered). 

Abaqus presents the user with three pre-set options: transient fidelity, moderate 

dissipation and quasi-static. Transient fidelity uses HHT, with an 𝛼 = −0.05, which results 

in minimal dissipation and ergo small time increments for maximum accuracy and 

convergence. Moderate dissipation also uses HHT, with an 𝛼 = −0.41421, and is 

recommended for dynamic events with nonlinearities, contact, and/or significant amount 

of energy dissipated through viscous means, such as plasticity and damping. Quasi-static 



 

42 

uses backward Euler, which has larger numerical damping than HHT, with the intent of 

modeling problems where inertia effects are present to regularize instabilities [58,59,70]. 

Explicit Dynamic Solutions 

Abaqus/Explicit provides a platform for solving quasi-static and dynamic FE 

problems via the use of wave propagation analysis. The explicit procedure propagates the 

loads throughout the structure, using dynamic equilibrium and the conditionally stable 

central difference integration method to find nodal accelerations, and updates the velocities 

and displacements as the forces are applied. Specifically, rearranging the dynamic 

equilibrium stated in Eq. 16, the acceleration (Eq. 20) at the current time step is obtained 

using the diagonalized mass matrix. The velocity at half-step is then obtained (Eq. 21), 

followed by the displacement at the next time step (Eq. 22). 

 �̈�𝑁|𝑡 = [𝑀𝑁𝑀]−1(𝑃𝑀 − 𝐼𝑀)|𝑡 (20) 

 �̇�𝑁|
𝑡+

Δ𝑡
2

= �̇�𝑁|
𝑡−

Δ𝑡
2

+ (
Δ𝑡|𝑡+Δ𝑡 + Δ𝑡|𝑡

2
) �̈�𝑁|𝑡 (21) 

 𝑢𝑁|𝑡+Δ𝑡 = 𝑢𝑁|𝑡 + Δ𝑡|𝑡+Δ𝑡 (�̇�𝑁|
𝑡+

Δ𝑡
2

) (22) 

 

where: 𝑀𝑁𝑀 =  diagonalized mass matrix  𝑢 = displacement  𝑡 = time 

𝐼𝑁     = internal force vector  �̇� = velocity 

𝑃𝑁    = external force vector   �̈� = acceleration 

𝐿𝑁     = Lagrange multiplier forces sum  𝑁, 𝑀 = degrees of freedom  

 

The above explicit formulation allows for a large number of increments to occur 

efficiently (i.e., each time increment is computationally inexpensive compared to implicit 

integration) since the simultaneous solution of equations is not required, removing the need 

for iterations. This is partly attributed to the diagonalized, or lumped, mass matrix, which 

its inversion only requires 𝑂(𝑁) operations [71]. It is also attributed to the half-step 
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velocity increments, which allow the inclusion of stiffness-proportional damping without 

requiring the simultaneous solution of equations. 

These benefits come at the cost of conditional stability through a maximum stable 

time increment. The stability limit is generally defined in terms of the highest frequency of 

the model, but, for practical purposes, Abaqus defines it (Eq. 23) as the minimum 

characteristic element length and material dilatational wave speed ratio (Eq. 24) for elastic 

materials, ignoring damping. 

 Δ𝑡𝑚𝑎𝑥 ≈
𝐿𝑚𝑖𝑛

𝑐𝑑

 (23) 

 𝑐𝑑 = √𝐸/𝜌  (24) 

 
where: 𝐿𝑚𝑖𝑛 =  smallest element dimension  𝐸 = elastic modulus  

𝑐𝑑     = dilatational wave speed ratio  𝜌 = material density 

 

 

Actual time increments during Abaqus-controlled time incrementation are less than 

the stability limit by a factor between 1/√3 and 1, accounting for stiffness associated with 

contact. Abaqus-controlled incrementation serves well for problems in which the total 

energy balance will change significantly, such as models with large nonlinear deformations 

and/or nonlinear material response. Furthermore, material, mesh, and other elements will 

directly influence stability. The material model itself will affect the stability through its 

relationship with the dilatational wave speed (e.g., a linear material has a constant 

dilatational wave speed, but a plastic material exhibits a variable wave speed with yielding 

and stiffness). Furthermore, the mesh will affect stability via the shortest element 

dimension, making a course mesh beneficial for stability (not necessarily for accuracy). 

Lastly, spring and dashpot elements have shown to become unstable during the course of 
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some analyses, and it is typically characterized by unbounded and nonphysical results, and 

by oscillatory solutions. 

From a model accuracy perspective, there are other limitations when using 

Abaqus/Explicit. First-order, reduced-integration elements are typically used, which can 

deteriorate the solution with hour glassing if not properly controlled, and may require a 

denser mesh to achieve similar results to those found with second-order elements in 

Abaqus/Standard. From a computational cost perspective, deciding between using 

Abaqus/Standard or Abaqus/Explicit becomes a function of the model size as the cost of 

implicit solutions is comparatively low in Abaqus/Standard, but rises sharply with model 

size. The efficiency of Abaqus/Standard over Abaqus/Explicit is related to the number of 

iterations needed to achieve equilibrium in each time (load) step with potentially large time 

increments versus significantly smaller, but relatively inexpensive, time increments, 

respectively. Overall, Abaqus/Explicit excels at high-speed, short-duration dynamic 

events, large nonlinear quasi-static analyses, highly discontinuous post-buckling and 

collapse analyses, coupled temperature-displacement analyses, and structural-acoustics 

analyses. Therefore, the use of Abaqus/Explicit over Standard relies on the smoothness of 

the solution and/or the lack of convergence on large nonlinear static problems in 

Abaqus/Standard [58,59,72]. 

 Structural Optimization 

Structural optimization was introduced into the development trajectory 

(summarized in Fig. I-4) as a method of challenging current air-stiffened design ideas. 

Specifically, it was introduced to answer whether structural optimization was able to 
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provide a promising replacement to Helical Sphere air-stiffened design or could inform its 

development. With this in mind, the left side of Fig. II-11 shows the overarching Abaqus 

structural optimization process used during this research. Abaqus provides four types of 

structural optimization: topology, shape, sizing, and bead. Topology optimization 

essentially removes volume (elements) to achieve a particular objective, most commonly 

minimize strain energy. Shape optimization moves nodes typically to alleviate stresses 

concentrations. Sizing optimization adjusts shell thicknesses, element by element, typically 

to maximize stiffness-to-weight ratios. Bead optimization adds stiffening beads to a shell 

structure, to increase its moment of inertia, with the intent of increasing its stiffness and 

eigenfrequencies. All can follow the following optimization problem framework28 [59], 

stated in Eq. 25: minimize the objective function 𝑓, built from the summation of the 

weighted, 𝑊𝑖, differences between design responses, 𝜑𝑖, and reference values, 𝜑𝑖
𝑟𝑒𝑓

, 

subject to design responses, 𝑔𝑖, constrained by 𝑔𝑖
∗, and expressions based on design 

variables, 𝑘𝑖, constrained by 𝑘𝑖
∗. The responses are single scalar values, calculated by the 

optimization module from the output database (ODB) and model data, based on two state 

variables, 𝑈, operators within a region: {1} min or max value; and {2} sum of all values. 

 
28 Abaqus also allows maximization of the same objective function stated in equation (25), and the minmax 

problem of weight design responses [59]. 
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 𝑓𝑚𝑖𝑛 = min[𝑓(𝑈(𝑥), 𝑥)] = min [∑ 𝑊𝑖(𝜑𝑖 − 𝜑𝑖
𝑟𝑒𝑓

)

𝑁

𝑖=1

] (25) 

 
subject to:  𝑔𝑖(𝑈(𝑥), 𝑥) − 𝑔𝑖

∗ ≤ 0 𝑎𝑛𝑑  𝑘𝑖(𝑥) − 𝑘𝑖
∗ ≤ 0 

 

 

where: 𝑓 = objective function    𝜑𝑖     = design response 

𝑈 = model state variables   𝜑𝑖
𝑟𝑒𝑓

= reference value 

𝑁 = number of design responses     𝑥   = design variables 

𝑊𝑖 = weight given to each design response  

𝑔𝑖  = design response constrained by 𝑔𝑖
∗ 

𝑘𝑖  = constraining expression in terms of x, constrained by 𝑘𝑖
∗ 

 

Topology optimization, which is the one used during this research, is a material 

distribution method for finding an optimum (nonunique) layout. The optimization question 

can be framed as follows: given a topology, analysis procedure, boundary conditions (BC), 

loads, and constraints, which material distribution produces an optimized objective? The 

topology is represented by a discretization of the design domain, which parametrizes the 

stiffness tensor [73]. The topology is then optimized by scaling the relative material 

density(ies) within the design domain in an iterative fashion, such that elements whose 

densities are small enough are assumed to be voids [74]. Fig. II-14 shows a typical life 

cycle for a topology optimization of a brake pedal, starting from a computer-aided design 

produced outside Abaqus; the latter is not a necessary condition. 

 

Fig. II-14. Abaqus topology optimization module life cycle, 2011 [74]. 
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Generally, a topology optimization algorithm introduces element densities as 

variables, and an interpolation function to relate it to other design variables. Sensitivity 

analysis is then conducted using optimality criteria or gradient-based algorithms [75]. The 

iterative process then leads to designs that meet the objective and constraints.  

Abaqus reports two algorithms for topology optimization: general and condition-

based. The documentation states that the general algorithm is “partly described in Bendsoe 

and Sigmund” [59], which, although not explicitly stated, alludes to gradient-based 

algorithms, such as the Method of Moving Asymptotes (MMA), along with the Solid 

Isotropic Material with Penalization (SIMP) and/or Rational Approximations of Material 

Properties (RAMP) interpolations. MMA is a programming algorithm that use convex and 

separable approximating functions; the latter decoupling the design variables in the 

necessary optimality conditions. SIMP changes the elemental relative density continuously 

between zero (void element) and one (solid element), where stability issues near zero are 

solved by restricting the lower bound [73]. RAMP was developed to handle boundary-

dependent loads (e.g., pressure) by defining a volume fraction of each void element as an 

incompressible fluid, allowing load transfer through them [75]. The general algorithm can 

use various design responses to compose the objective and constraints following Eq. 25. 

Table II-3 shows the design responses available on the general algorithm for objectives and 

constraints in Abaqus. There are other constraints, specifically geometric restrictions, that 

can be implemented to control the optimization region, such as ensuring planar symmetry 

or freezing an area such that its defined density (and stiffness) remains constant throughout 

the optimization. An example for VLTAS design is freezing the area interacting with the 
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atmosphere such that continuity is maintained, and the internal air can be eventually 

vacuumed. 

Table II-3. Design responses supported by Abaqus general topology optimization, 2016 [59]. 

Design Response Available Objective Constraint 

Center of gravity Yes Yes 

Displacement and rotation Yes Yes 

Eigenfrequency (from modal analysis) Yes Yes 

Energy stiffness measure Yes Yes 

Internal and reaction forces and moments Yes Yes 

Moment of inertia Yes Yes 

Scaled element-centroidal von Mises stress Yes Yes 

Strain energy Yes No 

Volume No Yes 

Weight Yes Yes 

The condition-based algorithm, described in [76],  is the second and reportedly the 

most computationally efficient of the two topology optimization algorithms. Opposite to 

the general algorithm, it changes the relative density discretely (either void or solid). 

Nonetheless, total strain energy is the only design response used as the objective function, 

and volume fraction as the only constraint. 

Abaqus allows topology optimization only based on static and Eigen analyses, 

supporting geometric nonlinearities and contact, as well as the following material 

definitions: linear elastic isotropic to anisotropic; elastic-plastic with Mises or Hill yield 

surfaces; isotropic hardening; and hyperelastic, except for the Marlow model and test-data 

based [59]. Temperature29 and field variable dependencies can be included as well. 

It is important to realize that the optimized solution is not unique and highly 

dependent on the discretization (i.e., mesh-dependent). Generally seen as a numerical 

instability, finer meshes tend to lead to scaled layouts instead of refined, qualitatively-equal 

 
29 Temperature dependence is supported by the general algorithm, only as constant temperature loading. 
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solutions [73]. Fig. II-15 shows the optimized solution of a beam as it is further discretized, 

resulting in a more detailed, or a scaled representation, of the previous. 

Beam optimized with: 

(a) 2700 elements 

 

 

 

(b) 4800 elements 

 

 

 

(c) 17,200 elements 

 

Fig. II-15. Optimal topology mesh dependence example, 2003 [73]. 

2.3. Structural Stability 

Structural stability is a fundamental consideration in solid mechanics, particularly 

in thin structures subjected to large deformations. Its study dates back to Euler’s elastic 

column solution in 1744 [77], and from there has extended tremendously into arches, 

frames, shells, etc., with solutions that include elastic, inelastic, viscoelastic, viscoplastic, 

thermal, fracture and chaotic effects30. Stability can be framed as a question on whether the 

body in equilibrium departs from it when slightly disturbed. 

The sudden departure from equilibrium is characterized nonlinearly in terms of 

bifurcation, buckling, snap-through, and/or collapse. Bifurcation is a mathematical term 

representing the point of sudden departure from equilibrium, observed by a bifurcation of 

the load-displacement curve; the load magnitude at which it occurs is commonly referred 

to as the buckling, critical, or bifurcation load. Snap-through describes a physical snap or 

 
30 Ref. [77] provides a broad overview on the developments made in this topic up to year 1999. 
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jump of a structure (e.g., the moment in which an arch subjected to an orthogonal load 

changes slope signs) represented in the load-displacement curvature. Fig. II-16 compares 

the load-displacement curves of these two phenomena. Lastly, collapse refers to the 

behavior of a structure, whether bifurcation or snap-through. 

A classical case study is the circular cylindrical case under a compressive load or 

stress. Using the classical theory of infinitesimal deflections based on an infinitely-long 

shell and axisymmetric waves, a critical stress was first predicted by Lorenz, and revised 

by Timoshenko and Southwell between 1908-1914, given by Eq. (26) [78]. Experiments 

showed critical loads three to eight times smaller than what Eq. 26 predicted, later 

attributed to geometrical imperfections of the cylinders tested. The imperfection sensitivity 

was proven when experimental results of almost-perfect cylinders approached Eq. 26 [65]. 

 𝜎𝑐𝑙 =
𝐸

√3(1 − 𝜈2)
(

𝑡

𝑟
) → 𝑃𝑐𝑙 =

2𝜋𝐸𝑡

√3(1 − 𝜈2)
 (26) 

 

where: 𝜎𝑐𝑙 = classical critical load   𝑡 = shell thickness 

  𝐸 = modulus of elasticity  𝑟 = shell radius 

𝜈  = Poisson ratio 

 

 

 
(a) Circular cylindrical shell bifurcation 

 

 
(b) Cylindrical shell snap-through 

Fig. II-16. Shell bifurcation and snap-through examples [79,80]. 
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The imperfection sensitivity of these cylindrical shells is attributed to interactions 

among the buckling modes, which tend to be conglomerated around the bifurcation point, 

leading many potential branches to follow [81]. Is important to state that a structure must 

buckle at its first bifurcation load [77], which then asks whether a particular theory is 

suitable to accurately make such prediction. 

The amount of published documentation on circular cylindrical shells lends an 

opportunity to evaluate the application of geometric imperfections and material 

nonlinearity in Abaqus based on the progress made on these shells. For example, Bažant 

[77] argues that localized inelastic strain can play an important part in stability through 

strain softening. He also states that “the greatest emphasis is currently being placed on the 

analysis of instabilities and bifurcations caused by propagation of softening damage or 

fracture in materials”. Furthermore, Kobayashi and Mihara [82] discussed and validated 

the use of Abaqus’ implicit and explicit techniques on a circular cylindrical application 

with linear material. These arguments drove a study on the combined effects that geometric 

imperfections and material nonlinearity have on this application using the Johnson-Cook 

(JC)31 model in order to understand its application in Abaqus and its relation to shell 

thickness variations. 

The Johnson-Cook model (Eq. 27) is a phenomenological viscoplastic model, 

developed in 1983 by Johnson and Cook [83]. Initially developed for metals in high strain 

rate applications, it models stress flow as a function of inelastic strain, strain rate and 

 
31 The JC model was used due to the immediate data availability of materials resembling the stiffness 

properties required by current VLTAS designs, such as the Hexakis; see section 2.1.2. 
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temperature, to capture isotropic hardening, strain hardening, and thermal softening; left to 

right with respect to the bracketed expressions in Eq. 27. 

 𝜎𝑦(휀𝑝, 휀�̇�, 𝑇) = [𝐴 + 𝐵휀𝑝
𝑛] [1 + 𝐶 ln (

휀�̇�

휀0̇

)] [1 − (
𝑇 − 𝑇0

𝑇𝑚 − 𝑇0

)
𝑚

] (27) 

 

where: 𝑇𝑚 = melting temperature 

𝑇0 = reference or room temperature 

휀𝑝 = effective (accumulated) inelastic strain 

휀�̇� = effective (accumulated) inelastic strain rate 

휀0̇ = reference strain rate (i.e., effective inelastic strain rate of the quasi-static test 

used to determine the yield and hardening parameters A, B and n) 

A =  initial yield stress 

B =  strain hardening constant 

C =  strain rate dependent coefficient 

n =  work-hardening exponent 

m =  thermal softening coefficient 

 

 

2.4. Surface Stress 

Classical continuum theory dismisses what is commonly referred to as ‘size-

dependent effects’, such as stress moments, inertial spin and other second-order effects 

inherent to the micro-structure of materials [84,85]. Dismissing such effects allows 

continuum theory to become size-independent [86]. Nonetheless, size-dependent effects 

can become significant when microstructural material dimensions are near the order of 

magnitude of structural components, such as in the case of microscale and nanoscale 

applications. Several generalized theories have been developed in an effort to include these 

effects, categorized by Raghu et al. [85] as micro continuum, gradient continuum, and 

nonlocal continuum theories. Earlier works include Eringen and Suhubi’s [84,87] nonlinear 

theory of micro-elastic solids, where they define a micro-elastic material as a “solid whose 

properties and behaviour are affected by the local deformations of the material points in 

any of its volume element”. Such theory is developed to account for local effects without 
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using a molecular point of view, and assuming that the mass of a macroscopic element 

contains continuous mass distributions formed by microscopic elements, such that the 

macroscopic element’s mass is the average of all microscopic masses. The “stress 

moments” effect, for example, arise from the sum of the moments resulting from the 

tractions acting on the surfaces of the deformed microscopic element. 

Surface stress can be defined as the change in surface energy per unit of strain [88]. 

In other words, it can be seen as the work required to stretch a surface [89], which reflects 

itself as a change in surface energy density. This effect is observed in many applications, 

such as stress evolution during film and coating synthesis processes [90], third-order shear 

effects on composites [85], and wrinkling of thin films [91]. Huang et al. [91] discusses the 

effect that surface stress has on the critical strain needed to wrinkle a thin film bonded to a 

thick elastic substrate. They treat it macroscopically by assuming that the film surface is a 

layer with its own modulus and thickness. The surface layer thickness is said to be material-

dependent, varying from one atomic spacing for crystalline materials to a few nanometers 

for polymers. They suggest that, in their application, surface stress effects become 

important for film thicknesses below 100 nm. 

This topic is briefly discussed here as previous VLTAS design dimensionality 

suggests that surface stress effects may need to be considered. These are evidently size- 

and material-dependent, and are therefore not considered. Nonetheless, the potential design 

variability that surface stress may result is kept in mind. 
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2.5. Summary 

Firstly, the types, current use, and development of LTAS were discussed to 

understand the basic principles behind LTA flight, as well as the motivation behind the 

regained interest. It was found that LTAS development targeted unmanned long-endurance 

missions, up to 100 days, for sensorial applications, such as ISR and technology testing. It 

was also found that operational altitudes were prescribed outside 6-18 km (20,000-60,000 

ft) altitude. This last finding precipitated a review identifying the altitude-dependent design 

factors. From an aircraft dynamics perspective, factors include wind speed and the resulting 

effects on the equations of motion, to include added mass. From a quasi-static design 

perspective, factors include pressure, density and temperature changes. Table III-1 lists 

these and their ranges. 

The development of NASA’s ULDB followed. The discussion contrasted the 

benefits and challenges of ZPB and SPB, where the long duration and daily altitude 

stability of SPB, combined with NASA’s altitude goal, drove them to the pumpkin-shaped 

SPB design. Said design was then described, both from stress reduction and material 

perspective. NASA’s selection of LLDPE as the material for its ULDB program drove the 

need for orthotropic nonlinear thermoviscoelastic models that could represent the 

temperature and pressure changes experienced by the balloon as it floats to and maintains 

operational altitude. It also drove the number of tendons (refer to Fig. II-8) in the design, 

as to not allow yielding of the SF family of LLDPE films produced for it. The ULDB 

discussion closed with a summary of the film testing conducted by Sterling and Fairbrother 

[48], identifying PET, PEN,  and LLDPE as potential films for LTAS design. 
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Recent VLTAS findings were summarized next. In recent research efforts, geodesic 

configurations and their extensions showed theoretical feasibility with linear elastic 

approximations of materials, such as CNT and graphene. Their frame/membrane 

configuration allowed researchers to determine that the frame stiffness and membrane’s 

material properties are key contributors to the stability of the structure. Their efforts left 

two potential paths: {1} develop the manufacturing processes that would enable their 

designs; or {2} explore alternate designs that more heavily compensate the lack of material 

stiffness thru other means. The research presented in this dissertation follows the latter path 

via air-stiffened designs. 

Structural M&S techniques and procedures were subsequently described based on 

the Abaqus FE package, with key processes presented in Fig. II-11. There, model 

definitions, such as material, mesh composition, and analysis procedures were discussed. 

Material definitions include the Hookean representation and creep power law, where the 

UMAT subroutine can be used to defined material behaviors not available in Abaqus when 

required. The mesh composition discussion led to the description of membrane elements, 

as the elements primarily used to describe the envelope films from which the air-stiffened 

designs are expected to be made from. The discussion on procedures covered both implicit 

and explicit solutions along with their methods of providing solution stability and 

convergence, including the inclusion of geometric nonlinearity and strain measures; the 

relevancy of the implicit and explicit solvers is clear in their use for Chapters V and VI, 

respectively. Lastly on this section, a review of the processes, algorithms, benefits, and 

limitations of topology optimization was presented; used to explore alternative designs 
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paths, as presented in Chapter IV. The chapter closed with {1} a discussion of several types 

of structural instabilities (e.g., bifurcation and snap-through) with findings on the circular 

cylindrical shell, and {2} surface stress effects. The former was brought as background 

information to support the study on instability and material nonlinearity presented in 

Chapter III. The latter was brought to raise the concern that resulting VLTAS 

dimensionality can make size-dependent effects significant. The notable modeling 

definitions used for the solutions presented in the subsequent chapters are listed in Table 

II-4 for reference. 

Table II-4. Finite element definitions used for solutions detailed in subsequent chapters. 

Category Modeling Component or Definition 
Chapter 

III IV V IV 

Solver 

Linear implicit static  x   

Nonlinear implicit dynamic with Euler integration framework x x x  

Nonlinear explicit dynamic    x 

Material 
Linear elastic (i.e., Hookean) constitutive representation x x x x 

Linear elastic with Johnson-Cook plasticity x    

Mesh 

2D axisymmetric shell elements   x  

2D axisymmetric membrane elements  x x  

2D axisymmetric solid elements  x   

3D shell elements x    

3D membrane elements  x  x 

3D solid elements  x   

Interaction 
Hydrostatic representation of fluid-structure interactions   x x 

Normal and tangential contact   x x 

Optimization Topology optimization  x   
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III. STABILITY AND MATERIAL NONLINEARITY 

The behavior of circular cylindrical shells subjected to static and dynamic loading 

has been studied, modeled and documented extensively. Their instability under axial 

loading is commonly associated with imperfections, boundary conditions and constant 

elastic moduli. This chapter rather focuses on the effects that increasingly smaller 

thicknesses and changes in the modulus after yield onset can have on the equilibrium path 

of circular cylindrical shells, as estimated by FE methods. Considering shell thicknesses 

from 1E-3 to 1E-6 m and using the Johnson-Cook constitutive relationship, results show 

that {1} the equilibrium path, as represented by the load-displacement curve, is highly 

dependent on shell thickness; and {2} inelastic strains drive path deviations and distinct 

post-collapse shapes. Furthermore, a reduction in the yield onset can result in yielding 

before collapse, changing the equilibrium path and post-collapse shape. 

The study of the circular cylindrical shell as part of the research presented in this 

dissertation is primarily motivated by the following question: is the selection of the 

theoretical approach dependent on the thinness of the film intended to shape a VLTAS? 

Understanding the role that increasingly small thicknesses have on a component’s ability 

to remain stable under compressive stresses was central in the decision-making process 

that led to air-stiffened designs. From a structural perspective, the idea of using air to shape 

and tense components with ineffectual bending stiffness for VLTAS design was driven by 

the limitations presented in this chapter. 
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3.1. Problem Description 

FE solutions of circular cylindrical shell models defined with both linear elastic and 

JC isotropic hardening were compared for shell thicknesses 1E-3, 1E-4, 1E-5 and 1E-6 m. 

The intent was twofold: {1} obtain quasi-static FE estimates of the equilibrium paths past 

the point of collapse for models defined with and without the inclusion of hardening; and 

{2} contrast the solutions across the thicknesses considered to evaluate the association of 

increasingly small thicknesses with the elemental formulation. 

The response of circular cylindrical shells to various loading configurations and 

time dependency, as well as boundary conditions, has been studied extensively. These 

shells are particularly susceptible to instability under axial loading, and their disposition to 

buckling before reaching their failure stress has led most investigations to focus on their 

stability under linear elastic material definitions. Patil et al. summarizes some of the 

published work regarding the instability of plates and shells [92]. Amabili dedicates a 

chapter on the stability of circular cylindrical shells under static and dynamic axial loading, 

where he mentions, among many recent developments, the classical prediction of the 

buckling load, 𝑃𝑐𝑟 [93]. Shown in Eq. 28, the classical 𝑃𝑐𝑟 is based on axisymmetric 

deformation and has been known to overestimate the critical point observed in experiments 

associated to effects not accounted by the underlying theory, specifically: pre-buckling 

deformations, boundary conditions, and geometric imperfections [81]. 

 𝑃𝑐𝑟 =
2𝜋𝐸ℎ2

√3(1 − 𝜐2)
 (28) 

 

where: 𝐸 = Young's modulus  𝜈 = Poisson’s ratio 

ℎ = thickness 
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The finite element model (FEM) description is introduced next, to include the mesh 

convergence study and the development of the applied imperfection. The equilibrium 

solutions for models of various thicknesses under both material definitions 

abovementioned are presented and discussed thereafter. The effects of a reduction in the 

onset of yield on the equilibrium path are discussed as well. 

3.2. Methodology 

 Geometry Description 

The FEM is based on the geometry shown in Fig. III-1, resulting in a shell of length-

to-diameter ratio of one, as to mirror the spherical volumes targeted in prior VLTAS 

research, with a thickness range representative of the film thicknesses expected for 

buoyancy potential. The rotational and displacement degrees of freedom (DOF) of the top 

and bottom edges were constrained, except for the vertical displacement DOF at the top 

edge, which allows free loading along the z axis. 

 

Fig. III-1. Circular cylindrical shell dimensions diagram. 

In an FEM environment, a perfect circular cylindrical shell will not collapse when 

perfectly vertical loading is applied unless an imperfection is applied. Rather than focusing 

on the imperfection sensitivity of the circular cylindrical shell considered, the use of an 

imperfection is solely used to trigger deformation patterns that enable bifurcation. 
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Therefore, a geometric imperfection is selected such that its impact on the shell’s collapse 

response is minimized, therefore intending to estimate the collapse responses of near-

perfect shell. Specifically, eigenmode imperfections are chosen since it is a numerical 

approach easily applied in general FEM codes and useful to produce arbitrary 

imperfections. 

The effect of the eigenmode imperfection on the collapse response is an important 

consideration since imperfection sensitivity is highly dependent on its shape and amplitude 

[94]. Teng and Rotter showed that the knock-down factor (i.e., ratio of observed to classical 

bifurcation or critical loads) approximately ranges from 0.2 - 0.75 for axisymmetric 

imperfections of amplitudes ranging from 0.1ℎ to ℎ, respectively, where ℎ is the thickness 

of the shell. Furthermore, asymmetric imperfections showed a slightly higher knock-down 

factor, ranging from 0.25 – 0.9 within the same amplitude range. These exemplify 

thickness-dependent effects found on curved thin structures under compression. 

Considering the former discussion and in the interest of representing an arbitrary 

imperfection with minimal impact on the bifurcation, the imperfection used to produce the 

initial state of the shell in the collapse analyses presented was based on the combination of 

the first 17 eigenmodes obtained from a linear buckling analysis, and an amplitude of 0.1ℎ. 

The initial state of the resulting cylinder is shown in Fig. III-2, magnified 1,000 times (top) 

and 10,000 times (bottom); the magnification was needed to visually discern shell 

imperfections. Combining eigenmodes provided an imperfection that superimposed 

axisymmetric and asymmetric modes, where the authors considered 17 eigenmodes enough 

modes to capture the axial and circumferential waves observed in the modes extracted. 
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Kobayashi and Mira utilized this approach with 18 eigenmodes and an amplitude of 0.01ℎ, 

obtaining a knock-down factor of approximately 0.9 in their FEM solutions and matching 

the equilibrium path to experimental results within most regions of pre- and post-collapse 

[82]. Even so, Kobayashi and Mira stated that no significant differences were found in the 

collapse response when changing eigenmodes assigned to the imperfection. 

 

Fig. III-2. Model with imperfection from 17 buckling vectors and 0.1h amplitude. 

 Material Description 

The shell material was defined as either linear elastic with 𝐸 = 110 GPa and 𝜐 = 

0.36 only, or including the JC model with isotropic hardening only as shown in Eq. 29, 

where 𝜎𝑓 is the flow stress, 𝐴 is the yield stress, 𝐵 is the strain hardening constant, 휀𝑝 is 

the inelastic strain, and 𝑛 is the strain hardening coefficient. Fig. III-3 exemplifies the stress 

and strain curves for the material models selected, and the specific values selected for 𝐴, 

𝐵 and 𝑛 of Eq. 29, here referred to as JC plasticity. Is relevant to mention that, while such 

high modulus is unavailable in polymer films, such films have shown nonlinear material 
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behavior (refer to section 2.1.2). This material representation (Fig. III-3) is therefore 

intended to exemplify effects associated with changes in moduli triggered by accumulated 

strains. 

 𝜎𝑓(휀𝑝) = 𝐴 + 𝐵휀𝑝
𝑛 (29) 

 

where: 휀𝑝 = effective (accumulated) inelastic strain 

A = 8.62E8 Pa = initial yield stress 

B = 3.309E8 Pa =  strain hardening constant 

n = 0.34 = work-hardening exponent 

 

 

 

Fig. III-3. Uniaxial stress vs strain representation of material models. 

The complete JC relationship is a semiempirical model initially developed to 

describe the inelastic behavior of metals at high strain, strain rates and temperatures [95–

98]. The complete relationship includes strain hardening and thermal softening terms, 

shown in Eq. 3032. Nonetheless, for the purpose of static and quasi-static solutions at typical 

room temperatures, just as the solutions presented, the strain hardening and thermal 

softening terms become negligible and were therefore excluded from these solutions. In 

 
32 Eq. 27 is repeated as Eq. 30 to include specific values used for the model constants in the variable 

description. 
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fact, quasi-static solutions that included Eq. 30 under an adiabatic presumption yielded 

negligible differences compared to those presented33. 

 𝜎𝑓(휀𝑝, 휀�̇�, 𝑇) = [𝐴 + 𝐵휀𝑝
𝑛] [1 + 𝐶 ln (

휀�̇�

휀0̇

)] [1 − (
𝑇 − 𝑇0

𝑇𝑚 − 𝑇0

)
𝑚

] (30) 

 

where: 𝑇𝑚 = melting temperature 

𝑇0 = 273.15 K = reference or room temperature 

휀𝑝 = effective (accumulated) inelastic strain 

휀�̇� = effective (accumulated) inelastic strain rate 

휀0̇ = 1 = reference strain rate (i.e., effective inelastic strain rate of the quasi-static 

test used to determine the yield and hardening parameters A, B and n) 

A = 8.62E8 Pa = initial yield stress 

B = 3.309E8 Pa =  strain hardening constant 

C = 0.012 =  strain rate dependent coefficient 

n = 0.34 = work-hardening exponent 

m = 0.8 =  thermal softening coefficient 

 

 

 Applied Loading 

A displacement load was located at the top center (refer to Fig. III-1), equally 

distributed along the vertical displacement DOF of all the nodes located along the top edge 

of the shell. Said loading was applied linearly in increments over a timescale of 1 s for a 

maximum target displacement of 0.01 m or 1.2% of the cylinder’s initial length. Displaced-

controlled analyses were used to look at changes in load resultant at the reference node for 

an increasing displacement condition. In other words, for an ever-increasing displacement 

condition, there are equilibrium states that produce varying load resultants. 

 Solver Selection 

The solutions presented used an implicit dynamics solver with the backward Euler 

operator framework to produce quasi-static solutions, as solution convergence after 

collapse limited the solutions produced with Abaqus static solvers. Specifically, the 

Newton-Raphson-based static solver with and without artificial damping for stabilization, 

 
33 The solutions presented in Appendix A demonstrate the similarity among solutions of models defined with 

various JC material components. 
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and the modified Riks static solver [59,61,99]. Additionally, geometric nonlinearity is 

enabled to allow collapse responses to develop. These solver selections enabled the 

evaluation of the Helical Sphere air-stiffened design presented in Chapter V, which 

encounters the fundamental nonlinearities of the collapse solution. 

The Abaqus implicit dynamic solver uses either HHT or backward Euler operators 

for the numerical integration of the equilibrium equations; both provide various degree of 

algorithmic damping [70,100]. The backward Euler operator was chosen by the authors for 

the development of the solution presented as it is known to damp the solution significantly 

over time, providing larger algorithmic damping than the HHT [101]. Its dissipative 

characteristics are exemplified by the rapid loss of angular momentum of a spinning cube 

[102] or the damped response of an undamped mass-spring system [103]. Such significant 

energy dissipation (i.e., energy underprediction of a dynamic system) promotes the desired 

quasi-static solution, where any remaining inertial effects regularize unstable static 

behavior [61]. Those inertial effects are reflected as KE in the solution (refer to the energy 

discussion below). Contrary to the HHT operator, the amount of dissipation is not explicitly 

controlled, but rather becomes a function of discretization, time step, and stiffness [102]. 

Static solvers remove damping or use alternate sources of damping to promote 

convergence, but use attempts of the Abaqus static solver negated convergence early in the 

solution [61]. Is important to recognize, nonetheless, that the solutions presented here were 

similar to those produced with implicit static and Riks solvers up to the points where the 

static solvers stopped converging. Furthermore, Kobayashi and Mihara utilized implicit 
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static and explicit dynamic solvers to find the equilibrium path of their linear elastic 

cylinder, showing similar results [82]. 

In terms of accuracy, the backward Euler operator is first order, that is, the local 

truncation error (i.e., error associated with the truncation of the Taylor series at each time 

increment) is 𝑂(𝛥𝑡2) and the global error (i.e., the total error or deviation from the exact 

solution) is 𝑂(𝛥𝑡), where the global error is a function of the truncation error and the time 

steeping scheme [100,104]. Abaqus controls the accuracy of implicit dynamic solutions 

with backward Euler using the same convergence criteria as (implicit) static solutions. 

Among other criteria, Abaqus ensures that errors in the residuals are less than 0.005, or 

0.02 if convergence is not achieved within nine iterations [61]. The solution presented 

below used these default residual values and time steps that ranged from 2E-6 s to 2.6E-2 

s to achieve convergence at each increment. 

 Mesh Selection 

A mesh convergence study was conducted before the nonlinear analysis, comparing 

the first buckling eigenvalue between models discretized with first-order, S4R, or second-

order, S8R, reduced integration shell elements. The cylinder was discretized by seeding 

uniformly along the top and bottom edges, and allowing Abaqus to create a structured 

mesh. The first eigenvalue, 𝜆1, was then extracted and compared with the critical load, 𝑃𝑐𝑟 

(refer to Eq. 28).  The percent variation, 𝜖 = |𝜆1 − 𝑃𝑐𝑟|/𝑃𝑐𝑟,  was then calculated to produce 

Fig. III-4. One percent variation was reached with 8,580 first-order elements (9,000 nodes), 

while it took 1,540 second-order elements (5,000 nodes) to reach the same variation. This 
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difference in mesh size is attributed to the improved curvature approximation of the 

second-order element over that of the first-order element. 

Nonetheless, the nonlinear solutions shown were produced with 27,200 first-order 

shell elements: 340 along the circumference and 80 along the length; such discretization 

intends to ensure that changes in shape along the circumference are captured accurately 

while taking the computational efficiency of linear elements. Another effect associated 

with the discretization, although not shown here, was that the eigenvectors associated with 

magnitude-ordered eigenvalues were qualitatively different, while the eigenvalues were 

closely spaced, a characteristic of imperfection-sensitive structures [105,106]. 

 

Fig. III-4. Mesh convergence study results. 

The mesh convergence process is summarized in Fig. III-5. Each model iteration, 

defined in Python script, is edited and sent from MATLAB to Abaqus for processing and 

analysis. The outputs are then read and imported to MATLAB. This mesh convergence 

process is useful when mesh generation is based on parameter(s) variations that can be 

automated. In this case, the seed number that controls the number of elements along the 
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top and bottom edges was changed through a loop. Furthermore, similar convergence 

processes were followed to evaluate mesh convergence of the air-stiffened designs 

presented in Chapter V and VI. 

 

Fig. III-5. Mesh convergence study process. 

3.3. Equilibrium Paths 

 Thickness Effects 

Given the FEM description above, solutions were obtained for thickness from 1E-3 

to 1E-6 meters, up to and past the collapse points34. Table III-1 shows the four thicknesses 

considered in this study, along with radius-to-thickness ratios and critical loads as 

estimated by Eq. 28; note that the estimated critical load decreases with decreasing 

thickness or increasing radius-to-thickness ratio. 

 
34 The Python codes used to create the Abaqus model and export solution data are presented in sections A.2 

and A.3 of Appendix A, respectively. 
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Table III-1. Shell thicknesses considered. 

Thickness (m) Radius/Thickness Critical Load (N)1 

1E-3 4.064E+2 4.279E+5 

1E-4 4.064E+3 4.279E+3 

1E-5 4.064E+4 4.279E+1 

1E-6 4.064E+5 4.279E-1 

1Refer to Eq. 28. 

The resulting equilibrium paths for the four thicknesses in Table III-1 are included 

in Figs. 6 - 9, respectively, in the form of axial (load) resultant normalized by their 

respective 𝑃𝑐𝑟 vs. 𝛿𝐿/𝐿 (i.e., length reduction during loading normalized by the initial 

length of the cylinder). Each figure plots the equilibrium paths resulting from models 

defined with linear elastic material in green or JC material in black. 

In the case of ℎ = 1E-3 m, Fig. III-6, the path of the linear elastic material model 

remains linear up to collapse (i.e., axial resultant is approximately 0.82 that of the estimated 

𝑃𝑐𝑟), at which point its slope becomes highly negative until a new equilibrium state that 

allows incremental loading is found. Each slope change represents collapse of the current 

state (i.e., positive to negative slope) followed by a new state that allows incremental 

loading (i.e., negative to positive slope). During this process, equilibrium states often form 

shapes, or contours, distinct from the previous, rather than the progression of the previous. 

On the contrary, the shapes of the JC material model show a visual relationship even though 

its path does not deviate from the linear elastic model until (0.15, 0.22); this is attributed 

to the location where plasticity starts within the path. 
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Fig. III-6. Equilibrium paths of elastic and elasto-plastic 1E-3 m thin shells. 

The von Mises stress contours in Fig. III-6 show the qualitative shape pre-collapse, 

at the onset of plasticity, and post-collapse. Note that while both models still follow each 

other’s path until (0.15, 0.22), and the onset of plasticity develops shape deviations that 

categorically change the post-collapse response. This is a direct result of high stress regions 

developed during the solution, which enable the JC criteria (i.e., onset of plasticity), 

effectively changing the stiffness and developing inelastic strains in these regions. This 

encourages the new shapes to be progressions of the former, and results in the crushing 

observed in the post-collapse shape for the model with JC plasticity. 

Effects of materials nonlinearity and inelastic strains are clearly significant for the 

model with ℎ = 1E-3 m. Nonetheless, those effects become insignificant as ℎ → 1E-6 m 

(refer to Figs. 7 - 9).  Furthermore, inelastic strain was not present in models with 
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ℎ = 1E-5 m and ℎ = 1E-6 m, which indicates that material stiffness changes did not occur 

within the converged solution. These last two models stopped at 3,000 increments35, before 

reaching 𝛿𝐿/𝐿 similar to those observed in Figs. 6 and 7. Slow convergence is attributed 

to the lack of bending stiffness, which in turn required significantly smaller time steps. 

 

Fig. III-7. Equilibrium paths of elastic and elasto-plastic 1E-4 m thin shells. 

 

Fig. III-8. Equilibrium paths of elastic and elasto-plastic 1E-5 m thin shells. 

 
35 The maximum of increments was set to 3,000 to constrain computing time. This number of increments 

allowed for post-collapse behavior, while limiting output storage requirements and post-processing time. 

This was avoided in the Chapters V and IV solutions by limiting the number of points at which outputs are 

saved (e.g., solutions discussed in Chapter VI are based on a 1000 equally-distributed time points). 
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Fig. III-9. Equilibrium paths of elastic and elasto-plastic 1E-6 m thin shells. 

Overall, the collapse behavior is shown to be highly dependent on shell thickness. 

As thickness tends to zero, the collapse load is increasingly greater than 𝑃𝑐𝑟 (refer to Figs. 

7 - 9). It is known that bending generally drives collapse, as with the case of ℎ = 1E-3 m, 

but bending effects reduce as thicknesses tend to zero, which makes the stiffness among 

elements and membrane stresses drive the collapse behavior. In other words, the shell acts 

like a membrane while still satisfying continuity along the boundary, which creates folds. 

These folds are local instabilities characterized as material crushing or wrinkling, 

generating the global (unstable) response. The theory does not consider these effects, which 

can justify the collapse load being greater than 𝑃𝑐𝑟 for thicknesses below 1E-3 m. One 

course of further study is to ask whether a portion or all of the stiffness as a result of the 

folds is numerical in nature and associated with the discretization. Another course is to 

determine whether an alternate collapse path can be found when the imperfection follows 

a diamond-like Yoshimura pattern; Yoshimura proved that the minimum energy solution 

of a buckled circular cylindrical shell due to a centered compressive load produced a 

polyhedral surface pattern consisting of identical plane triangles [78,107]. 



 

72 

 Solution Mesh Dependence 

To the first course, the mesh seeding was increased from 340 to 400 along the 

circumference for the stable case of ℎ = 1E-3 m to evaluate if the mesh size has any effect 

on collapse; Fig. III-10 compares the resulting paths. The onset of collapse increased from 

0.82𝑃𝑐𝑟 to 0.85𝑃𝑐𝑟; the difference perhaps attributed to the states of equilibrium now 

available because of the added DOF. In either case, inelasticity started after the onset of 

collapse for both cases, and paths merged after 𝛿𝐿/𝐿 = 0.65% up to the end of the 

analysis. This result is not sufficient to dismiss the mesh dependence entirely, but rather 

provides a sample of its level of impact on the solution. 

 

Fig. III-10. Equilibrium paths of an elastic 1E-3 m thin shell with two mesh sizes. 

 Yield Limit Reduction Effects 

Another concern was whether an earlier change in material stiffness could have an 

effect on the collapse behavior. This was evaluated by reducing the yield, 𝐴 in Eq. 29, by 

an order of magnitude, and running the collapse analysis for ℎ = 1E-3 m. Fig. III-11 

compares the uniaxial stress vs strain curves for the JC model with isotropic hardening at 
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the original and lowered yield limits. The paths for both cases are plotted in Fig. III-12. 

The black and blue curves in Fig. III-12 represent the models containing the original and 

reduced yield limits, respectively. Note that, contrary to the original yield limit, the reduced 

yield limit results in plasticity before collapse. Such change drives collapse at 0.37𝑃𝑐𝑟, 

compared to 0.82𝑃𝑐𝑟 for the original. Fig. III-12 also shows its effects on the von Mises 

contour, a collapsed shape significantly different than the original (refer to Fig. III-6). 

 

Fig. III-11. Uniaxial stress vs strain representation for two yield limits. 

    

Fig. III-12. Equilibrium paths of an elastic 1E-3 m thin shell with two yield limits. 
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 Effects Associated with Potential Manufacturing Faults 

Manufacturing faults is another topic that 

would need to be considered once an air-stiffened 

design with buoyancy potential has been identified. 

As such, it is considered here to illustrate effects 

associated with hypothetical modulus and thickness changes that manufacturing processes 

may yield. These were hypothesized by reducing the thickness or modulus to half of the 

original value around the circumference at three quarters the length (L) ± 0.025L, as shown 

in Fig. III-13. Collapse analyses were then conducted using JC with isotropic hardening 

and thermal softening material definition. Reducing the thickness within this region 

resulted in a collapse load that was about 1% lower than that of the model without faults. 

Interestingly, decreasing the stiffness within the same region resulted in a 10% increase in 

collapse load. Both shapes are compared in Fig. III-14. The collapse concentrated around 

the defect region for both cases. Nonetheless, the lower stiffness at the defect in the ½ E 

case resulted in further strain energy absorption around the region, delaying the onset of 

global collapse. 

 Surface Effects 

Lastly, surface effects are a relevant consideration for thicknesses smaller than 

those considered here. The Gurtin–Murdoch model is one of the first to present a 

framework for surface stresses [108,109], showing significant surface stress effects at 

nanoscale thicknesses [110,111]. Surface energy approaches have similarly predicted 

significant surface effects at the nanoscale [112]. And while there is a fundamental 

Fig. III-13. Fault location. 
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difference between surface stress and surface energy [113], these theories validate surface 

effects as additions to the ‘bulk’ response. The thicknesses considered herein, however, are 

large enough to preclude their significance since they are important at size levels in the 

angstrom dimension. 

 

Fig. III-14. Collapsed shapes comparison for faulted models. 

3.4. Summary and Conclusions 

This chapter highlights the transition of shell to membrane, or loss of significant 

bending stiffness, through the representation of the equilibrium path of a circular 

cylindrical shell. The collapse solution of the linear elastic circular cylindrical shell with 

ℎ = 1E-3 m served as a comparative base for its nonlinear material counterpart modeled 

with a JC material. For such case, the yield onset after collapse drove the further 

development of the collapsed shape, a result attributed to the change of stiffness and 
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inelastic strain accumulation. Furthermore, the yield limit proved to be an integral part in 

the collapse solution, where a yield limit 1/10 of the original changed the point of collapse 

and the equilibrium path post-collapse. Additionally, finer mesh discretization showed 

insignificant effects on the collapse point prediction, with notable differences in portions 

of the equilibrium path post-collapse.  

In terms of effects associated with thickness, the material nonlinearity effects 

observed in the circular cylindrical shell with ℎ = 1E-3 m dissipated as ℎ → 1E-6 m. The 

shell collapse solution showed a strong dependence on thickness, attributed to the loss of 

bending stiffness as thickness becomes very small, leaving membrane forces as the solution 

drivers. For example, the classical critical load underpredicted the collapse load observed 

in the solutions of shells with thicknesses 1E-4, 1E-5 and 1E-6. This clearly opposes what 

it is typically observed in experiments, where the critical load overpredicts the collapse 

load and is attributed to effects not accounted in the theory, such as the geometric 

imperfection applied [81]. Furthermore, the implicit dynamics solver regularized solution 

nonlinearities (e.g., geometric, contact and material) via the algorithmic damping inherent 

to the backward Euler operator, allowing convergence well into the post-collapse region, a 

region not accessible with static solvers. 

The loss of bending stiffness discussed here prompted the use of membrane 

elements to characterize the Helical Sphere and Icoron air-stiffened designs documented 

in Chapters V and VI, respectively, where thicknesses in the 1E-6 order are used. The 

validity of membrane formulation (as opposed to shell) was confirmed during the mesh 

convergence study of the Helical Sphere air-stiffened design characterization by noting 
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negligible differences compared to shell element representations. Also, the implementation 

of the implicit dynamic solver was carried over to the solutions discussed in Chapter V, 

where quasi-static behavior was validated. 
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IV. DESIGN PATHS INVESTIGATION 

Prior research of LTA structures withstanding, the study of air-stiffen designs as 

potential VLTAS is preceded by the consideration of several design paths. The first path 

was the consideration of a spherical shell. Specifically, the use of a low-density core 

material exhibiting high specific stiffness, such as Balsa wood. Such path was deemed 

unfeasible because the thicknesses required to prevent buckling did not allow for positive 

buoyancy. The second path was the use of topology optimization to challenge prior design 

assumptions by letting strain-based optimization objectives drive the internal composition 

of a spherical structure given weight constraints. Such path led to arguably novel 

compositions that rely on components whose constrain-driven thicknesses have shown 

insufficient bending stiffness to sustain the resulting loading. The issues of minimum 

manufacturable dimensions and the loss of bending stiffness are, once again, shown to be 

central limitations. Lastly, the third path validates the use of the classical hoop stress to 

estimate membrane radii required to meet stress targets by evaluating a circular geometry 

resembling a long tube. Such path poises the classical hoop stress as a conservative 

approximation and exposes load rate effects on the dynamic solution. These three paths 

shaped the idea of air-stiffened designs and supported the development and 

characterization of the Helical Sphere and Icoron presented in Chapters V and VI, 

respectively. 

4.1. Coated Spherical Shell 

The coated spherical shell is an appealing design due to its natural symmetry and 

simplicity. Nonetheless, prior VLTAS efforts deviated from such simplicity due to its 
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apparent infeasibility at the time at which they were considered [52]. Nonetheless, the 

review of the spherical shell provides background as to why such design is unfeasible, and 

supports an answer to the following question: can a low-density core, such as foam or light 

wood, make the spherical shell feasible? The short answer is that feasibility could not be 

proven given the low-density, commercially available, materials considered. 

The maximum material density of which a rigid spherical shell can be manufactured 

to allow for buoyancy given an internal vacuum is estimated in Fig. IV-1 for a range of 

radius over thickness ratios. The need for high radius-to-thickness ratios in order to meet 

W/B ratio requirements is then exemplified by comparing Fig. IV-1 with the densities of 

the materials in Table IV-1 (e.g., many polymers and most metals have densities over 1000 

kg/m3, requiring radius-to-thickness ratios over 2400). The loss of bending stiffness 

becomes an important issue as radius-to-thickness ratios increase, which in turn challenges 

the validity of the shell. Therefore, low-density materials were targeted to preserve the 

bending capabilities characteristic of the shell. 

 

Fig. IV-1. Maximum material density required for buoyancy of spherical shell. 
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Table IV-1. Specific stiffness and strength of materials considered [50,57,114]. 

Material 
Density 

(kg/m3) 

Specific Stiffness 

[GPa/(kg/m3)] 

Specific Strength 

[MPa/(kg/m3)] 

DIAB Divinycell H45 Foam 48 0.001 0.013 

3A BALTEK® SB.50 Structural End-Grain Balsa 94 0.021 0.067 

3A BALTEK® SB.100 Structural End-Grain Balsa 153 0.026 0.084 

Carbon-Core Carbon Balsa Wood 160 0.025 0.082 

ERG Aerospace Duocel® Silicon Carbide Foam 161 0.017 0.009 

3A BALTEK® SB.150 Structural End-Grain Balsa 247 0.032 0.106 

ERG Aerospace Duocel® Silicon Carbide Foam 385 0.018 0.014 

3D Systems DuraForm® AF Nylon 690 0.005 0.064 

Carbon Nanotube/Bismaleimide Composite 1250 0.234 3.040 

DuPont Teijin Mylar® HP PET Film, 12.2 µm 1390 0.003 0.144 

DuPont Kapton 50KN Polyimide Film, 13 µm 1450 0.003 0.143 

Beryllium 1844 0.164 0.201 

Graphene 2000 0.250 25.000 

Titanium Ti-6Al-4V (Grade 5), Annealed 4430 0.026 0.214 

Low density materials then led to reduced radius-to-thickness ratios, which reduces 

the required material stiffness. Given a W/B = 1 and a buckling pressure [115] equal to the 

atmospheric air pressure, Fig. IV-2 estimates the minimum required specific stiffness for 

buoyancy at several atmospheric altitudes given any radius-to-thickness ratio. Tracing the 

minimum radius-to-thickness required for buoyancy in Fig. IV-1 given any material with 

density below 1000 kg/m3 in Table IV-1, is notable that none meet the minimum specific 

stiffness required to prevent buckling. For example, Fig. IV-3 shows the W/B ratio across 

thickness of 0.6096 m in diameter shells made with 3A BALTEK® SB.50 Structural 

End-Grain Balsa with a 1 µm coating (for permeability-reduction purposes). Note that the 

minimum thickness required to prevent buckling is above the maximum required for a 

W/B < 1. Moreover, manufacturability and the design changes required to overcome the 

assumptions made (regarding vacuum levels and material uniformity) further discourages 

the feasibility of the shell as a VLTAS. 
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Fig. IV-2. Minimum material specific stiffness required for buoyancy of spherical shell. 

 

Fig. IV-3. Example of minimum thickness required for buoyancy of coated spherical shell. 

Nonetheless, the study of the spherical shell was key to the transition to air-stiffened 

designs, as it forced the following question: given that a core material stiff enough to enable 

buoyancy was not found, and that the low-density cores considered need an external barrier 

that limits air permeability, can such thin barrier(s) drive the geometry while the very 

lightweight material being removed from its internal, air, shapes or stiffens said barrier(s)? 
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Such question, informed by the literature on NASA’s SPB research and development, 

drove the development of the Helical Sphere as an air-stiffened design. 

4.2. Topology Optimization 

The second path investigated was the use of strain-driven topology optimization 

based on the following three initial representations (i.e., initial geometric state) of a 

spherical volume: sandwich shell, solid, and as semicircular sections, as shown in Fig. 

IV-4. The intent was to find other design paths not envisioned that could either produce a 

design alternative to the Helical Sphere, which reduced material stiffness and strength 

requirements, or inform the Helical Sphere’s development. 

 

Fig. IV-4. Modeling representations for topology optimization. 

The topology optimization of the three representations was conducted using 

Abaqus/Tosca’s sensitivity-based (i.e., general) algorithm combined with SIMP (i.e., for 
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each element, its modulus equals the relative density cubed times the initial material 

density defined), in order to observe continuous relative density changes throughout the 

design spaces as opposed to discrete changes characteristic of the condition-based 

algorithm. The objective was to minimize the strain energy, or maximize the stiffness, of 

the core material given a volume fraction constraint. The membranes covering the cores 

where not included in the design space as to allow continuity of load transfer, representing 

the low-permeability barrier separating the core and the atmosphere. Furthermore, all of 

the model parameters discussed below (and presented in Table IV-2, Table IV-3 and Table 

IV-4) were selected with manufacturability potential in mind as membrane properties 

resemble commercially-available PEN film at room temperature, the relatively-small 

diameter facilitates prototyping, and the volume fraction constraints are estimated to drive 

their weight below that of the air they displace (when small displacement is assumed). 

 Two-Dimensional Axisymmetric Representation of the Spherical 

Sandwich Shell 

The first representation considered was a 2D axisymmetric representation of the 

spherical sandwich shell. Albeit the sandwich shell was deemed unfeasible as presented in 

section 4.1, its inclusion for topology optimization was intended to explore whether the 

topology of the core, or connectivity between internal and external membrane, could be 

optimized. In other words, topology optimization attempted to find topologies that could 

provide this connectivity by, effectively, removing material from an initially solid core. 

Starting with the design shown at the top of Fig. IV-4, the membranes and core were made 

into one homogeneous solid (i.e., a spherical shell) to produce the W/B ratio shown in Eq. 



 

84 

31. Knowing that the core thickness ℎ = 𝑟𝑜 − 𝑟𝑖, making the W/B = 1 and solving for ℎ 

results in Eq. 32 (i.e., an initial shell thickness that is neutrally buoyant at a chosen altitude 

and vacuum pressure). 

 
𝑊

𝐵
=

4
3

𝜋𝑟𝑖
3𝜌𝑖𝑎 +

4
3

𝜋(𝑟𝑜
3 − 𝑟𝑖

3)𝜌𝑚

4
3

𝜋𝑟𝑜
3𝜌𝑜𝑎

≡ 1 (31) 

 ℎ = 𝑟𝑜 − 𝑟𝑜 [
𝜌𝑜𝑎{ℎ} − 𝜌𝑚

𝜌𝑖𝑎{ℎ} − 𝜌𝑚

]

1
3

 (32) 

 

where: ℎ = thickness  ( )𝑖/𝑜     = internal/external quantity 

𝜌 = density  ( )( )𝑎  = air quantity 

𝑟 = radius                ( )( )𝑚 = membrane/material quantity 

    { }          = function of 

 

 

Table IV-2 summarizes the model definitions representing the sandwich shell, 

including geometry, material, loading and constraint. The thickness was calculated based 

on 0 km sea level altitude to simulate as the structure was built at SL, PEN material density, 

0.6096 m diameter, and a vacuum pressure of 3. kPa36. Lastly, the constraint was set to a 

volume fraction of 0.52, based on a W/B ratio equals to one at 6 km altitude. Starting from 

Eq. 31, the volume fraction in Eq. 33 was developed by considering the fraction of original 

core volume needed for the structure to weight the same or less than the air it displaces at 

6 km. 

 𝑣𝑓 ≤
𝑟𝑜

3[𝜌𝑜𝑎]20 kft − 𝑟𝑖
3[𝜌𝑖𝑎]0 kft

(𝑟𝑜
3 − 𝑟𝑖

3)𝜌𝑚

 (33) 

 

where: 𝑣𝑓 = thickness  ( )𝑖/𝑜     = internal/external quantity 

𝜌 = density  ( )( )𝑎  = air quantity 

𝑟 = radius                ( )( )𝑚 = membrane/material quantity 

 

 

 
36 A vacuum pressure of 25 torr was chosen since a perfect vacuum is unattainable. The American Vacuum 

Society considers 25 torr the point between low and medium vacuum [155], which is achievable by some 

single pumps currently on the market [136,156]. 
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Table IV-2. Axisymmetric model parameters for sandwich shell as initial representation. 

Definition Value(s) Comments 

Initial 

Geometry  

- Spherical sandwich shell 

- External diameter = 0.6096 m 

- Int./Ext. membranes thickness = 12.60 µm 

- Core thickness = 61.42 µm 

Total thickness from Eq. 32, 

material properties, vacuum 

pressure, and 0 km altitude. 

Material 

- Linear isotropic 

- Density   = 1390 kg/m3 

- Modulus = 4.36E9 Pa 

- Poisson’s ratio =  0.38 

Both the core and the 

membrane are based on 

DuPont Mylar® HP 12.6 µm 

PET film [116] properties. 

Analysis 
- Abaqus static general 

- Linear geometric 

Abaqus topology optimization 

disallows dynamic analyses. 

Mesh 

- Core: axisymmetric second-order elements, five 

across the thickness 

- Membrane: axisymmetric first-order elements, one 

across the thickness 

- Average aspect ratio of one 

Core element code is CAX4R, 

and membrane element code is 

MAX1. 

Loading - Δ𝑃 = 101.325(0.967) = 97.981 kPa  

Boundary 

Conditions 
- Symmetry conditions along horizontal axis  

Objective - Minimize strain energy (i.e., maximize stiffness) 

Constraint - Volume fraction ≤ 0.52 Based on Eq. 33 at 6 km. 

Nevertheless, the sandwich shell and the solid core covered by a membrane resulted 

in inadequate solutions associated with the initial material stiffness and the stringent 

volume fraction constraints. As Fig. IV-5 shows, the sandwich shell linear static analysis 

resulted in overly large displacements. Furthermore, nonlinear geometric analysis 

experienced convergence limitations that prevented optimization iterations to occur. Such 

issues suggest that the defined material stiffness is insufficient for stable designs to 

develop, given the initial geometry. The solid core was then pursued after given findings. 
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Initial State Relative Density Plot 

Fig. IV-5. Sandwich shell topology optimization initial state and relative density plot. 

 Two-Dimensional Representation of a Solid Spherical Core Covered by 

an External Membrane 

The second representation considered was a 2D representation of a solid spherical 

core covered by an external membrane, as shown at the middle of Fig. IV-4. The core was 

made of isotropic properties resembling Balsa wood, while the membrane resembles Mylar 

film. Table IV-3 summarizes the model parameters. However, the use of a solid core as a 

starting point constrained the optimization to a stringent relative volume of 0.0008 to allow 

for buoyancy. Such stringent relative volume requirement resulted in a relative density plot 

with most of the core volume essentially removed. This is viewed in Fig. IV-6, where the 

relative density plot shows high relative densities concentrated along the axis of symmetry, 

and relative densities below 0.4 across the majority of the volume. Such design is expected 

to have the same instability limitations of the spherical shell discussed in section 4.1, and 

therefore this modeling representation was not studied further. Instead, the semicircular 

core sections were envisioned as a third representation to be optimized in order to ease the 

stringent relative volume constraint. 
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Table IV-3. Axisymmetric model parameters for solid sphere as initial representation. 

Definition Value(s) Comments 

Initial 

Geometry  

- Axisymmetric representation of solid sphere 

- External diameter = 0.6096 m 

- Ext. membrane thickness = 12.60 µm 

 

Membrane 

Material 

- Linear isotropic 

- Density   = 1390 kg/m3 

- Modulus = 4.36E9 Pa 

- Poisson’s ratio =  0.38 

Based on DuPont Mylar® HP 

12.6 µm PET film [116] 

properties. 

Core 

Material 

- Linear isotropic 

- Density   = 155 kg/m3 

- Modulus = 4.1E9 Pa 

- Poisson’s ratio =  0.48 

Based on DIAB ProBalsa PB 

[117] properties. 

Analysis 
- Abaqus static general 

- Linear geometric 

Abaqus topology optimization 

disallows dynamic analyses. 

Mesh 

- Core: axisymmetric second-order elements  

- Membrane: axisymmetric first-order elements, one 

across the thickness 

- Average aspect ratio of one 

Core element code is 

CAX4R, and membrane 

element code is MAX1. 

Loading - Δ𝑃 = 101.325(0.967) = 97.981 kPa  

Boundary 

Conditions 
- Symmetry conditions along horizontal axis  

Objective - Minimize strain energy (i.e., maximize stiffness) 

Constraint - Volume fraction ≤ 0.0008  

 

Fig. IV-6. Solid sphere topology optimization relative density plot. 
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 Three-Dimensional Representation of a Semicircular Section 

The third and last representation considered was a 3D representation of one 

semicircular section, of which several form the internal core of the structure. The 

geometrical development is diagramed in Fig. IV-7. Starting with a spherical membrane, 

its internal structure is composed of eight semicircular sections joined along an axis. Each 

section is then initially composed of a solid core covered by membrane material. The intent 

was to optimize the topology of the core to maximize stiffness given a volume constraint 

0.5, considerably relaxed compare to the second representation discussed above. The core 

was made of isotropic properties resembling Balsa wood, while the membrane resembled 

Mylar film properties. Table IV-4 summarizes the model parameters. 

 
Full sphere Sphere cross-section Section Thickness distribution 

Fig. IV-7. Geometrical development of semicircular section for topology optimization. 

Several topology optimizations of the semicircular core section were run to evaluate 

how the results change as design restrictions were added, specifically a member size greater 

than 10 mm (i.e., regions size with equal relative densities need to be ≥ 10 mm in length), 

a 30° rotational symmetry, and both combined. Fig. IV-8 shows the resulting relative 

density plots when no restrictions are applied and with each of the restrictions; only 

showing those regions of the core with resulting relative densities ≥ 0.6. All four 

optimization results showed high relative densities along the border, with sparse material 
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spread out across and along the axes of symmetry for those with rotations restrictions, as 

if borders and restrictions drive high relative densities while the volume constraint forces 

largely empty regions in between. 

Table IV-4. Three-dimensional model parameters for semicircular section as initial representation. 

Definition Value(s) Comments 

Initial 

Geometry  

- Semicircular section 

- External diameter = 0.6096 m 

- Ext. membranes thicknesses = 12.60 µm 

 

Membrane 

Material 

- Linear isotropic 

- Density   = 1390 kg/m3 

- Modulus = 4.36E9 Pa 

- Poisson’s ratio =  0.38 

Based on DuPont Mylar® HP 

12.6 µm PET film [116] 

properties. 

Core 

Material 

- Linear isotropic 

- Density   = 155 kg/m3 

- Modulus = 4.1E9 Pa 

- Poisson’s ratio =  0.48 

Based on DIAB ProBalsa PB 

[117] properties. 

Analysis 
- Abaqus static general 

- Linear geometric 

Abaqus topology optimization 

disallows dynamic analyses. 

Mesh 

- Core: 141,492 quadratic wedge elements, three 

across the thickness 

- Membrane: linear membrane elements, one across 

the thickness 

- Average aspect ratio of one 

Core element code is C3D15, 

and membrane element code is 

M3D4. 

Loading - Δ𝑃 = 101.325(0.967) = 97.981 kPa  

Boundary 

Conditions 
- Symmetry conditions along horizontal axis  

Objective - Minimize strain energy (i.e., maximize stiffness) 

Constraint - Volume fraction ≤ 0.5  

 

    

No restrictions 
Member size ≥ 10 mm 

restriction 

30° rotational symmetry 

restriction 

Member size ≥ 10 mm & 

30° rotational symmetry 

restrictions 

Fig. IV-8. Semicircular core section topology optimization relative density plots (showing elements 

with resulting relative densities at or above 0.6). 
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Common factors across all the ‘optimized’ solutions found, considering all three 

representations in Fig. IV-4, is the concentration of material along borders, and more 

importantly, the lack of characterization for the instability that has been previously 

observed when the complete strain tensor (i.e., geometrically nonlinear) is used to evaluate 

the response of such thin sections subjected to external pressure. While designs, such as 

the one presented in Fig. IV-9, can be inspired from the solutions found with the 

geometrically linear static analysis used here with the optimizer, the potential of these 

solutions should be evaluated when nonlinearity and loss of bending stiffness 

considerations are included. Nonetheless, these solutions demonstrated the challenges 

associated with searching for stable representations that enable VLTAS and cemented the 

idea of air-stiffened designs as the path showing the most potential. 

 

Fig. IV-9. Topology optimization findings driven design. 

4.3. Stress Control Initial Validation 

Stress control is central in enabling the immediate potential of air-stiffened designs. 

Specifically, the stress control validation presented here answers whether the hoop stress 

(Eq. 2 on page 6) is a valid estimate for the membrane stresses that the Helical Sphere will 

undergo. Since the Helical Sphere starts from a tube of constant internal radius and 

thickness, a plane strain analysis with a circular 2D cross-section was used to verify the 
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hoop stress estimates, and to find stresses at different loading conditions. Although the 

plane strain analysis assumes zero strain along the tube, which is strictly true for infinitely-

long tubes, it provided a computationally-efficient, time-dependent solution37. 

 Methodology 

Table IV-5 summarizes the model parameters used in this analysis, where the 

dimensionality was based on the Helical Sphere with 40 revolutions. This number of 

revolutions given the diameter chosen was estimated to result in a 0.56 < W/B < 1 if small 

displacements occur; details on W/B ratio estimates are discussed in section 5.3. 

Table IV-5. Plane Strain Model Parameters 

Definition Value(s) Comments 

Initial 

Geometry  

- Circle with 2D thickness 

- Inner diameter = 23.9 mm 

- Membrane thickness = 12.6 µm 

Based on Helical Sphere: 

- di = 0.6096 m 

- n =  40 revs 

- ℎ𝑚 of Mylar® HP film [116] 

Material 

- Linear isotropic 

- Density   = 1390 kg/m3 

- Modulus = 4.36E9 Pa 

- Yield       =  110E6 Pa 

- Poisson’s ratio =  0.38 

- Based on DuPont Mylar® HP 12.6 

µm PET film [116] 

- W/B = 0.56 at SL 

Analysis 

- Abaqus implicit dynamic 

- Transient fidelity 

- Nonlinear geometric 

Time period: 0 to 10 seconds. 

Mesh 

- CPE8 elements 

- Aspect ratio = 1 

- 2 through 𝑡𝑚 → 23,820 elements 

CPE8 are second-order, fully-integrated, 

plane strain quadrilateral elements. 

Loading 

- Internal tube pressure: 𝑃𝑖𝑎 

- Tube portion exposed to vacuum: 𝑃𝑐𝑎 

- Tube portion exposed to atmosphere: 𝑃𝑜𝑎 

Amplitude vs time profiles on Fig. IV-11. 

Boundary 

Conditions 

- Displacement degrees of freedom at north 

and south vertical edges of circle 
 

Fig. IV-10 shows the model used with the BC and pressure loading. The horizontal 

DOF of the north and south edges along the thickness were constrained, as opposed to outer 

 
37 Time-dependent solutions of 3D models typically take significant computational time (hours to days). 
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north and south points, to avoid stress concentration while allowing quasi-static behavior. 

Time-dependent pressure loading was applied at the outer-left, internal and outer-right 

surfaces, following the amplitude vs time curves in Fig. IV-11. 

 

Fig. IV-10. Plane strain model diagram. 

 

Fig. IV-11. Pressure amplitude vs time applied on plane strain model. 
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From time 0-1 s in Fig. IV-11, the three pressures increase linearly from zero, where 

the external (atmospheric) pressure was started at zero for numerical stability. From 1-2 s, 

the vacuum pressure decreases linearly down to the target pressure of 3.3 KPa, previously 

claimed as an achievable vacuum level. From 2-10 s, the internal vacuum and internal tube 

pressures decrease linearly (following an isovolumetric process) down to 2.9 KPa and 87.4 

KPa, respectively, and the external pressure decreases exponentially following the standard 

atmosphere [15,39] down to 46.6 KPa. This loading history intends to mimic pressure 

changes during inflation, vacuum, and altitude changes, in order to capture any stress states 

across these, and evaluate their effects on the potential dynamics of the tube. Such loading 

history would be valuable for early whole flight simulations once a potential design and its 

parameters are identified. 

Two meshes consisting of one and two elements through-the-thickness were used 

based on second-order, fully-integrated, plane strain quadrilateral (CPE8) elements. Both 

produced similar stress results, but the finer mesh allowed for improved through-the-

thickness stress distribution. The structure was analyzed using the implicit dynamic 

technique with transient fidelity to minimize numerical dissipation effects on the solution; 

the types of fidelity were previously discussed. 

 Results and Discussion 

The stress at the elements located next to the outer surface at the north/south and 

east/west locations are of interest as they reflect the constrained and free locations, 

respectively. The constrained locations will, in reality, be associated with adjacent 

revolutions joining (i.e., north and south). The free locations will be exposed to air pressure 
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differentials, between the vacuum and tube internal air (i.e., Δ𝑃𝑐𝑖 = 𝑃𝑐𝑎 − 𝑃𝑖𝑎 on the west 

side), and between tube internal air and the atmosphere (i.e., Δ𝑃𝑐𝑜 = 𝑃𝑐𝑎 − 𝑃𝑜𝑎 on the east 

side). Fig. IV-12 shows the von Mises stress for the four elements located at these four 

locations vs time, based on the loading shown in Fig. IV-11. North and south elements 

were selected on the vacuum side as they will be subjected to higher loading. 

 

Fig. IV-12. Plane strain model von Mises stress at four locations. 

From zero to one second, the stresses are nearly zero given that all pressure 

differentials are zero. From one to two seconds, the loading is simulated as the internal is 

vacuumed at sea level altitude down to the desired level, therefore all stresses, but at the 

east, experience maximum rate and values since the internal is being ‘vacuumed’ up to 

desired level. The stresses do not exceed 84.9 MPa, which is 8 MPa below the classical 

hoop stress prediction. The lower stresses are attributed to the geometric nonlinearity 

included in the analysis, rather than to the differences between the hoop and von Mises 

stresses, or a stiff mesh. Above two seconds, the loading is simulated as it the LTAS is 

rising, therefore stresses at the east (i.e., membrane exposed to the atmosphere) increase, 
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while decrease elsewhere. These results suggest that the classical hoop stress can and does 

provide a conservative and computationally simple stress estimate, which can be valuable 

in first approximations. 

Fig. IV-12 also shows a dynamic effect that is important to keep in mind for future 

studies. As previously mentioned, the elements selected to represent the south, west, and 

north locations lie in the vacuum side (i.e., semicircle to the west). Given that stress 

concentration effects due to BC were essentially removed by constraining the horizontal 

DOF, one would expect the three elements to have similar stress results. Nonetheless, the 

north element’s stress deviates from other two starting at two seconds, and remains lower 

for the rest of the time history. This deviation is attributed to a loss of geometric symmetry 

at two seconds. This asymmetry is observed in the contour plot shown in Fig. IV-13, with 

the unloaded cross-section, in light gray, superimposed for reference. The displacement 

magnitude scale is in meters, with a maximum of 0.23 mm at the west. The asymmetry 

resulted from dissimilar pressure differentials, Δ𝑃𝑐𝑖 and Δ𝑃𝑐𝑜, and the model being 

unconstrained vertically. After, Δ𝑃𝑐𝑜 (on the east side) becomes nonzero but lower than 

Δ𝑃𝑐𝑖 at two seconds, which triggers a vertical acceleration, resulting in the asymmetry 

observed. The spike in KE observed in Fig. IV-14, although small in magnitude, resulted 

from the acceleration aforementioned.  

Overall, this effort validated the use of the hoop stress as an initial estimate for the 

stress accumulated on the membrane of the Helical Sphere, that is, only if the radius of 

curvature of the membrane did not change considerably during loading. Nonetheless is 

important to note that, contrary to this 2D model, {1} any portion of the tube in the Helical 
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Sphere configuration is constrained north and south of its cross-section by adjacent tube 

revolutions, and {2} replacing the equivalent air pressure loading used here with a 

fluid-structure interaction drives the solution. 

 

Fig. IV-13. Plane strain model displacement contour (in meters) at 2.004 seconds. 

 

Fig. IV-14. Plane strain model kinetic energy versus time. 
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4.4. Summary and Conclusions 

Three design paths build upon prior literature and the instability and material 

nonlinearity findings presented in Chapter II and III, respectively. The first path was the 

reconsideration of the spherical sandwich shell with the use of low-density core. It was 

found unfeasible due to the design not meeting stability requirements given the materials 

considered. More importantly, the path led to the idea of air-stiffened designs by forcing 

the question of whether thin barriers shaped by air can be potential VLTAS. The second 

path was a set of design space explorations intended to exhaust potential design avenues 

through topology optimization. While the author believes that the exercise of topology 

optimization, as presented, did not lead to designs with significant potential, it confirmed, 

nonetheless, the need for a low-density material that supports or shapes the membranes 

displacing the atmosphere which enables buoyancy, ergo supporting the use of air to stiffen 

the membranes. And the third path validated the use of the classical hoop stress for initial 

design estimates that enable membrane-to-membrane connectivity and local membrane 

radii determination; essential for the stress control technique of air-stiffened designs. 
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V. HELICAL SPHERE AIR-STIFFENED DESIGN 

The trajectory summarized in Fig. I-4 and detailed in Chapters II-IV served as the 

foundation for the development and characterization of the Helical Sphere air-stiffened 

design presented in this chapter. With that in mind, this chapter starts with the Helical 

Sphere design description, followed by a preliminary analysis that highlights the weight 

and membrane stress reduction benefits motivating air-stiffened designs. The simulation 

framework used to develop structural solutions is then presented, emphasizing the fluid-

structure interaction used to represent the air-membrane behavior. The chapter closes with 

an extensive discussion of a structural solution based on an axisymmetric representation of 

the Helical Sphere. 

Regarding the use of fluid-structure interaction, the characterization of membrane 

structures under static pressure is often based on an equivalent loading representation that 

captures the pressure difference between the fluid within and that of the atmosphere, 

applied on a membrane representation of the film barrier [118]; that is in addition to the 

material, boundary conditions, etc. Such loading representation presumes fluids states are 

known apriori for the entire solution space of interest and therefore decoupled from the 

solution. This is not the case here since the state of the air within enclosing membranes 

shaping an air-stiffened design is neither constant during loading nor known apriori 

throughout the solution. Instead, the air state is coupled with the enclosing membranes, 

making the solution strictly dependent on the fluid-structure interaction. Therefore, the 

simulation framework presented in this chapter lays a path for characterizing air-stiffened 

designs, where air-membrane coupling is a requirement for structural characterization. 



 

99 

5.1. Design Description 

The Helical Sphere is a particular air-stiffened design and part of the generalized 

representation introduced in Chapter I and Fig. I-2. The design is described as follows: 

consider an Archimedean spiral (Fig. V-1a), which has constant separation between 

revolutions. The 3D projection onto a sphere becomes a spherical helix (Fig. V-1b). A 

circular cross-section, normal and centered on the spherical helix, then forms the Helical 

Sphere (Fig. V-1c). 

   
(a) Archimedean Spiral (b) Spherical Helix (c) Helical Sphere 

Fig. V-1. Geometric development of the Helical Sphere. 

The geometry is characterized by envisioning the Helical Sphere to be formed from 

a single tube made of a thin membrane and filled with air. Fig. V-2 shows the tube’s 

pressure loading and dimensional parameters. Its weight is driven by the internal spherical 

radius, 𝑟𝑖, and the tube’s radius, 𝑟𝑖𝑡, thickness, ℎ𝑚, and density. The tube is subjected to the 

vacuum pressure, 𝑃𝑖𝑎, external air pressure, 𝑃𝑜𝑎, and tube internal pressure, 𝑃𝑐𝑎, where 

𝑃𝑖𝑎 ≪ 𝑃𝑜𝑎 such that enough air weight is removed to permit buoyancy, and 𝑃𝑐𝑎 ≥ 𝑃𝑜𝑎 in 

order for the tube’s membrane to remain in tension. Membrane stresses are associated with 

the pressure differentials, Δ𝑃, formed by the difference between the tube internal and 

vacuum pressures, Δ𝑃𝑐𝑖 = 𝑃𝑐𝑎 − 𝑃𝑖𝑎, and the difference between the tube internal and 

external air pressures, Δ𝑃𝑐𝑜 = 𝑃𝑐𝑎 − 𝑃𝑜𝑎. Premised on the membrane stresses following the 
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hoop stress (Eq. 2 on page 6) levels, the membrane stress requirement is reduced 

significantly compared to a perfect sphere design, where the latter stress is proportional to 

its overall radius. Furthermore, increasing the number of tube revolutions reduces the local 

stress further by consequentially reducing 𝑟𝑖𝑡, that is given any target structural radius. 

 

Fig. V-2. Tube loading and dimensionality. 

5.2. Weight-to-Buoyancy Ratio Estimation 

As described above, the Helical Sphere was developed as a 3D projection of the 

Archimedean Spiral (Fig. V-1a). The basic equation of the latter in polar coordinates is 

given by, 

 𝑟(𝜙) = 𝑎𝜙 (34) 

where 𝑎 establishes the distance between revolutions or successive turns (i.e., rotational 

multiplier), angle 𝜙 controls the number of revolutions (𝑛) such that 𝜙 = 2𝜋𝑛, and 𝑟 is the 

resulting radius at any given 𝜙. Mapping Eq. 34 into a 2D Cartesian representation results 

in the following parametric equations as a function of 𝜙. 
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 𝑥(𝜙) = 𝑎 𝑐𝑜𝑠(𝜙) (35) 

 𝑦(𝜙) = 𝑎 𝑠𝑖𝑛(𝜙) (36) 

Then, mapping the spiral onto a spherical volume produces the helix (Fig. V-1b) 

represented by Eqs. 37-39 [119], where 𝑎 in Eqs. 35 and 36 is replaced by the summation 

of the internal radius 𝑟𝑖, membrane thickness, ℎ𝑚, and internal tube radius, 𝑟𝑖𝑡. The helix 

evolves from 𝜙 = 0 at the north pole to 𝜙 = 𝜙𝑚𝑎𝑥 = 2𝜋𝑛 at the south pole. It reaches the 

south pole since the rightmost cosine and sine terms guarantee that the azimuth increases 

from zero at the north to 𝜋 at the south through 
𝜙

𝜙𝑚𝑎𝑥
𝜋. Such helix represents the center 

line of the tube envisioned to form the Helical Sphere air-stiffened design (Fig. V-1c). 

 𝑥 = (𝑟𝑖 + ℎ𝑚 + 𝑟𝑖𝑡) 𝑐𝑜𝑠(𝜙) 𝑠𝑖𝑛 (
𝜙

𝜙𝑚𝑎𝑥

𝜋) (37) 

 𝑦 = (𝑟𝑖 + ℎ𝑚 + 𝑟𝑖𝑡) 𝑠𝑖𝑛(𝜙) 𝑠𝑖𝑛 (
𝜙

𝜙𝑚𝑎𝑥

𝜋) (38) 

 𝑧 = (𝑟𝑖 + ℎ𝑚 + 𝑟𝑖𝑡) cos (
𝜙

𝜙𝑚𝑎𝑥

𝜋) (39) 

 

where:  𝑟𝑖  = spherical radius to nearest tube surface 0 ≤ 𝜙 ≤ 𝜙𝑚𝑎𝑥 = 2𝜋𝑛 

ℎ𝑚 = tube membrane thickness  𝑛  = number of revolutions 

𝑟𝑖𝑡 = tube internal radius 

 

 

The tube’s length, 𝐿𝑡, is obtained with the 3D representation of the arc length, as 

shown in Eq. 40, which takes the derivative of the parametric Eqs. 37-39 with respect to 𝜙. 

 𝐿𝑡 = ∫ √(
𝑑𝑥

𝑑𝜙
)

2

+ (
𝑑𝑦

𝑑𝜙
)

2

+ (
𝑑𝑧

𝑑𝜙
)

2

𝑑𝜙
𝜙𝑚𝑎𝑥

0

 (40) 

 

where:  
𝑑𝑥

𝑑𝜙
= (𝑟𝑖 + ℎ𝑚 + 𝑟𝑖𝑡) [

𝜋

𝜙𝑚𝑎𝑥
cos(𝜙) cos (

𝜙

𝜙𝑚𝑎𝑥
𝜋) − sin(𝜙) sin (

𝜙

𝜙𝑚𝑎𝑥
𝜋)] 

𝑑𝑦

𝑑𝜙
= (𝑟𝑖 + ℎ𝑚 + 𝑟𝑖𝑡) [

𝜋

𝜙𝑚𝑎𝑥
sin(𝜙) cos (

𝜙

𝜙𝑚𝑎𝑥
𝜋) + cos(𝜙) sin (

𝜙

𝜙𝑚𝑎𝑥
𝜋)] 

𝑑𝑧

𝑑𝜙
= (𝑟𝑖 + ℎ𝑚 + 𝑟𝑖𝑡) [−

𝜋

𝜙𝑚𝑎𝑥
sin (

𝜙

𝜙𝑚𝑎𝑥
𝜋)] 
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The total weight is given by the summation of the tube (first term in the numerator 

of Eq. 41), air inside the tube (second term in the numerator of Eq. 41) and the partially-

vacuumed air inside (third term in the numerator of Eq. 41) weights. The buoyancy 

(denominator of Eq. 41), or weight of the displaced atmospheric air, is given by the 

spherical volume of radius 𝑟𝑖 + ℎ𝑚 + 𝑟𝑖𝑡 plus half of the tube’s volume, all multiplied by 

the atmospheric air density. 

 
𝑊

𝐵
 =  

2𝜋𝑟𝑖𝑡ℎ𝑚𝐿𝑡𝜌𝑚 + 𝜋𝑟𝑖𝑡
2𝐿𝑡𝜌𝑐𝑎 +

4
3

𝜋𝑟𝑖
3𝜌𝑖𝑎

[
4
3

π (𝑟𝑖 + ℎ𝑚 + 𝑟𝑖𝑡)3 +
1
2

πrit
2 Lt] 𝜌𝑜𝑎

 (41) 

 

where:  𝑟𝑖  = spherical radius to nearest tube surface 0 ≤ 𝜙 ≤ 𝜙𝑚𝑎𝑥 = 2𝜋𝑛 

𝑟𝑖𝑡 = tube internal radius    𝑛  = number of revolutions 

ℎm = tube membrane thickness  𝐿𝑡 = tube length 

𝜌𝑚  = membrane density 

𝜌𝑐𝑎 , 𝜌𝑖𝑎 , 𝜌𝑜𝑎 = air densities in the tube, in the innermost cavity (partially-

vacuum), and of the atmosphere, respectively. 

 

 

Eqs. 40 and 41 produce an estimate of the Helical Sphere’s W/B ratio, when 

assumed that the structure will maintain its initial geometry through the loading history. 

While the latter assumption makes the W/B ratio estimate optimistic by dismissing the 

effects associated with stress accumulation along joints of adjacent tubes and overall 

structural stability, it allows the membrane properties and geometry to be inputted into the 

FEM to be based upon a W/B < 1, as estimated by these equations. 

Furthermore, the stress control benefits upon which the Helical Sphere was built is 

evident in the relationship between 𝑛 and 𝑟𝑖𝑡. The hemispherical cut shown in Fig. V-3 

served to develop this relationship, given by Eq. 42, and based on 𝛾 and the sides of the 

triangle presented in Fig. V-3, such that 𝑟𝑖𝑡 = 𝑟𝑖𝑡(𝑛, 𝑟𝑖, ℎ𝑚) and 𝛾 = 𝜋/(2𝑛). For any given 
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𝑟𝑖, there is a tradeoff among ℎ𝑚, 𝑟𝑖𝑡 and 𝑛 that needs to be considered. This tradeoff is the 

topic of the preliminary analysis discussed next. 

 

Fig. V-3. Hemispherical cut diagram. 

 sin(𝛾) =
𝑟𝑖𝑡 + ℎ𝑚

𝑟𝑖 + ℎ𝑚 + 𝑟𝑖𝑡

= sin (
𝜋

2𝑛
) ⟹ 𝑟𝑖𝑡 = [

sin (
𝜋

2𝑛
)

1 − sin (
𝜋

2𝑛
)

] 𝑟𝑖 − ℎ𝑚 (42) 

5.3. Preliminary Analysis 

The preliminary analysis explores the effect that varying the number of revolutions 

has on the tube diameter (Eq. 42), tube length (Eq. 40), W/B ratio (Eq. 41) and membrane 

hoop stress (Eq. 2 on page 6), given a Helical Sphere of internal radius equal to 0.3048 m 

and made from a 12.6 μm-thick PET film. This membrane thickness is commonly available 

in commercial PET and PEN films (e.g., Mylar HP) [50,116]. 

Top to bottom, Fig. V-4 shows the tube diameter, and the resulting tube length, 

W/B ratio and tube local hoop stress vs 𝑛. The W/B ratio and stress are calculated for sea 

level altitude and vacuum pressure of 25 torr (3333 Pa). It is clearly beneficial to have less 
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revolutions from a manufacturing perspective. Nonetheless, material yielding will limit the 

maximum tube diameter. Furthermore, W/B ratio is reduced with increased 𝑛 since the 

tube’s weight grows linearly with length, but quadratically with diameter. The W/B ratio, 

in this case, tends to 0.5 for large 𝑛. 

Is important to realize that the membrane thickness and yield stress (both part of 

the selected film product), as well as the vacuum pressure, dictate the tube diameter 

required to meet desired hoop stress levels independent of the Helical Sphere internal 

diameter. A 𝑛 = 40, for example, provides a safety factor38 equal to 1.18, with tube 

diameter of 23.9 mm and length of 50.7 m, resulting in a W/B = 0.56 at SL, when the 

internal radius is 0.3048 m. These results show the potential alluded to the Helical Sphere 

design when it was introduced, but fail to account for any displacement that would reduce 

the buoyancy and deviate membrane stresses from hoop stress estimates. 

 
38 Based on a yield stress for Mylar® C of 110 MPa as shown in Table II-2 [48]. 
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Fig. V-4. Tube diameter, tube length, weight-to-buoyancy ratio, and hoop stress vs number of 

revolutions. 
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5.4. Structural Simulation Framework 

The structural simulation of air-stiffened designs, as fluid-filled membrane 

structures undergoing large displacements and rotations, necessitated the inclusion of 

geometrically nonlinear effects, fluid-structure interactions, and surface-to-surface contact, 

among others. Before presenting specific structural solutions associated with the Helical 

Sphere, the main modeling components used to generate such solutions are described 

below in the context of FEM with SIMULIATM Abaqus 201639 [120]. 

 Geometric Nonlinearity 

Membranes undergoing large deformations, and/or subjected to contact constraints 

and pressure loads, inherently produce geometrically nonlinear responses as equilibrium 

states are a function of the deformed [121]. Geometrically nonlinear analyses {1} use the 

complete strain tensor and material local directions to ensure that the element strain 

components are appropriately decoupled from rigid body motion [62], {2} introduce 

“pressure load stiffness” components that couple nodal displacements to nodal forces 

associated with pressure loads to account for the load directional dependence on the 

deformed geometry, and {3} include thickness variation of shell and membrane elements 

by assuming plane stress conditions [58,122]. 

 Hydrostatic Representation of Fluid-Structure Interactions 

The presence of air enclosed by adjacent membranes (i.e., air-stiffening) couples 

the membrane deformation to the pressure exerted by the air contained within it, making 

 
39 Finite element solutions of an inflated circular membrane using these components were compared to 

Bouzidi et al. [126] analytical solution and Coelho et al. [127] numerical solutions with displacements 

within 6-8% of the referenced solutions. The solutions found are discussed in section B.1 (Appendix B). 
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the structural response a function of this coupled interaction along with any external 

loading. In the interest of quasi-static solutions (i.e., a timescale where the membrane and 

the fluid inertial effects become negligible), the common coupled Eulerian-Lagrangian 

fluid-structure interaction is replaced by a simpler hydrostatic fluid formulation that 

couples the deformation of the air-filled membranes to the pressure of the air contained 

within. Abaqus refers to this interaction as surface-based fluid cavity. The description and 

theoretical development of this interaction are found in Ref. [59] and Ref. [58], 

respectively, and are summarized here in reference to its capabilities to represent the 

air-membrane interactions driving the structural response of air-stiffened designs. 

The surface-based fluid cavity capability couples the state of a fluid to the structure 

by constraining the volume of the cavity to be approximately equal to the volume of the 

fluid enclosed (i.e., 𝑉 − �̅�). A cavity is defined by a set of surfaces that enclose a fluid, 

where such set is discretized by the user with structural FE (e.g., structural membrane 

elements). Abaqus, in turn, discretizes the volume occupied by the fluid with hydrostatic 

fluid elements, following the nodal locations of the structural elements. The fluid behavior 

is then represented by a single point, referred to as the cavity reference node, which 

contains the fluid pressure inside the cavity as its single degree of freedom. The latter 

statement indicates hydrostatic behavior by implying that the fluid state is, by definition, 

uniform across the cavity and therefore negates any spatial variation associated with fluid 

flow. Nonetheless, it does not constrain the fluid state to be constant during the load (or 

time) history. The development of the volume calculations driving the constraint and its 

implementation follow. 
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Cavity Volume Calculations 

The cavity volume, 𝑉, is a geometrical representation of the cavity calculated via 

the volume elements representing the cavity. Specifically, Abaqus covers the cavity surface 

with facets that are tied to the structural nodes given by a user-specified structural mesh. 

Those surface facets are referred to as 

hydrostatic volume elements, and require 

the coordinates of the reference node to 

form the volume element (e.g., a surface 

facet becomes a pyramid by adding the 

reference node as shown in Fig. V-5). Each 

element volume is obtained using shape or 

interpolation functions of the surface facets and the position of the cavity reference node, 

with their summed contribution resulting in 𝑉.  

For example, the coordinate vector, 𝒙, of any point along the base of the hydrostatic 

volume element (Fig. V-5) is described by, 

where 𝑁𝑁 are the isoparametric shape functions for the base as a function of parametric 

coordinates 𝑔 and ℎ, and 𝒙𝑁 are the vectors of nodal coordinates. The element normal, 𝒏, 

times an infinitesimal area, 𝑑𝐴, is then given by, 

 𝒙 = ∑ 𝑁𝑁(𝑔, ℎ)𝒙𝑁

𝑁

 (43) 

 𝒏𝑑𝐴 = (
𝜕𝒙

𝜕𝑔
×

𝜕𝒙

𝜕ℎ
) 𝑑𝑔𝑑ℎ = (∑

𝜕𝑁𝑁

𝜕𝑔
𝒙𝑁

𝑁

× ∑
𝜕𝑁𝑁

𝜕ℎ
𝒙𝑁

𝑁

) 𝑑𝑔𝑑ℎ (44) 

Fig. V-5. Hydrostatic volume element [58]. 
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where the term inside the parenthesis represents the Jacobian (i.e., determinant of the 

Jacobian matrix). The element infinitesimal volume, 𝑑𝑉𝑒, associated with the infinitesimal 

area (Eq. 44) is then given by, 

where 𝒙𝑅 is the coordinate vector of the cavity reference node forming the hydrostatic 

volume element. Subsequently, the element volume, 𝑉𝑒, and the cavity volume, 𝑉, are 

obtained by Eq. 46 and Eq. 47, respectively. 

This volume is strictly a geometrical representation of the cavity, effectively tying 

the behavior of the membrane, or generally that of the structural surfaces, to the fluid 

elements’ geometry. The fluid volume is the other variable driving the volume constraint. 

Fluid Volume Calculations 

Abaqus has both incompressible and compressible representations of the fluid. 

Given the use of air in this application, the incompressible representation is discussed. 

Therefore, compressibility is represented via the ideal gas law, such that the fluid volume, 

�̅� =  �̅�(𝜃, 𝑚, 𝑃), is given by, 

 𝑑𝑉𝑒 =
1

3
(𝒙𝑅 − 𝒙) ∙ 𝒏𝑑𝐴 =

1

3
(𝒙𝑅 − 𝒙) ∙ (∑

𝜕𝑁𝑁

𝜕𝑔
𝒙𝑁

𝑁

× ∑
𝜕𝑁𝑁

𝜕ℎ
𝒙𝑁

𝑁

) 𝑑𝑔𝑑ℎ (45) 

 𝑉𝑒 =
1

3
∫ ∫ (𝒙𝑅 − 𝒙) ∙ (∑

𝜕𝑁𝑁

𝜕𝑔
𝒙𝑁

𝑁

× ∑
𝜕𝑁𝑁

𝜕ℎ
𝒙𝑁

𝑁

) 𝑑𝑔𝑑ℎ
1

−1

1

−1

 (46) 

 𝑉 =
1

3
∑ [∫ ∫ (𝒙𝑅 − 𝒙) ∙ (∑

𝜕𝑁𝑁

𝜕𝑔
𝒙𝑁

𝑁

× ∑
𝜕𝑁𝑁

𝜕ℎ
𝒙𝑁

𝑁

) 𝑑𝑔𝑑ℎ
1

−1

1

−1

]

𝑒

 (47) 

 �̅�(𝜃, 𝑚, 𝑃) = 𝑚𝑅
(𝜃 − 𝜃𝐴)

(𝑃 + 𝑃𝑜𝑎)
 (48) 
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where 𝑚 is the total fluid mass, 𝑅 is the specific gas constant, 𝜃 is the fluid temperature, 

𝜃𝐴 is the temperature at absolute zero, 𝑃 is the fluid gauge pressure, and 𝑃𝑜𝑎 is the reference 

pressure (e.g., external air pressure). The density of the fluid, 𝜌, is then given by, 

Since the cavity is discretized with hydrostatic volume elements, each of these 

contributes to the fluid volume, �̅�𝑒 = �̅�𝑒(𝑃, 𝜃, 𝑚𝑒), where 𝑚𝑒 is their contribution to the 

fluid mass. Given that Eq. 49 is based on global cavity properties (i.e., the density is 

uniform across the fluid cavity and therefore across the volume elements), �̅�(𝜃, 𝑚, 𝑃) is 

expressed as a summation of the elemental mass, such that: 

Is important to realize that the hydrostatic assumption enables the decoupling of the 

fluid pressure and density from elemental properties by imposing uniformity. An 

underlying result of the fluid state equation is its resulting volume-pressure compliance, 

𝑑�̅�/𝑑𝑃. The latter is presented in Eq. 51, and its negative reciprocal times the volume 

results in the bulk modulus, a measure of a fluid resistance to compression [123]. Such 

relationship dictates volume-pressure changes of the air-filled membrane. 

Fluid-Structure Coupling 

The fluid-structure coupling occurs by augmenting the potential energy, or virtual 

work expression, of the structure without the fluid, 𝛿Π, with the cavity pressure 

contribution and the volume constraint: 𝑉 − �̅� = 0, where 𝑉 and �̅� are based on Eqs. 47 

 𝜌(𝜃, 𝑃 ) =
(𝑃 + 𝑃𝑜𝑎)

𝑅(𝜃 − 𝜃𝐴)
 (49) 

 
�̅�(𝜃, 𝑚, 𝑃) = ∑ �̅�𝑒(𝑃, 𝜃, 𝑚𝑒)

𝑒

=
∑ 𝑚𝑒

𝑒

𝜌(𝑃, 𝜃)
=

𝑚

𝜌(𝑃, 𝜃)
= 𝑚𝑅

(𝜃 − 𝜃𝐴)

(𝑃 + 𝑃𝑜𝑎)
 (50) 

 
𝑑�̅�

𝑑𝑃
= 𝑚𝑅

(𝜃 − 𝜃𝐴)

(𝑃 + 𝑃𝑜𝑎)2
 (51) 
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and 50, respectively. The augmented virtual work, 𝛿Π∗, is shown in Eq. 52, where the 

negative signs imply that a decrease in cavity volume increases the energy of the fluid, and 

vice versa. 𝛿Π∗ represents a mixed formulation, where displacements associated with the 

structural mesh and the fluid pressure in the cavity are primary variables. 

Plainly, the virtual work of the structure is constrained by 𝑉 − �̅� = 0 along with 

any other constraints (e.g., contact) and solved as a minimization problem. The minimum 

energy solution with the volume constraint results in a cavity pressure that ensures the fluid 

volume is approximately equal to the cavity volume. Any change in 𝑃 from its previous 

state is reflected as a distributed pressure load on the structural mesh. Volumes within 𝛿Π∗ 

(Eq. 52) can be represented in discretized form as the sum of each of the hydrostatic volume 

element contributions, such that: 

Comments of Approach Validity 

The validity of the ideal gas law as an equation of state dictating the fluid volume 

is of practical concern. The ideal gas model yields a simple 𝑃, �̅� and 𝜃 relation for a fluid 

behavior by assuming fluid molecules do not interact. Nonetheless, said interactions do 

exist and influence the behavior of real gases. The virial equation shown in Eq. 54 is one 

of many models that intend to represent the influence of such interactions, where the 

compressibility factor, 𝑍, is a non-dimensional parameter, and 𝑅 is the gas constant [124]. 

 𝑍 =
𝑃𝑉

𝑅𝜃
  (54) 

 𝛿Π∗ = 𝛿Π − 𝑃𝛿𝑉 − 𝛿𝑃(𝑉 − �̅�) (52) 

 𝛿Π∗ = 𝛿Π − 𝑃 ∑ 𝛿𝑉𝑒

𝑒

− 𝛿𝑃 [∑ 𝑉𝑒

𝑒

− ∑ �̅�𝑒

𝑒

] = ∑[𝛿Πe − 𝑃𝛿𝑉𝑒 − 𝛿𝑃(𝑉𝑒 − �̅�𝑒)]

𝑒

 (53) 
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A compressibility factor 𝑍 ≠ 1 indicates a deviation from ideality, where molecular 

interactions play a significant role in the gas behavior; notably at low temperatures or high 

pressures. In the case of air, 𝑍 fluctuates within 0.0052 ≤ 𝑍 ≤ 2.11 for the following 

temperatures and pressure ranges: 75 ≤ 𝑇 ≤ 1000 K and 100 ≤ 𝑃 ≤ 50,000 kPa [125]. In 

the context of the results shown throughout this dissertation, 0.9987 ≤ 𝑍 ≤ 0.9999, 

indicating that the ideal gas law was an accurate state equation for the air inside the cavities 

during the load histories considered. The former statement does not speak of the accuracy 

of the hydrostatic representation of the fluid-structure interaction, but rather cements the 

use of such equation of state in this context, as well as provides some level of confidence 

on its validity for coupled Eulerian-Lagrangian analysis. 

Regarding accuracy, FE solutions of an inflated circular membrane using the 

simulation components presented throughout this section (5.4) were compared to Bouzidi 

et al. [126] analytical solution and Coelho et al. [127] numerical solutions with 

displacements within 6-8% of the referenced solutions. The solutions found are discussed 

in section B.1 (Appendix B). 

Overall, is important to keep in mind that this formulation removes any fluid flow 

described in the Navier-Stokes and Euler equations, including any spatial variation of the 

pressure and body forces, and replaces them with a pressure-volume coupling based on a 

uniform fluid state (represented by the ideal gas law for compressible fluids). Compared to 

a generalized fluid-structure interaction, this formulation removes any fluid inertial effects, 

makes temperature a user-defined variable in implicit solutions, and requires the cavity to 

remain fully-filled at all times. Such limitations make the hydrostatic formulation presented 
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a simple yet useful coupling for the prediction of quasi-static responses within the 

Lagrangian description. Other hydrostatic formulations recently developed to represent 

gas-structure interactions include work on hyperelastic membranes [128] and elastic 

membranes and shells [129,130]. A notable difference in the latter formulations is the 

inclusion of the hydrostatic interaction as a rank-one update of the stiffness matrix without 

the need for volume elements. Subsequently, the inverse of the updated stiffness matrix is 

obtained efficiently by using the inverse stiffness matrix of the structure without the 

interaction via Sherman–Morrison formula [131]. 

 Contact 

Contact is another simulation component critical to the development of the solution 

characterizing the structural behavior of air-stiffened designs that are subjected to relatively 

low-pressures along its innermost air cavity. As an equivalent (negative) pressure load is 

applied to the innermost cavity to represent a reduction of air pressure (i.e., air removal to 

create a partial vacuum), the lack of inherent bending stiffness is replaced by the fluid-

structure interaction and membrane-to-membrane contact, the latter increasingly relevant 

as significant displacements occur. The equilibrium state under loading is ergo dependent 

on the normal and tangential contact interactions.  

In the case of normal contact, hard contact represents the type of pressure-

overclosure relationship in which no penetration between surfaces is desired [59]. The 

equilibrium state, or more precisely, the potential energy (or virtual work expression), 𝛿Π∗, 

is modified to account for this interaction, such its addition to Eq. 52 results in: 
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Eq. 55 represents the first variation of the potential energy of a structure subjected 

to the hydrostatic representation of fluid-structure interaction (detailed section 5.4.2) and 

normal hard contact [58]. This equation is a fundamental representation of the state of 

equilibrium driving the structural characterization of air-stiffened designs, as defined in 

this document. The enforcement of the hard contact condition depends on the enforcement 

method used. Regarding the general contact algorithms used in the implicit and explicit 

solutions presented in this dissertation, hard contact was strictly enforced in implicit 

solutions (Chapter V) through Lagrange multipliers, and approximated in explicit solutions 

(Chapter VI) through the penalty method40. 

Fig. V-6 demonstrates the importance of contact in the Helical Sphere solution. Fig. 

V-6a shows the initial contact conditions established among adjacent tube revolutions (or 

air-stiffened toroidal membranes in an axisymmetric representation), given by a point tie 

at the neighbor points coincident with the sphere that passes through all the circle 

midpoints. Fig. V-6b then shows the development of contact as each portion of the tube (or 

each air-stiffened toroidal membrane in an axisymmetric representation) progressively 

deforms and subsequently “pinned”. While this diagram is a general representation of the 

 
40 Section 13.2 and 13.3 of Ref [72] provides a generic description of both enforcement methods. Its 

applications and effects on the solution are detailed in Refs. [58,59]. The Lagrange multipliers method solves 

the contact constraints exactly, avoiding overclosures that can result when approximate methods are used, 

such as the penalty method, while typically at a higher computational cost [157]. 

 𝛿Π∗ = 𝛿Π + [−𝑃𝛿𝑉 − 𝛿𝑃(𝑉 − �̅�)] + [ℎ𝛿𝑃𝑐 + 𝑃𝑐𝛿ℎ] (55) 

 where:   𝑃𝑐  = contact pressure 

 ℎ = overclosure or distance between adjacent surfaces  

 
 

 such that:  𝑃𝑐  = 0      for  ℎ < 0 (open) 

ℎ = 0      for  𝑃𝑐 > 0 (contact) 

 

 



 

115 

behavior observed in the solution (presented and discussed in section 5.5.3), it shows the 

solution dependency on the contact areas developed as deformation occurs; deformation 

that is a function of air-membrane interactions. 

 

 

(a) Initial contact Conditions (b) Contact development diagram 

Fig. V-6. Helical sphere contact diagram. 

Regarding the solutions presented in this chapter, normal hard contact is strictly 

enforced, negating any surface-to-surface penetration, and without separation after contact. 

The latter was selected to understand how nearby surface progressively contacts each other 

as membranes deform. A “rough” tangential condition was chosen, which represents an 

infinite friction coefficient, negating surface-to-surface slipping. Numerically, both 

constraints are added to the potential energy and strictly enforced with Lagrange 

multipliers. Therefore, contact is defined such that surfaces are tied upon contact 

considering that such solutions are expected to {1} provide upper stress limits since shear 

stress accumulation resulting from the tangential contact is not restricted to an upper limit 

that a friction model would have and {2} maximize any structural stability associated with 

these. The general contact algorithm in Abaqus was used with these contact definitions and 

surface-to-surface discretization, as well as accounting for membrane thickness. While 

these definitions were used in the quasi-static results included below, solutions with a 
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frictionless tangential condition and separation after contact allowed were also computed. 

These solutions, albeit not included, provided similar stresses and collapse loads. 

 Solver Selection 

As stated during the discussion of fluid-structure interaction, the goal is to find 

quasi-static solutions that represent long-time responses. Since convergence limitations 

negate the use of static solvers when faced with multiple sources of nonlinearities, such as 

geometric, fluid-structure interaction and contact, the implicit dynamic solver with the 

backward Euler operator framework within Abaqus/Standard was selected to simulate 

quasi-static solutions. This is the same solver used to develop the collapse solutions 

described in section 3.2.4. 

Geometric nonlinearity (section 5.4.1), hydrostatic representation of fluid-structure 

interactions (section 5.4.2), contact interactions (section 5.4.3) and solver selection (section 

5.4.1) were presented here as they drive the simulation framework from which quasi-static 

solutions of air-stiffened designs are produced. The following section introduces an 

axisymmetric representation of the Helical Sphere, from which structural responses were 

obtained using this framework. 

5.5. Axisymmetric Representation of the Helical Sphere 

Removing the slope of the spiral turn, or driving the spiral slope to infinite, replaced 

the Helical Sphere (Fig. V-7a) with a set of toroidal membranes connected to each other 

(Fig. V-7b), which allowed for an axisymmetric representation (Fig. V-7c). Such 

representation, in turn, enabled the use of axisymmetric FE to describe the structure, 

trading geometric accuracy for increased mesh density for a given model size. This 
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computationally efficient modeling description drove the use of an axisymmetric 

representation to produce structural solutions. 

   

(a) Helical Sphere (b) Toroidal representation 
(c) Axisymmetric 

representation 

Fig. V-7. Axisymmetric representation of the Helical Sphere. 

The toroidal representation (Fig. V-7b) consists of a set of toroidal membranes with 

constant minor radius (i.e., the radius of the circle forming the torus, 𝑟𝑖𝑡) and varying major 

radius (i.e., the distance from a center of the torus to the center of the circle forming the 

torus, 𝑟𝑖), such that the set can be bonded along a spherical mandrel and completed with 

two spherical membranes at the poles; the radius of the spherical membranes is assumed 

to be equal to the minor radius of the tori. 

A toroidal representation composed of eight toroidal and two spherical membranes 

is represented in Fig. V-8 [122]. Each membrane is subjected to internal pressure, 𝑃𝑖𝑎, 

external pressure, 𝑃𝑜𝑎, and tori internal pressure, 𝑃𝑡𝑎, where 𝑃𝑖𝑎 ≪ 𝑃𝑜𝑎 and 𝑃𝑡𝑎 ≥ 𝑃𝑜𝑎 in 

order for the membranes to remain in tension; note that the cavity pressure 𝑃 is a gauge 

pressure such that 𝑃 = 𝑃𝑡𝑎 − 𝑃𝑜𝑎. The membrane mass is driven by 𝑟𝑖, 𝑟𝑖𝑡, its thickness, 

ℎ𝑚, and its density, where air masses associated with 𝑃𝑖𝑎 and 𝑃𝑡𝑎 are part of the overall 
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design mass. It is important to distinguish that changes in 𝑃𝑖𝑎 account for changes in mass, 

while changes in 𝑃𝑡𝑎 resulting from air compressibility and membrane deformation do not. 

 
(a) External representation (b) Hemispherical cut (c) Tori cross-section 

Fig. V-8. Toroidal representation diagram (n = 9). 

 Weight-to-Buoyancy Ratio Estimation 

The W/B ratio of the toroidal representation is developed by considering that the 

volume of a torus, 𝑉𝑇, and surface area, 𝑆𝑇, is given by [132], 

 𝑉𝑇 = 2𝜋2𝑟𝑖𝑡
2𝑐 (56) 

 𝑆𝑇 = 4𝜋2𝑟𝑖𝑡𝑐 (57) 

where 𝑐 is the distance from the axis of revolution to the center of each torus. Following 

Fig. V-3, 𝑐 = (𝑟𝑖 + ℎ𝑚 + 𝑟𝑖𝑡) cos(𝜃), where 𝜃 =  𝛾(2𝑗 − 1) = 𝜋/(2𝑛) (2𝑗 − 1) 41. Since 

𝑉𝑇 and 𝑆𝑇 represent the air volume within and the surface area of the membrane, 

 
41

 Based on the relationship between the membrane radius and the number of revolutions in Eq. 42. Note in 

Fig. V-3 and Eq. 42 that 𝑛 must be an odd integer in order to represent the spherical membranes at the poles. 

Odd 𝑛 values result in the Helical Sphere’s ‘tube’ being collocated along two poles when considered in 2D. 

Enforcing axisymmetry on the 2D representation, in turn, generates spherical membranes (i.e., air-filled 

spheres) at such poles. In other words, restricting 𝑛 to odd values preserves the initial membrane radius (i.e., 

𝑟𝑖𝑡) across the structure. 
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respectively, the air volume of each torus, 𝑉𝑡𝑎
(𝑗)

, and the membrane volume of each torus, 

𝑉𝑚
(𝑗)

, are respectively given by, 

 𝑉𝑡𝑎
(𝑗)

= 2𝜋2𝑟𝑖𝑡
2(𝑟𝑖 + ℎ𝑚 + 𝑟𝑖𝑡) cos (

𝜋

2𝑛
 (2𝑗 − 1) ) (58) 

 𝑉𝑚
(𝑗)

= 4𝜋2𝑟𝑖𝑡ℎ𝑚(𝑟𝑖 + ℎ𝑚 + 𝑟𝑖𝑡) cos (
𝜋

2𝑛
 (2𝑗 − 1) ) (59) 

Given Eqs. 58 and 59, and considering that the structure is also symmetric about the 𝑥 − 𝑧 

plane (horizontal plane) and the poles contain air-filled spherical membranes, the total air 

volume inside tori, 𝑉𝑡𝑎, and the total membrane volume, 𝑉𝑚, are respectively given by, 

 

𝑉𝑡𝑎 = 2 ∑ 𝑉𝑡𝑎
(𝑗)

𝑛−1
2

𝑗=1

+
8

3
𝜋𝑟𝑖𝑡

3 
(60) 

 

𝑉𝑚 = 2 ∑ 𝑉𝑚
(𝑗)

𝑛−1
2

𝑗=1

+ 8𝜋𝑟𝑖𝑡
2ℎ𝑚 

(61) 

Placing the right sides of Eqs. 58 and 59 into Eqs. 60 and 61 results in Eqs. 62 and 63, 

respectively, where the thickness is assumed uniform across the toroidal membranes. 

 

𝑉𝑡𝑎 = 4𝜋2𝑟𝑖𝑡
2(𝑟𝑖 + ℎ𝑚 + 𝑟𝑖𝑡) ∑ [cos (

𝜋

2𝑛
(2𝑗 − 1))]

𝑛−1
2

𝑗=1

+
8

3
𝜋𝑟𝑖𝑡

3 
(62) 

 

𝑉𝑚 = 8𝜋2𝑟𝑖𝑡ℎ𝑚(𝑟𝑖 + ℎ𝑚 + 𝑟𝑖𝑡) ∑ [cos (
𝜋

2𝑛
(2𝑗 − 1))]

𝑛−1
2

𝑗=1

+ 8𝜋𝑟𝑖𝑡
2ℎ𝑚 (63) 

The quantity inside the cosine terms, 𝜃, ranges in odd increments of 𝜋/(2𝑛) as follows: 

𝜋/(2𝑛) ≤ 𝜃 ≤ 𝜋/2 − 𝜋/𝑛, where 𝑗 = 1, 2, … , 𝑛 − 1. 

The total weight is approximated by the summation of the weight of the air inside 

the tori (first term in the numerator of Eq. 64), toroidal membranes (second term in the 

numerator of Eq. 64), and the partially-vacuumed air inside (bracketed term in the 
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numerator of Eq. 64). The buoyancy (denominator of Eq. 64), or weight of the displaced 

atmospheric air, is approximated as the spherical volume of radius 𝑟𝑖 + ℎ𝑚 + 𝑟𝑖𝑡 plus half 

of the tori’s volume, all multiplied by the atmospheric air density. The air densities 𝜌𝑡𝑎, 

𝜌𝑖𝑎, and 𝜌𝑜𝑎 are associated with 𝑃𝑡𝑎, 𝑃𝑖𝑎, and 𝑃𝑜𝑎 shown in Fig. V-8. 

 
𝑊

𝐵
 =  

𝑉𝑡𝑎𝜌𝑡𝑎 + 𝑉𝑚𝜌𝑚 + [
4
3

π (𝑟𝑖 + ℎ𝑚 + 𝑟𝑖𝑡)3 −
1
2

𝑉𝑡𝑎] 𝜌𝑖𝑎

[
4
3

π (𝑟𝑖 + ℎ𝑚 + 𝑟𝑖𝑡)3 +
1
2

𝑉𝑡𝑎] ρoa

 (64) 

The inversely proportional relationship between 𝑟𝑖𝑡 and 𝑛 (Eq. 42) once again 

exemplifies the motivation for characterizing air-stiffened designs as VLTA envelopes. 

The effect of such relationship in the 𝑊/𝐵 ratio (Eq. 64) and hoop stress (Eq. 2 on page 6) 

is presented in Fig. V-9 and Fig. V-10, respectively, as the number of tori increases from 

nine to 197. The W/B ratio and hoop stress were plotted for 𝑃𝑖𝑎 = [0.5, 0.25, 0.03]𝑃𝑜𝑎, and 

𝑃𝑡𝑎 = [1, 2]𝑃𝑜𝑎. Both figures set 𝑟𝑖 = 0.3048 m, ℎ𝑚 = 12.6 µm, and 𝜌𝑚 = 1390 𝑘𝑔/𝑚3, 

and 𝑃𝑜𝑎 and 𝜌𝑜𝑎 are in accordance with the U.S. Standard Atmosphere at sea level [15]. 

 

Fig. V-9. Weight-to-buoyancy ratio versus number of tori + 1. 
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Fig. V-10. Hoop stress versus number of tori + 1. 

A 𝑛 = 41 was chosen to simulate the structural response since Fig. V-9 suggests a 

𝑊/𝐵 ≅ 0.98 at 50% and 𝑊/𝐵 ≅ 0.6 at 3% remainder of a (full) vacuum when 𝑃𝑡𝑎 = 𝑃𝑜𝑎. 

Furthermore, the resulting 𝑟𝑖𝑡 produces 𝜎 ≅ 100 MPa at 3% remainder of a vacuum, which 

is below the proportional limit of typical PET films (e.g., 110 MPa for Mylar® C [48]). 

Generally, increasing the number of tori (or number of revolutions forming the 

Helical Sphere) reduces the W/B and stress. These benefits become evident as tori air 

pressure increases due to the cubic dependence of air volume on tori radius combined with 

the quadratic dependence of membrane volume on tori radius. Axisymmetric half cuts of 

the toroidal representation with 𝑛 = 9 (in black), 41 (in red), and 161 (in blue) are 

superimposed in Fig. V-11 to visually represent the weight reduction as 𝑛 increases. For 

example, an 𝑛 = 9 toroidal representation results in a 𝑊/𝐵 (𝑃𝑡𝑎 = 𝑃𝑜𝑎) = 0.97 and 

𝑊/𝐵 (𝑃𝑡𝑎 = 2𝑃𝑜𝑎) = 1.6, a 50% difference. But the W/B ratio only varies by 8% between 

the two 𝑃𝑡𝑎 variations when 𝑛 = 161. In terms of scalability, membrane thickness, as well 
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as 𝑃𝑡𝑎 and 𝑃𝑜𝑎, drive the initial tori radius required to meet desired hoop stress levels, 

independent of the overall size of the structure.  

 

Fig. V-11. Superimposed axisymmetric cuts of toroidal representation for n = 9 (black), 41 (red), and 

161 (blue). 

 Model Description 

As diagramed in Fig. V-12, the toroidal representation was modeled 

axisymmetrically about the y axis, with x-z plane symmetry and 𝑛 = 41 (i.e., representing 

40 tori and two spheres). The internal radius was set to 𝑟𝑖 = 0.3048 m, and all tori membrane 

thicknesses were set to ℎ𝑚 = 12.6 µm. The membrane material was assumed to be isotropic 

and to follow Hooke’s law with modulus  𝐸 = 4.36 GPa, Poisson’s ratio 𝜈 = 0.38, and 𝜌𝑚 

= 1390 kg/m3; these material properties were selected to represent typical properties found 

in PET film at room temperature. A 𝑛 = 41 was selected for 𝑟𝑖 and ℎ𝑚 because the resulting 

𝑟𝑖𝑡 produces a hoop stress below 100 MPa, which is near the typical PET yield limit. 

n = 9 

n = 41 

n = 161 
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Fig. V-12. Axisymmetric n = 41 model diagram. 

The x-z plane was represented as a rigid line along the x axis to account for any 

contact along said plane, including the simulation of symmetric contact conditions of the 

tori located on opposite sides. Each torus is initially tied to its neighbors at points 

coinciding with circle of radius 𝑟𝑖 + ℎ𝑚 + 𝑟𝑖𝑡. The cavity fluid is defined isothermal 

through the time history, at a temperature 𝜃 = 288.15 K. 

The axisymmetric model was meshed with linear axisymmetric membrane 

elements42, and element sizes ranging linearly from 2ℎ𝑚 at the location where the tori are 

initially tied to 5ℎ𝑚 at the points coinciding with circle of radius 𝑟𝑖 and circle of radius 𝑟𝑖 +

2ℎ𝑚 + 2𝑟𝑖𝑡 (i.e., farthest away from the point ties). This mesh discretization follows the 

results of a mesh convergence study, while favoring small elements at locations where 

 
42 Axisymmetric membrane elements are line elements representing axially symmetrical membrane behavior 

along an axis of revolution and subjected to axially-symmetrical loading. These are internally described in 

cylindrical coordinates 𝑟, 𝑧 and 𝜃, with displacements 𝑢𝑟 and 𝑢𝑧 and stress components 𝜎𝑠𝑠, 𝜎𝜃𝜃 (i.e., hoop 

stress) and 𝜎𝑠𝜃; 𝑠 represents the direction parallel to the element line. Linear axisymmetric membrane 

elements then refer to those of which are characterized with a linear shape, or interpolation, function. 
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contact is expected to occur. The mesh convergence study was conducted using a reduced-

order model based on {1} an axisymmetric representation of the air cavity T0 only and a 

contact line (i.e., the contact line ran from the origin to the vertex where air cavities T0 and 

T1 meet in Fig. V-12), {2} the same model definitions discussed in this paper, as 

appropriate, and {3} the discretization with linear axisymmetric membrane or shell 

elements; shells were only considered to validate that the bending stiffness had an 

insignificant effect on the solution. Considering uniform element sizes ranging from 

100ℎ𝑚 as the courser discretization to 4ℎ𝑚 as the finer, the following outputs showed 

convergence with differences below 1%: strain energy, cavity pressure, vertical 

displacement of nodes located on the axis of symmetry, and maximum von Mises stress. 

This agreement was shown between adjacent data points as the model was discretized 

further with either membrane or shell elements, as well as when membrane and shell 

models of the same discretization were compared. Furthermore, convergence was 

particularly observed for discretization below or equal to 20ℎ𝑚, with agreement within 

0.2% for each of the aforementioned outputs. Such results validated the use of membrane 

elements and informed the discretization utilized in the solution. Detailed results of the 

mesh convergence study are presented in section B.2 (Appendix B). 

The internal pressure load rate followed a smooth load amplitude over a total time 

of 1 s. The amplitude, 𝑎, follows the function described in Eq. 65, defined by the initial 

time and amplitude (𝑡𝑖, Γ𝑖) and final time and amplitude (𝑡𝑖+1, Γ𝑖+1), where 𝑑𝑎/𝑑𝑡 =

𝑑2𝑎/𝑑𝑡2 = 0 at 𝑡𝑖 and 𝑡𝑖+1. 

 
𝑎 = Γ𝑖 + (Γ𝑖+1 − Γ𝑖)(10 − 15𝜉 + 6𝜉2)𝜉3, given 𝜉 =

𝑡−𝑡𝑖

𝑡𝑖+1−𝑡𝑖
 and for 𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖+1 (65) 
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The resulting pressure load vs time is shown in Fig. V-13 with a maximum of 

101.325 kPa at 1 s, commensurate with standard sea level pressure [15]. A total time of 

one second is approximately six times the period of the lowest eigenvalue (i.e., 5.7 Hz). 

The latter was obtained using the Lanczos eigensolver [100] with the axisymmetric 

representation shown in Fig. V-12, without interactions and using axisymmetric shell 

elements. While shell elements were not used in the quasi-static solution presented, they 

provided an estimate of the first eigenvalue while avoiding the spurious (i.e., non-physical) 

modes present in the eigenvalue extraction using membrane elements [133]. Said 

eigenvalue is taken as a lower bound for estimating the timescale that promotes quasi-static 

behavior as the addition of fluid mass is expected to increase its value, reducing its period43. 

 

Fig. V-13. Smooth pressure load versus time. 

 
43 Comparisons of the eigen value and mode with analytical solutions are discussed in section B.3 

(Appendix B). 
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 Structural Response 

Given the modeling components described, including geometric nonlinearity, the 

hydrostatic representation of the fluid-structure interactions, contact and the solver 

selection, a quasi-static response of the toroidal representation with 𝑛 = 41 was solved up 

to and past collapse, based on the model definitions just described44. As pressure 𝑃𝑖𝑎 is 

applied on the internal membrane surfaces (refer to Fig. V-12) following the smooth load 

amplitude (refer to Fig. V-13), the axisymmetric model of the toroidal representation 

displaces along the axisymmetric axis (i.e., y axis). This is represented in Fig. V-14 by the 

von Mises stress contours45, where equilibrium states A-E are associated with the load 

magnitudes marked in the pressure vs time plot within said figure. From the initial state 

shown in A, states B and C show progressive displacement along the axisymmetric axis, 

with increased stresses along membrane regions that display significant arc radii changes. 

Arc radii changes, in turn, result in the development of contact interactions with contact 

areas proportional to the change in arc radius. Contact then affects the response in two 

ways: {1} it delays the instability of the structure by replacing the response of individual 

tori and sphere (i.e., volume change associated with membrane strain) to that of a coupled 

response, where increasingly larger contact areas dampers acceleration; and {2} increases 

the membrane stress along the contact areas (as observed by the development of high stress 

regions in Fig. V-14). To the latter, increases in membrane stress are primarily associated 

with radii, rather than with the contact pressure. As such, the stability of the structure is 

 
44 The Python code that created the Abaqus CAE file used to produce the results in question is included in 

section B.4 of Appendix B. 
45 The von Mises stress is obtained based on the Cauchy stress tensor, as stress states are reported based on 

this tensor regardless of the stress rates used to represent the constitutive relationship in the solver [58].  
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associated with a membrane modulus (i.e., elastic modulus times thickness) that prevents 

catastrophic volume changes as well as with the contact area resulting from the 

development of said volume changes. 

 

Fig. V-14. Von Mises stress contours at multiple loading magnitudes. 

The impending collapse is prompted by a significant change in shape shown in state 

D, where tori with higher stresses (shown in red) have changed shape enough to allow 

further displacement along the axis of symmetry with such displacement occurring at a 
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faster pace after collapse; energy ramifications are discussed below. State E then shows 

progressive displacement, reaching the x-z plane soon after. Such collapse response is a 

result of the design axisymmetry. Following the tori T0 - T20 shown in Fig. V-12, the radial 

components of 𝑃𝑖𝑎 as applied to each 𝑇𝑖 are increasingly taken tangentially by the structure 

as 𝑇𝑖 → T0 through the contact interactions, and balanced at the x-z symmetry plane. This 

produces increasingly larger axisymmetric stresses and tori shape changes as 𝑇𝑖 → T12, 

reducing their respective cavity volumes. These volume changes result in an accumulation 

of vertical displacement that leads to collapse, as well as membrane radii changes and 

proportional stress changes. In other words, the loading on tori nearest to the axis of 

symmetry push against those below in the direction of symmetry, rather than taking the 

load as axisymmetric stress. 

Each tori and sphere have their own cavity enclosing an air volume with fluid state 

following Eq. 48, such that a reduction of cavity volume increases the fluid energy and 

ergo pressure, as guaranteed by the volume constraint in Eq. 52. Therefore, the structural 

collapse is partly a function of these fluid states, their impact on the fluid-structure 

interactions, and the resulting contact as displacement develops. 

Pressure and Volume Plots as Collapse Indicators 

Air pressure in each cavity is plotted as a function of the applied internal pressure 

in Fig. V-15, following labels T0 - T20 in Fig. V-12. Vertical dashed lines demark resulting 

pressure at equilibrium states C and D, per Fig. V-14. Cavity pressures shows progressive 

increase from T0 - T12 up to equilibrium state D, with notable grouping for 𝑇𝑖 > T0. This 

behavior is consistent with the design, where force equilibrium produces less axisymmetric 
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stresses as 𝑇𝑖 → T0. Collapse is represented by the negative slopes present for T11 and T12. 

While all slopes change at different load magnitudes, the slope signs change equally across 

𝑇𝑖, except after state D, where T11 and T12 have negative slopes even though the rest turn 

positive. 

 

Fig. V-15. Cavities T0 - T20 absolute pressures versus applied pressure. 

These pressure changes are a result of the minimum energy solution found when 

Eq. 52 is solved with displacements and cavity pressures, 𝑃𝑖, as variables at each increment, 

and applying the constraint 𝑉𝑖 − 𝑉�̅� = 0 for each cavity. Rather than keeping the volume 

constant, such constraint ensures that at each increment and for each cavity, 𝑉�̅� (calculated 

from Eq. 50) is approximately equal to 𝑉𝑖; the latter being a geometrical representation 

calculated from the interpolation functions of the volume elements within each cavity. 𝑉�̅� 

and 𝑃𝑖 are related by the equation of state (Eq. 48). In other words, Fig. V-15 in an indirect 

representation of the internal (or external work, if the KE is negligible) energy fraction 
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taken by each 𝑇𝑖, where greater cavity pressures correspond to 𝑇𝑖 with greater energy 

fractions. Greater energy fractions are then a reflection of greater volume changes. 

These volume changes are plotted in Fig. V-16 for T0 - T20 vs. applied pressure. 

The cavity pressure increases shown in Fig. V-15 translate to the volume reductions 

observed in Fig. V-16 as a direct consequence of the inversely proportional relationship 

between pressure and volume displayed in Eq. 48. Therefore, cavity volumes progressively 

reduce from T0 - T12 up to equilibrium state D, with T13 and T14 showing the most volume 

reduction of 15 - 22% past state D. 

 

Fig. V-16. Cavities T0 - T20 volumes vs. applied pressure. 

Tori membranes with the most volume changes are subjected to higher stresses as 

a result of the added cavity pressure and membrane arc radii increases. The von Mises 

stress contours shown in Figs. 17-19 demonstrate the stress effects associated with the 

pressure-volume relationship for equilibrium states B, C and D, respectively. These 

contours are a hemispheric visualization of the axisymmetric membrane results.  
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State B (Fig. V-17) shows minimum stresses (colored blue) along contact areas and 

on those membranes that did not have significant volume changes (i.e., T0 and T1). On the 

contrary, maximum stresses are observed along tori with the largest radii changes (i.e., T11 

and T12). The resulting cavity volume reductions drove significant displacement along the 

axis of symmetry, arriving at state C (Fig. V-18). The overall change of structural shape 

shown by state C changed the tori interaction and energy distribution, reflected in slope 

reductions in Fig. V-15 for Ti > T12. The collapse shape then developed from state C into 

the post collapse region, shown in state D (Fig. V-19). Further applied pressure on the 

internals of the collapsed shape drove further displacement until opposite poles contacted 

each other along the x-z plane. 

 

Fig. V-17. Hemisphere visualization of von Mises stress contour at equilibrium state B. 
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Fig. V-18. Hemisphere visualization of von Mises stress contour at equilibrium state C. 

 

Fig. V-19. Hemisphere visualization of von Mises stress contour at equilibrium state D. 
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Energy Discussion 

The energy balance was considered to evaluate whether the solution tended towards 

a quasi-static approximation. The energy balance at each equilibrium state is driven by the 

applied internal pressure work and balanced with the internal energy (IE) and KE; that is, 

balanced in the absence of other dissipative mechanics such as bulk viscosity, friction or 

numerical. Energies are part of the time history outputs, and the above mentioned three are 

plotted in Fig. V-20 through the load history for the results discussed. As desired for quasi-

static responses, most of the work done propagated as IE throughout the simulation. The 

notable slope increases in the three energies from states D - E are another result of the 

collapse observed, which drove significant increases in IE and KE; the latter, albeit 

relatively small, is associated with the rapid movement after collapse. The IE increases 

reflect higher membrane strains (and stresses); a result of {1} the volume changes that 

increase the membranes radii and ergo their stresses (refer to Fig. V-14) and {2} increases 

in cavity pressures associated with those volume changes. 

The KE to IE ratio plotted in Fig. V-21 shows that the KE did not exceed 5% of the 

IE during most of the load history, except near state B and after state D. A maximum KE/IE 

of 22 is shown at the beginning of load history. As stated in the modeling definitions, 

adjacent tori were tied to one another at their closest points (refer to Fig. V-12). Such points 

only share displacement DOF as membrane elements do not possess, by definition, 

rotational degrees of freedom. Consequently, rotation about these points is only restricted 

by contact initiated after deformation has occurred. Therefore, KE at the beginning of load 

history reflects the movement of the structure while the surface-to-surface contacts 
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develop. Nonetheless, this movement occurs at low energy levels, below 1 J, as shown in 

Fig. V-20. After state B, KE/IE reaches a maximum of 0.18 at 0.16 kPa, with tertiary 

changes in slope near 0.36 kPa, 0.65 kPa and 0.95 kPa. Each one of these changes follows 

a change in slope of the cavity pressure curves in Fig. V-15, indicating a notable shape 

change and therefore volume change (refer to Fig. V-16). 

 

Fig. V-20. Applied work, internal energy and kinetic energy versus applied pressure. 

 

Fig. V-21. Kinetic to internal energies versus applied pressure. 

It is relevant to note that, generally, a quasi-static solution disregards the formal 

dynamic problem for the search of a time-independent approximation that offers an 
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asymptotical limit to the former. In the work presented, acceleration is used as a dissipative 

term through the selection of the Euler operator and its inherent algorithmic damping, 

rather than dismissing the term as “static” solvers do. Consequently, the solution presented 

is one of dynamic nature, which approaches the time-independent approximation desired, 

where KE tends to zero. A formal definition of the quasi-static problem is proposed in 

Ref. [134]. 

Weight-to-Buoyancy Estimates Revisit 

It is worth revisiting the W/B ratio considering the deformed structural shape. Let 

us estimate the W/B ratio of state C (V-14). The maximum displacement at state C is given 

by 𝑢𝑧|𝑠𝑡𝑎𝑡𝑒 𝐶 = 0.2291 𝑚 (i.e., a 69.6% reduction in the external radius), resulting from 

𝑃𝑖𝑎|𝑠𝑡𝑎𝑡𝑒 𝐶 = 0.12 𝑘𝑃𝑎. The weight, 𝑊, of the structure follows the numerator of Eq. 64 

(page 64), where the internal density is given by 𝜌𝑖𝑎|𝑠𝑡𝑎𝑡𝑒 𝐶 =
(𝑃𝑖𝑎|𝑠𝑡𝑎𝑡𝑒 𝐶)

𝑅𝜃
. The buoyancy, 

𝐵, follows the denominator and is coarsely estimated as the initial buoyancy minus the 

volume of the spherical caps colored in gray on Fig. V-22, where the deformed shape 

shown is congruent with state C described in Fig. V-14. Given by Eq. 66, each of the 

spherical caps volume represents half of the estimated air volume no longer displaced by 

the structure, where 𝑅 ≅ (𝑟𝑖 + 2ℎ𝑚 + 2𝑟𝑖𝑡). Given the above, the W/B ratio at state C is 

estimated as 
𝑊

𝐵
|

𝑢𝑧

≅ 3.7. From the standpoint of buoyancy potential, this result suggests 

that the instability associated with its axisymmetry combined with the assigned material 

stiffness makes the Helical Sphere unfeasible as structurally defined. 
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Fig. V-22. Deformed shape at state C for weight-to-buoyancy estimate. 

 𝑉𝑐𝑎𝑝 =
𝜋

6
𝑢𝑧(3𝑅2 + 𝑢𝑧

2) (66) 

 
𝑊

𝐵
|

𝑠𝑡𝑎𝑡𝑒 𝐶
 =  

𝑉𝑡𝑎𝜌𝑡𝑎 + 𝑉𝑚𝜌𝑚 + [
4
3

π (𝑟𝑖 + ℎ𝑚 + 𝑟𝑖𝑡)3 −
1
2

𝑉𝑡𝑎] 𝜌𝑖𝑎|𝑠𝑡𝑎𝑡𝑒 𝐶

{[
4
3

π (𝑟𝑖 + ℎ𝑚 + 𝑟𝑖𝑡)3 +
1
2

𝑉𝑡𝑎] −
𝜋
3

𝑢𝑧(3𝑅2 + 𝑢𝑧
2)} ρoa

 (67) 

5.6. Summary and Conclusions 

Firstly, the Helical Sphere was described, parametrizing its geometry in terms of 

the number of revolutions and membrane radius, among others. Secondly, the preliminary 

analysis demonstrated the weight and stress control potential of the design. Thirdly, the 

structural simulation framework was detailed, highlighting the hydrostatic representation 

of the fluid-structure interaction as the method to simulate the air-membrane interaction 

key to characterizing air-stiffened designs. This framework is then used to characterize the 

𝑅 

𝑢𝑧 
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structural response through the axisymmetric geometrical representation of the Helical 

Sphere. The structural response showed considerable deformation at a loading below a 

99% remainder of a vacuum, decreasing the weight of air displaced and effectively 

negating a W/B ≤ 1 (e.g., an actual W/B = 3.7 was estimated for state C). Nonetheless, the 

response exemplified important aspects of air-stiffened designs that warrant their further 

their study as VLTAS: 

1. The structural characterization of air-stiffened designs necessitates the inclusion of 

formulations that capture the fluid-structure and contact interactions developed 

when inward pressure loading is applied. These interactions are illustrated in Figs. 

V-14 to V-19, enabled by: 

a. Large displacements occurring as a result of insignificant bending stiffness 

typically found in membrane films. 

b. Fluid states within membrane cavities.  

2. The inclusion of geometric nonlinearity is a necessary condition to correctly model 

membrane behavior and air-membrane interactions. 

3. The energy balance provides KE/IE ratios throughout the load history, which 

support the quasi-static solution validation. 

4. The ideal gas law is a representative state equation for the air within cavities 

shaping the air-stiffened design across the pressures and temperatures that a 

buoyant VLTA structure is expected to encounter. 

While the need for contact interactions and its tangential definitions is design 

dependent, the general characterization of fluid-stiffened structures that contain multiple 
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fluid barriers generally requires a fluid-structure interaction formulation that {1} provides 

accurate fluid states within the pressures and temperatures observed and {2} represents the 

kinematics associated with the solution timescale. With this in mind, the framework 

introduced in this chapter provides a long-time structural solution of an air-stiffened 

membrane envelope subjected to uniform pressure, based on a quasi-static approach and a 

fluid-structure interaction approximated with a hydrostatic fluid formulation that allows 

constitutive states to be estimated as a function of the fluid states within a Lagrangian 

description. The use of such interaction is adequate when the kinematics of fluid flow are 

negligible. 
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VI. ICORON AIR-STIFFENED DESIGN 

The design trajectory, summarized in Fig. I-4, culminates with the development of 

the Icoron design as another iteration of the generalized representation of stiffened designs 

(Fig. I-1). Devised around the vertex locations of an icosahedral polyhedron, the Icoron 

aims at overcoming the instability characteristics anticipated in the Helical Sphere 

(Chapter V) by extending symmetry to an icosahedral nature while maintaining stress 

control characteristics. Specifically, the Icoron is based on membrane-to-membrane 

connectivity that follows the icosahedron and its subdivisions, which approximate a sphere 

via a tessellation of triangles, leading to a highly symmetric connectivity arrangement on 

which to shape the air-stiffened design. 

To characterize the Icoron as a potential VLTAS, this chapter starts with a 

geometrical description of the Icoron, where unit cell membrane and air volumes are 

developed in terms of the concept of unit cells from which the Icoron is built. The structural 

description follows, where the finite element assembly, the unit cell loading, and the force 

balance are detailed. This is followed by the development of the W/B estimates and a 

discussion on the effects that geometry parameters have on the predicted W/B ratio and 

stress levels. This discussion lays the foundation for a case study, where the development 

of the solution throughout the loading history is studied along with the energy distribution 

associated with the solution. The weight-to-buoyancy of the deformed structure is also 

evaluated throughout the load history. The chapter closes with discussions on modulus and 

preload (air) pressures dependencies, and displacement field equivalence associated with 

modulus-thickness products (i.e., 𝐸ℎ𝑚). Fig. VI-1 traces the aforementioned development 
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and provides a guide to follow as the chapter is read in an attempt to ease understanding; 

chapter section numbers are found in parenthesis. 

 

Fig. VI-1. Diagram tracing the development of Icoron and its structural solutions as presented. 



 

141 

6.1. Design Description 

The Icoron geometry can be visualized by starting with the icosahedron and its 

subdivisions, shown in Fig. VI-2. Given any structural radius46, the subdivisions allow for 

smaller distances among vertices forming a triangle, while preserving the rotational 

symmetry characteristic of the icosahedron [2,5]. The location of vertices, rather than the 

triangular faces, are of particular interest here as the goal is to extend symmetry beyond 

the axisymmetry inherent in the Helical Sphere design. 

 
  

(a) Icosahedron (20 Faces) (b) Frequency = 2 (80 Faces) (c) Frequency = 4 (320 Faces) 

Fig. VI-2. Icosahedron and its subdivisions. 

The air-stiffened idea is incorporated by replacing each triangular flat surface with 

what is noted here as an air-stiffened unit cell (UC), where the mid-plane is positioned 

parallel to the triangular surface removed, and its side surfaces follow the planes formed 

by adjacent vertices (forming each triangle) and the center of the structure. This 

development is depicted in Fig. VI-3 for subdivision frequency of four47. The geometry of 

the UCs therefore relies on the positioning of the vertices as a function of subdivision 

frequency, which includes the UC radius, surface areas and internal volume.  

 
46 Radius of the sphere circumscribed by the polyhedron (i.e., distance between the center and any vertex). 
47 The subdivision frequency, 𝑓, is defined as the number of times each triangle of an icosahedron (Fig. V-14) 

is divided such the number of vertices is given by 10𝑓2  +  2 and the number of triangular faces (or UCs) is 

given by 20𝑓2 [158,159]. 
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Fig. VI-3. Icoron geometry development for frequency 4 (320 faces or unit cells). 

 Geometric Description 

With the above in mind, the following geometrical relationships are used to develop 

each UC along with its radius, areas and volumes, indexed ( )𝑘. Consider the vertices’ 

locations48 of any one triangle forming an icosahedron or any of its subdivisions (Fig. 

VI-2). A triangle centroid, 𝑪𝑷, is the coordinate mean among vertices, 𝑉𝑖𝑗, such that: 

 (𝐶𝑃𝑗)
𝑘

=
1

3
∑ 𝑉𝑖𝑗

3

𝑖=1

 (68) 

The UC radius, 𝑟𝑐, is then selected as the maximum Euclidean distance between each vertex 

and 𝑪𝑷, such that: 

 (𝑟𝑐)𝑘 = max[|𝑽1 − 𝑪𝑷|, |𝑽2 − 𝑪𝑷|, |𝑽3 − 𝑪𝑷| ] (69) 

 
48 Vertices’ locations were obtained using the Geodesate function within Wolfram Mathematica 11.3, which 

subdivides the Icosahedron, among other polyhedrons, and projects new vertices onto the circumscribed 

sphere [160]. 
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Following the 2D representation in Fig. VI-4, a sphere of radius 𝑟𝑐 is positioned at 

such centroid. Three cutting planes are then formed, each by any two adjacent vertices and 

the structure’s center, intersecting the sphere and isolating the UC from three spherical 

caps. The UC is located such that the vertices forming its midplane are coincident with 

structural radius 𝑟𝑠. 

 

Fig. VI-4. Two-dimensional representation of unit cell boundary and loading conditions 

Volumes and areas are formulated by subtracting said spherical caps from the initial 

sphere of radius 𝑟𝑐. Therefore, the surface area occupied by the three spherical caps, 𝐴𝑐𝑎𝑝, 

is obtained with Eq. 70 as a summation of each cap height, 𝑙, indexed ( )𝑞 [135]. 

 (𝐴𝑐𝑎𝑝)
𝑘

= 2𝜋(𝑟𝑐)𝑘 ∑ 𝑙𝑞

3

𝑞=1

 (70) 

In other words, the three cutting planes effectively remove portions of the sphere 

(of radius 𝑟𝑐) to form the UC. Each of these portions is a spherical cap, where their areas 

and volumes are characterized in terms of 𝑟𝑐 and 𝑙. As such, 𝐴𝑐𝑎𝑝 represents the total 

surface area removed from the sphere used to form the UC. The volume occupied by these 
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three spherical caps, 𝑉𝑐𝑎𝑝, is similarly obtained with Eq. 71 [135] as a summation of the 

volume occupied by each UC. 

 (𝑉𝑐𝑎𝑝)
𝑘

=
𝜋

3
∑ 𝑙𝑞

2[3(𝑟𝑐)𝑘 − 𝑙𝑞] 

3

𝑞=1

 (71) 

The UC consists of air enclosed by membrane material. The membrane volume, 

𝑉𝑚, is approximated by subtracting Eq. 70 from the surface area of the sphere (of radius 

𝑟𝑐), adding the cap base areas (i.e., circles coincident with the cutting planes), and 

multiplying by the membrane thickness, ℎ𝑚; shown in Eq. 72. Similarly, the volume of the 

air enclosed, 𝑉𝑐, is approximated by subtracting Eq. 71 from the volume of the sphere; 

shown in Eq. 73. 

 (𝑉𝑚)𝑘 = ℎ𝑚 [4𝜋(𝑟𝑐
2)𝑘 − (𝐴𝑐𝑎𝑝)

𝑘
+ ∑ 𝜋(𝑟𝑐𝑎𝑝

2 )
𝑞

3

𝑞=1

] (72) 

 (𝑉𝑐)𝑘 =
4

3
𝜋(𝑟𝑐

3)𝑘 − (𝑉𝑐𝑎𝑝)
𝑘
 (73) 

This development generates geometric quantities for one (of 𝑘) UC. In fact, the 

number of UCs is equal to the number of triangular faces they replace (i.e., the number of 

UCs is equal to 20𝑓2). This is observed in Fig. VI-5, where both the number of UCs and 

their radii (Eq. 69 above), normalized by the structural radius, are plotted as a function of 

subdivision frequency. The dependence of 𝑟𝑐 with frequency drives the consideration of 

this design as small radii correspond to smaller membrane stresses, allowing for a stress 

control-driven design. 
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Fig. VI-5. Number of unit cells (blue) and unit cell radii (red) as a function of subdivision frequency. 

Fig. VI-5 also exposes two aspects that can challenge the manufacturing feasibility 

of the structure. Firstly, the relationship between the number of UCs and their radii may 

limit the subdivision frequency that can be manufactured as UC radii can fall below 

tolerances. This is compounded by the increasingly high number of UCs required to form 

the spherical volume (i.e., the left vertical axes of Fig. VI-5 and Fig. VI-6). And secondly, 

small variations in UC radii exist for any subdivision of the icosahedron (i.e., subdivision 

frequencies above one). This variance is amplified with frequency, where, for example, a 

frequency of 15 has 30 unique UC radii and a frequency of 50 has 441; portrayed in Fig. 

VI-6 (in red)49 along with the number of UCs (in blue)50. Despite these limitations, the 

 
49 This was obtained by calculating the UC radii at each subdivision frequency, where uniqueness was defined 

as any radius within 1E-6 tolerance of those adjacent in value. The inverted peaks in Fig. VI-6 are associated 

with frequency multiples of three. 
50 Section 8.5 of Popko [158] suggests that asymmetry is a result of the subdivision schema, discussing one 

that allows for rotational symmetry to be maintained. Specifically, by imposing the intersection of three great 

circles (i.e., circles along circumscribed sphere formed by Icosahedron vertices) based on equal-arc spacing 

to generate new subdivisions. To the author’s knowledge, Wolfram Mathematica does not detail the 

subdivision schema implemented in Geodesate (used here to produce vertex locations). Preserving rotational 
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Icoron offers a significant set of parameters, or design variables, from which to study a 

design space in the search for a set that suggests potential as a VLTAS. 

  

Fig. VI-6. Number of unit cells (blue) and number of unique unit cell radii (red) as a function of 

subdivision frequency. 

 Structural Description 

Despite the small variations in radii, the similarities among UCs present a 

computationally efficient method of estimating the structural behavior of the Icoron by 

considering a single UC. Following the 2D representation in Fig. VI-4 above, the outer 

membrane is exposed to external air of density 𝜌𝑜𝑎 and pressure 𝑃𝑜𝑎. The UC cavity is 

defined as air-filled with pressure 𝑃𝑐𝑎 at outer temperature 𝑇𝑜𝑎. The internal cavity is 

defined with density 𝜌𝑖𝑎 and pressure 𝑃𝑖𝑎. The external membrane surface (colored blue in 

Fig. VI-4) and internal membrane surface (colored red in Fig. VI-4) are subjected to Δ𝑃𝑐𝑜 =

 𝑃𝑐𝑎 − 𝑃𝑜𝑎 and Δ𝑃𝑐𝑖 =  𝑃𝑐𝑎 − 𝑃𝑖𝑎. These densities and pressures define the initial state and 

 
symmetry becomes an increasingly relevant topic as specific subdivision frequencies are studied, as such 

symmetry leads to equally-sized UCs, eliminating any instability potentially associated with dissimilar UCs. 
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the structural response along the loading history, as well as the resulting W/B ratio. 

Adjacent UCs are represented via rigid contact planes along the cutting planes used to 

develop the UCs. These contact planes act as symmetry boundary conditions along the 

radial direction. This description is represented three-dimensionally by the assembly 

presented in Fig. VI-7, where the assembly (Fig. VI-7a) is formed by collocating the 

contact cone (Fig. VI-7b) and the UC (Fig. VI-7c) along the three vertices used to define 

the UC. Further details regarding the FEM definitions are discussed in section 6.3.1. 

 
(a) Assembly (b) Contact (Rigid) Cone (c) Unit Cell 

Fig. VI-7. Finite element model unit cell assembly. 

Structural responses are driven by the initial state and loading conditions structures 

are subjected to. In the interest of evaluating the Icoron’s response to a low-pressure51 air 

environment within its internal cavity, the loading history is defined as follows: the UC is 

initially static and stress-free with equal air pressures (𝑃𝑖𝑎 = 𝑃𝑐𝑎 = 𝑃𝑜𝑎). The loading 

 
51 “Low-pressure” is used here to differentiate a (perfect) vacuum, which is an unattainable condition, from 

a condition which approaches it. Nonetheless, structural responses discussed in this chapter used a loading 

history up to what would be considered a perfect vacuum given that the vacuum level is not strictly defined. 

The American Vacuum Society considers 25 torr the point between low and medium vacuum [155], which 

is achievable by some single pumps currently on the market [136,156]. 
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history then follows one or two steps52. A one-step loading history applies a pressure load 

onto its internal membrane from 0 to 𝑃𝑖𝑎 in opposite direction (i.e., towards the structural 

center53). This loading represents air removal from the internal cavity of the Icoron. A two-

step loading history initially increases 𝑃𝑐𝑎 from 𝑃𝑖𝑎 up to a target cavity pressure and 

subsequently subjects the internal membrane to the applied load, going from 0 to 𝑃𝑖𝑎. 

The structural response of each UC is associated with the force resultant of these 

pressures (i.e., the work done by the applied loading is associated with the direction and 

magnitude of the force resultant). It is therefore beneficial to establish the force resultant 

in relation to 𝑃𝑖𝑎, 𝑃𝑐𝑎 and 𝑃𝑜𝑎, particularly along the radial direction as it is the UC’s 

primary direction of movement. Following Fig. VI-4, Eq. 74 becomes a statement of the 

radial resultant, 𝑅(𝑟), as a function of 𝑃𝑖𝑎, 𝑃𝑐𝑎 and 

𝑃𝑜𝑎 and the radial component of the external and 

internal loading areas, 𝐴𝑜𝑎
(𝑟)

 and 𝐴𝑖𝑎
(𝑟)

, respectively54. 

These surface areas are diagramed in Fig. VI-8; 

also viewed as the cross-sectional areas of the 

contact cone (Fig. VI-7b), tangent to the membrane 

surfaces above and below the UC. 

 
52 Abaqus separates the problem history based on steps defined by the user, such that loads, BCs and other 

state variables are defined at each step or propagated from previous steps. For example, a static analysis can 

be defined as the first step and a dynamic analysis as the second step, where the BCs are propagated (kept in 

place) throughout the entire problem history, but new loading conditions are defined for the second step. 
53 The structural center is the center of the Icoron structure. For the purpose of the UC assembly (Fig. VI-7), 

this center is [0,0,0]. 
54 𝐴𝑜𝑎

(𝑟)
 and 𝐴𝑖𝑎

(𝑟)
 are given by the area of a triangle formed by three vertices, 𝑼𝑖. Each 𝑼𝑖 is located 𝑟𝑐 + ℎ𝑚 

away from 𝑽𝑖 (Eq. 69) in either radial direction. In other words, each vertex is located at 𝑟𝑠 ± (𝑟𝑐 + ℎ𝑚) in 

spherical coordinates. The area of the triangle is given by 1/2‖(𝑼2 − 𝑼1) × (𝑼3 − 𝑼1)‖. 

𝐴𝑜𝑎
(𝑟)

, exposed to 𝑃𝑐𝑎 − 𝑃𝑜𝑎 

𝐴𝑖𝑎
(𝑟)

, exposed to 𝑃𝑐𝑎 − 𝑃𝑖𝑎 

Fig. VI-8. Diagram of surface areas 

associated to radial component of  

pressure loading. 
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 𝑅(𝑟) = 𝑃𝑐𝑎𝐴𝑜𝑎
(𝑟)

− 𝑃𝑜𝑎𝐴𝑜𝑎
(𝑟)

− 𝑃𝑐𝑎𝐴𝑖𝑎
(𝑟)

+ 𝑃𝑖𝑎𝐴𝑖𝑎
(𝑟)

 (74) 

In other words, Eq. 74 is the summation of each force component (i.e., pressure 

times area) in the radial direction given 𝑃𝑖𝑎, 𝑃𝑐𝑎 and 𝑃𝑜𝑎 on area components 𝐴𝑜𝑎
(𝑟)

 and 𝐴𝑖𝑎
(𝑟)

, 

where positive forces are defined in the radial direction away from the structural center.  

An 𝑅(𝑟) = 0 leads to a force balance55 expressed in terms of area ratio (Eq. 75). The latter 

serves to determine a subdivision frequency, and therefore the number of UCs, required to 

achieve a force balance at a state with given 𝑃𝑖𝑎, 𝑃𝑐𝑎 and 𝑃𝑜𝑎. 

 
𝐴𝑖𝑎

(𝑟)

𝐴𝑜𝑎
(𝑟)

=
(1 −

𝑃𝑜𝑎

𝑃𝑐𝑎
)

(1 −
𝑃𝑖𝑎

𝑃𝑐𝑎
)

 (75) 

At the stress-free initial state, the 𝐴𝑖𝑎
(𝑟)

 to 𝐴𝑜𝑎
(𝑟)

 ratio is solely a function of the initial 

geometry. Following Fig. VI-9, this ratio reflects the exponential relationship between the 

subdivision frequency and UC radius, where the former asymptotes at 𝐴𝑖𝑎
(𝑟)

/𝐴𝑜𝑎
(𝑟)

= 1. In 

other words, an increased subdivision frequency drives the vertices (shaping the UC) closer 

to each other, which in turn produces a smaller UC radius. The cutting planes (formed by 

the center and these vertices) then produce a UC with increasingly smaller radial distance. 

Such radial distance drives 𝐴𝑖𝑎
(𝑟)

/𝐴𝑜𝑎
(𝑟)

, which is independent of 𝑟𝑠. 

Eq. 75 can also be rearranged to express 𝑃𝑐𝑎/𝑃𝑜𝑎 as a function of 𝐴𝑖𝑎
(𝑟)

/𝐴𝑜𝑎
(𝑟)

 

illustrated in Eq. 76.  The 𝑃𝑐𝑎/𝑃𝑜𝑎 ratio is particularly valuable as it provides the air pressure 

required inside the cavity to drive towards a static balance. In other words, for any given 

subdivision frequency, there is set of  𝑃𝑖𝑎, 𝑃𝑐𝑎 and 𝑃𝑜𝑎 that can allow the UC to end 

 
55 The “force balance” statement used here is not to be confused with an equilibrium statement; the latter 

would imply the inclusion of the internal forces resulting from the applied loading. 
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approximately at its initial position after loading given that the radial resultant is defined 

to be zero. This condition has the potential to minimize changes in the estimated buoyancy 

resulting from any displacement. 

 𝑃𝑐𝑎

𝑃𝑜𝑎

=
𝐴𝑜𝑎

(𝑟)
− (

𝑃𝑖𝑎

𝑃𝑜𝑎
) 𝐴𝑖𝑎

(𝑟)

𝐴𝑜𝑎
(𝑟)

− 𝐴𝑖𝑎
(𝑟)

    ⇒    
𝑃𝑐𝑎

𝑃𝑜𝑎

|
𝑃𝑖𝑎→0

⟶
1

1 − (
𝐴𝑖𝑎

(𝑟)

𝐴𝑜𝑎
(𝑟))  

 (76) 

 

Fig. VI-9. Number of unit cells (blue) and radial components of internal-to-external loading area 

ratio (red). 

This balanced condition is challenged by the fact that the loading history (i.e., UC 

pressurization and/or applied loading akin to air removal from the Icoron internal cavity) 

results in membrane strains that drive displacement within the confines of the contact cone, 

or more generally, the cutting planes (Figs. VI-4 and VI-7b). Nonetheless, it sets a ceiling 

on the maximum UC cavity air pressure required to minimize the radial displacement about 

the initial state after loading. The pressure ratio is plotted (in red) as a function of frequency 

in Fig. VI-10. Note that the exponential relationship of the area ratio (Fig. VI-9) with 

frequency linearizes the resulting pressure ratio (Eq. 76 and Fig. VI-10). Notwithstanding, 
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the proportionality between the pressure ratio and the subdivision frequency significantly 

increases the material stress limit required to meet this balanced condition. Furthermore, 

both Figs. 9 and 10 reflect the minimums and maximums over a range of values associated 

with the small variations in UC radii shown in Fig. VI-6. These structural considerations 

associated with the Icoron play a key role on the selection of parameters that show potential 

to produce W/B ratios below one. 

 

Fig. VI-10. Number of unit cells (blue) and unit cell cavity-to-external pressure ratio (red). 

 Weight-to-Buoyancy Ratio Development 

As shown in previous chapters, estimating the W/B ratio in advance of a structural 

analysis allows the selection of dimensionality and material properties that can lead to a 

feasible structure. Albeit unrepresentative of an elastic structure, such a priori estimation 

starts with the assumption of rigidity (i.e., the atmosphere displaced by the structure prior 

to loading remains constant during and after loading) given that deformed states are 

unknown. Following the geometrical description presented in section 6.1.1,  the W/B ratio 

is approximated by Eq. 77, given Eqs. 72 and 73, the membrane density, 𝜌𝑚, and the air 
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densities (contained within the UCs, 𝜌𝑐𝑎, internal to the structure, 𝜌𝑖𝑎, and external or of 

the atmosphere, 𝜌𝑜𝑎). 

 
𝑊

𝐵
=

𝜌𝑚 ∑ (𝑉𝑚)𝑘 𝑛
𝑘=1 + 𝜌𝑐𝑎 ∑ (𝑉𝑐)𝑘  𝑛

𝑘=1 + 𝜌𝑖𝑎 [
4
3

𝜋𝑟𝑠
3 − 0.5 ∑ (𝑉𝑐)𝑘  𝑛

𝑘=1 ]

𝜌𝑜𝑎 [
4
3

𝜋𝑟𝑠
3 + 0.5 ∑ (𝑉𝑐)𝑘  𝑛

𝑘=1 ]
 (77) 

The first term in the numerator sums the membrane mass for all the UCs. The 

second term sums the mass of air contained within said UCs. The third term approximates 

the mass of the air internal to the structure (i.e., air volume to be evacuated leaving a low-

pressure region) by subtracting 0.5𝑉𝑐 from the spherical volume of radius 𝑟𝑐. Similarly, the 

buoyancy mass in the denominator is obtained by adding 0.5𝑉𝑐 to the spherical volume of 

radius 𝑟𝑐. Selecting 0.5𝑉𝑐 approximates the volume bounded by a sphere of radius 𝑟𝑐 and 

either side of the UC. The validity of this approximation is a function of the structure’s 

radius, 𝑟𝑠, and the number of UCs, or subdivisions, considered. The mass of the air internal 

to the structure and the buoyancy are underestimated given such ratio, regardless of the 

number of subdivisions. One can argue that underestimating the buoyancy affects the W/B 

ratio significantly more than underestimating the mass of air internal to the structure given 

the relative magnitude of their densities. Such argument is not complete, or as important, 

until the rigidity assumption is removed. 

To address the latter, the W/B after deformation can be estimated by redefining the 

denominator of Eq. 77 to the volume of the sphere of radius 𝑟𝑠 + 𝑟𝑐 + ℎ𝑚 − 𝑢𝑟, where 𝑢𝑟 

is the radial displacement incurred by the representative UC at loading 𝑃𝑖𝑎|𝑑𝑒𝑓𝑜𝑟𝑚𝑒𝑑. 

Furthermore, 𝜌𝑖𝑎|𝑑𝑒𝑓𝑜𝑟𝑚𝑒𝑑 =
(𝑃𝑖𝑎|𝑑𝑒𝑓𝑜𝑟𝑚𝑒𝑑)

𝑅𝜃
, where 𝑅 and 𝜃 are the ideal gas constant and 

the atmospheric temperature. 
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𝑊

𝐵
|

𝑑𝑒𝑓𝑜𝑟𝑚𝑒𝑑
 =

𝜌𝑚 ∑ (𝑉𝑚)𝑘 𝑛
𝑘=1 + 𝜌𝑐𝑎 ∑ (𝑉𝑐)𝑘 𝑛

𝑘=1 + 𝜌𝑖𝑎 [
4
3

𝜋𝑟𝑠
3 − 0.5 ∑ (𝑉𝑐)𝑘 𝑛

𝑘=1 ]

𝜌𝑜𝑎 [
4
3

𝜋(𝑟𝑠 + 𝑟𝑐 + ℎ𝑚 − 𝑢𝑟)3]
 (78) 

6.2. Geometry Effects on Expected Weight-to-Buoyancy Ratios and Stress  

As in previous chapters, the selection of structural radius and target UC pressure 

(i.e., 𝑟𝑠 and 𝑃𝑐𝑎) is based on the W/B ratio (Eq. 77), as well as the stress estimate; the latter 

being the spherical stress, 𝜎𝑠, as shown in (Eq. 79) rather than the hoop stress56. 

𝜎𝑠 = Δ𝑃 (
𝑟𝑐

2ℎ𝑚

) (79) 

W/B estimates were obtained across subdivision frequencies 2 ≤ 𝑓 ≤ 50 

considering membrane thickness ℎ𝑚 = 12.2 µ𝑚, membrane density 𝜌𝑚 = 1390 𝑘𝑔/𝑚3, 

𝑟𝑠 = 0.4572 𝑚, 0.6096 𝑚, 1.2192 𝑚 and 𝑃𝑐𝑎 = [1, 1.5, 2]101.325 𝑘𝑃𝑎. Plotted in Figs. 

VI-11a, VI-11c and VI-11e, the nature of the W/B curves is associated with the quadratic 

relationship between the membrane material volume forming each cell and its radius, and 

the cubic relationship between the air volume contained within each cell and its radius. 

Such cubic relationship dictates the weight contribution associated with the UC air 

pressure, which sets a limit on its maximum air pressure. Not surprisingly, the W/B 

decreases with 𝑃𝑐𝑎 and increases with 𝑟𝑠; that is given fixed ℎ𝑚 and 𝜌𝑚. The effect of 𝑃𝑐𝑎 

on W/B lessens with 𝑓 since the UC volume decreases, reducing the overall mass 

contribution of the added air. Notably, the curves presented in VI-11b and VI-11c are 

essentially vertical shifts of VI-11a driven by increased 𝑟𝑠. 

 
56 The spherical stress estimate is a result of thin-walled spherical shell theory, assuming small strains and 

isotropy. The loading and inherent spherical symmetry lead to equal stress in any tangential direction. In 

general terms, a force equilibrium results in 𝜎𝑠[2𝜋ℎ(𝑟𝑖 + ℎ/2)] = Δ𝑃(𝜋𝑟𝑖
2), where 𝑟𝑖 is the internal radius, 

ℎ is the thickness, 𝜎𝑠 is the spherical stress and Δ𝑃 is the differential pressure. This leads to 𝜎𝑠 =
Δ𝑃𝑟𝑖

2/[2ℎ(𝑟𝑖 + ℎ/2)] ≅ Δ𝑃[𝑟𝑖/(2ℎ)] since 𝑟𝑖 + ℎ/2 ≅ 𝑟𝑖 [161]. 
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(a) Weight-to-buoyancy for 𝑟𝑠 = 0.4572 𝑚 (b) Spherical stress for  𝑟𝑠 = 0.4572 𝑚 

  
(c) Weight-to-buoyancy for 𝑟𝑠 = 0.6096 𝑚 (d) Spherical stress for 𝑟𝑠 = 0.6096 𝑚 

  
(e) Weight-to-buoyancy for 𝑟𝑠 = 1.2192 𝑚 (f) Spherical stress for 𝑟𝑠 = 1.2192 𝑚 

Fig. VI-11. Weight-to-buoyancy (rigid) and spherical stress estimates. 
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In other words, increasing the subdivision frequency decreases UC sizes, which in 

turn reduces the membrane volume required to form the UCs and the air volume required 

to fill them. Furthermore, balanced UC pressures (i.e., follows Eq. 76) result in W/B ratios 

above one given the parameters considered. Interestingly, balanced UC pressures invert the 

W/B ratio curve because loading area ratios increase with 𝑓 (as shown in Fig. VI-9). Given 

the membrane parameters, 𝑟𝑠 ≪ 0.4572 𝑚 do not lead to W/B (rigid) estimates below one. 

Figs. VI-11b, VI-11d and VI-11f show the spherical stresses over the same 𝑟𝑠, 𝑃𝑐𝑎 and 𝑓. 

The UC size effect is observed by the reduction of the spherical stress estimate with 

increasing frequency. The stress reduction is not sufficient for the balanced UC pressures 

(those given by Eq. 76) to be below the yield limit for Mylar (approximately 100 MPa) 

given the ℎ𝑚 chosen [136]. 

The changes in volume and mass as a function of 𝑓 are presented in Figs. VI-12 

and VI-13, respectively, all shown in red with respect to the volume or mass of air displaced 

by the Icoron; that is when rigidity, air density at sea level, and the same membrane 

thickness and density as above are assumed. From a volume ratio perspective, the 

cumulative volume of all of the UC (air) cavities exponentially decreases with 𝑓 from 

approximately one to 0.07 (at 𝑓 = 50), which supports the reduction in W/B ratio as a 

function of 𝑓 shown in Figs. VI-11a, VI-11c and VI-11e. On the other hand, the membrane 

volume shows to be an insignificant fraction of the displaced air when compared to the UC 

cavities volume; that is because it is approximately 2.3E-4 at 𝑓 = 1 and 6.3E-4 at 𝑓 = 50.  
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Fig. VI-12. Unit cells air cavity and membrane total volumes as ratios of the displaced air mass 

across subdivision frequency. 

 

Fig. VI-13. Unit cells air cavity and membrane total masses as ratios of the displaced air mass across 

subdivision frequency. 

The membrane contribution to the overall weight of the Icoron is best captured by 

considering the mass ratios shown in Fig. VI-13. Given that the membrane density is over 

1,000 times the density of air, any scale disparities dissipate when considering mass ratios.  
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The membrane mass (and volume) increases with 𝑓, primarily driven by the added surfaces 

(i.e., contact surfaces on the UC) required to connect the increased number of UCs. The 

mass ratio changes from 0.26 to 0.6 within 1 ≤ 𝑓 < 9, and from 0.61 to 0.71 within 10 ≤

𝑓 < 50. These results suggest that membrane thickness plays a critical role as 𝑓 increases, 

particularly for subdivision frequencies above where the UC air cavity mass ratio and the 

membrane mass ratio are approximately the same; this happens at 𝑓 = 5 for the mass 

properties used to develop Fig. VI-13. 

An important characteristic of the Icoron structure is the competing objectives:  

for any given material, a reduction of W/B ratio promotes a higher structural radius 

selection while such selection constraints the minimum subdivision frequency required for 

a target stress level, driven by the UC size. This is observed across Figs. VI-11b, VI-11d 

and VI-11f, where, for example, a 𝑓 = 20 is required to achieve 100 MPa with 𝑟𝑠 =

0.6096 𝑚, compared to 𝑓 = 15  for 𝑟𝑠 = 0.4572 𝑚. 

6.3. Case Study 

Just as with the Helical Sphere, a case study provides significant structural 

characteristics regarding the expected response of the Icoron geometry when subjected to 

the loading histories described (in section 6.1.2). Following the discussion of W/B ratio 

and spherical stress above, a radius 𝑟𝑠 = 0.4572 𝑚 is selected57 for the purpose of 

estimating the structural behavior of an Icoron structure, where Fig. VI-11b suggests a W/B 

ratio below one for 𝑓 ≥ 8, and a spherical stress below 100 MPa for 𝑓 ≥ 15. Membrane 

 
57 Given that 𝑟𝑠 is defined from the center of the structure to any of the vertices used to shape the Icoron, the 

overall radius of the structure is 𝑟𝑠 + 𝑟𝑐 + ℎ𝑚. In this case, 𝑟𝑠 + 𝑟𝑐 ≅ 0.48 𝑚. 
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material properties resemble PET membrane at room temperature (i.e., modulus of 4.36 

GPa, Poisson ratio of 0.38 and density of 1390 kg/m3) [48]. A frequency of 15, representing 

4,500 UCs, is selected in the interest of minimizing the number of UCs while estimating 

stress levels below the yield limit of 100 MPa identified for PET membrane [136]. Such 

structural radius and membrane material combination indicate potential buoyancy, while 

minimizing the size of the spherical volume the UCs are required to fill. The latter is a 

conservative consideration given the potential challenges inherent to the manufacturing of 

considerably large Icoron structures with increased numbers of relatively small UCs. 

 Model Description 

The UC, representative of a 𝑓 = 15 Icoron of 𝑟𝑠 = 0.4572 𝑚, is modeled following 

the structural description presented in section 6.1.2, starting from the assembly presented 

in Fig. VI-7 above. A summary of the FEM definitions is illustrated in Table IV-258. The 

structural mesh is made up of 30,778 three-node membrane elements with linear shape 

functions and side lengths ranging from 0.01𝑟𝑐 to 0.05𝑟𝑐. Following Fig. VI-14, this mesh 

arrangement favors smaller elements along the sides where membrane surfaces meet. 

 

Fig. VI-14. Unit cell membrane mesh. 

 
58 The Python code that created the Abaqus CAE file used to produce the results discussed here is included 

in section C.2 of Appendix C. 
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Table VI-1. Unit cell finite element model definitions. 

Definition Value(s) Comments 

Initial 

Geometries 

- Structural radius = 0.4572 m 

- Frequency = 15 

- Unit cell radius = 0.232 mm 

- Membrane thickness = 12.2 µm 

- Contact cone representing symmetry boundary conditions 

Unit cell as 

representative of 

Icoron geometry. 

 

Material 

- Density = 1390 kg/m3 

- Linear isotropic: 

o Elastic modulus = 4.36 GPa 

o Poisson’s ratio = 0.38 

Membrane is based on 

DuPont Mylar® HP 

12.6 µm PET film 

[116] properties. 

Mesh 

- Membrane: 30,778 three-node membrane elements with a 

linear shape function and side lengths ranging from 0.01 

to 0.05 the unit cell radius 

- Air cavity: three-noded surface facet with linear shape 

function (development discussed on section 5.4.2) 

- Contact cone: 50,909 three-node rigid elements 

Membrane element 

code is M3D3. Rigid 

element code is R3D3. 

Surface facet element 

code is F3D3. 

Initial 

Conditions 

- Unit cell cavity pressure, 𝑃𝑐𝑎, = 101.325 kPa 

- Reference or atmospheric pressure, 𝑃𝑜𝑎, = 101.325 kPa 
 

Boundary 

Conditions 
- Contact cone affixed to a reference node at (0,0,0)  

Loading 

- A total pressure of 101.325 kPa 

- Applied over 0.05s following a smooth load amplitude 

(example shown in Fig. V-13) 

 

Contact 

- Normal contact applied through general self-contact with 

penalty enforcement 

- Tangential contact defined as frictionless with finite 

sliding 

Penalty stiffness was 

controlled by Abaqus, 

defaulted as 10x the 

membrane modulus. 

Solver 
- Abaqus/Explicit 

- Geometric nonlinearity allowed 
 

Loading is based on a one-step loading history, applying a pressure load onto its 

internal membrane from 0 to 101.325 kPa (complete vacuum) towards the structural center 

over a 0.05 s timescale through a smooth load amplitude (example shown in Fig. V-13). 

The initial state is therefore a stress-free static state with 𝑃𝑐𝑎 = 𝑃𝑜𝑎 = 101.325 kPa. The 

mesh density and solution timescale were selected after considering their effects on energy 

quantities59. The UC response is modeled using the simulation framework detailed in 

 
59 Energy distribution across the time history and timescale variations were studied to judge the validity of 

the mesh and timescale considering the search of a quasi-static solution. Undesirable energy quantities (i.e., 

kinetic, contact enforcement and bulk viscosity) combined remained below 10% across 93% of the load 

history. Furthermore, internal energy to work done ratios remained above 90% at and above the mesh density 
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section 5.4 [120], which includes the hydrostatic representation of the air-membrane 

interaction, but replaces the implicit solver with an explicit solver and the use of 

Lagrangian multipliers for contact enforcement with a penalty stiffness enforcement 

method. Such changes allow the solution to resolve the convergence difficulties associated 

with membrane wrinkling and contact. 

Lagrangian multipliers, a contact constraints enforcement method in 

Abaqus/Implicit (discussed and used in the solutions presented in Chapter V), is replaced 

with penalty contact in the general contact algorithm within Abaqus/Explicit. The 

enforcement of normal contact through the penalty method approximates hard contact 

conditions by using springs to resist penetration of the slave surface into the master surface. 

This is depicted in Fig. VI-15, where the upper surface is the slave surface and the surface 

being penetrated (in the diagram) is the master surface. The penalty stiffness, 𝑘𝑠, 

effectively prevents penetration of the slave node into the master surface. 

 

Fig. VI-15. Penalty contact enforcement diagram [61]. 

Numerically, the penalty method first looks for active or violated contact conditions 

based on a central difference prediction at each new increment, correcting overclosures. 

Restoring forces 𝐹𝑠 are then applied to preserve the condition such that 𝑘𝑠 becomes 

 
chosen (i.e., 30,778 three-node membrane elements with a linear shape function and side lengths range from 

0.01 to 0.05 of the UC radius). These effects are discussed further in Appendix C. 

𝐹𝑠 = 𝑘𝑠𝑑 

𝑑 
𝑘𝑠 
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proportional to the penetration, 𝑑. The associated potential energy 
1

2
𝑘𝑠𝑑2 for each 

correction is incorporated in the virtual work of the structure, enforcing contact constraints 

and becoming part of the energy balance. Compared to the Lagrange multiplier method, 

the penalty method trades precise enforcement for improved convergence rates and shorter 

computation times as it does not add DOF to the system. While Abaqus lets users choose 

linear and nonlinear penalty stiffnesses, the default of ten times the element stiffness was 

used as the initial stiffness for the analyses presented in this chapter without notable 

penetration between the UC and the contact (rigid) cone [59,61]. 

 Structural Response 

Two components of the UC work in conjunction to develop the resulting work done 

by the applied loading: the air defined as an ideal gas and the membrane defined by a linear 

elastic constitutive model; both are coupled by a volume constraint that reflects changes in 

air pressure as pressure loading onto the membrane surface. Such work is confined to the 

path established by internal surface of the rigid cone through hard frictionless contact 

interactions, intended to approximate the Icoron’s behavior through a symmetric response. 

All that said, Fig. VI-16 contains the von Mises and logarithmic maximum principal strain 

contours at five loading states, from 0.00116 to one of the applied load ratio (i.e., 0.117 

kPa to 101.325 kPa), completing the defined loading history60. Each state is labeled along 

with their associated time, applied load ratio and radial displacement (relative to the initial 

structural radius [𝑟𝑠 + 𝑟𝑐 + ℎ𝑚 =  0.4804 m]). Keep in mind that the behavior is 

constrained by the rigid cone, albeit not displayed in Fig. VI-16. 

 
60 Results shown are based on outputs extracted at 1000 evenly-spaced time points (i.e., every 5E-5 s). 
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Fig. VI-16. Von Mises stress contours (left) and logarithmic maximum principal strain contours 

(right) overlayed for five loading states. 

State A shows the UC undergoing small displacement and strains, which can be 

considered geometrically linear behavior. In other words, the UC at state A is geometrically 

similar to the initial state. From there, the UC transitions to geometrically nonlinear states 

dominated by wrinkling61, where high stresses and large strains are observed62. State B 

shows that wrinkling is initiated along the edges connecting the contact surfaces, 

developing further to all connecting edges through state E. This causes the UC to radially 

elongate as it is crumpled along the contact cone, inducing wrinkling on the internal (i.e., 

 
61 Wrinkling is characterized as a local buckling phenomenon occurring as membrane regions display 

out-of-plane deformation [91,162–164]. 
62 The development of contact and wrinkling during the transition from state A to B drove solution 

nonconvergence when the implicit solver (used in Chapter 5) was considered, ergo adjusting the methodology 

proposed for air-stiffened design to the use both implicit and explicit solvers, as applicable. 
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loading) and external (i.e., exposed to atmospheric pressure) surfaces, reducing their 

exposed surface areas. At maximum applied load (state E), the UC incurred a radial 

displacement of 0.45 the initial structural radius (i.e., 𝑟𝑠 + 𝑟𝑐 + ℎ𝑚), with maximum 

stresses in the order of 650 MPa. It is beneficial to state, nonetheless, that stresses outside 

wrinkled regions remained near or below the near 100 MPa estimate provided by the 

spherical stress estimate (Eq. 79). 

Wrinkling is primarily characterized by the progressive folding of the UC corners 

onto themselves past state A as the UC is being driven radially downward by the applied 

load and constrained to the path established by the rigid cone. As observed in Fig. VI-17 

from states A-E, a UC corner folds inward and onto itself, stretching the membrane to 

accommodate the progressive development of the folds, subsequently causing significant 

changes in the stress field in and around them. Higher stresses are primarily localized to 

regions adjacent to those where membrane folding has occurred, which indicates that 

{1} those regions are being stretched to allow the corner to fold further inward in order to 

‘fit’ within the volume of the rigid cone and {2} the membrane radius is locally increased 

and tends to be proportional to the membrane stress (Eq. 79). The development of these 

folds is strictly dependent on preserving the contact interactions among adjacent regions of 

the same surface (i.e., self-contact) and between the UC and the rigid cone, such that 

surface crossing is prevented. 
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Fig. VI-17. Comparison of von Mises stress contours near a unit cell corner across loading states A-E. 

Wrinkling, or the folding of the three UC corners, occurs asymmetrically even 

though the initial geometry is symmetrically defined. Fig. VI-18 shows the three UC 

corners (i.e., C1, C2, C3) at states A and B. State A shows variations in the stress field 

within these corners and initial development of distinct wrinkling patterns above and below 

each corner; refer to circled regions in Fig. VI-18. These relatively small variations develop 

into distinct wrinkling patterns due to the distinct strain accumulation associated with each 

corner63. Such behavior results in an uneven stress field, where the location of the stress 

 
63 Wrinkle patterns are mesh-density and timescale dependent. Detailed wrinkle characterization of the 

solution in question requires a further refined mesh and a lower load rate in order to allow time-independent 

wrinkle development. The reasoning is detailed in the mesh-density and timescale dependencies discussion 

within Appendix C. Generally, wriknling is a stiffness- and time-dependent wave propagation phenomenon, 

requiring appropriate timescale and mesh selection for accurate numerical representation [162]. 
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maximum is dependent on the wrinkling pattern developed at any given load amplitude, 

but shown to be within the wrinkling pattern of one of these corners. 

 

Fig. VI-18. Comparison of von Mises stress contours near the unit cell corners at states A and B. 

All these UC shape changes observed throughout the load history were enabled by 

volume reductions and corresponding pressure increases associated with air compression 

within the cavity; coupled through the hydrostatic fluid-structure interaction formulation. 

Increases in cavity pressure (blue) and cavity surface area (red) are shown in Fig. VI-19. 

The cavity pressure reaches 2.9 times the applied pressure at the end of the load history; 

the latter is equal to the atmospheric and the initial cavity pressures for this case study. 
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Fig. VI-19. Cavity pressure and area across the loading history. 

Slope changes throughout the load history are attributed to significant fluctuations 

of wrinkling location and shape, where each significant fluctuation shifts the force resultant 

upward (away from the structural center), driving the UC away from the structural center 

and consequently releasing some of the fluid energy by decreasing its pressure. In other 

words, wrinkling effectively changes the surface direction locally, as well as the overall 

cavity volume. Such changes have a cumulative effect on the direction of the nodal forces 

resulting from the pressure distribution. The force resultant, calculated from these nodal 

forces, becomes directionally opposite to the structural center such that the UC temporally 

displaces away from this center (i.e., changes the displacement direction). This upward 

displacement, in turn, exchanges fluid pressure with cavity volume, reflected as a cavity 

pressure reduction. The upward displacement continues until the additional load applied 

over new increments reverses the force resultant downward, restoring the displacement to 

a downward direction. 
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Furthermore, changes in the cavity surface area, shown in red (Fig. VI-19), provide 

a proxy for accumulated membrane strain as the surface facets used to represent the cavity 

are tied to, and therefore follow, the membrane elements (refer to section 5.4.2). Referring 

to Fig. VI-19, cavity surface area changes by a maximum of 0.55 % at the end of the load 

history. The slope changes are attributed to elements displaying large strain as wrinkling 

develops and fluctuates. The relatively small change in surface area suggests that 

membrane straining has a lesser contribution in the overall movement of the UC. In such 

case, the exclusion of inelastic behavior (which would otherwise cause inelastic strains in 

the small set of membrane elements displaying large strains) is not expected to provide a 

significant variation on the overall UC displacement, although it remains a valid 

consideration as an Icoron of specific parameters is studied further. 

Energy Discussion 

The energy balance augments the discussion above by providing energy 

distribution as a function of the work done by the applied load. Such discussion validates 

the use of the 0.05 s as an appropriate timescale for quasi-static responses of the UC, given 

that Abaqus/Explicit is a dynamic solver (i.e., explicit solution of dynamic equilibrium 

equations). In other words, it validates that the work done on the structure is primarily 

distributed as UC internal energy with minimal work reflected as kinetic energy and 

numerical enforcement methods, such as solution damping and contact. 

With the above in mind, the energy balance, based on the model definitions (refer 

to Table VI-1), is given by: 

 𝐸𝑤 ≅ 𝐸𝑚 + 𝐸𝑓𝑐 + 𝐸𝑘 + (𝐸𝑣 − 𝐸𝑝𝑤) (80) 
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where 𝐸𝑤 is the external work performed by the applied load, 𝐸𝑚 is the membrane (elastic) 

strain energy, 𝐸𝑓𝑐 is the energy accumulated by fluid cavity (i.e., air compression), 𝐸𝑘 is 

the kinetic energy, 𝐸𝑣 is the energy dissipated through linear bulk viscosity64 and 𝐸𝑝𝑤 is 

the work done by the springs in the enforcement of contact (i.e., penalty contact 

formulation). 

Fig. VI-20 shows the energy contribution of each component in Eq. 80, relative to 

the external work. The response is initially dominated by kinetic energy, primarily 

associated with the formation of contact interactions as the initial state had small deviations 

inherent to surface discretization. Membrane strain energy is the second component 

initially driving the response; this was observed in state A (Fig. VI-16), where air 

compressibility was insignificant. Nonetheless, fluid cavity energy readily becomes the 

major component driving the work done to the UC throughout the loading history, 

portraited as significant increases in cavity pressure and minimal increases in cavity area 

(Fig. VI-19). Overall, above 90% of the work done is propagated as fluid cavity and 

membrane strain energies across approximately 93% of the loading history, suggesting the 

response found reaches a quasi-static approximation. 

 
64 Bulk viscosity introduces solution damping associated with volume strain rates. It is included by default 

in Abaqus/Explicit in an effort to improve solution performance of high-speed dynamic events and does not 

add to element stress as it is meant to be a numerical effect. A linear bulk viscosity is included for structural 

elements, such as membranes, and applied as viscosity pressure, 𝑝𝑣 = 𝑏𝜌𝑐𝑑𝐿𝑒𝜖�̇�𝑜𝑙, where 𝑏 is the damping 

coefficient (defaulted at 0.06), 𝜌 is the material density, 𝑐𝑑 is the current dilatational wave speed (Eq. 24 in 

section 2.2.2), 𝐿𝑒 is the element’s characteristic length and 𝜖�̇�𝑜𝑙 is the element’s volumetric strain rate [59]. 

Results from otherwise equally-defined analyses of the UC considered in this case study with 𝑏 =
0, 0.03, 0.06 were compared, finding that all quantities had insignificant variation throughout the load 

history. The exception to the latter were stresses and strains associated with the small set of elements showing 

large strains, which experienced large strain rates. The fact that these elements are a small set of the mesh 

justifies finding similar solutions across 𝑏 values. As such, the solution presented in this chapter use the 

default 𝑏 value as it stabilizes solutions while affecting the solution outputs insignificantly. 
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Fig. VI-20. Energy distribution across load history. 

Weight-to-Buoyancy Estimate Based on Deformed State 

The radial displacement evidenced in the stress and stress contours (Fig. VI-16) 

suggests that buoyancy cannot be achieved. To this point, the W/B ratio accounting for the 

air removed at any given point in the load history and the resulting radial displacement 

follows Eq. 78 above and is plotted in blue below (Fig. VI-21) along with the individual 

weight and buoyancy components (red). The W/B ratio curve is a reflection of the radial 

displacement, and it starts at full weight (i.e., no air evacuated). It increases from there as 

the mass of air removed at any given load is not sufficient to overcome the reduction in 

displaces air that drives buoyancy at said load. In other words, a buoyant design requires 

the buoyancy curve to cross the weight curve before the relative applied pressure is one. 
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Fig. VI-21. Weight-to-buoyancy estimate (deformed state) along the load history. 

Given the discussed above case study, there are several pathways one may take in 

regards to the design space exploration of the Icoron as a potential LTAS. The primary 

design variables as it concerns a quasi-static structure are {1} membrane modulus and 

density; {2} membrane thickness; {3} structural radius; {4} subdivision frequency; 

{5} UC cavity preload pressure (i.e., this refers to the two-step loading history discussed 

in section 6.1.2, where the UC cavity is inflated to a designated preload pressure prior to 

applying the internal pressure load resembling air removal); and {6} atmospheric altitude. 

 Modulus and Preload Pressure Effects 

A question that may arise in the search for specific design parameters (e.g., 

subdivision frequency, modulus, thickness, structural radius) is the relevance of modulus 

and preload pressure in the overarching UC response. The following study briefly looks at 

these effects, limited to the geometry and model definitions used above. Solutions were 

obtained with the following variables modified: {1} membrane stiffness modulus 𝐸 =

[1, 2, 3, 4, 5]𝐸(𝑖), where 𝐸(𝑖) = 4.36 GPa as used above; and {2} cavity preload pressure 
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𝑃𝑐𝑎(𝑝𝑟𝑒𝑙𝑜𝑎𝑑) = [1, 1.25, 1.5]𝑃𝑐𝑎(𝑖), where 𝑃𝑐𝑎(𝑖) = 101.325 kPa, as used for the solution 

above. This produced 15 combinations (i.e., 14 additional analyses). Three response 

surfaces were plotted in Fig. VI-22, representing outputs at the end of the second (and last) 

step, where the applied load is equal to 101.325 kPa; those responses are air cavity pressure, 

cavity area and W/B ratio. 

  
(a) Final air cavity pressure (b) Cavity surface area 

 
(c) Weight-to-buoyancy ratio (of the deformed) 

Fig. VI-22. Response surfaces representing the final deformed states as a function of modulus and 

preloaded cavity pressure. 

The final air cavity pressure (Fig. VI-22a), 𝑃𝑐𝑎(𝑓), shows a marked dependence on 

its preloaded pressure, where 𝑃𝑐𝑎(𝑓)/𝑃𝑐𝑎(𝑝𝑟𝑒𝑙𝑜𝑎𝑑) varies from 2.9 when 𝑃𝑐𝑎(𝑝𝑟𝑒𝑙𝑜𝑎𝑑) =

𝑃𝑐𝑎(𝑖) down to 2.36 at 𝑃𝑐𝑎(𝑝𝑟𝑒𝑙𝑜𝑎𝑑) = 1.5𝑃𝑐𝑎(𝑖). In other words, the ratio of the UC air 
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pressure before and after ‘vacuum loading’ (i.e., second step representing air removal from 

the Icoron’s internal cavity) is reduced with increases in preload pressure; that is because 

a higher preload pressure increases the bulk modulus of the enclosed air (i.e., ‘air-

stiffening’ the UC), which in turn reduces air compressibility as a function of the ‘vacuum 

loading’, delaying wrinkling and membrane folding, and ergo delaying radial 

displacement. The final air cavity pressure dependence on membrane modulus was rather 

insignificant, compared to that of the preload pressure. On the contrary, the cavity surface 

area (Fig. VI-22b) has a strong dependence on membrane modulus with lesser dependence 

on the preload pressure. This is not surprising since, contrary to the air cavity pressure, the 

surface area is directly dependent on the membrane strains, and the inflation (first loading 

step) provides uniform pressure along all UC surfaces, which has an improved force 

balance, compared to the second step, and drives strain accumulation along the entire UC 

surface. Note, regardless, that surface area increases by a maximum of 10% at the 

maximum preload pressure and minimum modulus. This results in reduced W/B estimates 

(Fig. VI-22c), with both preload pressure and modulus increases. Most importantly, lesser 

effects related to the modulus are outperformed by those associated with preload pressure. 

This brief look at the effects that variation of modulus and preload pressure have on the 

structural response indicates that, in the search of a buoyant Icoron LTAS, priority should 

be given to managing the stresses associated with high preload pressures through UC radius 

and membrane thickness, rather than focusing on finding materials with high moduli. 

An interesting association of the modulus with the thickness is what has been 

defined as membrane modulus, 𝐸∗ (i.e., modulus times thickness such that 𝐸∗ = 𝐸ℎ𝑚). The 
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membrane modulus is a convenient consideration because it drives displacement solutions, 

such that displacement fields are interchangeable if 𝐸∗ remains constant across said 

solutions65. This is relevant because the radial displacement 𝑢𝑟 can be defined in terms of 

𝐸∗, which in turn removes a variable from the design space in the search of a buoyant 

design. 

6.4. Summary and Conclusions 

In this chapter, the Icoron geometry is described following its development as an 

extension of the air-stiffened concept onto the vertices of icosahedron subdivisions. The 

development focuses on the geometrical description of the UC as a representative part of 

the overall (largely) symmetric design, where areas and volumes are characterized as sums 

of the UC contributions. This leads into UC radii and its variations as a function of 

subdivision frequency. A structural description is provided after, discussing UC load 

distribution, assembly representation and load balance. It is posed then that high preload 

pressures can minimize the radial displacement of the UC upon loading. The weight-to-

buoyancy ratio (assuming rigidity) and stress estimates then support parameter selection 

for the case study, where preload pressures high enough to result in negligible force 

resultants leading to large structural radii and small subdivision frequencies; the latter 

detrimental to stress control. 

 
65 Membrane modulus has been used in literature [126] to describe displacement solutions for membranes. 

The validity of this concept was confirmed by considering two UC models of equal 𝐸∗ but distinct 𝐸 and ℎ𝑚 

values, resulting in equivalent displacement fields. Is important to note, nonetheless, that the constitutive 

states reflected unique stress and strain values associated with the specific modulus and thickness. 
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The case study considers an Icoron of 0.48 m structural radius and 4,500 UCs of 

PET membrane. The model definitions are illustrated in Table VI-1. The following is said 

about these results, including the variation of the stiffness modulus and UC preload 

pressure: 

1. The simulation methodology presented in Chapter 5 served to develop a 

quasi-static solution of the UC as a representation of an Icoron’s response 

with one exception: an explicit solver was needed in order to characterize 

the structural response along the entire loading history because membrane 

wrinkling and contact drove nonconvergence of implicit solutions early in 

the time history. The use of an explicit solver in turn brought: 

a. The replacement of Lagrange multipliers as an exact enforcement 

of the normal hard contact with penalty contact as an approximate 

enforcement; surface overlapping, which can be associated with 

approximate methods, was not observed in the solutions considered. 

b. An emphasis on loading rate, or solution timescales, to ensure 

energy distributions result in a quasi-static approximation and 

maintain a feasible computing time. In this case, a timescale of 

0.05 s was sufficient to develop a quasi-static solution. 

c. Bulk viscosity effects were found to play an insignificant role on the 

displacement field and constitutive state, while providing numerical 

stabilization. 
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2. Membrane strains play a lesser role in the UC movement, validated by the 

effect of the membrane modulus on the UC displacement compared to the 

effect provided by the cavity preload pressure. Based on these observations, 

having a linear elastic approximation is a valid approach during the search 

of Icoron parameters that can lead to buoyant structures. Specifically, the 

potential accumulation of inelastic strains is expected to arise only at small 

portions of the regions of the UC where wrinkles manifest, insignificantly 

affecting the overall stability of the UC. That said, thermo- and visco- 

elasticity typically are important considerations when polymer membranes 

are being considered, particularly in time-dependent solutions. 

3.  Spherical stress is an appropriate estimate for the stress field away from 

wrinkled surfaces. 

4. The potential development of wrinkles, as observed in the case study, 

requires mesh convergence studies based on solutions that are able to 

generate such wrinkles. In other words, linear solvers will not serve as 

proxies to establish appropriate discretization as wrinkle shape and 

frequency is not known a priori throughout the loading history.  

5.  The development of wrinkling patterns along the UC surfaces is highly 

mesh-density dependent. On the contrary, overarching solution outputs, 

such as UC cavity pressure and radial displacement, vary minimally with 

mesh density. 
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Given the analytic framework and the Icoron geometry provided, feasibility efforts 

primarily rely on finding the following design variable combination that allow for 

buoyancy after deformation while remaining consistent with targeted stress 

limits:{1} membrane thicknesses; {2} structural radius; {3} subdivision frequency; and 

{4} UC cavity preload pressure. The latter design variable plays a major role in the 

potential of the Icoron as an VLTAS because high preloads (up to the balanced pressure 

stated in Eq. 74) preserve buoyancy by minimizing radial displacement, while resulting in 

a high strength requirement. The opposite is also true. 
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VII. CONCLUSIONS 

LTA systems have played a key role in the air domain as low speed, ultra-long 

endurance flight systems since their inception. Traced back to Francesco Lana de Terzi 

[137], the idea of having these systems maintain buoyancy without the use of LTA gases 

became an attractive notion yet to be realized outside the bounds of theoretical and 

analytical works [2–4,6,138–142]. Its realization has been bounded by specific stiffness 

and strength requirements commercially unavailable today, given the geometrical 

arrangements considered. Its pursue, nonetheless, has led to the development of unique 

concepts and design strategies that provide valuable insight on the behavior of extremely 

light structures. Air-stiffened designs grew out of these developments with the goal of 

closing the material gap by laying down an alternate path for the realization of these unique 

LTA structures. Accordingly, this dissertation is a compilation of the development 

trajectory that led to the concept, structural simulation framework and case studies of air-

stiffened designs, establishing a generalizable framework that supports the search of 

optimal solutions within a variety of design spaces that can be constrained by present 

availability of material and manufacturing technology. 

7.1. Summary of the Development Trajectory 

Given the background on LTA systems, the development trajectory starts with 

(Chapter III) the characterization of cylindrical shell collapse solutions at increasingly 

smaller thicknesses of 1E-3 m down to 1E-6 m. Their comparison highlighted the changes 

in collapse behavior resulting from the loss of significant bending, as well as the dissipation 

of material inelastic effects as thickness is reduced. These findings, along with the use of 
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an implicit dynamic solver, started to shape the simulation framework of air-stiffened 

designs. (Chapter IV) A spherical sandwich shell with low-density cores was considered 

next in an effort to conserve significant bending stiffness given the light weight application, 

finding that stability requirements could not be met given all the low-density and 

commercially-available cores considered. More importantly, it led to the idea of air-

stiffened designs by forcing the question of whether thin barriers shaped by air can be 

potential VLTAS. The third study focused on exploring spherical spaces through topology 

optimization, which cemented the need for a low-density material that supports or shapes 

the membranes displacing the atmosphere to enable buoyancy. As the idea of air-stiffened 

design was being formed, the fourth study validated the use of the classical hoop stress for 

initial design estimates, providing a measure of the approximate membrane radius and 

thickness required to maintain stress limits. (Chapter V) As the first air-stiffened design 

considered, the Helical is parametrized and characterized, showing geometric and contact 

nonlinearities as unstable responses developed. The instability observed prompted the 

development of the (Chapter VI) Icoron and its structural solutions in the context of 

VLTAS. The structural solutions for both designs supported the development of the 

simulation framework for air-stiffened designs, summarized next. 

7.2. Summary of Findings 

The structural characterization of air-stiffened designs, as defined, requires several 

analytical formulations suited to handle geometrically nonlinear behavior. The primary 

formulation is the air-membrane, or more generally, the fluid-structure interaction coupling 

the fluid state to the enclosing structure. This is indispensable because, as a compressible 
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fluid, the state of the air is not known a priori throughout the loading history and therefore 

cannot be simply represented by an equivalent pressure load. The work discussed used a 

hydrostatic representation of the fluid-structure interaction, in which the fluid state is 

uniform across the filled cavity containing it and coupled to it via a volume constraint. In 

the interest of quasi-static solutions, this interaction provided the necessary coupling while 

eliminating the need for coupled Eulerian-Lagrangian solutions where the Navier-Stokes 

equations would become part of the system of equations. The use of such hydrostatic 

interaction is adequate when the kinematics of fluid flow are negligible. 

Solutions displaying large displacements drove the need for contact interactions 

that restricted the crossing of adjacent surfaces. From the structural perspective, this 

inclusion was essential in characterizing the behavior through and post-collapse for the 

Helical Sphere design, where normal contact drove membrane-to-membrane interactions, 

in turn enabling air-membrane interactions to shape the response as the load history 

progressed. In contrast, normal contact was used to represent symmetry conditions of the 

Icoron, enabling the use of a UC to represent is behavior. Furthermore, normal contact 

prevented surface regions from crossing as membrane wrinkling occurred. 

Phenomena such as membrane wrinkling, contact and large displacements, which 

are enabled by the fluid-structure interaction, place an emphasis on geometrically nonlinear 

behavior. These drive the selection of solvers capable of handling such nonlinearities. For 

example, an implicit dynamic solver based on a backward Euler operator provided 

sufficient robustness to represent the behavior of the Helical Sphere, where membrane-to-

membrane contact developed smoothly through the load history without any significant 
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discontinuities. On the contrary, the same implicit solver could not solve the frequent 

changes in surface directionality and contact regions observed in the UC (of the Icoron); 

the latter solved explicitly instead. The use of dynamic solvers to find quasi-static solutions 

required the consideration of energy ratios to ensure that energy distribution is 

representative of a quasi-static behavior; meaning that the majority of the work done by 

the applied loading becomes internal energy. This was primarily accomplished through 

numerical damping inherent in the Euler operator for the Helical Sphere solutions, and 

through loading rate and mesh density control for the Icoron solutions. 

From the analytical perspective, air-stiffened designs have increased the level of 

complexity required to characterize the structural behavior of VLTAS designs subjected to 

loads consistent with air removal from their innermost cavities; that is compared to prior 

designs [2–4,6,138–142]. From the perspective of having potential as VLTAS, air-stiffened 

designs have shifted the prior requirement for considerably high specific moduli to one 

where stress limit becomes the primary material limitation. Such allows for an alternate 

search path, where limiting the accumulation of strain is secondary to limiting the 

accumulation of stress. The latter is controlled by the Icoron design flexibility in terms of 

the subdivision frequency and sizing characteristics, or more generally, by the definition 

of air-stiffened designs where connectivity arrangements are predicated on local membrane 

radii control as a proxy for stress control. 
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7.3. Recommendations 

Given the concept of air-stiffened designs, the simulation framework, and the 

benefits of a highly symmetric design observed through the Icoron, there are several 

development paths envisioned: 

- The search for optimal parameters for the Icoron design primarily given W/B, stress, 

and manufacturing constraints. This can be accomplished by having the optimization 

algorithm(s) drive FEM inputs, requiring days or weeks of computation time and 

limited design variable range to ensure model definitions can represent the constitutive 

behavior accurately, which in turn drives the FEM output-driven objectives and 

constraints. Or, it can be done by decoupling the FEM from the optimization algorithm 

and representing desired FEM output-driven objectives and constraints with response 

surfaces obtained and validated prior to the optimization runs.  

- Regardless of the desire for an optimized solution, validation can entail higher-order 

modeling and experimentation. Higher-order modeling can include combinations of 

the following: 

o UCs connected together to form a quadrant of the Icoron; 

o Constitutive definitions that represent thermoviscoelastic behavior of polymer 

membranes forming the UCs; 

o Time-dependent effects associated with preload and air removal rates; 

o Whole flight simulations representing the movement of the structure through 

the atmosphere. 
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- Another path is the removal of the LTA weight constraint, leading to the generalization 

of air-stiffened designs as inflatable structures. Air-stiffened designs can be explored 

for utilization as barriers between environments with significant pressure differences, 

such as a pressurized vessel or vacuum chamber, where the goal can be to provide an 

enclosure with comparative loading capabilities at significant weight reduction. 
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APPENDIX A. STABILITY AND MATERIAL NONLINEARITY SUPPORTING 

INFORMATION 

A.1. Johnson-Cook Material Effects on Shell Stability 

Contrary to the displacement-controlled results presented in section 3.3, 

load-controlled collapse analyses were conducted using the following material definitions: 

{1} linear elastic, {2} Johnson-Cook with isotropic hardening, {3} Johnson-Cook with 

isotropic hardening and thermal softening, and {4} Johnson-Cook with isotropic 

hardening, strain hardening, and thermal softening. The cylinder was discretized with 7,595 

S8R elements as it resulted in a variation below 2% in and an asymmetric eigen shape. The 

latter is assumed by the theory that generated the critical load provided by Eq. 28 on pg. 

58. The applied load, normalized by the predicted critical load, vs the axial displacement 

at a node located mid-length is plotted for each of material definitions in Fig. A-1. 

The first notable change in slope occurs near 0.697𝑃𝑐𝑟, which is when the local 

(element) instabilities show in the model; only possible because of the geometric 

imperfections added to the unloaded shell. From there, changes in slope occur between 

locations B and C, displayed in the curve as snapback behavior, and in the collapsed shell 

as new shapes of which each achieves a new state of equilibrium. After location C, the 

slope only changes slightly, which indicates that the shape found at location C is being 

progressively developed as it crushes, rather than changing shapes at new states of 

equilibrium are found. In other words, the shape is somewhat “locked” after location C. 
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Fig. A-1. Load vs displacement with Johnson-Cook material effects. 

The local instabilities that enable collapse also enables stress concentration near 

them. When these high stress regions reach yield stress values, the Johnson-Cook criteria 

“turns on” and the material stiffness of these regions changes, encouraging equilibrium 

around the newly found shape. Now, the model with the linear elastic material definition 

did not converge past location B. Given that the models are the same, with the exception 

of the material definition, it can be suggested that the change in material stiffness aides in 

convergence, as well as in defining a collapse path. Lastly, adding strain hardening and 

thermal softening did not significantly change the collapse path, compared to just isotropic 

A = 0.6913 

B = 0.6985 

C = 0.6999 

D = 0.7046  

Loc. A Loc. B Loc. C Loc. D Node Plotted 
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hardening. This a consequence of the quasi-static analysis, which does not produce strain 

rates and temperature66 variations that significantly change the material stiffness. 

A.2. Circular Cylindrical Shell Python Code to Generate Abaqus CAE  

Using Abaqus v2016, the following Python code generates the Abaqus .cae file of 

the circular cylindrical shell for analysis, based on the input stated at the beginning of the 

code. The author suggests that Python codes are copied and pasted into a Python, or .py, 

interpreter for readability, and on the Abaqus command window for model generation. The 

author welcomes requests and inquiries regarding functions and codes used to develop the 

content of this dissertation. 

 

## Cylindrical Shell Buckling Analysis ABAQUS-Python Script 20181023 

# By Ruben Adorno 

 

# ********************************************************************************* 

# Inputs 

# ********************************************************************************* 

path           = 'I:\LTVA Research\Cylinder Continuation\Ver t6 Imp Mode 20\\Scratch'         # working 

directory, i.e., temp analysis files, etc.  

scratch_folder = path                                                # results files location 

job_name = 'NLID_NLM_t6_ImpMode20' 

model_name = 'Cyl NLID NLM t6 Mode20' 

bucklefilename = 'CylShell_20181022_Buckle_Job_t6' # linear perturbation buckling '.fil' name, same as 

Buckle odb name 

 

# Step Info #################################################################### 

step_type           = 5   # 1 = buckle, 2 = frequency, 3 = riks, 4 = NL Newton-Raphson w/Adaptive Stab.. 

                          # 5 = Implicit Dynamics Quasi Static, 6 = Implicit Dynamics Moderate Dissipation 

mat_type            = 1   # 0 = Elastic only, 1 = Elastic & Johnson-Cook Rate-Dependent Plastic 

mat_rate_dependency = 0   # no Johnson-Cook rate dependency; applies for NL material only (mat_type = 

1) 

mat_temp_dependency = 0   # no Johnson-Cook temp effects (m = 0 in (T..)^m); applies for NL material 

only (mat_type = 1) 

inelastic_heat_frac = 0.9 # Abaqus default = 0.9 

 
66 Assumes an adiabatic process with 90% of the inelastic energy goes into temperature variation. Abaqus 

calculated the temperature increase at each element by obtaining the heat flux created by the inelastic strain. 

The heat flux  𝑟𝑖𝑛𝑒𝑙𝑎𝑠𝑡𝑖𝑐 = 𝜂𝜎: 𝜖̇𝑖𝑛𝑒𝑙𝑎𝑠𝑡𝑖𝑐 = 𝜌𝑐(𝑇)�̇�, where 𝜂 =inelastic heat fraction, 𝜎 = stress tensor, 

𝜖̇𝑖𝑛𝑒𝑙𝑎𝑠𝑡𝑖𝑐 = inelastic strain rate tensor, 𝜌 = mass density, 𝑐 = inelastic heat fraction, and 𝑇 = temperature. 
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BC_load             = 1   # displacement controlled instead of load controlled 

load     = -1.7115611726E4              # Theoretical Pcr *multiplier to get most of Riks and NR 

disp     = -10E-3                       # amount of axial shortening applied for displacement-controlled analysis 

Riks_set = [1E-3,1E-15,1E-3,3000]       # Riks Step Settings: initial, min & max arc increment,  max # of 

increments 

NR_set   = [1E-3,1E-15,1E-3,3000,2E-7]  # NR w/Adap Stab Set: initial, min & max load increment, max 

# of increments, energy ratio for Adap Stab 

ImpD_set = [1E-3,1E-15,1E-3,3000]       # Imp NL Dyn Quasi-Static Step Set: initial, min & max load 

increment, max # of increments 

 

# Constant Values ############################################################## 

circum_edges_seed = 340 

longit_edges_seed = 80 

num_cores = 4 

memory_usage = 90 

num_GPUs = 0 

skin_radius = 4.064e-01   # Kobayashi: 0.1 

skin_length = 8.128e-01   # Kobayashi: 0.1139 

skin_thickness = 1E-06    # Kobayashi: 0.247E-3 

t = skin_thickness 

imper = [t*0.0056, t*0.0056, t*0.0056, t*0.0056, t*0.0056, t*0.0056, \ 

              t*0.0056, t*0.0056, t*0.0056, t*0.0056, t*0.0056, t*0.0056, \ 

              t*0.0056, t*0.0056, t*0.0056, t*0.0056, t*0.0056, t*0.0056, \ 

              t*0, t*0] # fraction of mode 1-20 added as imperfection, previously 0.0036 

skin_element_type1 = S4R  # 2D Shell: S4R      3D Shell: SC8R      3D Stress: C3D8R 

skin_element_type2 = S3   # 2D Shell: S3       3D Shell: SC6R      3D Stress: C3D6 

BC_location = 2           # 1 = top BC off, 2 = top BC on 

BC_type_bottom_edge = 2   # 1 = SS, 2 = Fixed 

BC_type_top_edge    = 2   # 1 = SS, 2 = Fixed 

skin_poisson = 0.361      # Kobayashi: 0.3 

skin_modulus = 1.1E11     # Kobayashi: 5.56E9 

skin_density = 4424.000000 

skin_A = 8.618000e+08/2 

skin_B = 3.309000e+08 

skin_n = 3.400000e-01 

skin_m = 8.000000e-01 

skin_C = 1.200000e-02 

skin_eps0 = 1.000000e+00 

skin_Tm = 1.905220e+03 

skin_T0 = 2.731500e+02 

skin_d1 = -9.000000e-02 

skin_d2 = 2.500000e-01 

skin_d3 = 5.000000e-01 

skin_d4 = 1.400000e-02 

skin_d5 = 3.870000e+00 

skin_specific_heat  = 526 # J/(kg-K), ASTM Grade 5 titanium; Ti6Al4V, 

http://www.matweb.com/search/DataSheet.aspx?MatGUID=b350a789eda946c6b86a3e4d3c577b39 

 

# ********************************************************************************* 

# CAE Creation Code 

# ********************************************************************************* 
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# Loads Modules' Calls 

*************************************************************************** 

import os 

from part import * 

from material import * 

from section import * 

from optimization import * 

from assembly import * 

from step import * 

from interaction import * 

from load import * 

from mesh import * 

from job import * 

from sketch import * 

from visualization import * 

from connectorBehavior import * 

 

# Sets Working Directory 

************************************************************************* 

os.chdir(path) 

 

# Load variables 

************************************************************************* 

execfile(Var_file) 

 

# Model name and creation 

************************************************************************ 

mdb.Model(modelType=STANDARD_EXPLICIT, name=model_name) 

 

# Creates Part ************************************************************************* 

mdb.models[model_name].ConstrainedSketch(name='__profile__', sheetSize=2.0) 

mdb.models[model_name].sketches['__profile__'].CircleByCenterPerimeter(center=( 

    0.0, 0.0), point1=(skin_radius, 0.0)) 

mdb.models[model_name].Part(dimensionality=THREE_D, name='Part-1', type= 

    DEFORMABLE_BODY) 

mdb.models[model_name].parts['Part-1'].BaseShellExtrude(depth=skin_length, sketch= 

    mdb.models[model_name].sketches['__profile__']) 

 

# Creates Material 

************************************************************************* 

mdb.models[model_name].Material(name='Material-1') 

mdb.models[model_name].materials['Material-1'].Elastic(table=((skin_modulus, skin_poisson), )) 

mdb.models[model_name].materials['Material-1'].Density(table=((skin_density, ), )) 

Adiabatic = OFF 

if mat_type == 1: 

    if mat_temp_dependency == 0: 

        skin_m = 0 

    elif mat_temp_dependency == 1: 

        mdb.models[model_name].materials['Material-1'].InelasticHeatFraction(fraction=inelastic_heat_frac) 

        mdb.models[model_name].materials['Material-1'].SpecificHeat(table=((skin_specific_heat, ),)) 

        Adiabatic = ON 

         

    mdb.models[model_name].materials['Material-1'].Plastic(hardening=JOHNSON_COOK,  
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        table=((skin_A, skin_B, skin_n, skin_m, skin_Tm, skin_T0), )) 

    if mat_rate_dependency == 1: 

        mdb.models[model_name].materials['Material-1'].plastic.RateDependent( 

            table=((skin_C, skin_eps0), ), type=JOHNSON_COOK) 

        #mdb.models[model_name].materials['Material-1'].JohnsonCookDamageInitiation( 

        #    table=((skin_d1, skin_d2, skin_d3, skin_d4, skin_d5, skin_Tm, skin_T0, skin_eps0), )) 

 

# Creates Profile, Creates Section, and Assigns Section 

************************************************************************* 

mdb.models[model_name].parts['Part-1'].Set(faces= 

    mdb.models[model_name].parts['Part-1'].faces.getSequenceFromMask(('[#1 ]', ), ), name='Whole Shell') 

 

# Composite Shell Section (1-ply) (allows for plastic strains for 2D shell mesh) 

mdb.models[model_name].CompositeShellSection(idealization=NO_IDEALIZATION, 

integrationRule=SIMPSON, layup=(SectionLayer( 

    thickness=skin_thickness, material='Material-1', plyName=' '), ), name='Section-1', 

poissonDefinition=DEFAULT,  

    preIntegrate=OFF, symmetric=False, temperature=GRADIENT, thicknessModulus=None, 

thicknessType=UNIFORM, useDensity=OFF) 

 

mdb.models[model_name].parts['Part-1'].SectionAssignment(offset=0.0,  

    offsetField='', offsetType=MIDDLE_SURFACE, region= 

    mdb.models[model_name].parts['Part-1'].sets['Whole Shell'], sectionName= 

    'Section-1', thicknessAssignment=FROM_SECTION) 

 

# Create Instance 

************************************************************************* 

mdb.models[model_name].rootAssembly.DatumCsysByDefault(CARTESIAN) 

mdb.models[model_name].rootAssembly.Instance(dependent=OFF, name='Part-1-1',  

    part=mdb.models[model_name].parts['Part-1']) 

 

# Creates Edges Sets 

************************************************************************* 

mdb.models[model_name].rootAssembly.PartitionFaceByShortestPath(faces= 

    mdb.models[model_name].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(('[#1 ]', ), ),  

    point1=mdb.models[model_name].rootAssembly.instances['Part-1-1'].InterestingPoint( 

    mdb.models[model_name].rootAssembly.instances['Part-1-1'].edges[1], MIDDLE), 

    point2= mdb.models[model_name].rootAssembly.instances['Part-1-1'].InterestingPoint( 

    mdb.models[model_name].rootAssembly.instances['Part-1-1'].edges[0], MIDDLE)) 

mdb.models[model_name].rootAssembly.PartitionEdgeByPoint(edge= 

    mdb.models[model_name].rootAssembly.instances['Part-1-1'].edges[1], point= 

    mdb.models[model_name].rootAssembly.instances['Part-1-1'].InterestingPoint( 

    mdb.models[model_name].rootAssembly.instances['Part-1-1'].edges[1], MIDDLE)) 

mdb.models[model_name].rootAssembly.Set(edges= 

    mdb.models[model_name].rootAssembly.instances['Part-1-1'].edges.findAt((( 

    -0.707106*skin_radius, -0.707106*skin_radius, 0.0), ), ((0.707106*skin_radius, 0.707106*skin_radius, 

0.0), ), ), name='Lower Edge') 

mdb.models[model_name].rootAssembly.Set(edges= 

    mdb.models[model_name].rootAssembly.instances['Part-1-1'].edges.findAt((( 

    0.707106*skin_radius, -0.707106*skin_radius, skin_length), ), ((-0.707106*skin_radius, 

0.707106*skin_radius, skin_length), ), ), name='Upper Edge') 

mdb.models[model_name].rootAssembly.Set(edges= 

    mdb.models[model_name].rootAssembly.instances['Part-1-1'].edges.findAt((( 
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    -skin_radius, 0.0, 0.875*skin_length), ), ((-skin_radius, 0.0, 0.75*skin_radius), ), ), name='Longitudinal 

Edge') 

mdb.models[model_name].rootAssembly.Set(vertices= 

    mdb.models[model_name].rootAssembly.instances['Part-1-1'].vertices.findAt(((-skin_radius, 0.0, 

skin_radius), )),name='L_2 Pt') 

 

# Creates Mesh ************************************************************************* 

mdb.models[model_name].rootAssembly.setElementType( 

    elemTypes=(ElemType(elemCode=skin_element_type1, elemLibrary=STANDARD, 

secondOrderAccuracy=ON), ElemType(elemCode=skin_element_type2, elemLibrary=STANDARD)),  

    regions=(mdb.models[model_name].rootAssembly.instances['Part-1-

1'].faces.getSequenceFromMask(('[#1 ]', ), ), )) 

mdb.models[model_name].rootAssembly.setMeshControls(elemShape=QUAD, regions= 

    mdb.models[model_name].rootAssembly.instances['Part-1-1'].faces.getSequenceFromMask(('[#1 ]', ), ), 

technique=SWEEP)  

 

mdb.models[model_name].rootAssembly.seedEdgeByNumber(constraint=FINER, edges= 

    mdb.models[model_name].rootAssembly.instances['Part-1-1'].edges.findAt((( 

    -skin_radius, 0.0, 0.875*skin_length), ), ((-skin_radius, 0.0, 0.75*skin_radius), ), ), 

number=longit_edges_seed/2) 

mdb.models[model_name].rootAssembly.seedEdgeByNumber(constraint=FINER, edges= 

    mdb.models[model_name].rootAssembly.instances['Part-1-1'].edges.findAt((( 

    -0.707106*skin_radius, -0.707106*skin_radius, 0.0), ), ((0.707106*skin_radius, 0.707106*skin_radius, 

0.0), ), ), number=circum_edges_seed/2) 

mdb.models[model_name].rootAssembly.seedEdgeByNumber(constraint=FINER, edges= 

    mdb.models[model_name].rootAssembly.instances['Part-1-1'].edges.findAt((( 

    0.707106*skin_radius, -0.707106*skin_radius, skin_length), ), ((-0.707106*skin_radius, 

0.707106*skin_radius, skin_length), ), ), number=circum_edges_seed/2) 

mdb.models[model_name].rootAssembly.generateMesh(regions=(mdb.models[model_name].rootAssembl

y.instances['Part-1-1'], )) 

 

# Creates Reference Point (RP) (to later constraint Edge to RP) 

************************************************************************* 

mdb.models[model_name].rootAssembly.ReferencePoint(point=(0.0, 0.0, skin_length)) 

mdb.models[model_name].rootAssembly.Set(name='Upper Edge RP Set', 

referencePoints=(mdb.models[model_name].rootAssembly.referencePoints.findAt((0.0, 0.0, skin_length)), 

)) 

 

# Creates Constraint between Edges and RP 

************************************************************************* 

mdb.models[model_name].RigidBody(name='Upper Edge Constraint', tieRegion= 

    mdb.models[model_name].rootAssembly.sets['Upper Edge'], refPointRegion= 

    Region(referencePoints=(mdb.models[model_name].rootAssembly.referencePoints.findAt((0.0, 0.0, 

skin_length)), ))) 

 

# Creates Step 

**************************************************************************************

************************************************************************************** 

if step_type == 1: 

    mdb.models[model_name].BuckleStep(maxIterations=5000, name='Buckle', numEigen=20, 

previous='Initial', vectors=20) 

    F_load = -1 # concentrated load applied at RP 

elif step_type == 2: 
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    mdb.models[model_name].FrequencyStep(name='Frequency', previous='Initial', numEigen=5) 

elif step_type == 3: 

    F_load = load # concentrated load applied at RP 

    # Creates NL Riks Step 

    mdb.models[model_name].StaticRiksStep(extrapolation=LINEAR,  

    initialArcInc=Riks_set[0], minArcInc=Riks_set[1], maxArcInc=Riks_set[2], maxLPF=1,  

    maxNumInc=int(Riks_set[3]), name='Buckle', nlgeom=ON, previous='Initial', 

useLongTermSolution=False, adiabatic=Adiabatic) 

    # Creates Outputs Requests 

    mdb.models[model_name].fieldOutputRequests['F-Output-1'].setValues( 

    variables=('S', 'MISESMAX', 'PE', 'PEEQ', 'PEEQMAX', 'PEQC', 'PEMAG', 'E', 'LE', 'ER', 'U', 'RF', 'CF', 

'NFORC', 'COORD', 'STATUS'), frequency=1) 

    mdb.models[model_name].HistoryOutputRequest(createStepName='Buckle',  

    name='Load Point History Output', rebar=EXCLUDE, 

region=mdb.models[model_name].rootAssembly.sets['Upper Edge RP Set'] 

    , sectionPoints=DEFAULT, variables=('U3', 'CF3','RF','TF'), frequency=1) 

    mdb.models[model_name].HistoryOutputRequest(createStepName='Buckle',  

    name='L_2 Point History Output', rebar=EXCLUDE, 

region=mdb.models[model_name].rootAssembly.sets['L_2 Pt'] 

    , sectionPoints=DEFAULT, variables=('U', 'CF','RF','TF'), frequency=1) 

elif step_type == 4: 

    F_load = load # concentrated load applied at RP 

    # Creates NL NR Step 

    mdb.models[model_name].StaticStep(adaptiveDampingRatio=0.05, continueDampingFactors=False,  

        extrapolation=PARABOLIC, initialInc=NR_set[0], minInc=NR_set[1], maxInc=NR_set[2], 

maxNumInc=NR_set[3],   

        name='Buckle', nlgeom=ON, previous='Initial', solutionTechnique= 

        QUASI_NEWTON, stabilizationMagnitude=NR_set[4], stabilizationMethod= 

        DISSIPATED_ENERGY_FRACTION, useLongTermSolution=False, adiabatic=Adiabatic) 

    # Creates Outputs Requests 

    mdb.models[model_name].fieldOutputRequests['F-Output-1'].setValues( 

    variables=('S', 'MISESMAX', 'PE', 'PEEQ', 'PEEQMAX', 'PEQC', 'PEMAG', 'E', 'LE', 'ER', 'U', 'RF', 'CF', 

'NFORC', 'COORD', 'STATUS', 'THE', 'SF'), frequency=1) 

    mdb.models[model_name].HistoryOutputRequest(createStepName='Buckle',  

    name='Load Point History Output', rebar=EXCLUDE, 

region=mdb.models[model_name].rootAssembly.sets['Upper Edge RP Set'] 

    , sectionPoints=DEFAULT, variables=('U3', 'CF3','RF','TF'), frequency=1) 

    mdb.models[model_name].HistoryOutputRequest(createStepName='Buckle',  

    name='L_2 Point History Output', rebar=EXCLUDE, 

region=mdb.models[model_name].rootAssembly.sets['L_2 Pt'] 

    , sectionPoints=DEFAULT, variables=('U', 'CF','RF','TF'), frequency=1) 

elif step_type == 5: 

    F_load = load # concentrated load applied at RP 

    # Creates Implicit Dynamic Quasi-Static Step 

    mdb.models[model_name].ImplicitDynamicsStep(alpha=DEFAULT, 

amplitude=RAMP,extrapolation=PARABOLIC,  

    application=QUASI_STATIC, initialConditions=OFF, initialInc=ImpD_set[0], 

    maxInc=ImpD_set[2], maxNumInc=ImpD_set[3], minInc=ImpD_set[1],  

    name='Buckle', nlgeom=ON, nohaf=OFF, previous='Initial', solutionTechnique=QUASI_NEWTON, 

adiabatic=Adiabatic) 

    # Creates Outputs Requests 

    mdb.models[model_name].fieldOutputRequests['F-Output-1'].setValues( 
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    variables=('S', 'MISESMAX', 'PE', 'PEEQ', 'PEEQMAX', 'PEQC', 'PEMAG', 'E', 'LE', 'ER', 'EE','IE', 'U', 

'RF', 'CF', 'NFORC', 'COORD', 'STATUS', 'THE', 'SF'), frequency=1) 

    mdb.models[model_name].HistoryOutputRequest(createStepName='Buckle',  

    name='Load Point History Output', rebar=EXCLUDE, 

region=mdb.models[model_name].rootAssembly.sets['Upper Edge RP Set'] 

    , sectionPoints=DEFAULT, variables=('U3', 'CF3','RF','TF'), frequency=1) 

    mdb.models[model_name].HistoryOutputRequest(createStepName='Buckle',  

    name='L_2 Point History Output', rebar=EXCLUDE, 

region=mdb.models[model_name].rootAssembly.sets['L_2 Pt'] 

    , sectionPoints=DEFAULT, variables=('U', 'CF','RF','TF'), frequency=1) 

elif step_type == 6: 

    F_load = load # concentrated load applied at RP 

    # Creates Implicit Dynamic Quasi-Static Step 

    mdb.models[model_name].ImplicitDynamicsStep(alpha=DEFAULT, 

amplitude=RAMP,extrapolation=PARABOLIC,  

    application=MODERATE_DISSIPATION, initialConditions=OFF, initialInc=ImpD_set[0], 

    maxInc=ImpD_set[2], maxNumInc=ImpD_set[3], minInc=ImpD_set[1],  

    name='Buckle', nlgeom=ON, nohaf=OFF, previous='Initial', solutionTechnique=QUASI_NEWTON, 

adiabatic=Adiabatic) 

    # Creates Outputs Requests 

    mdb.models[model_name].fieldOutputRequests['F-Output-1'].setValues( 

    variables=('S', 'MISESMAX', 'PE', 'PEEQ', 'PEEQMAX', 'PEQC', 'PEMAG', 'E', 'LE', 'ER', 'EE','IE', 'U', 

'RF', 'CF',  'NFORC','COORD', 'STATUS', 'THE', 'SF'), frequency=1) 

    mdb.models[model_name].HistoryOutputRequest(createStepName='Buckle',  

    name='Load Point History Output', rebar=EXCLUDE, 

region=mdb.models[model_name].rootAssembly.sets['Upper Edge RP Set'] 

    , sectionPoints=DEFAULT, variables=('U3', 'CF3','RF','TF'), frequency=1) 

    mdb.models[model_name].HistoryOutputRequest(createStepName='Buckle',  

    name='L_2 Point History Output', rebar=EXCLUDE, 

region=mdb.models[model_name].rootAssembly.sets['L_2 Pt'] 

    , sectionPoints=DEFAULT, variables=('U', 'CF','RF','TF'), frequency=1) 

 

# Creates BC ************************************************************************* 

if BC_type_bottom_edge == 1: 

    u_bottom = [0, 0, 0, UNSET, UNSET, UNSET] # Simply Supported: [0, 0, 0, UNSET, UNSET, 

UNSET] 

elif BC_type_bottom_edge == 2: 

    u_bottom = [0, 0, 0, 0, 0, 0] # Encastre/Fixed: [0, 0, 0, 0, 0, 0] 

 

if BC_type_top_edge == 1: # [u1, u2, u3, ur1, ur2, ur3] of BC along bottom; 0 = no disp, UNSET is free in 

that DOF 

    u_top = [0, 0, UNSET, UNSET, UNSET, UNSET] # Simply Supported: [0, 0, UNSET, UNSET, 

UNSET, UNSET] 

elif BC_type_top_edge == 2: 

    u_top = [0, 0, UNSET, 0, 0, 0] # Encastre/Fixed: [0, 0, UNSET, 0, 0, 0] 

 

if BC_location == 1: 

    mdb.models[model_name].DisplacementBC(amplitude=UNSET, buckleCase= 

    PERTURBATION_AND_BUCKLING, createStepName='Initial', distributionType= 

    UNIFORM, fieldName='', fixed=OFF, localCsys=None, name='BC Along Lower Edge', region= 

    mdb.models[model_name].rootAssembly.sets['Lower Edge'], u1=u_bottom[0], u2=u_bottom[1], 

u3=u_bottom[2], ur1=u_bottom[3], ur2=u_bottom[4], ur3=u_bottom[5]) 

elif BC_location == 2: 
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    mdb.models[model_name].DisplacementBC(amplitude=UNSET, buckleCase= 

        PERTURBATION_AND_BUCKLING, createStepName='Initial', distributionType= 

        UNIFORM, fieldName='', fixed=OFF, localCsys=None, name='BC Along Lower Edge', region= 

        mdb.models[model_name].rootAssembly.sets['Lower Edge'], u1=u_bottom[0], u2=u_bottom[1], 

u3=u_bottom[2], ur1=u_bottom[3], ur2=u_bottom[4], ur3=u_bottom[5]) 

    mdb.models[model_name].DisplacementBC(amplitude=UNSET, buckleCase= 

        PERTURBATION_AND_BUCKLING, createStepName='Initial', distributionType= 

        UNIFORM, fieldName='', fixed=OFF, localCsys=None, name='BC Along Upper Edge', region= 

        mdb.models[model_name].rootAssembly.sets['Upper Edge RP Set'], u1=u_top[0], u2=u_top[1], 

u3=u_top[2], ur1=u_top[3], ur2=u_top[4], ur3=u_top[5]) 

 

# Creates Load ************************************************************************* 

if step_type == 3 or step_type == 4 or step_type == 5 or step_type == 6 and BC_load == 1: 

    mdb.models[model_name].DisplacementBC(amplitude=UNSET, createStepName='Buckle',  

        distributionType=UNIFORM, fieldName='', fixed=OFF, localCsys=None, name= 

        'Load BC', region=mdb.models[model_name].rootAssembly.sets['Upper Edge RP Set'], u1=UNSET,  

        u2=UNSET, u3=disp, ur1=UNSET, ur2=UNSET, ur3=UNSET) 

elif step_type == 1 or step_type == 3 or step_type == 4 or step_type == 5 or step_type == 6: 

    mdb.models[model_name].rootAssembly.Set(name='Upper Edge RP Set',  

        referencePoints=(mdb.models[model_name].rootAssembly.referencePoints.findAt((0.0, 0.0, 

skin_length)), )) 

    mdb.models[model_name].ConcentratedForce(cf3=F_load, createStepName='Buckle',  

        distributionType=UNIFORM, field='', localCsys=None, name='Upper Edge Load',  

        region=mdb.models[model_name].rootAssembly.sets['Upper Edge RP Set']) 

 

# Adds Imperfection 

**************************************************************************************

************************************************************************************** 

if step_type == 3 or step_type == 4 or step_type == 5 or step_type == 6: 

    # Adds Imperfections from Linear Buckle Step File, as Initial Configuration 

    x   = '*Imperfection, File='+bucklefilename+', Step=1\n1, '+str(imper[0])+'\n2, '+str(imper[1])+'\n3, 

'+str(imper[2])+'\n4, '+str(imper[3])+'\n5, '+str(imper[4])\ 

        +'\n6, '+str(imper[5])+'\n7, '+str(imper[6])+'\n8, '+str(imper[7])+'\n9, '+str(imper[8])+'\n10, 

'+str(imper[9])+'\n11, '+str(imper[10])+'\n12, '+str(imper[11])\ 

        +'\n13, '+str(imper[12])+'\n14, '+str(imper[13])+'\n15, '+str(imper[14])+'\n16, '+str(imper[15])+'\n17, 

'+str(imper[16])+'\n18, '+str(imper[17])\ 

        +'\n19, '+str(imper[18])+ '\n20, '+str(imper[19]) 

    # Creates imperfection keyword string based on selected inputs 

    mdb.models[model_name].keywordBlock.synchVersions(storeNodesAndElements=True) # Asigns the 

model keyword to the 'sieBlocks' string 

    try: # Removes the 'Imperfection...' string from the Keywords, if present 

        l = mdb.models[model_name].keywordBlock.sieBlocks 

        idx = [index for index, s in enumerate(l) if 'Imperfection' in s][0] 

        mdb.models[model_name].keywordBlock.replace(idx,'\n') 

    except: 

        pass 

     

    idy = mdb.models[model_name].keywordBlock.sieBlocks.index("** -------------------------------------------

---------------------\n** \n** STEP: Buckle\n** ") # Finds location of the NL Riks Step 

    mdb.models[model_name].keywordBlock.insert(idy-1, x) # Adds 'Imperfection...' keyword before the 

NL Riks Step 

    mdb.models[model_name].keywordBlock.synchVersions(storeNodesAndElements=True) # Syncs 

keywordBlock object changes with CAE model 
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# Adds Displacements 'U' through '*Node File' Keyword, Hence to the Input File (keywordBlock object 

definition on Abaqus Scripting Reference Manual) 

************************************************************************* 

if step_type == 1: 

    mdb.models[model_name].keywordBlock.synchVersions(storeNodesAndElements=True) # Asigns the 

model keyword to the 'sieBlocks' string  

    idx = mdb.models[model_name].keywordBlock.sieBlocks.index("*End Step") # Finds location of '*End 

Step' in keyword array 

    mdb.models[model_name].keywordBlock.insert(idx-1, '\n*EL FILE\nE, LE, ER, PE, PEQC, S') # Adds 

'*Node File' to Keywords before '*End Step'; creates .fil with nodal displacements 

    mdb.models[model_name].keywordBlock.insert(idx-1, '\n*Node File\nU, CF, RF, COORD') # Adds 

'*Node File' to Keywords before '*End Step'; creates .fil with nodal displacements 

    mdb.models[model_name].keywordBlock.insert(idx-1, '\n*Node Print\nU') # Adds '*Node Print' to 

Keywords before '*End Step'; adds nodal displacements to .dat file 

    mdb.models[model_name].keywordBlock.insert(idx-1, '\n*FILE FORMAT, ASCII') # Adds '*FILE 

FORMAT, ASCII' to Keywords before '*End Step'; changes .fil format to ASCII (to make it readable by 

MATLAB 

    mdb.models[model_name].keywordBlock.synchVersions(storeNodesAndElements=True) # Syncs 

keywordBlock object changes with CAE model 

 

# Creates and Submits Job 

************************************************************************* 

mdb.Job(atTime=None, contactPrint=OFF, description='', echoPrint=OFF,  

    explicitPrecision=SINGLE, getMemoryFromAnalysis=True, historyPrint=OFF,  

    memory=memory_usage, memoryUnits=PERCENTAGE, model=model_name, modelPrint=OFF,  

    multiprocessingMode=DEFAULT, name=job_name, nodalOutputPrecision=FULL,  

    numCpus=num_cores,numDomains=num_cores, numGPUs=num_GPUs, queue=None, 

resultsFormat=ODB, scratch=scratch_folder, type= 

    ANALYSIS, userSubroutine='', waitHours=0, waitMinutes=0) 

 

A.3. Circular Cylindrical Shell Python Code to Generate Outputs 

Using Abaqus v2016, the following Python code extracts the outputs from the ODB 

output file created by Abaqus and generates three .txt files with vertical displacement, 

plastic dissipation and strain energy quantities for every time increment. The author 

suggests that Python codes are copied and pasted into a Python, or .py, interpreter for 

readability, and on the Abaqus command window for model generation. The author 

welcomes requests and inquiries regarding functions and codes used to develop the content 

of this dissertation. 
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## Cylindrical Shell Output Request from ODB to TXT and ABAQUS Graphs 

 

# Input: the following Info Regarding the OBD File 

ODBfilename     = 'NLID_NLM_t6_v2' 

ODBpath         = 'C:\Test' 

Reportpath      = ODBpath 

stepname        = 'Buckle' 

 

import os 

from part import* 

from material import* 

from section import* 

from assembly import* 

from step import* 

from interaction import* 

from load import* 

from mesh import* 

from job import* 

from sketch import* 

from visualization import* 

from connectorBehavior import* 

from odbAccess import * 

from abaqusConstants import * 

from odbMaterial import * 

from odbSection import * 

session.journalOptions.setValues(replayGeometry=COORDINATE, recoverGeometry=COORDINATE) 

session.xyReportOptions.setValues(numDigits=12) 

 

# Sets Working Directory 

os.chdir(ODBpath)  

 

# Opens the ODB 

odb = session.openOdb(name=ODBpath+'\\'+ODBfilename+'.odb') 

session.viewports['Viewport: 1'].setValues(displayedObject=odb) 

assembly = odb.rootAssembly 

 

# Writes RF3 vs U3 at RP 

xy_result = session.XYDataFromHistory(name='PatRP', odb=odb,  

   outputVariableName='Reaction force: RF3 PI: rootAssembly Node 1 in NSET Upper Edge RP Set', ) 

xy_result = session.XYDataFromHistory(name='U3atRP', odb=odb,  

    outputVariableName='Spatial displacement: U3 PI: rootAssembly Node 1 in NSET Upper Edge RP Set', 

) 

x1 = session.xyDataObjects['U3atRP'] 

x2 = session.xyDataObjects['PatRP'] 

session.writeXYReport(fileName=ODBfilename+' Results PvsU.txt', xyData=(x1, x2)) 

 

# Writes the Plastic Dissipation Energy versus Time for the Whole Model 

f = open(ODBfilename+' Results PDE.txt','w') 

energy = odb.steps[stepname].historyRegions['Assembly ASSEMBLY'].historyOutputs['ALLPD'] 

f.write('Plastic Dissipation Energy versus Time for the whole model\n') 

f.write('Time Plastic Dissipation Energy\n') 
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for time in energy.data: 

    f.write('%f %.20f\n'%(time[0],time[1],)) 

 

f.close() 

 

# Writes the Strain Energy versus Time for the Whole Model 

f = open(ODBfilename+' Results SE.txt','w') 

energy = odb.steps[stepname].historyRegions['Assembly ASSEMBLY'].historyOutputs['ALLSE'] 

f.write('Strain Energy versus Time for the whole model\n') 

f.write('Time Strain Energy\n') 

for time in energy.data: 

    f.write('%f %.20f\n'%(time[0],time[1],)) 

 

f.close() 
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APPENDIX B. HELICAL SPHERE AIR-STIFFENED DESIGN SUPPORTING 

INFORMATION 

B.1. Inflated Circular Membrane Finite Element Results 

The analytical and numerical solutions of an inflated circular membrane presented 

in Ref. [26] and Ref. [27] support the validation of the modeling components presented in 

Chapter V as representative of the mechanics observed in long-time solutions of gas-filled 

membrane structures. With this in mind, an inflated circular membrane was modeled with 

geometric nonlinearity and a hydrostatic representation of the air-membrane interaction, 

solved implicitly with the backward Euler operator. The circular membrane was initially 

flat with a radius of 0.1425 m, thickness of 12.2 µm, elastic modulus times thickness of 

311,488 Pa-m, Poisson ratio of 0.38 and density of 1390 kg/m3. The membrane was first 

inflated to 400 kPa, followed by an external pressure load of 150 kPa or 300 kPa. All of 

the above follow Ref. [27]. Two cavity sizes with air at 288.15 K were considered in order 

to evaluate any effects associated with cavity size during loading as a result of air 

compression. Fig. B-1 shows the final state of the models for each of the cavity sizes, where 

cavities are shown in green and membrane states after inflation and loading in red. The 

membranes were defined with the same radius. In both cases, the membranes were defined 

with 1102 linear membrane elements, while the cavities used linear surface elements 

containing no inherent stiffness. The cavity, including the membrane’s outer rim, were 

fixed throughout the simulation. 
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1000πr3 m3 Volume Cavity 8πr3 m3 Volume Cavity 

Fig. B-1. Inflated circular membrane with cavity at final state. 

Commensurate with the figures presented in Ref. [26] and Ref. [27], Fig. B-2 shows 

the x coordinate (i.e., location of nodes along the radius) vs. the y coordinate (i.e., resulting 

vertical displacement at corresponding nodes) for 150 kPa and 300 kPa pressure loadings 

of both models. Notably, there are no appreciable differences associated between the two 

cavity volumes considered. Most importantly, Fig. B-2 shows the trend observed in Fig. 3 

of Ref. [27], where numerical solutions are compared to Bouzidi et al. analytical solution 

[26]. Furthermore, the resulting maximum displacement is within approximately 8% and 

6% of those in Fig. 3 of Ref. [27] for 150 kPa and 300 kPa, respectively. 

 

Fig. B-2. Final state of inflated circular membranes. 
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B.2. Convergence Study Results 

The convergence study associated with the structural response presented in 

Chapter V was conducted with a reduced model in order to efficiently determine the mesh 

density required to minimize output variation. The reduced order model was based on the 

axisymmetric representation of the spherical membrane, referred to as T0 and located at the 

north pole of the toroidal representation of 𝑛 = 41. A rigid contact line in the axisymmetric 

representation was added in order to subject T0 to contact and cavity volume changes that 

represent the type of conditions each of the membrane cavities are subjected to during the 

response of the axisymmetric model presented. The model is presented in Fig. B-3. Such 

model uses the same simulation techniques, material properties, and solver selection 

discussed in Chapter V, except for contact between the membrane and the rigid line being 

defined as frictionless and with separation after contact allowed. The latter allows free 

sliding, while contact pressures and cavity volume/pressure changes develop. 

The parameters controlled in the convergence analysis are {1} the use of linear 

axisymmetric membrane (MAXI) or axisymmetric shell (SAX1) elements to discretize the 

former, and {2} a target uniform element size (i.e., distance between adjacent seeds) 

referred to here as ‘seed’, such that seed = x*tm, where x is the parameter changed and tm 

is the membrane thickness. These parameters and corresponding results are presented in 

Table B-1; each of the results were extracted from the last increment, corresponding to an 

applied pressure of 101.325 kPa (i.e., sea level pressure). In other words, the results reflect 

analyses that went through the entire prescribed load history. Note that seed/tm and number 
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of elements are inversely proportional (e.g., a seed/tm = 4 corresponds to 781 elements, 

while a seed/tm = 100 corresponds to 31 elements). A minimum seed/tm = 4 was used. 

 

Fig. B-3. Reduced order model. 

That said, Figs. B-4 to B-8 plot each of the results against seed/tm, and include a 

textbox with the maximum percent differences among membrane results, among shell 

results, and between membrane and shell results. Course to fine discretization goes right 

to left. Percent differences remain below 1% for all outputs except contact pressure, except 

for the contact pressure. In essence, the maximum contact pressure continues to rise with 

mesh refinement when shell elements are used, while it stabilizes when membrane 

elements are used. A contact singularity explains the unbounded rise of contact pressure 

with discretization, similar to when a concentrated load is applied to a node. Such behavior 

observed in Fig. 6 of Ref. [143]. Furthermore, Block and Keer state that, for a curved thin 

beam, "when the thickness to length ratio of the beam is small, the contact stress 

distribution asymptotically approaches a concentrated force at the edge of contact, as 

illustrated in Fig. 2" [144]. This discrepancy between the shell and the membrane is 
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understood to be associated with the bending stiffness present in the shells, which carries 

the moment that presents the singularity of the curved surface contacting the rigid line; the 

membrane is not able to carry such moment. 

Table B-1. Convergence study results. 

Element 

Typea 
Seed/tm

b 

Number 

of 

Elements 

Cavity 

Pressure 

(Pa) 

Max von 

Mises 

Stress 

(Pa) 

Max 

Contact 

Pressure 

(Pa) 

Vertical 

Displacement 

(m) 

Strain 

Energy 

(J) 

MAX1 4 781 113491.31 872133248 1304485.125 -0.056497108 10.124856 

MAX1 5 625 113491.57 872156800 1304529.125 -0.056498263 10.12487125 

MAX1 10 312 113491.18 872069184 1304324.5 -0.056495082 10.12458038 

MAX1 20 156 113485.37 871169792 1302339.375 -0.056445729 10.12218857 

MAX1 30 104 113529.53 872199808 1304756.75 -0.056532491 10.12354183 

MAX1 40 79 113476.75 870037760 1300163.375 -0.056404181 10.11786652 

MAX1 50 63 113480.86 870892672 1300147.875 -0.05644387 10.11688709 

MAX1 60 52 113559.62 873369856 1302409.75 -0.056588773 10.11824131 

MAX1 70 45 113537.92 870929024 1294906.25 -0.056463934 10.11087418 

MAX1 80 39 113662.08 873636544 1295792.25 -0.056646302 10.11187553 

MAX1 90 35 113428.01 866804032 1279817 -0.05626459 10.09673977 

MAX1 100 31 113452.94 859920512 1260951.25 -0.055938851 10.08017159 

SAX1 4 781 113487.34 872567296 1403614.625 -0.056500211 10.12500286 

SAX1 5 625 113487.47 872573632 1349828.875 -0.056500319 10.12498283 

SAX1 10 312 113483.56 872190208 1315945.75 -0.056482423 10.12421227 

SAX1 20 156 113489.57 872469632 1307339.625 -0.056498799 10.12396717 

SAX1 30 104 113515.32 872924096 1306098.75 -0.056549978 10.12425232 

SAX1 40 79 113444.43 868062272 1299839.375 -0.056276895 10.11378574 

SAX1 50 63 113461.8 870244928 1294738.125 -0.056380849 10.11488438 

SAX1 60 52 113500.68 870823168 1293880.125 -0.056404602 10.11240673 

SAX1 70 45 113519.52 869356736 1299518.5 -0.056362133 10.10754108 

SAX1 80 39 113639.8 871962816 1282364.5 -0.056529015 10.10802078 

SAX1 90 35 113428.73 867201216 1281999.375 -0.056265291 10.09676075 

SAX1 100 31 113432.37 861935168 1267678.375 -0.056035966 10.08354473 
a MAX1 and SAX1 are linear axisymmetric membrane and shell elements, respectively. 
b Refers to the distance between seeds, such that (seed/tm)*tm provides the element target size for mesh creation, 

where tm = 12.2E-6 m (i.e., membrane thickness). A smaller seed/tm indicates finer discretization. 
c Vertical displacement (i.e., U2) of the node aligned with the axis of symmetry. 
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Fig. B-4. Cavity pressure versus element seed size/tm. 

 

 

Fig. B-5. Maximum von Mises stress versus element seed size/tm. 

Finer discretization, i.e., # 

of elements increases 

Finer discretization, i.e., 

# of elements increases 
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Fig. B-6. Maximum contact pressure versus element seed size/tm. 

 

 

Fig. B-7. Vertical displacement (U2) at northest node versus element seed size/tm. 

 

Finer discretization, i.e., # 

of elements increases 

Finer discretization, i.e., # 

of elements increases 



 

204 

 

 

Fig. B-8. Strain energy versus element seed size/tm. 

B.3. Frequency-Based Analysis 

In terms of the modal analysis, Baker [145] provided an thorough development of 

the axisymmetric modes of vibration for a thin spherical shell by assuming linear 

deformations and neglecting bending moments and radial normal stress, and considering 

axisymmetric motion exclusively. His model, presented here, following Eqs. B-1 and B-2, 

where 𝐸 is the modulus of elasticity, 𝜈 is the Poisson’s ratio, 𝜌 is the density, 𝑟 is the radius, 

𝑛 is the mode number, 𝑐𝑎𝑛
 is related to the one of the two frequencies predicted for each 

n, referred to as the upper branch, and 𝑐𝑏𝑛
 related to the other, referred to as the lower 

branch. 

Finer discretization, i.e., 

# of elements increases 
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𝑎𝑛 =

1

2𝜋𝑟
[

𝑐𝑎𝑛𝐸

2𝜌(1−𝜈2)
]

1

2
 (𝐻𝑧), where: 

𝑐𝑎𝑛
 = [𝑛(𝑛 + 1) + 1 + 3𝜈] + {[𝑛(𝑛 + 1) + 1 + 3𝜈]2 − 4(1 − 𝜈2)[𝑛(𝑛 + 1) − 2]}1/2 

(B-1) 

 
𝑏𝑛 =

1

2𝜋𝑟
[

𝑐𝑏𝑛𝐸

2𝜌(1−𝜈2)
]

1

2
 (𝐻𝑧), where: 

𝑐𝑏𝑛
 = [𝑛(𝑛 + 1) + 1 + 3𝜈] − {[𝑛(𝑛 + 1) + 1 + 3𝜈]2 − 4(1 − 𝜈2)[𝑛(𝑛 + 1) − 2]}1/2 

(B-2) 

Modes 2-5 predicted by FE analysis with shell elements are similar to those of the 

lower branch predicted by Eq. B-2, in frequency, and presented by [145], in shape. Fig. B-9 

shows the comparison, including the mode predicted with membrane elements; the FE 

analysis shell frequency matches within 0.04% with 𝑏n. The membrane mode presented is 

a sample of the first 100 modes showing similar characteristics, with a frequency range of 

1.8079E-2 – 4,559 Hz. 

 

  

FEA Axisymmetric Membrane, 

(Seed/tm=4) 

1.8079E-2 Hz 

FEA Axisymmetric Shell 

(Seed/tm=4) 

16,751 Hz  

𝑎2, Figure 7 [145] 

Fig. B-9. Mode 2. 

While axisymmetric shell elements were not used in the solution presented in 

Chapter 5, they provided an estimate of the first eigenvalue while avoiding the spurious 

(i.e., non-physical) modes present in the eigenvalue extraction using membrane elements 

[133]. Said eigenvalue was taken as a lower bound for estimating the timescale that 
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promotes quasi-static behavior as the addition of fluid mass is expected to increase its 

value, reducing its period. Section 1.4.1 of Abaqus’ Benchmarks Guide compares the 

theory to models with different shell elements within the Abaqus library, including the 

SAX1 used here [146]. 

B.4. Python Code to Generate the Abaqus CAE for the Axisymmetric Representation 

of the Helical Sphere 

Using Abaqus v2016, the following Python code generates the Abaqus .cae file of 

the axisymmetric representation of the Helical Sphere for analysis, based on the input 

stated at the beginning of the code. The arrays “pt1” through “pt7” were built through a 

MATLAB function (not included) and are based on a n = 41 model. The author suggests 

that Python codes are copied and pasted into a Python, or .py, interpreter for readability, 

and on the Abaqus command window for model generation. The author welcomes requests 

and inquiries regarding functions and codes used to develop the content of this dissertation. 

 

# Python code for Axisymmetric Quarter Representation of the toroidal representation, Implicit 

# Used with SIMULIA Abaqus 2016, but may work with other versions 

# by Ruben Adorno, Air Force Institute of Technology 

# IMPORTANT: n must be odd, n = 41 in this example!!!!!! 

 

###################################################################################### 

# Variables 

###################################################################################### 

m_name  = 'Axisym_Qtr_Tor_Sph_n=41'    # Model name 

job_name= m_name                  # Job Name, 38 chars max, no spaces 

lt       = 1E-0                             # load time 

st1     = 1E-0                            # s, step time 

st2     = 1E-0                            # s, step time 

dt1     = lt/50                           # s, delta time for outputs, and max for step 1 

dt2     = lt/500                         # s, delta time for outputs, and max for step 2 

tm      = 1.22E-5                       # m, T2-Tn membrane thickness 

tm_T0   = 1*tm                        # m, T0    membrane thickness 

tm_T1   = 1*tm                        # m, T1    membrane thickness 

p1_seed_min = 2*tm                # Toroids element size edge min seed 
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p1_seed_max = 5*tm               # Toroids element size edge min seed 

p2_seed = 5E-3                        # Symmetry rigid plane element size global seed 

Ppress  = 0.0*101325               # Pa, T1-Tend cavities pressurized gauge pressure load (before internal 

pressure load) 

O_freq  = 2                              # Output write frequency for increments, e.g. 2 = every 2 increments 

E       = 4.36E9                        # Pa, membrane elastic modulus 

rho     = 1390                          # kg/m3, membrane density 

nu      = 0.38                           # Poisson's ratio 

Pamb    = 101325                    # Pa, cavities ambient pressure 

Pi      = 0                                 # Pa, cavities initial gauge pressure 

Pvac    = 101325                     # Pa, max internal pressure load 

p1_name = 'Toroids'               # Toroids part name 

p2_name = 'Y-Sym Plane'         # Y symmetry rigid plane part name 

membrane_el = 1                    # 0 = uses shell elements, 1 = uses membrane elements 

step1   = 'Pressurize'  

step2   = 'Vacuum' 

 

###################################################################################### 

# Arrays defining 3-point arcs for toroid and strut circles, where n = 41 

###################################################################################### 

pt1 = 

(((0.00857541,0.00857541,0),),((0.01214697,0.31670680,0),),((0.03635500,0.31484768,0),),((0.06034968,

0.31114090,0),),((0.08399020,0.30560823,0),),((0.10713784,0.29828213,0),),((0.12965675,0.28920559,0),

),((0.15141479,0.27843187,0),),((0.17228426,0.26602421,0),),((0.19214269,0.25205541,0),),((0.21087356

,0.23660745,0),),((0.22836694,0.21977098,0),),((0.24452017,0.20164481,0),),((0.25923846,0.18233531,0)

,),((0.27243544,0.16195579,0),),((0.28403365,0.14062585,0),),((0.29396504,0.11847066,0),),((0.3021713

3,0.09562024,0),),((0.30860436,0.07220869,0),),((0.31322637,0.04837338,0),),((0.31601025,0.02425420,

0),),) 

pt2 = 

(((0.01213234,0.31670736,0),),((0.03634045,0.31484936,0),),((0.06033531,0.31114369,0),),((0.08397609,

0.30561211,0),),((0.10712406,0.29828708,0),),((0.12964339,0.28921158,0),),((0.15140192,0.27843887,0),

),((0.17227197,0.26603217,0),),((0.19213105,0.25206429,0),),((0.21086263,0.23661719,0),),((0.22835679

,0.21978153,0),),((0.24451086,0.20165611,0),),((0.25923004,0.18234728,0),),((0.27242795,0.16196838,0)

,),((0.28402715,0.14063897,0),),((0.29395957,0.11848424,0),),((0.30216692,0.09563420,0),),((0.3086010

2,0.07222294,0),),((0.31322414,0.04838785,0),),((0.31600913,0.02426879,0),),((0.31693966,0.00000732,

0),),) 

pt3 = 

(((0.00000000,0.30480610,0),),((0.02333268,0.30391174,0),),((0.04652843,0.30123390,0),),((0.06945114,

0.29678830,0),),((0.09196628,0.29060104,0),),((0.11394172,0.28270840,0),),((0.13524851,0.27315673,0),

),((0.15576161,0.26200206,0),),((0.17536064,0.24930986,0),),((0.19393058,0.23515461,0),),((0.21136246

,0.21961938,0),),((0.22755398,0.20279533,0),),((0.24241012,0.18478120,0),),((0.25584370,0.16568271,0)

,),((0.26777589,0.14561191,0),),((0.27813667,0.12468662,0),),((0.28686523,0.10302961,0),),((0.2939103

5,0.08076798,0),),((0.29923068,0.05803237,0),),((0.30279502,0.03495621,0),),((0.30458243,0.01167491,

0),),) 

pt4 = 

(((0.00000000,0.32907321,0),),((0.02519031,0.32810764,0),),((0.05023279,0.32521661,0),),((0.07498049,

0.32041708,0),),((0.09928817,0.31373721,0),),((0.12301318,0.30521621,0),),((0.14601631,0.29490408,0),

),((0.16816256,0.28286133,0),),((0.18932196,0.26915864,0),),((0.20937034,0.25387642,0),),((0.22819006

,0.23710435,0),),((0.24567067,0.21894086,0),),((0.26170958,0.19949254,0),),((0.27621268,0.17887352,0)

,),((0.28909485,0.15720479,0),),((0.30028049,0.13461353,0),),((0.30970398,0.11123230,0),),((0.3173099

9,0.08719831,0),),((0.32305391,0.06265261,0),),((0.32690201,0.03773924,0),),((0.32883173,0.01260440,

0),),) 
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pt5 = 

(((0.00000000,0.30479268,0),),((0.00000000,0.28134653,0),),((0.00000000,0.25790037,0),),((0.00000000,

0.23445422,0),),((0.00000000,0.21100806,0),),((0.00000000,0.18756191,0),),((0.00000000,0.16411576,0),

),((0.00000000,0.14066960,0),),((0.00000000,0.11722345,0),),((0.00000000,0.09377730,0),),((0.00000000

,0.07033114,0),),((0.00000000,0.04688499,0),),((0.00000000,0.02343883,0),),) 

pt6 = 

(((0.01171576,0.29307692,0),),((0.01171576,0.26963077,0),),((0.01171576,0.24618462,0),),((0.01171576,

0.22273846,0),),((0.01171576,0.19929231,0),),((0.01171576,0.17584615,0),),((0.01171576,0.15240000,0),

),((0.01171576,0.12895385,0),),((0.01171576,0.10550769,0),),((0.01171576,0.08206154,0),),((0.01171576

,0.05861538,0),),((0.01171576,0.03516923,0),),((0.01171576,0.01172308,0),),) 

pt7 = 

(((0.00000000,0.28136117,0),),((0.00000000,0.25791501,0),),((0.00000000,0.23446886,0),),((0.00000000,

0.21102270,0),),((0.00000000,0.18757655,0),),((0.00000000,0.16413040,0),),((0.00000000,0.14068424,0),

),((0.00000000,0.11723809,0),),((0.00000000,0.09379194,0),),((0.00000000,0.07034578,0),),((0.00000000

,0.04689963,0),),((0.00000000,0.02345347,0),),((0.00000000,0.00000732,0),),) 

 

###################################################################################### 

# Model Initialization 

###################################################################################### 

from part import * 

from material import * 

from section import * 

from assembly import * 

from step import * 

from interaction import * 

from load import * 

from mesh import * 

from optimization import * 

from job import * 

from sketch import * 

from visualization import * 

from connectorBehavior import * 

import os 

import time 

session.journalOptions.setValues(replayGeometry=COORDINATE, recoverGeometry=COORDINATE) # 

Command to Output CAE Journal with Coordinates 

 

# Creates Model 

mdb.Model(modelType=STANDARD_EXPLICIT, name=m_name, absoluteZero=0, 

universalGas=8.31432) 

 

# Initialize 

model    = mdb.models[m_name] 

assembly = model.rootAssembly 

n = 2*len(pt1) - 1 

n_st = 2*len(pt6) 

t = range(1,n/2+1) 

t = ["{:d}".format(x) for x in t] 

 

# Creates Material Definition 

model.Material(name='Membrane') 

model.materials['Membrane'].Density(table=((rho, ), )) 

model.materials['Membrane'].Elastic(table=((E, nu), )) 
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# Creates Steps 

model.ImplicitDynamicsStep(name=step1, previous='Initial',alpha=DEFAULT,amplitude=RAMP, 

    application=QUASI_STATIC, convertSDI=CONVERT_SDI_ON,  

    initialConditions=ON, matrixStorage=UNSYMMETRIC, nlgeom=ON, nohaf=OFF, 

    timePeriod = st1, 

    maxNumInc  = 500, 

    initialInc = 1E-2*dt1, 

    maxInc     = dt1, 

    minInc     = 1e-15) 

model.ImplicitDynamicsStep(name=step2, previous=step1,alpha=DEFAULT, amplitude=RAMP, 

    application=QUASI_STATIC, convertSDI=CONVERT_SDI_ON,  

    initialConditions=ON, matrixStorage=UNSYMMETRIC, nlgeom=ON, nohaf=OFF, 

    timePeriod = st2, 

    maxNumInc  = 5000, 

    initialInc = 1E-1*dt2, 

    maxInc     = dt2, 

    minInc     = 1e-15) 

model.steps[step2].control.setValues(lineSearch=(5.0, 1.0, 0.0001, 0.25, 0.1),  

    allowPropagation=OFF, resetDefaultValues=OFF, discontinuous=ON) 

 

# Creates Interactions Properties 

model.ContactProperty('Contact Definitions') 

model.interactionProperties['Contact Definitions'].TangentialBehavior(formulation=ROUGH) 

#FRICTIONLESS) 

model.interactionProperties['Contact Definitions'].NormalBehavior(allowSeparation=OFF, 

    constraintEnforcementMethod=DIRECT, pressureOverclosure=HARD) 

model.FluidCavityProperty(definition=PNEUMATIC, name='Pneumatic Air Cavity', useCapacity=False, 

    molecularWeight=0.0289647) 

 

# Creates Load Amplitudes 

model.SmoothStepAmplitude(data=((0.0, 0.0), (lt, 1.0)), name='Smooth Cavity P', timeSpan=STEP) 

model.SmoothStepAmplitude(data=((0.0, 0.0), (lt, 1.0)), name='Smooth Internal Load', timeSpan=STEP) 

 

# Creates Sections (see section assignment) 

if membrane_el == 0: 

    # Shell Sections 

    model.HomogeneousShellSection(idealization=NO_IDEALIZATION,  

        integrationRule=SIMPSON, material='Membrane', name='Shell T2-Tn', numIntPts=5,  

        poissonDefinition=DEFAULT, preIntegrate=OFF, temperature=GRADIENT,  

        thickness=tm, thicknessField='', thicknessModulus=None,  

        thicknessType=UNIFORM, useDensity=OFF) 

    model.HomogeneousShellSection(idealization=NO_IDEALIZATION,  

        integrationRule=SIMPSON, material='Membrane', name='Shell T0', numIntPts=5,  

        poissonDefinition=DEFAULT, preIntegrate=OFF, temperature=GRADIENT,  

        thickness=tm_T0, thicknessField='', thicknessModulus=None,  

        thicknessType=UNIFORM, useDensity=OFF) 

    model.HomogeneousShellSection(idealization=NO_IDEALIZATION,  

        integrationRule=SIMPSON, material='Membrane', name='Shell T1', numIntPts=5,  

        poissonDefinition=DEFAULT, preIntegrate=OFF, temperature=GRADIENT,  

        thickness=tm_T1, thicknessField='', thicknessModulus=None,  

        thicknessType=UNIFORM, useDensity=OFF) 

else: 
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    # Membrane Sections 

    model.MembraneSection(name='Membrane T0', thickness=tm_T0, material='Membrane',  

         poissonDefinition=DEFAULT, thicknessField='', thicknessType=UNIFORM) 

    model.MembraneSection(name='Membrane T1', thickness=tm_T1, material='Membrane',  

         poissonDefinition=DEFAULT, thicknessField='', thicknessType=UNIFORM) 

    model.MembraneSection(name='Membrane T2-Tn', thickness=tm, material='Membrane',  

         poissonDefinition=DEFAULT, thicknessField='', thicknessType=UNIFORM) 

 

###################################################################################### 

# Part 1 

###################################################################################### 

# Creates Sketch for Toroids Part 1 

model.ConstrainedSketch(name=p1_name, sheetSize=2.0) 

model.sketches[p1_name].sketchOptions.setValues(viewStyle=AXISYM) 

model.sketches[p1_name].ConstructionLine(point1=(0.0, -1.0), point2=(0.0, 1.0)) 

model.sketches[p1_name].FixedConstraint(entity=model.sketches[p1_name].geometry[2]) 

model.sketches[p1_name].Arc3Points(point1=(pt2[0][0][0],pt2[0][0][1]), 

                                   point2=(pt3[0][0][0],pt3[0][0][1]), 

                                   point3=(pt4[0][0][0] + pt1[0][0][0], pt3[0][0][1]+(pt4[0][0][1]-pt3[0][0][1])/2-

pt1[0][0][1])) 

model.sketches[p1_name].Arc3Points(point1=(pt2[0][0][0],pt2[0][0][1]), 

                                   point2=(pt4[0][0][0],pt4[0][0][1]), 

                                   point3=(pt3[0][0][0] + pt1[0][0][0], pt3[0][0][1]+(pt4[0][0][1]-

pt3[0][0][1])/2+pt1[0][0][1])) 

for x in range(1,n/2+1): 

    model.sketches[p1_name].Arc3Points(point1=(pt1[x][0][0],pt1[x][0][1]), 

                                       point2=(pt2[x][0][0],pt2[x][0][1]), 

                                       point3=(pt3[x][0][0],pt3[x][0][1])) 

    model.sketches[p1_name].Arc3Points(point1=(pt1[x][0][0],pt1[x][0][1]), 

                                       point2=(pt2[x][0][0],pt2[x][0][1]), 

                                       point3=(pt4[x][0][0],pt4[x][0][1])) 

 

# Creates Toroids Part 

model.Part(dimensionality=AXISYMMETRIC, name=p1_name, type=DEFORMABLE_BODY) 

part1 = mdb.models[m_name].parts[p1_name] 

part1.BaseWire(sketch=model.sketches[p1_name]) 

 

# Creates Whole Part Set 

Whole = part1.edges.findAt(((pt4[0][0][0] + pt1[0][0][0], pt3[0][0][1]+(pt4[0][0][1]-pt3[0][0][1])/2-

pt1[0][0][1],0),)) 

Whole += part1.edges.findAt(((pt4[0][0][0] + pt1[0][0][0], pt3[0][0][1]+(pt4[0][0][1]-

pt3[0][0][1])/2+pt1[0][0][1],0),)) 

for x in range(1,n/2+1): 

    Whole += part1.edges.findAt(pt3[x]) 

    Whole += part1.edges.findAt(pt4[x]) 

 

part1.Set(edges = Whole, name = 'Whole') 

 

# Creates T0 and T1 Set 

part1.Set(name='Toroids T0', edges = part1.edges.findAt(((pt4[0][0][0] + pt1[0][0][0], 

pt3[0][0][1]+(pt4[0][0][1]-pt3[0][0][1])/2+pt1[0][0][1],0),))+ 

                                     part1.edges.findAt(((pt4[0][0][0] + pt1[0][0][0], pt3[0][0][1]+(pt4[0][0][1]-

pt3[0][0][1])/2-pt1[0][0][1],0),))) 
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part1.Set(name = 'Toroids T1', edges = part1.edges.findAt(pt3[1]) + part1.edges.findAt(pt4[1])) 

 

# Creates T2-Tn Set (No T0 and T1) 

Whole = part1.edges.findAt(pt3[2]) 

Whole += part1.edges.findAt(pt4[2]) 

for x in range(3,n/2+1): 

    Whole += part1.edges.findAt(pt3[x]) 

    Whole += part1.edges.findAt(pt4[x]) 

 

part1.Set(edges = Whole, name = 'Toroids T2-Tn') 

 

# Creates X-Sym Vertices Set 

xsym = part1.vertices.findAt(pt3[0]) 

xsym += part1.vertices.findAt(pt4[0]) 

part1.Set(vertices = xsym, name = 'X-Sym') 

 

# Creates Y-Sym Vertices Set 

part1.Set(vertices = part1.vertices.findAt(pt2[n/2]), name = 'Y-Sym') 

 

# Creates Northest X-Sym Node Set 

part1.Set(vertices = part1.vertices.findAt(pt4[0]), name = 'Northest X-Sym Node') 

 

# Creates Toroids N Vertices Set 

vN = part1.vertices.findAt(pt2[0]) 

for x in range(1,n/2): 

    vN += part1.vertices.findAt(pt2[x]) 

 

part1.Set(vertices = vN, name = 'Toroids N Vertices') 

 

# Creates Toroids S Vertices Set 

vS = part1.vertices.findAt(pt1[1]) 

for x in range(2,n/2+1): 

    vS += part1.vertices.findAt(pt1[x]) 

 

part1.Set(vertices = vS, name = 'Toroids S Vertices') 

 

# Creates Pia, Poa, and Internal Surfaces 

part1.Surface(name='Toroids Pia T0', side1Edges=part1.edges.findAt(((pt4[0][0][0] + pt1[0][0][0], 

pt3[0][0][1]+(pt4[0][0][1]-pt3[0][0][1])/2-pt1[0][0][1],0),))) 

part1.Surface(name='Toroids Poa T0', side2Edges=part1.edges.findAt(((pt4[0][0][0] + pt1[0][0][0], 

pt3[0][0][1]+(pt4[0][0][1]-pt3[0][0][1])/2+pt1[0][0][1],0),))) 

part1.Surface(name='Toroids Internal T0', side2Edges=part1.edges.findAt(((pt4[0][0][0] + pt1[0][0][0], 

pt3[0][0][1]+(pt4[0][0][1]-pt3[0][0][1])/2-pt1[0][0][1],0),)), 

                                     side1Edges=part1.edges.findAt(((pt4[0][0][0] + pt1[0][0][0], 

pt3[0][0][1]+(pt4[0][0][1]-pt3[0][0][1])/2+pt1[0][0][1],0),))) 

PiaT = part1.edges.findAt(pt3[1]) 

PoaT = part1.edges.findAt(pt4[1]) 

part1.Surface(name='Toroids Pia T1', side2Edges=part1.edges.findAt(pt3[1])) 

part1.Surface(name='Toroids Poa T1', side1Edges=part1.edges.findAt(pt4[1])) 

part1.Surface(name='Toroids Internal T1', side1Edges=part1.edges.findAt(pt3[1]), 

                                          side2Edges=part1.edges.findAt(pt4[1])) 

for x in range(2,n/2+1): 

    PiaT += part1.edges.findAt(pt3[x]) 
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    PoaT += part1.edges.findAt(pt4[x]) 

    part1.Surface(name='Toroids Pia T' + t[x-1], side2Edges=part1.edges.findAt(pt3[x])) 

    part1.Surface(name='Toroids Poa T' + t[x-1], side1Edges=part1.edges.findAt(pt4[x])) 

    part1.Surface(name='Toroids Internal T' + t[x-1], side1Edges=part1.edges.findAt(pt3[x]), 

                                                      side2Edges=part1.edges.findAt(pt4[x])) 

 

part1.Surface(name='Poa', side1Edges=PoaT, 

                          side2Edges=part1.edges.findAt(((pt4[0][0][0] + pt1[0][0][0], pt3[0][0][1]+(pt4[0][0][1]-

pt3[0][0][1])/2+pt1[0][0][1],0),))) 

part1.Surface(name='Pia', side2Edges=PiaT, 

                          side1Edges=part1.edges.findAt(((pt4[0][0][0] + pt1[0][0][0], pt3[0][0][1]+(pt4[0][0][1]-

pt3[0][0][1])/2-pt1[0][0][1],0),))) 

 

# Creates Additional Set to Flip Normal on Elements 

part1.Set(name='Poa', edges = PoaT + part1.edges.findAt(((pt4[0][0][0] + pt1[0][0][0], 

pt3[0][0][1]+(pt4[0][0][1]-pt3[0][0][1])/2+pt1[0][0][1],0),))) 

 

# Assigns Section 

if membrane_el == 0: 

    # Shell 

    part1.SectionAssignment(offset=0.0, offsetField='', offsetType=MIDDLE_SURFACE, 

        region = part1.sets['Toroids T2-Tn'], sectionName ='Shell T2-Tn', 

thicknessAssignment=FROM_SECTION) 

    part1.SectionAssignment(offset=0.0, offsetField='', offsetType=MIDDLE_SURFACE, 

        region = part1.sets['Toroids T0'],    sectionName ='Shell T0', 

thicknessAssignment=FROM_SECTION) 

    part1.SectionAssignment(offset=0.0, offsetField='', offsetType=MIDDLE_SURFACE, 

        region = part1.sets['Toroids T1'],    sectionName ='Shell T1', 

thicknessAssignment=FROM_SECTION) 

else: 

    # Membrane 

    part1.SectionAssignment(offset=0.0, offsetField='', offsetType=MIDDLE_SURFACE, 

        region = part1.sets['Toroids T2-Tn'], sectionName ='Membrane T2-Tn', 

thicknessAssignment=FROM_SECTION) 

    part1.SectionAssignment(offset=0.0, offsetField='', offsetType=MIDDLE_SURFACE, 

        region = part1.sets['Toroids T0'],    sectionName ='Membrane T0', 

thicknessAssignment=FROM_SECTION) 

    part1.SectionAssignment(offset=0.0, offsetField='', offsetType=MIDDLE_SURFACE, 

        region = part1.sets['Toroids T1'],    sectionName ='Membrane T1', 

thicknessAssignment=FROM_SECTION) 

 

# Mesh 

if membrane_el == 0: 

    part1.setElementType(elemTypes=(ElemType(elemCode=SAX1, elemLibrary=EXPLICIT, 

secondOrderAccuracy=OFF), ), 

        regions = part1.sets['Whole']) 

else: 

    part1.setElementType(elemTypes=(ElemType(elemCode=MAX1, elemLibrary=STANDARD), ), 

        regions = part1.sets['Whole']) 

 

Whole = part1.edges.findAt(((pt4[0][0][0] + pt1[0][0][0], pt3[0][0][1]+(pt4[0][0][1]-pt3[0][0][1])/2-

pt1[0][0][1],0),)) 
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Whole += part1.edges.findAt(((pt4[0][0][0] + pt1[0][0][0], pt3[0][0][1]+(pt4[0][0][1]-

pt3[0][0][1])/2+pt1[0][0][1],0),)) 

for x in range(1,n/2+1): 

    Whole += part1.edges.findAt(pt3[x]) 

    Whole += part1.edges.findAt(pt4[x]) 

 

part1.seedEdgeByBias(biasMethod=DOUBLE, constraint=FINER, 

    minSize  = p1_seed_min, 

    maxSize  = p1_seed_max,  

    endEdges = Whole) 

##part1.seedPart(deviationFactor=0.1, minSizeFactor=0.1, size=p1_seed) 

part1.generateMesh() 

part1.flipNormal(regions = part1.sets['Poa']) 

part1.flipNormal(regions = part1.sets['Toroids T0']) 

 

###################################################################################### 

# Part 2 

###################################################################################### 

# Creates Sketch 

model.ConstrainedSketch(name=p2_name, sheetSize=2.0) 

model.sketches[p2_name].sketchOptions.setValues(viewStyle=AXISYM) 

model.sketches[p2_name].ConstructionLine(point1=(0.0, -1.0), point2=(0.0, 1.0)) 

model.sketches[p2_name].FixedConstraint(entity=model.sketches[p1_name].geometry[2]) 

model.sketches[p2_name].Line(point1=(0.0, 0.0), point2=(1.2*pt2[n/2][0][0], 0.0)) 

 

# Creates Part and Sets 

model.Part(dimensionality=AXISYMMETRIC, name=p2_name, type=DISCRETE_RIGID_SURFACE) 

part2 = model.parts[p2_name] 

part2.BaseWire(sketch=model.sketches[p2_name]) 

part2.Set(name='Whole', edges=part2.edges.findAt(((0, 0, 0),))) 

part2.Surface(name='Contact', side1Edges=part2.edges.findAt(((0, 0, 0), ))) 

 

# Mesh 

part2.seedPart(deviationFactor=0.1, minSizeFactor=0.1, size=p2_seed) 

part2.setElementType(elemTypes=(ElemType(elemCode=RAX2, elemLibrary=EXPLICIT), ), regions = 

part2.sets['Whole']) 

part2.generateMesh() 

 

###################################################################################### 

# Assembly 

###################################################################################### 

# Creates Assembly 

assembly.DatumCsysByThreePoints(coordSysType= 

    CYLINDRICAL, origin=(0.0, 0.0, 0.0), point1=(1.0, 0.0, 0.0), point2=(0.0, 0.0, -1.0)) 

assembly.Instance(dependent=ON, name=p1_name, part=part1) 

assembly.Instance(dependent=ON, name=p2_name, part=part2) 

                     

# X-Sym 

vS = assembly.allInstances[p1_name].vertices.findAt(pt3[0]) 

assembly.Set(vertices = vS, name = 'T0 S X-Sym Vertex') 

assembly.SetByBoolean(name='X-Sym', sets=(assembly.allInstances[p1_name].sets['Northest X-Sym 

Node'],  

                                          assembly.sets['T0 S X-Sym Vertex'])) 
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# Creates Reference Points (RP) 

RP = assembly.ReferencePoint(point=(0,pt2[0][0][1],0)) 

assembly.features.changeKey(fromName='RP-1', toName='T0') 

assembly.Set(name='T0', referencePoints=(assembly.referencePoints[RP.id],)) 

for x in range(1,n/2+1): 

    RP = assembly.ReferencePoint(point=(0,pt2[x][0][1],0)) 

    assembly.features.changeKey(fromName='RP-1', toName='T'+t[x-1]) 

    assembly.Set(name='T'+t[x-1], referencePoints=(assembly.referencePoints[RP.id],)) 

 

RP = assembly.ReferencePoint(point=(0, 0, 0)) 

assembly.features.changeKey(fromName='RP-1', toName='Rigid RP') 

assembly.Set(name='Rigid RP', referencePoints=(assembly.referencePoints[RP.id], )) 

 

# Creates Outputs 

model.FieldOutputRequest(name = p1_name + ' Whole', frequency = O_freq, createStepName=step1,  

    region    = assembly.allInstances[p1_name].sets['Whole'], 

    variables = ('S','LE','U','V','A','RF','P','CSTRESS','CDISP','COORD')) 

model.FieldOutputRequest(name = 'Poa S Coords', frequency = O_freq, createStepName=step1,  

    region    = assembly.allInstances[p1_name].sets['Poa'], 

    variables = ('COORD',)) 

model.HistoryOutputRequest(name = 'Whole', frequency = O_freq, createStepName=step1,variables = 

PRESELECT) 

model.HistoryOutputRequest(name = p1_name + ' Whole', frequency = O_freq, createStepName=step1, 

    region    = assembly.allInstances[p1_name].sets['Whole'], 

    variables = PRESELECT) 

model.HistoryOutputRequest(name = 'Northest X-Sym Node', frequency = O_freq, createStepName=step1, 

rebar=EXCLUDE, sectionPoints=DEFAULT, 

    region    = assembly.allInstances[p1_name].sets['Northest X-Sym Node'], 

    variables =('U2', 'UR3')) 

model.HistoryOutputRequest(name = 'Rigid RP', frequency = O_freq, createStepName=step1, 

rebar=EXCLUDE, sectionPoints=DEFAULT, 

    region    = assembly.sets['Rigid RP'], 

    variables =('RF1', 'RF2', 'RM3')) 

del model.fieldOutputRequests['F-Output-1'] 

del model.historyOutputRequests['H-Output-1'] 

 

###################################################################################### 

# Interactions 

###################################################################################### 

# Creates Fluid Cavity for Each Tube/Circle w Initial P and T, and History Request 

model.FluidCavity(createStepName='Initial', ambientPressure=Pamb, useAdiabatic=False, 

        interactionProperty='Pneumatic Air Cavity', 

        cavityPoint   = assembly.sets['T0'],  

        cavitySurface = assembly.instances[p1_name].surfaces['Toroids Internal T0'], 

        name          = 'T0 Cavity') 

model.FluidCavityPressure(fluidPressure=Pi, 

    name        = 'T0 Cavity Pi', 

    fluidCavity = 'T0 Cavity') 

model.Temperature(createStepName='Initial', 

crossSectionDistribution=CONSTANT_THROUGH_THICKNESS,distributionType=UNIFORM, 

magnitudes=(288.15, ), 

    name   ='T0 Cavity Ti',  
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    region = assembly.sets['T0']) 

model.HistoryOutputRequest(createStepName=step1,rebar=EXCLUDE,sectionPoints=DEFAULT, 

    variables    =('PCAV','CVOL'), 

    name         = 'T0 Cavity',  

    region       = assembly.sets['T0'], 

    frequency = O_freq) 

 

for x in range(0,n/2): 

    model.FluidCavity(createStepName='Initial', ambientPressure=Pamb, useAdiabatic=False, 

            interactionProperty='Pneumatic Air Cavity', 

            cavityPoint   = assembly.sets['T' + t[x]],  

            cavitySurface = assembly.instances[p1_name].surfaces['Toroids Internal T' + t[x]], 

            name          = 'T' + t[x] + ' Cavity') 

    model.FluidCavityPressure(fluidPressure=Pi, 

        name        = 'T' + t[x] + ' Cavity Pi', 

        fluidCavity = 'T' + t[x] + ' Cavity') 

    model.Temperature(createStepName='Initial', 

crossSectionDistribution=CONSTANT_THROUGH_THICKNESS,distributionType=UNIFORM, 

magnitudes=(288.15, ), 

        name   ='T' + t[x] + ' Cavity Ti',  

        region = assembly.sets['T' + t[x]]) 

    model.HistoryOutputRequest(createStepName=step1, rebar=EXCLUDE,sectionPoints=DEFAULT, 

        variables    =('PCAV','CVOL'), 

        name         = 'T' + t[x] + ' Cavity',  

        region       = assembly.sets['T' + t[x]], 

        frequency = O_freq) 

 

# General Contact 

cont_name = 'General Self Contact' 

model.ContactStd(createStepName='Initial', name=cont_name) 

model.interactions[cont_name].includedPairs.setValuesInStep(stepName='Initial', useAllstar=ON) 

model.interactions[cont_name].contactPropertyAssignments.appendInStep( 

    assignments=((GLOBAL, SELF, 'Contact Definitions'), ), stepName='Initial') 

model.interactions[cont_name].surfaceThicknessAssignments.appendInStep(stepName='Initial', 

    assignments =((GLOBAL, ORIGINAL, 1.0), 

                  (assembly.instances[p1_name].surfaces['Toroids Pia T0'], ORIGINAL, tm/tm_T0), 

                  (assembly.instances[p1_name].surfaces['Toroids Poa T0'], ORIGINAL, tm/tm_T0), 

                  (assembly.instances[p1_name].surfaces['Toroids Pia T1'], ORIGINAL, tm/tm_T1), 

                  (assembly.instances[p1_name].surfaces['Toroids Poa T1'], ORIGINAL, tm/tm_T1))) 

 

###################################################################################### 

# Constraints 

###################################################################################### 

# Toroids Tie 

model.Tie(name='T-T Tie', adjust=OFF, positionToleranceMethod=COMPUTED, thickness=ON, 

tieRotations=OFF, 

    master = assembly.instances[p1_name].sets['Toroids N Vertices'], 

    slave  = assembly.instances[p1_name].sets['Toroids S Vertices']) 

 

# Rigid Contraint for Y-Sym Plane 

model.RigidBody(name='Y-Sym Rigid Plane', 

    bodyRegion     = assembly.instances[p2_name].sets['Whole'],  

    refPointRegion = assembly.sets['Rigid RP']) 
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###################################################################################### 

# Loads and Boundary Conditions (BC) 

###################################################################################### 

# BCs 

model.DisplacementBC(name='X-Sym',amplitude=UNSET, u1=0, u2=UNSET, ur3=UNSET, 

createStepName=step1, 

    distributionType=UNIFORM, fieldName='', fixed=OFF, localCsys=None, 

    region = assembly.sets['X-Sym']) 

model.DisplacementBC(name='Y-Sym',amplitude=UNSET, u1=UNSET, u2=0, ur3=UNSET, 

createStepName=step1, 

    distributionType=UNIFORM, fieldName='', fixed=OFF, localCsys=None, 

    region = assembly.allInstances[p1_name].sets['Y-Sym']) 

model.EncastreBC(name='Rigid RP Encastre', createStepName=step1, localCsys=None,  

     region = assembly.sets['Rigid RP']) 

 

# Loads 

model.FluidCavityPressureBC(fixed=OFF, amplitude='Smooth Cavity P', createStepName=step1, 

    magnitude   = Ppress, 

    fluidCavity = 'T0 Cavity', 

    name        = 'T0 Cavity P') 

model.boundaryConditions['T0 Cavity P'].deactivate(step2) 

for x in range(0,n/2): 

    model.FluidCavityPressureBC(fixed=OFF, amplitude='Smooth Cavity P', createStepName=step1, 

        magnitude   = Ppress, 

        fluidCavity = 'T' + t[x] + ' Cavity', 

        name        = 'T' + t[x] + ' Cavity P') 

    model.boundaryConditions['T' + t[x] + ' Cavity P'].deactivate(step2) 

 

model.Pressure(name='Vacuum', amplitude='Smooth Internal Load', magnitude=-Pvac, 

createStepName=step2, 

    distributionType=UNIFORM, field='',region = assembly.allInstances[p1_name].surfaces['Pia']) 

 

###################################################################################### 

# Job 

###################################################################################### 

# Creates Job 

mdb.Job(name=job_name, model=m_name, numCpus=1, numDomains=1, numGPUs=0, 

    nodalOutputPrecision=FULL, type = ANALYSIS,  

    memory = 90, memoryUnits=PERCENTAGE, getMemoryFromAnalysis=True, 

    contactPrint=OFF, echoPrint=OFF, historyPrint=OFF, modelPrint=OFF, 

    explicitPrecision=SINGLE, 

    resultsFormat = ODB, 

    multiprocessingMode=DEFAULT,   

    queue=None, atTime=None, waitHours=0, waitMinutes=0, 

    scratch='',userSubroutine='', description='') 
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APPENDIX C. ICORON AIR-STIFFENED DESIGN SUPPORTING 

INFORMATION 

C.1. Mesh Density and Timescale Selection 

The mesh density and timescale (i.e., load rate) selections made to characterize the 

structural response of the UC (section 6.3) were based on the energy distribution across the 

load history given 12 combinations of three solution timescales (i.e., 0.05 s, 0.10 s and 

0.25 s) and four mesh densities (i.e., element side lengths varying from 0.01𝑟𝑐 to (𝑥)𝑟𝑐, 

where 𝑥 equal 0.1, 0.075, 0.05 or 0.025, and 𝑟𝑐 is the UC membrane radius). Mesh densities 

favors smaller elements (i.e., 0.01𝑟𝑐 in element side length) along the corners where 

membrane surfaces meet and larger elements towards the center of each membrane surface 

forming the UC (refer to Fig. VI-14 on page 158). The intent of this study was two-fold: 

{1} evaluate the effect mesh density has on energy quantities; and {2} establish a minimal 

timescale that allows for quasi-static solutions (i.e., keep kinetic, contact enforcement and 

bulk viscosity energies combined below 10% of the work done by the applied load). 

Fig. C-1 shows the internal energy as a fraction of the work done by the applied 

load for each of the 12 combinations; this entailed running and extracting results from 12 

models using the definitions detailed in section 6.3.1, with changes to the timescale and 

mesh density, as appropriate. Overall, undesirable energy quantities (i.e., kinetic, contact 

enforcement and bulk viscosity) combined remained below 10% across approximately 

93% of the load history for mesh densities 0.01𝑟𝑐 to 0.050𝑟𝑐 and 0.01𝑟𝑐 to 0.025𝑟𝑐. In other 

words, the internal energy to work done ratios remained above 90% for these two mesh 

densities. Furthermore, the slope variations shown in the energy ratios associated with 
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course meshes (e.g., 0.01𝑟𝑐 to 0.1𝑟𝑐) dissipate as the mesh is refined. This is attributed to 

improvement in contact enforcement with finer meshes as relatively gradual contact 

interactions can take place. 

 

Fig. C-1. Internal energy as a fraction of the work done. 

The solution computation time also played a role in the selection of a timescale and 

mesh density. Fig. C-2 shows the computation time across these combinations in a heatmap 

format, where darker tones of blue indicate lower computation times. These were 

calculated from the time the model was submitted to the time the solver wrote the last 

output into the database. Two to four analyses were ran simultaneously, each with two 

cores in a workstation with Intel Xeon E5-2685W v3 CPU (3.1 GHz and 10 physical cores) 

and 16 GB of memory. 



 

219 

 

Fig. C-2. Solution computation times (hours) across mesh density and timescale. 

An analysis using mesh density of 0.01𝑟𝑐 to 0.050𝑟𝑐 and a solution timescale of 

0.05 s took approximately 9.7 hours to finish. This combination was selected given that it 

provided internal-to-work energy ratios above 90% across most of the solution while 

providing a solution within 12 hours. This allows a two-step loading history analysis (i.e., 

the UC cavity is inflated to a designated preload pressure prior to applying the internal 

pressure load resembling air removal) to be completed within 24 hours; a valuable 

consideration when further response surface and optimization studies are pursued. Other 

outputs considered were the stress distribution, UC cavity pressure and radial displacement. 

The maximum and minimum stress von Mises stresses show dependence on the mesh 

density, with minimal (qualitative) variation on the distribution when comparing the 

solutions associated with mesh densities 0.01𝑟𝑐 to 0.050𝑟𝑐 and 0.01𝑟𝑐 to 0.025𝑟𝑐. The UC 

cavity pressure and the radial displacement showed indistinctive variations. 
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Such mesh and timescale dependencies are predominant when considering local 

descriptions, such as the stress field and the development of the wrinkling patterns rather 

than global descriptions such as energy quantities and overall UC displacement. Fig. C-3 

compares the von Mises stress contours at the end of the load amplitude (i.e., referred to as 

state E in Chapter 6) across 0.05 s and 0.01 s timescales and mesh densities 0.01𝑟𝑐 to 

0.050𝑟𝑐 and 0.01𝑟𝑐 to 0.025𝑟𝑐. Comparing Figs. C-3a and C-3b, or C-3c and C-3d, a longer 

timescale distributes the volume reduction forced by the rigid cone by easing the wrinkles 

along the corners and prompting wrinkling along surfaces previously parallel to and in 

contact with the rigid cone. This behavior is dominant with increased mesh density, where 

a higher number of degrees of freedom allows new wrinkles to develop, changing the 

resulting pattern of the wrinkled UC. 

Overall, the selected mesh density of 0.01𝑟𝑐 to 0.050𝑟𝑐 and a solution timescale of 

0.05 s is said to result in a quasi-static response with converged energy and global radial 

displacement quantities. On the contrary, such mesh density and timescale is not 

representative of a converged geometrical state and stress/strain fields. As such, detailed 

wrinkle characterization of the solution in question requires a further refined mesh and a 

lower load rate in order to allow time-independent wrinkle development. 
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(a) 0.05s timescale; 0.01𝑟𝑐 to 0.05𝑟𝑐 elem. 

length 
(b) 0.1s timescale; 0.01𝑟𝑐 to 0.05𝑟𝑐 elem. length 

  
(c) 0.05s timescale; 0.01𝑟𝑐 to 0.025𝑟𝑐 elem. 

length 

(d) 0.1s timescale; 0.01𝑟𝑐 to 0.025𝑟𝑐 elem. 

length 

Fig. C-3. Comparison of von Mises stress contours across two mesh densities and two timescales at 

loading state E. 
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C.2. Python Code to Generate the Abaqus CAE for Unit Cell Assembly 

Representation of the Icoron 

Using Abaqus v2016, the following Python code generates the Abaqus .cae file of 

the unit cell assembly of the Icoron for analysis, based on the input stated at the beginning 

of the code. The unit cell radius, 𝑟𝑐, or “rc” in the code below, follows the maximum ratio 

shown in Fig. VI-5 for subdivision frequency of 15 and a radius, 𝑟𝑠, or “rs” in the code 

below, of 0.4572 m. A MATLAB function based on Mathematica Geodesate vertex 

location data generated 𝑟𝑐 as a function of subdivision frequency and 𝑟𝑠. The author 

suggests that Python codes are copied and pasted into a Python, or .py, interpreter for 

readability, and on the Abaqus command window for model generation. The author 

welcomes requests and inquiries regarding functions and codes used to develop the content 

of this dissertation. 

 

# Python code for Abaqus CAE of Air-Stiffned Geodesic Polyhedron Unit Cell (UC), 

# Implicit or Explicit, Hydrostatic Surface-Based Fluid Cavity 

# SIMULIA Abaqus 2016 

# by Ruben Adorno, Air Force Institute of Technology 

# Created: 08 June 2020 

# Last revised:  16 Feb 2021 

 

######################################################################################

################################## 

# Variables / Inputs 

######################################################################################

################################## 

# Driven by Icoron subdivision frequency and size 

rs = 0.45720000 # m, circumscribed sphere radius 

rc = 0.02322453 # m, unit cell max internal radius 

 

# Paths 

wpath  = 'C:\\Output' # Path of output files, e.g. .odb, .dat 

mpath  = 'C:\\' # Path of .cae and .jnl files 

 

# Names 

cae_name        = 'CAE_Name'    # CAE file name 
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m_name          = 'Model_Name'  # Model name 

job_name        = 'Job_Name'    # Job name, 38 chars max, no spaces 

 

# Unit Cell 

p1_name         = 'UC'          # part name 

memb_shell      = 0             # 0 = uses membrane elements, 1 = uses shell elements 

E               = 4.36E9        # Pa, membrane elastic modulus 

hm              = 0.00001220    # membrane thickness, also preloaded in the loaded file 

rho             = 1390          # kg/m3, membrane density 

nu              = 0.38          # Poisson's ratio 

fillet          = 0             # Fillet Corners (1)/No Fillets (0) for unit cell and contact cone 

r_fillet        = 0.01*rc       # Fillet radius for unit cell and contact cone 

chamfer         = 1             # Chamfer Corners (1)/No Fillets (0) for unit cell and contact cone 

l_chamfer       = 0.01*rc       # Chamfer radius for unit cell and contact cone 

Contact_or_BC   = 0             # Contact Cone(0) or BCs(1) replacement 

contact_cone_top_hat = 1        # of Contact cone is on, put a triangular surface at top to limit radial travel of 

UC during loading 

BCthroughRP     = 0             # Do not (0)/Apply(1) BC through RP using Coupling Constraint  

                                    # iff Contact_or_BC == 1, unless chamfer == 0 and fillet == 0 

p1_seed         = (0.01*rc,50E-3*rc) # element size min, max bias seed 

 

# Air Properties 

Ru              = 8.31432       # J/(mol-K), Universal Gas Constant 

T0              = 0             # K, Absolute Zero Temperature 

molW            = 0.0289647     # kg/mol, molar mass 

Cp_const        = (28.11,       # a, J/(mol-K)     Cp_bar = a + b(T-T0)   + c(T-T0)^2  

                   0.001967,    # b, J/(mol-K^2)              + d(T-T0)^3 + e/(T-T0)^2 

                   4.802e-06,   # c, J/(mol-K^3)       

                  -1.966e-09,   # d, J/(mol-K^4)   Cp = Cp_bar/molW = Cv - R 

                   0.0)         # e, (J-K)/mol 

 

# Contact Cone 

p2_name         = 'Contact Cone'# Y symmetry rigid plane part name 

p2_seed         = p1_seed[1]    # Symmetry rigid plane element size global seed 

 

# Step Info 

step_type       = 'NLED'        # 'NLIS = Nonlinear implicit static, 'NLID' = NL implicit dynamic, 'NLED' = 

NL explicit dynamic 

int_operator    = 'QS'          # Only Applies to NLID: QS = QUASI_STATIC, MD = 

MODERATE_DISSIPATION, TF = TRANSIENT_FIDELITY 

t               = 5E-2          # s, analysis time per step 

pre_pressurize  = 0             # 0 = vacuum from initial cavity pressure, 1 = pre-pressurize to Ppress 

adiabatic       = 'OFF'         # 'OFF'/'ON', Explicit only, changes cavity temp based on adiabatic 

linearBulkVisco = 0.06          # linear bulk viscosity, explicit only, 0.06 default 

quadBulkVisco   = 1.2           # quadratic bulk viscosity, explicit only, 1.2 default 

 

vacc_t          = t             # s, load time in step 

vacc_amp        = 'Smooth'      # 'Linear' or 'Smooth' 

vacc_step       = (t, 3e-16, 3E-2, vacc_t/5E3, 10000)  # Vacuum Step Details 

                # (step time, min inc, max inc, initial inc, max # of inc) 

 

preP_t          = t           # s, load time in step 

preP_amp        = 'Smooth'      # 'Linear' or 'Smooth' 
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preP_step       = (t, 3e-16, 3E-2, preP_t/5E3, 10000)  # Pre-pressurize Step Details 

                # (step time, min inc, max inc, initial inc, max # of inc) 

 

O_freq          = 1             # Implcit  ONLY, Output write frequency for increments, e.g., 2 = every 2 increments 

numInt          = 1000          # Explicit ONLY, Output number of evenly spaced time intervals 

 

# Load Info 

Pamb            = 101325        # Pa, cavities ambient pressure 

Pi              = 0             # Pa, cavities initial gauge pressure 

Pvac            = 101325        # Pa, max internal pressure load 

Ppress          = 101325        # Pc # Pa, T1-Tend cavities pressurized gauge pressure load (before internal 

pressure load) 

 

# Job Parallelization 

parallel        = 'ON'          # Parallelization 'ON' or 'OFF' 

numCPUs         = 2             # Number of CPUs 

numGPUs         = 0             # Number of GPUs 

 

######################################################################################

################################## 

# Model Initialization 

######################################################################################

################################## 

from part import * 

from material import * 

from section import * 

from assembly import * 

from step import * 

from interaction import * 

from load import * 

from mesh import * 

from optimization import * 

from job import * 

from sketch import * 

from visualization import * 

from connectorBehavior import * 

import os 

import time 

import math 

 

session.journalOptions.setValues(replayGeometry=COORDINATE, recoverGeometry=COORDINATE) # 

Command to Output CAE Journal with Coordinates 

os.chdir(wpath) # assigns working directory, 'os.getcwd()' command shows it 

mdb.saveAs(pathName=mpath + '\\' + cae_name + '.cae') 

 

# Creates Model 

mdb.Model(modelType=STANDARD_EXPLICIT, name=m_name, absoluteZero = T0, universalGas = Ru) 

 

# Initialize 

model    = mdb.models[m_name] 

assembly = model.rootAssembly 

 

# Creates Material Definition 
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model.Material(name='Membrane') 

model.materials['Membrane'].Density(table=((rho, ), )) 

model.materials['Membrane'].Elastic(table=((E, nu), )) 

 

# Creates Interactions Properties 

model.ContactProperty('Contact Definitions') 

model.interactionProperties['Contact Definitions'].TangentialBehavior(formulation=FRICTIONLESS) 

model.StdInitialization(name = 'Contact Initialization') 

model.FluidCavityProperty(definition=PNEUMATIC, name='Pneumatic Air Cavity', useCapacity=False, 

    molecularWeight = molW) 

if step_type == 'NLED': 

    model.interactionProperties['Pneumatic Air Cavity'].setValues(useCapacity=True, 

        capacityTable=(Cp_const, ),) 

    model.interactionProperties['Contact Definitions'].NormalBehavior(allowSeparation=ON, 

        constraintEnforcementMethod=DEFAULT, pressureOverclosure=HARD) 

else: 

    model.interactionProperties['Contact Definitions'].NormalBehavior(allowSeparation=ON, 

        constraintEnforcementMethod=DIRECT, pressureOverclosure=HARD) 

    model.StdStabilization(name = 'Contact Stabilization') 

 

# Creates Load Amplitudes 

if vacc_amp == 'Smooth': 

    model.SmoothStepAmplitude(data=((0.0, 0.0), (vacc_t , 1.0)), name = 'Internal Load', timeSpan=STEP) 

elif vacc_amp == 'Linear': 

    model.TabularAmplitude(data=((0.0, 0.0), (vacc_t, 1.0)), name = 'Internal Load', 

smooth=SOLVER_DEFAULT, timeSpan=STEP) 

 

if preP_amp == 'Smooth': 

    model.SmoothStepAmplitude(data=((0.0, 0.0), (preP_t , 1.0)), name = 'Cavity P', timeSpan=STEP) 

elif preP_amp == 'Linear': 

    model.TabularAmplitude(data=((0.0, 0.0), (preP_t, 1.0)), name= 'Cavity P', 

smooth=SOLVER_DEFAULT, timeSpan=STEP) 

 

# Creates Sections (see section assignment) 

if memb_shell == 1: 

    # Shell Sections 

    model.HomogeneousShellSection(idealization=NO_IDEALIZATION,  

        integrationRule=SIMPSON, material='Membrane', name='Shell', numIntPts=5,  

        poissonDefinition=DEFAULT, preIntegrate=OFF, temperature=GRADIENT,  

        thickness=hm, thicknessField='', thicknessModulus=None,  

        thicknessType=UNIFORM, useDensity=OFF) 

else: 

    # Membrane Sections 

    model.MembraneSection(name='Membrane', thickness=hm, material='Membrane',  

         poissonDefinition=DEFAULT, thicknessField='', thicknessType=UNIFORM) 

 

######################################################################################

################################## 

# Part 1 

######################################################################################

################################## 

 

# Creates Sketch 
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model.ConstrainedSketch(name=p1_name, sheetSize=2.0) 

model.sketches[p1_name].sketchOptions.setValues(viewStyle=AXISYM) 

model.sketches[p1_name].ConstructionLine(point1=(-1, 0), point2=(1, 0)) 

model.sketches[p1_name].ArcByCenterEnds(center=(0, 0), direction=CLOCKWISE, 

    point1=(-rc-hm/2, 0), point2=(rc+hm/2, 0)) 

model.sketches[p1_name].Line(point1=(-rc-hm/2, 0), point2=(rc+hm/2, 0)) 

 

# Creates Part 

model.Part(dimensionality=THREE_D, name=p1_name, type=DEFORMABLE_BODY) 

part1 = mdb.models[m_name].parts[p1_name] 

part1.BaseSolidRevolve(angle=360.0, flipRevolveDirection=OFF,  

    sketch= model.sketches[p1_name]) 

 

# Reference Point for Cavity 

RP = part1.ReferencePoint(point=(0,0,0)) 

part1.features.changeKey(fromName='RP', toName='UC') 

part1.Set(name='UC RP', referencePoints=(part1.referencePoints[RP.id],)) 

 

# Create Datum Planes for Partitions, and System for Assembly 

dpXY = part1.DatumPlaneByPrincipalPlane(offset=0.0, principalPlane=XYPLANE)  

dp1 = part1.DatumPlaneByThreePoints( 

    point1 = (0, 0, -rs),  

    point2 = (rc*cos(0), rc*sin(0), 0), 

    point3 = (rc*cos(radians(120)), rc*sin(radians(120)), 0)) 

dp2= part1.DatumPlaneByThreePoints( 

    point1 = (0, 0, -rs),  

    point2 = (rc*cos(radians(120)), rc*sin(radians(120)), 0), 

    point3 = (rc*cos(radians(240)), rc*sin(radians(240)), 0)) 

dp3 = part1.DatumPlaneByThreePoints( 

    point1 = (0, 0, -rs),  

    point2 = (rc*cos(radians(240)), rc*sin(radians(240)), 0), 

    point3 = (rc*cos(0), rc*sin(0), 0)) 

dsys1 = part1.DatumCsysByThreePoints(coordSysType=CARTESIAN, name='Part 1 Sys', 

    origin  = (0.0, 0.0, 0.0), 

    point1 = (rc*cos(0), rc*sin(0), 0), 

    point2 = (rc*cos(radians(120)), rc*sin(radians(120)), 0)) 

 

# Partitions Along Datum Planes and Remove Excess Cells 

part1.PartitionCellByDatumPlane(datumPlane = part1.datums[dp1.id], 

    cells = part1.cells.findAt(((rc*cos(radians(60)), rc*sin(radians(60)), 0), ))) 

part1.PartitionCellByDatumPlane(datumPlane = part1.datums[dp2.id], 

    cells = part1.cells.findAt(((rc*cos(radians(180)), rc*sin(radians(180)), 0), ))) 

part1.PartitionCellByDatumPlane(datumPlane = part1.datums[dp3.id], 

    cells = part1.cells.findAt(((rc*cos(radians(300)), rc*sin(radians(300)), 0), ))) 

part1.RemoveFaces(deleteCells=False, faceList=(part1.faces.findAt(part1.cells.pointsOn[1][0], ), 

    part1.faces.findAt(part1.cells.pointsOn[2][0], ), part1.faces.findAt(part1.cells.pointsOn[3][0],))) 

 

# Coverts Solid Cell Into Shell 

part1.RemoveCells(cellList=(part1.cells.findAt(part1.cells.pointsOn[0][0], ), )) 

 

# Remove Small Faces Created with Partitions 

part1.RepairSmallFaces(toleranceChecks=False, 

    faceList = (part1.faces.findAt((part1.faces.pointsOn[4][0],), 
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                                   (part1.faces.pointsOn[5][0],), 

                                   (part1.faces.pointsOn[6][0],),))) 

part1.checkGeometry() 

 

# Converts Imprecise Edges to Precise; may not make a difference; remove if time consuming 

part1.ConvertToPrecise(method=TIGHTEN_GAPS) 

part1.checkGeometry() 

 

if (fillet == 0 and chamfer == 0): 

    # Partition Shell Faces Along XY Plane 

    part1.PartitionFaceByDatumPlane(datumPlane = part1.datums[dpXY.id], 

        faces = (part1.faces.findAt((part1.faces.pointsOn[0][0],), 

        (part1.faces.pointsOn[1][0],), (part1.faces.pointsOn[2][0],), 

        (part1.faces.pointsOn[3][0],), (part1.faces.pointsOn[4][0],),))) 

     

    # Faces ID for Sets 

    whole_faces = (part1.faces.findAt((part1.faces.pointsOn[0][0],), 

        (part1.faces.pointsOn[1][0],), (part1.faces.pointsOn[2][0],), 

        (part1.faces.pointsOn[3][0],), (part1.faces.pointsOn[4][0],), 

        (part1.faces.pointsOn[5][0],), (part1.faces.pointsOn[6][0],), 

        (part1.faces.pointsOn[7][0],),)) 

    Pia_faces = part1.faces.findAt((part1.faces.pointsOn[5][0],)) 

    Poa_faces = part1.faces.findAt((part1.faces.pointsOn[6][0],)) 

     

    # Datums and Sets for BCs to Replace Contact Plane 

    D1 = part1.DatumCsysByThreePoints(name='D1', coordSysType = CARTESIAN,  

        origin = part1.InterestingPoint(part1.edges.findAt(part1.edges.pointsOn[8][0],),MIDDLE), 

        point1 = part1.vertices.findAt(part1.vertices.pointsOn[1][0],), 

        point2 = part1.InterestingPoint(part1.edges.findAt(part1.edges.pointsOn[12][0],),MIDDLE)) 

    D2 = part1.DatumCsysByThreePoints(name='D2', coordSysType = CARTESIAN,  

        origin = part1.InterestingPoint(part1.edges.findAt(part1.edges.pointsOn[0][0],),MIDDLE), 

        point1 = part1.vertices.findAt(part1.vertices.pointsOn[0][0],), 

        point2 = part1.InterestingPoint(part1.edges.findAt(part1.edges.pointsOn[14][0],),MIDDLE)) 

    D3 = part1.DatumCsysByThreePoints(name='D3', coordSysType = CARTESIAN,  

        origin = part1.InterestingPoint(part1.edges.findAt(part1.edges.pointsOn[4][0],),MIDDLE), 

        point1 = part1.vertices.findAt(part1.vertices.pointsOn[4][0],), 

        point2 = part1.InterestingPoint(part1.edges.findAt(part1.edges.pointsOn[6][0],),MIDDLE)) 

     

    part1.Set(name = 'F1', faces = part1.faces.findAt( 

        (part1.faces.pointsOn[2][0],), (part1.faces.pointsOn[3][0],),)) 

    part1.Set(name = 'F2', faces = part1.faces.findAt( 

        (part1.faces.pointsOn[0][0], ), (part1.faces.pointsOn[7][0], ), ), ) 

    part1.Set(name = 'F3', faces = part1.faces.findAt( 

        (part1.faces.pointsOn[1][0], ), (part1.faces.pointsOn[4][0], ), ), ) 

    part1.Surface(name = 'F1', side1Faces = part1.faces.findAt( 

        (part1.faces.pointsOn[2][0],), (part1.faces.pointsOn[3][0],),)) 

    part1.Surface(name = 'F2', side1Faces = part1.faces.findAt( 

        (part1.faces.pointsOn[0][0], ), (part1.faces.pointsOn[7][0], ), ), ) 

    part1.Surface(name = 'F3', side1Faces = part1.faces.findAt( 

        (part1.faces.pointsOn[1][0], ), (part1.faces.pointsOn[4][0], ), ), ) 

    part1.Set(name = 'E1', edges = part1.edges.findAt((part1.edges.pointsOn[8][0],),)) 

    part1.Set(name = 'E2', edges = part1.edges.findAt((part1.edges.pointsOn[0][0],),)) 

    part1.Set(name = 'E3', edges = part1.edges.findAt((part1.edges.pointsOn[4][0],),)) 
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    # Edges for Meshing Below 

    F123_edges = part1.edges.findAt( 

                    (part1.edges.pointsOn[0][0],), (part1.edges.pointsOn[2][0],), 

                    (part1.edges.pointsOn[4][0],), (part1.edges.pointsOn[6][0],), 

                    (part1.edges.pointsOn[8][0],), (part1.edges.pointsOn[10][0],), 

                    (part1.edges.pointsOn[12][0],),(part1.edges.pointsOn[13][0],), 

                    (part1.edges.pointsOn[14][0],)) 

    V123_edges = part1.edges.findAt( 

                    (part1.edges.pointsOn[1][0],), (part1.edges.pointsOn[3][0],), 

                    (part1.edges.pointsOn[5][0],), (part1.edges.pointsOn[7][0],), 

                    (part1.edges.pointsOn[9][0],), (part1.edges.pointsOn[11][0],)) 

    part1.Set(name = 'F123_edges', edges = F123_edges) 

    part1.Set(name = 'V123_edges', edges = V123_edges) 

     

elif (fillet == 1 and chamfer == 0): 

    # Creates Fillets on Contact Corners 

    part1.Round(radius = r_fillet, edgeList = ( 

        part1.edges.findAt(part1.edges.pointsOn[0][0], ),  

        part1.edges.findAt(part1.edges.pointsOn[2][0], ),  

        part1.edges.findAt(part1.edges.pointsOn[5][0], ))) 

     

    # Partition Shell Faces Along XY Plane 

    part1.PartitionFaceByDatumPlane(datumPlane = part1.datums[dpXY.id], 

        faces = (part1.faces.findAt((part1.faces.pointsOn[0][0],), 

        (part1.faces.pointsOn[1][0],), (part1.faces.pointsOn[2][0],), 

        (part1.faces.pointsOn[3][0],), (part1.faces.pointsOn[4][0],), 

        (part1.faces.pointsOn[5][0],), (part1.faces.pointsOn[6][0],), 

        (part1.faces.pointsOn[7][0],),))) 

     

    # Faces ID 

    whole_faces = (part1.faces.findAt((part1.faces.pointsOn[0][0],), 

        (part1.faces.pointsOn[1][0],), (part1.faces.pointsOn[2][0],), 

        (part1.faces.pointsOn[3][0],), (part1.faces.pointsOn[4][0],), 

        (part1.faces.pointsOn[5][0],), (part1.faces.pointsOn[6][0],), 

        (part1.faces.pointsOn[7][0],), (part1.faces.pointsOn[8][0],), 

        (part1.faces.pointsOn[9][0],), (part1.faces.pointsOn[10][0],), 

        (part1.faces.pointsOn[11][0],), (part1.faces.pointsOn[12][0],), 

        (part1.faces.pointsOn[13][0],),)) 

    Pia_faces = part1.faces.findAt((part1.faces.pointsOn[8][0],)) 

    Poa_faces = part1.faces.findAt((part1.faces.pointsOn[13][0],)) 

     

    # Datums and Sets for BCs to Replace Contact Plane 

    D1 = part1.DatumCsysByThreePoints(name='D1', coordSysType = CARTESIAN,  

        origin = part1.InterestingPoint(part1.edges.findAt(part1.edges.pointsOn[14][0],),MIDDLE), 

        point1 = part1.vertices.findAt(part1.vertices.pointsOn[11][0],), 

        point2 = part1.InterestingPoint(part1.edges.findAt(part1.edges.pointsOn[16][0],),MIDDLE)) 

    D2 = part1.DatumCsysByThreePoints(name='D2', coordSysType = CARTESIAN,  

        origin = part1.InterestingPoint(part1.edges.findAt(part1.edges.pointsOn[11][0],),MIDDLE), 

        point1 = part1.vertices.findAt(part1.vertices.pointsOn[4][0],), 

        point2 = part1.InterestingPoint(part1.edges.findAt(part1.edges.pointsOn[23][0],),MIDDLE)) 

    D3 = part1.DatumCsysByThreePoints(name='D3', coordSysType = CARTESIAN,  

        origin = part1.InterestingPoint(part1.edges.findAt(part1.edges.pointsOn[0][0],),MIDDLE), 
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        point1 = part1.vertices.findAt(part1.vertices.pointsOn[1][0],), 

        point2 = part1.InterestingPoint(part1.edges.findAt(part1.edges.pointsOn[2][0],),MIDDLE)) 

     

    part1.Set(name='F1', faces = part1.faces.findAt( 

        (part1.faces.pointsOn[4][0],), (part1.faces.pointsOn[12][0],),)) 

    part1.Set(name='F2', faces = part1.faces.findAt( 

        (part1.faces.pointsOn[3][0], ), (part1.faces.pointsOn[7][0], ), ), ) 

    part1.Set(name='F3', faces = part1.faces.findAt( 

        (part1.faces.pointsOn[0][0], ), (part1.faces.pointsOn[10][0], ), ), ) 

    part1.Surface(name='F1', side1Faces = part1.faces.findAt( 

        (part1.faces.pointsOn[4][0],), (part1.faces.pointsOn[12][0],),)) 

    part1.Surface(name='F2', side1Faces = part1.faces.findAt( 

        (part1.faces.pointsOn[3][0], ), (part1.faces.pointsOn[7][0], ), ), ) 

    part1.Surface(name='F3', side1Faces = part1.faces.findAt( 

        (part1.faces.pointsOn[0][0], ), (part1.faces.pointsOn[10][0], ), ), ) 

    part1.Set(name='E1', edges = part1.edges.findAt((part1.edges.pointsOn[14][0],),)) 

    part1.Set(name='E2', edges = part1.edges.findAt((part1.edges.pointsOn[11][0],),)) 

    part1.Set(name='E3', edges = part1.edges.findAt((part1.edges.pointsOn[0][0],),)) 

     

elif (fillet == 0 and chamfer == 1): 

    # Creates Chamfer on Contact Corners 

    part1.Chamfer(length = l_chamfer, edgeList = ( 

        part1.edges.findAt(part1.edges.pointsOn[0][0], ),  

        part1.edges.findAt(part1.edges.pointsOn[2][0], ),  

        part1.edges.findAt(part1.edges.pointsOn[5][0], ))) 

     

    # Partition Shell Faces Along XY Plane 

    part1.PartitionFaceByDatumPlane(datumPlane = part1.datums[dpXY.id], 

        faces = (part1.faces.findAt((part1.faces.pointsOn[0][0],), 

        (part1.faces.pointsOn[1][0],), (part1.faces.pointsOn[2][0],), 

        (part1.faces.pointsOn[3][0],), (part1.faces.pointsOn[4][0],), 

        (part1.faces.pointsOn[5][0],), (part1.faces.pointsOn[6][0],), 

        (part1.faces.pointsOn[7][0],),))) 

     

    # Faces ID 

    whole_faces = (part1.faces.findAt((part1.faces.pointsOn[0][0],), 

        (part1.faces.pointsOn[1][0],), (part1.faces.pointsOn[2][0],), 

        (part1.faces.pointsOn[3][0],), (part1.faces.pointsOn[4][0],), 

        (part1.faces.pointsOn[5][0],), (part1.faces.pointsOn[6][0],), 

        (part1.faces.pointsOn[7][0],), (part1.faces.pointsOn[8][0],), 

        (part1.faces.pointsOn[9][0],), (part1.faces.pointsOn[10][0],), 

        (part1.faces.pointsOn[11][0],), (part1.faces.pointsOn[12][0],), 

        (part1.faces.pointsOn[13][0],),)) 

    Pia_faces = part1.faces.findAt((part1.faces.pointsOn[9][0],)) 

    Poa_faces = part1.faces.findAt((part1.faces.pointsOn[12][0],)) 

     

    # Datums and Sets for BCs to Replace Contact Plane 

    D1 = part1.DatumCsysByThreePoints(name='D1', coordSysType = CARTESIAN,  

        origin = part1.InterestingPoint(part1.edges.findAt(part1.edges.pointsOn[0][0],),MIDDLE), 

        point1 = part1.vertices.findAt(part1.vertices.pointsOn[1][0],), 

        point2 = part1.InterestingPoint(part1.edges.findAt(part1.edges.pointsOn[2][0],),MIDDLE)) 

    D2 = part1.DatumCsysByThreePoints(name='D2', coordSysType = CARTESIAN,  

        origin = part1.InterestingPoint(part1.edges.findAt(part1.edges.pointsOn[14][0],),MIDDLE), 
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        point1 = part1.vertices.findAt(part1.vertices.pointsOn[11][0],), 

        point2 = part1.InterestingPoint(part1.edges.findAt(part1.edges.pointsOn[16][0],),MIDDLE)) 

    D3 = part1.DatumCsysByThreePoints(name='D3', coordSysType = CARTESIAN,  

        origin = part1.InterestingPoint(part1.edges.findAt(part1.edges.pointsOn[11][0],),MIDDLE), 

        point1 = part1.vertices.findAt(part1.vertices.pointsOn[4][0],), 

        point2 = part1.InterestingPoint(part1.edges.findAt(part1.edges.pointsOn[29][0],),MIDDLE)) 

     

    part1.Set(name='F1', faces = part1.faces.findAt( 

        (part1.faces.pointsOn[0][0],), (part1.faces.pointsOn[11][0],),)) 

    part1.Set(name='F2', faces = part1.faces.findAt( 

        (part1.faces.pointsOn[4][0], ), (part1.faces.pointsOn[13][0], ), ), ) 

    part1.Set(name='F3', faces = part1.faces.findAt( 

        (part1.faces.pointsOn[3][0], ), (part1.faces.pointsOn[10][0], ), ), ) 

    part1.Surface(name='F1', side1Faces = part1.faces.findAt( 

        (part1.faces.pointsOn[0][0],), (part1.faces.pointsOn[11][0],),)) 

    part1.Surface(name='F2', side1Faces = part1.faces.findAt( 

        (part1.faces.pointsOn[4][0], ), (part1.faces.pointsOn[13][0], ), ), ) 

    part1.Surface(name='F3', side1Faces = part1.faces.findAt( 

        (part1.faces.pointsOn[3][0], ), (part1.faces.pointsOn[10][0], ), ), ) 

     

    part1.Set(name='E1', edges = part1.edges.findAt((part1.edges.pointsOn[0][0],),)) 

    part1.Set(name='E2', edges = part1.edges.findAt((part1.edges.pointsOn[14][0],),)) 

    part1.Set(name='E3', edges = part1.edges.findAt((part1.edges.pointsOn[11][0],),)) 

     

    part1.Set(name='V1', edges = part1.edges.findAt( 

                    (part1.edges.pointsOn[3][0],),(part1.edges.pointsOn[7][0],), 

                    (part1.edges.pointsOn[1][0],),(part1.edges.pointsOn[22][0],)),) 

    part1.Set(name='V2', edges = part1.edges.findAt( 

                    (part1.edges.pointsOn[9][0],),(part1.edges.pointsOn[24][0],), 

                    (part1.edges.pointsOn[15][0],),(part1.edges.pointsOn[18][0],)),) 

    part1.Set(name='V3', edges = part1.edges.findAt( 

                    (part1.edges.pointsOn[12][0],),(part1.edges.pointsOn[25][0],), 

                    (part1.edges.pointsOn[5][0],),(part1.edges.pointsOn[21][0],)),) 

     

    # Edges for Meshing Below 

    F123_edges = part1.edges.findAt( 

                    (part1.edges.pointsOn[2][0],), (part1.edges.pointsOn[13][0],), 

                    (part1.edges.pointsOn[16][0],),(part1.edges.pointsOn[27][0],), 

                    (part1.edges.pointsOn[28][0],),(part1.edges.pointsOn[29][0],), 

                    (part1.edges.pointsOn[0][0],), (part1.edges.pointsOn[11][0],), 

                    (part1.edges.pointsOn[14][0],)) 

    V123_edges = part1.edges.findAt( 

                    (part1.edges.pointsOn[3][0],), (part1.edges.pointsOn[7][0],), 

                    (part1.edges.pointsOn[1][0],), (part1.edges.pointsOn[22][0],), 

                    (part1.edges.pointsOn[9][0],), (part1.edges.pointsOn[24][0],), 

                    (part1.edges.pointsOn[15][0],),(part1.edges.pointsOn[18][0],), 

                    (part1.edges.pointsOn[12][0],),(part1.edges.pointsOn[25][0],), 

                    (part1.edges.pointsOn[5][0],), (part1.edges.pointsOn[21][0],)) 

    part1.Set(name = 'F123_edges', edges = F123_edges) 

    part1.Set(name = 'V123_edges', edges = V123_edges) 

 

# Whole Set 
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part1.Set(name='Whole', faces = whole_faces) 

 

# Pressure Sets 

part1.Set(name = 'Pia', faces = Pia_faces) 

part1.Set(name = 'Poa', faces = Poa_faces) 

part1.Set(name = 'Pta', faces = whole_faces) 

 

# Pressure Surfaces 

part1.Surface(name = 'Pia', side1Faces = Pia_faces) 

part1.Surface(name = 'Poa', side1Faces = Poa_faces) 

part1.Surface(name = 'Pta', side2Faces = whole_faces) 

part1.Surface(name = 'Contact', side1Faces = whole_faces) 

 

# Assigns Section 

if memb_shell == 1: 

    # Shell 

    part1.SectionAssignment(offset=0.0, offsetField='', offsetType=MIDDLE_SURFACE, 

        region = part1.sets['Whole'], sectionName ='Shell', thicknessAssignment=FROM_SECTION) 

else: 

    # Membrane 

    part1.SectionAssignment(offset=0.0, offsetField='', offsetType=MIDDLE_SURFACE, 

        region = part1.sets['Whole'], sectionName ='Membrane', thicknessAssignment=FROM_SECTION) 

 

# Mesh 

if memb_shell == 1: 

    part1.setElementType(regions = part1.sets['Whole'], elemTypes=( 

        ElemType(elemCode=S4,  elemLibrary=EXPLICIT, secondOrderAccuracy=OFF),  

        ElemType(elemCode=S3R, elemLibrary=EXPLICIT, secondOrderAccuracy=OFF)),) 

else: 

    part1.setElementType(regions = part1.sets['Whole'], elemTypes=( 

        ElemType(elemCode=M3D4, elemLibrary=EXPLICIT, secondOrderAccuracy=OFF),  

        ElemType(elemCode=M3D3, elemLibrary=EXPLICIT, secondOrderAccuracy=OFF)),)  

 

# part1.seedPart(deviationFactor=0.1, minSizeFactor=0.1, size=p1_seed) 

part1.seedEdgeByBias(biasMethod = DOUBLE, constraint = FINER, endEdges = F123_edges,  

    minSize = p1_seed[0], maxSize = p1_seed[1]) 

part1.seedEdgeBySize(constraint = FINER, deviationFactor = 0.1, edges = V123_edges, 

    size = p1_seed[0]) 

part1.setMeshControls(elemShape=TRI, regions = whole_faces) 

part1.generateMesh() 

part1.flipNormal(regions = part1.sets['Whole']) 

 

######################################################################################

################################## 

# Part 2 

######################################################################################

################################## 

 

if Contact_or_BC == 0: 

    # Create Part 

    model.Part(name = p2_name, dimensionality=THREE_D,  type=DISCRETE_RIGID_SURFACE) 

    part2 = model.parts[p2_name] 
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    # Datum System for Assembly 

    dsys2 = part2.DatumCsysByThreePoints(coordSysType=CARTESIAN, name='Part 2 Sys', 

        origin  = (0.0, 0.0, 0.0), 

        point1 = (rc*cos(0), rc*sin(0), 0), 

        point2 = (rc*cos(radians(120)), rc*sin(radians(120)), 0)) 

    dpXY = part2.DatumPlaneByPrincipalPlane(offset=0.0, principalPlane=XYPLANE)  

     

    # Wire for Smallest X-Section 

    rs_new = 0.10*rs 

    rcs = rs_new*(rc+0.90*hm)/rs 

    part2.WirePolyLine(mergeType=IMPRINT, meshable=ON, points = ( 

        ((rcs*cos(0), rcs*sin(0), -rs + rs_new), (rcs*cos(radians(120)), rcs*sin(radians(120)), -rs + rs_new)), 

        ((rcs*cos(radians(120)), rcs*sin(radians(120)), -rs + rs_new), (rcs*cos(radians(240)), 

rcs*sin(radians(240)), -rs + rs_new)),  

        ((rcs*cos(radians(240)), rcs*sin(radians(240)), -rs + rs_new), (rcs*cos(0), rcs*sin(0), -rs + rs_new)))) 

     

    # Wire for Largest X-Section 

    rs_new = 1.5*rs 

    rcs = rs_new*(rc+0.90*hm)/rs 

    part2.WirePolyLine(mergeType=IMPRINT, meshable=ON, points = ( 

        ((rcs*cos(0), rcs*sin(0), -rs + rs_new), (rcs*cos(radians(120)), rcs*sin(radians(120)), -rs + rs_new)), 

        ((rcs*cos(radians(120)), rcs*sin(radians(120)), -rs + rs_new), (rcs*cos(radians(240)), 

rcs*sin(radians(240)), -rs + rs_new)),  

        ((rcs*cos(radians(240)), rcs*sin(radians(240)), -rs + rs_new), (rcs*cos(0), rcs*sin(0), -rs + rs_new)))) 

     

    # Loft to Form Cone 

    part2.ShellLoft(startCondition = NONE, endCondition = NONE, loftsections = ( 

        (part2.edges.findAt(part2.edges.pointsOn[3][0], ), 

         part2.edges.findAt(part2.edges.pointsOn[4][0], ), 

         part2.edges.findAt(part2.edges.pointsOn[5][0], )), 

        (part2.edges.findAt(part2.edges.pointsOn[0][0], ),  

         part2.edges.findAt(part2.edges.pointsOn[1][0], ), 

         part2.edges.findAt(part2.edges.pointsOn[2][0],))),) 

     

##     if (fillet == 0 and chamfer == 0): 

    # Partition Shell Faces Along XY Plane 

    part2.PartitionFaceByDatumPlane(datumPlane = part2.datums[dpXY.id], 

        faces = (part2.faces.findAt((part2.faces.pointsOn[0][0],), 

        (part2.faces.pointsOn[1][0],), (part2.faces.pointsOn[2][0],),))) 

     

    # Faces ID 

    whole_faces = (part2.faces.findAt((part2.faces.pointsOn[0][0],), 

        (part2.faces.pointsOn[1][0],), (part2.faces.pointsOn[2][0],), 

        (part2.faces.pointsOn[3][0],), (part2.faces.pointsOn[4][0],), 

        (part2.faces.pointsOn[5][0],),)) 

     

    if contact_cone_top_hat == 1: 

        part2.CoverEdges(edgeList=( 

            part2.edges.findAt(part2.edges.pointsOn[6][0], ),  

            part2.edges.findAt(part2.edges.pointsOn[12][0], ),  

            part2.edges.findAt(part2.edges.pointsOn[14][0], )),tryAnalytical=False) 

     

        # Faces ID 
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        whole_faces = (part2.faces.findAt((part2.faces.pointsOn[0][0],), 

            (part2.faces.pointsOn[1][0],), (part2.faces.pointsOn[2][0],), 

            (part2.faces.pointsOn[3][0],), (part2.faces.pointsOn[4][0],), 

            (part2.faces.pointsOn[5][0],), (part2.faces.pointsOn[6][0],),)) 

     

    # Creates Set 

    part2.Set(name='Whole', faces = whole_faces) 

     

    # Create Surface 

    part2.Surface(name='Contact', side2Faces = whole_faces) 

     

    # Mesh 

    part2.seedPart(deviationFactor=0.1, minSizeFactor=0.1, size=p2_seed) 

    part2.setElementType(regions = part2.sets['Whole'], 

        elemTypes=(ElemType(elemCode=R3D4, elemLibrary=EXPLICIT),  

                           ElemType(elemCode=R3D3, elemLibrary=EXPLICIT)),) 

    part2.setMeshControls(elemShape=TRI, regions = whole_faces) 

    part2.generateMesh() 

    part2.flipNormal(regions = part2.sets['Whole']) 

 

######################################################################################

################################## 

# Assembly 

######################################################################################

################################## 

 

# Creates Instances 

assembly.Instance(dependent=ON, name=p1_name, part=part1) 

inst1 = assembly.instances[p1_name] 

 

if Contact_or_BC == 0: 

    assembly.Instance(dependent=ON, name=p2_name, part=part2) 

    inst2 = assembly.instances[p2_name]   

 

# Moves and Co-Locates Parts to Center Point Per MATLAB-Obtained Center Points 

dsysUC = assembly.DatumCsysByThreePoints(coordSysType=CARTESIAN, name='UC1 Sys', 

        origin  = (0.0, 0.0, rs), 

        point1 = (rc*cos(0), rc*sin(0), rs), 

        point2 = (rc*cos(radians(120)), rc*sin(radians(120)), rs)) 

         

assembly.ParallelCsys(fixedCsys = assembly.datums[dsysUC.id],  

                            movableCsys = inst1.datums[dsys1.id]) 

assembly.CoincidentPoint(fixedPoint = assembly.datums[dsysUC.id].origin,  

                                 movablePoint = inst1.datums[dsys1.id].origin) 

 

if Contact_or_BC == 0: 

    assembly.ParallelCsys(fixedCsys = assembly.datums[dsysUC.id],  

                                movableCsys = inst2.datums[dsys2.id]) 

    assembly.CoincidentPoint(fixedPoint = assembly.datums[dsysUC.id].origin,  

                                     movablePoint = inst2.datums[dsys2.id].origin) 

 

# Reference Point at Origin for Rigid Constraint 

RP = assembly.ReferencePoint(point=(0,0,0)) 



 

234 

assembly.features.changeKey(fromName='RP-1', toName='Origin') 

assembly.Set(name='Origin RP', referencePoints=(assembly.referencePoints[RP.id],)) 

 

######################################################################################

################################## 

# Interactions 

######################################################################################

################################## 

 

# Creates Fluid Cavity w Initial P and T, and History Request 

model.FluidCavity(createStepName='Initial', ambientPressure=Pamb, useAdiabatic=False, 

        interactionProperty='Pneumatic Air Cavity', 

        cavityPoint   = assembly.instances[p1_name].sets['UC RP'],  

        cavitySurface = assembly.instances[p1_name].surfaces['Pta'], 

        name          = 'UC Cavity') 

model.FluidCavityPressure(fluidPressure=Pi, 

    name        = 'UC Cavity Pi', 

    fluidCavity = 'UC Cavity') 

model.Temperature(createStepName='Initial', 

crossSectionDistribution=CONSTANT_THROUGH_THICKNESS,distributionType=UNIFORM, 

magnitudes=(288.15, ), 

    name   ='UC Cavity Ti',  

    region = assembly.instances[p1_name].sets['UC RP']) 

 

# General Contact 

if Contact_or_BC == 0: 

    cont_name = 'General Self Contact' 

    if step_type == 'NLED': 

        model.ContactExp(createStepName='Initial', name = cont_name) 

        model.interactions[cont_name].includedPairs.setValuesInStep(stepName='Initial', useAllstar=ON) 

        model.interactions[cont_name].contactPropertyAssignments.appendInStep( 

            assignments=((GLOBAL, SELF, 'Contact Definitions'), ), stepName='Initial') 

        model.interactions[cont_name].masterSlaveAssignments.appendInStep(stepName='Initial', 

            assignments = ((inst2.surfaces['Contact'], inst1.surfaces['Contact'], MASTER), )) 

    else: 

        model.ContactStd(createStepName='Initial', name=cont_name) 

        model.interactions[cont_name].includedPairs.setValuesInStep(stepName='Initial', useAllstar=ON) 

        model.interactions[cont_name].contactPropertyAssignments.appendInStep( 

            assignments=((GLOBAL, SELF, 'Contact Definitions'), ), stepName='Initial') 

        model.interactions[cont_name].initializationAssignments.appendInStep(stepName='Initial', 

            assignments=((inst2.surfaces['Contact'], inst1.surfaces['Contact'],'Contact Initialization'), )) 

        model.interactions[cont_name].masterSlaveAssignments.appendInStep(stepName='Initial', 

            assignments = ((inst2.surfaces['Contact'], inst1.surfaces['Contact'], MASTER), )) 

 

######################################################################################

################################## 

# Constraints 

######################################################################################

################################## 

 

# Rigid Contraint for Y-Sym Plane 

if Contact_or_BC == 0: 

    model.RigidBody(name= p2_name + ' Contraint', 
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        bodyRegion     = assembly.instances[p2_name].sets['Whole'],  

        refPointRegion = assembly.sets['Origin RP']) 

 

# Circular Face Coupling to RP for BC Application 

if ((Contact_or_BC == 1 and BCthroughRP == 1) or (fillet == 0 and chamfer == 0)): 

    if   (fillet == 0 and chamfer == 0): 

        p1 = inst1.edges.pointsOn[8][0] 

        p2 = inst1.edges.pointsOn[0][0] 

        p3 = inst1.edges.pointsOn[4][0] 

         

    elif (fillet == 1 and chamfer == 0): 

        p1 = inst1.edges.pointsOn[14][0] 

        p2 = inst1.edges.pointsOn[11][0] 

        p3 = inst1.edges.pointsOn[0][0] 

         

    elif (fillet == 0 and chamfer == 1): 

        p1 = inst1.edges.pointsOn[0][0] 

        p2 = inst1.edges.pointsOn[14][0] 

        p3 = inst1.edges.pointsOn[11][0] 

     

    F1_RP = assembly.ReferencePoint(point =  

        inst1.InterestingPoint(inst1.edges.findAt(p1), MIDDLE)) 

    assembly.features.changeKey(fromName='RP-1', toName='F1 RP') 

    assembly.Set(name='F1 RP', referencePoints=(assembly.referencePoints[F1_RP.id],)) 

    F2_RP = assembly.ReferencePoint(point =  

        inst1.InterestingPoint(inst1.edges.findAt(p2), MIDDLE)) 

    assembly.features.changeKey(fromName='RP-1', toName='F2 RP') 

    assembly.Set(name='F2 RP', referencePoints=(assembly.referencePoints[F2_RP.id],)) 

    F3_RP = assembly.ReferencePoint(point =  

        inst1.InterestingPoint(inst1.edges.findAt(p3), MIDDLE)) 

    assembly.features.changeKey(fromName='RP-1', toName='F3 RP') 

    assembly.Set(name='F3 RP', referencePoints=(assembly.referencePoints[F3_RP.id],)) 

     

    model.Coupling(couplingType = KINEMATIC, influenceRadius = WHOLE_SURFACE, # 

KINEMATIC, DISTRIBUTING, STRUCTURAL 

        u1 = ON, u2 = ON, u3 = ON, ur1 = OFF, ur2 = OFF, ur3 = OFF, 

        name         = 'F1', 

        controlPoint = assembly.sets['F1 RP'],  

        surface      = inst1.sets['F1'], 

        localCsys    = inst1.datums[D1.id]) 

    model.Coupling(couplingType = KINEMATIC, influenceRadius = WHOLE_SURFACE, 

        u1 = ON, u2 = ON, u3 = ON, ur1 = OFF, ur2 = OFF, ur3 = OFF, 

        name         = 'F2', 

        controlPoint = assembly.sets['F2 RP'],  

        surface      = inst1.sets['F2'], 

        localCsys    = inst1.datums[D2.id]) 

    model.Coupling(couplingType = KINEMATIC, influenceRadius = WHOLE_SURFACE, 

        u1 = ON, u2 = ON, u3 = ON, ur1 = OFF, ur2 = OFF, ur3 = OFF, 

        name         = 'F3', 

        controlPoint = assembly.sets['F3 RP'],  

        surface      = inst1.sets['F3'], 

        localCsys    = inst1.datums[D3.id]) 
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    if (fillet == 0 and chamfer == 0): 

        p1 = part1.vertices.pointsOn[1][0] 

        p2 = part1.vertices.pointsOn[4][0] 

        d = sqrt((p2[0] - p1[0])**2 + (p2[1] - p1[1])**2 + (p2[2] - p1[2])**2)/2 

        model.constraints['F1'].setValues(influenceRadius = 0.999*d) 

        model.constraints['F2'].setValues(influenceRadius = 0.999*d) 

        model.constraints['F3'].setValues(influenceRadius = 0.999*d) 

 

######################################################################################

################################## 

# Steps, Loads, Boundary Conditions (BC), and Outputs 

######################################################################################

################################## 

 

step1   = 'Pressurize'  

step2   = 'Vacuum' 

 

# Creates Step(s) 

if pre_pressurize == 0: 

    step1 = step2 

    if step_type == 'NLIS': 

        model.StaticStep(name=step2, previous='Initial', nlgeom=ON, 

            minInc = vacc_step[1], maxInc = vacc_step[2], initialInc = vacc_step[3], maxNumInc = vacc_step[4], 

            stabilizationMethod=DISSIPATED_ENERGY_FRACTION, continueDampingFactors=False, 

            adaptiveDampingRatio=0.05, stabilizationMagnitude=0.0002, 

            matrixSolver=DIRECT, matrixStorage=UNSYMMETRIC,convertSDI=CONVERT_SDI_ON) 

    elif step_type == 'NLID': 

        if int_operator == 'QS': 

            model.ImplicitDynamicsStep(name=step2, previous='Initial',alpha=DEFAULT, amplitude=RAMP, 

                application=QUASI_STATIC, convertSDI=CONVERT_SDI_ON,  

                initialConditions=ON, matrixStorage=UNSYMMETRIC, nlgeom=ON, nohaf=OFF, 

                timePeriod = vacc_step[0], minInc = vacc_step[1], maxInc = vacc_step[2], 

                initialInc = vacc_step[3], maxNumInc = vacc_step[4]) 

        elif int_operator == 'MD': 

            model.ImplicitDynamicsStep(name=step2, previous='Initial',alpha=DEFAULT, amplitude=RAMP, 

                application=MODERATE_DISSIPATION, convertSDI=CONVERT_SDI_ON,  

                initialConditions=ON, matrixStorage=UNSYMMETRIC, nlgeom=ON, nohaf=OFF, 

                timePeriod = vacc_step[0], minInc = vacc_step[1], maxInc = vacc_step[2], 

                initialInc = vacc_step[3], maxNumInc = vacc_step[4]) 

        elif int_operator == 'TF': 

            model.ImplicitDynamicsStep(name=step2, previous='Initial',alpha=DEFAULT, amplitude=RAMP, 

                application=TRANSIENT_FIDELITY, convertSDI=CONVERT_SDI_ON,  

                initialConditions=ON, matrixStorage=UNSYMMETRIC, nlgeom=ON, nohaf=OFF, 

                timePeriod = vacc_step[0], minInc = vacc_step[1], maxInc = vacc_step[2], 

                initialInc = vacc_step[3], maxNumInc = vacc_step[4]) 

    elif (step_type == 'NLED' and adiabatic == 'ON'): 

        model.ExplicitDynamicsStep(name = step2, previous = 'Initial',  

            timePeriod = vacc_step[0], adiabatic = ON, 

            linearBulkViscosity = linearBulkVisco, quadBulkViscosity = quadBulkVisco) 

    elif (step_type == 'NLED' and adiabatic == 'OFF'): 

        model.ExplicitDynamicsStep(name = step2, previous = 'Initial',  

            timePeriod = vacc_step[0], 

            linearBulkViscosity = linearBulkVisco, quadBulkViscosity = quadBulkVisco) 
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# End of If Statement~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

if pre_pressurize == 1: 

    if step_type == 'NLIS': 

        model.StaticStep(name=step1, previous='Initial', nlgeom=ON, 

            minInc = preP_step[1], maxInc = preP_step[2], initialInc = preP_step[3], maxNumInc = preP_step[4], 

            stabilizationMethod=DISSIPATED_ENERGY_FRACTION, continueDampingFactors=False, 

            adaptiveDampingRatio=0.05, stabilizationMagnitude=0.0002, 

            matrixSolver=DIRECT, matrixStorage=UNSYMMETRIC,convertSDI=CONVERT_SDI_ON) 

        model.StaticStep(name=step2, previous=step1, nlgeom=ON,  

            minInc = vacc_step[1], maxInc = vacc_step[2], initialInc = vacc_step[3], maxNumInc = vacc_step[4], 

            stabilizationMethod=DISSIPATED_ENERGY_FRACTION, continueDampingFactors=False, 

            adaptiveDampingRatio=0.05, stabilizationMagnitude=0.0002, 

            matrixSolver=DIRECT, matrixStorage=UNSYMMETRIC,convertSDI=CONVERT_SDI_ON) 

    elif step_type == 'NLID': 

        if int_operator == 'QS': 

            model.ImplicitDynamicsStep(name=step1, previous='Initial',alpha=DEFAULT,amplitude=RAMP, 

                application=QUASI_STATIC, convertSDI=CONVERT_SDI_ON,  

                initialConditions=ON, matrixStorage=UNSYMMETRIC, nlgeom=ON, nohaf=OFF, 

                timePeriod = preP_step[0], minInc = preP_step[1], maxInc = preP_step[2], 

                initialInc = preP_step[3], maxNumInc = preP_step[4]) 

            model.ImplicitDynamicsStep(name=step2, previous=step1,alpha=DEFAULT, amplitude=RAMP, 

                application=QUASI_STATIC, convertSDI=CONVERT_SDI_ON,  

                initialConditions=ON, matrixStorage=UNSYMMETRIC, nlgeom=ON, nohaf=OFF, 

                timePeriod = vacc_step[0], minInc = vacc_step[1], maxInc = vacc_step[2], 

                initialInc = vacc_step[3], maxNumInc = vacc_step[4]) 

        elif int_operator == 'MD': 

            model.ImplicitDynamicsStep(name=step1, previous='Initial',alpha=DEFAULT,amplitude=RAMP, 

                application=MODERATE_DISSIPATION, convertSDI=CONVERT_SDI_ON,  

                initialConditions=ON, matrixStorage=UNSYMMETRIC, nlgeom=ON, nohaf=OFF, 

                timePeriod = preP_step[0], minInc = preP_step[1], maxInc = preP_step[2], 

                initialInc = preP_step[3], maxNumInc = preP_step[4]) 

            model.ImplicitDynamicsStep(name=step2, previous=step1,alpha=DEFAULT, amplitude=RAMP, 

                application=MODERATE_DISSIPATION, convertSDI=CONVERT_SDI_ON,  

                initialConditions=ON, matrixStorage=UNSYMMETRIC, nlgeom=ON, nohaf=OFF, 

                timePeriod = vacc_step[0], minInc = vacc_step[1], maxInc = vacc_step[2], 

                initialInc = vacc_step[3], maxNumInc = vacc_step[4]) 

        elif int_operator == 'TF': 

            model.ImplicitDynamicsStep(name=step1, previous='Initial',alpha=DEFAULT,amplitude=RAMP, 

                application=TRANSIENT_FIDELITY, convertSDI=CONVERT_SDI_ON,  

                initialConditions=ON, matrixStorage=UNSYMMETRIC, nlgeom=ON, nohaf=OFF, 

                timePeriod = preP_step[0], minInc = preP_step[1], maxInc = preP_step[2], 

                initialInc = preP_step[3], maxNumInc = preP_step[4]) 

            model.ImplicitDynamicsStep(name=step2, previous=step1,alpha=DEFAULT, amplitude=RAMP, 

                application=TRANSIENT_FIDELITY, convertSDI=CONVERT_SDI_ON,  

                initialConditions=ON, matrixStorage=UNSYMMETRIC, nlgeom=ON, nohaf=OFF, 

                timePeriod = vacc_step[0], minInc = vacc_step[1], maxInc = vacc_step[2], 

                initialInc = vacc_step[3], maxNumInc = vacc_step[4]) 

    elif (step_type == 'NLED' and adiabatic == 'ON'): 

        model.ExplicitDynamicsStep(name=step1, previous='Initial',  

            timePeriod = preP_step[0], adiabatic = ON, 

            linearBulkViscosity = linearBulkVisco, quadBulkViscosity = quadBulkVisco) 
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        model.ExplicitDynamicsStep(name=step2, previous=step1,  

            timePeriod = vacc_step[0], adiabatic = ON, 

            linearBulkViscosity = linearBulkVisco, quadBulkViscosity = quadBulkVisco) 

    elif (step_type == 'NLED' and adiabatic == 'OFF'): 

        model.ExplicitDynamicsStep(name=step1, previous='Initial',  

            timePeriod = preP_step[0], 

            linearBulkViscosity = linearBulkVisco, quadBulkViscosity = quadBulkVisco) 

        model.ExplicitDynamicsStep(name=step2, previous=step1,  

            timePeriod = vacc_step[0], 

            linearBulkViscosity = linearBulkVisco, quadBulkViscosity = quadBulkVisco) 

 

# End of If Statement~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

# Step Control Edits 

if (step_type == 'NLIS' or step_type == 'NLID'): 

    model.steps[step1].control.setValues(allowPropagation=OFF, resetDefaultValues=OFF, 

discontinuous=ON, 

        displacementField = (0.005, 0.01, 0.0, 0.0, 0.02, 1e-06, 0.001, 1e-08, 1.0, 1e-06, 1e-08),  

        rotationField     = (0.005, 0.01, 0.0, 0.0, 0.02, 1e-06, 0.001, 1e-08, 1.0, 1e-06), 

        hydrostaticFluidPressureField = (0.005, 0.01, 0.0, 0.0, 0.02, 1e-13, 0.001, 1e-08, 1.0, 1e-13),  

        timeIncrementation = (8.0, 10.0, 9.0, 16.0, 10.0, 4.0, 12.0, 30.0, 6.0, 3.0,50.0)) 

    if pre_pressurize == 1: 

        model.steps[step2].control.setValues(allowPropagation=OFF, resetDefaultValues=OFF, 

discontinuous=ON, 

            displacementField = (0.005, 0.01, 0.0, 0.0, 0.02, 1e-06, 0.001, 1e-08, 1.0, 1e-06, 1e-08),  

            rotationField     = (0.005, 0.01, 0.0, 0.0, 0.02, 1e-06, 0.001, 1e-08, 1.0, 1e-06), 

            hydrostaticFluidPressureField = (0.005, 0.01, 0.0, 0.0, 0.02, 1e-13, 0.001, 1e-08, 1.0, 1e-13), 

            timeIncrementation = (8.0, 10.0, 9.0, 16.0, 10.0, 4.0, 12.0, 30.0, 6.0, 3.0,50.0)) 

        model.steps[step2].control.setValues(lineSearch=(5.0, 1.0, 0.0001, 0.25, 0.1)) 

 

# Vacuum Load 

if step_type == 'NLIS': 

    model.Pressure(name='Vacuum', amplitude=UNSET, magnitude=-Pvac, createStepName=step2, 

        distributionType=UNIFORM, field='',region = assembly.allInstances[p1_name].surfaces['Pia']) 

else: 

    model.Pressure(name='Vacuum', amplitude='Internal Load', magnitude=-Pvac, createStepName=step2, 

        distributionType=UNIFORM, field='',region = assembly.allInstances[p1_name].surfaces['Pia']) 

 

# Cavity Pressure BC Load 

if pre_pressurize == 1: 

    if step_type == 'NLIS': 

        model.FluidCavityPressureBC(fixed=OFF, amplitude=UNSET, createStepName=step1, 

            magnitude = Ppress, 

            fluidCavity = 'UC Cavity', 

            name        = 'UC Cavity P') 

        model.boundaryConditions['UC Cavity P'].deactivate(step2) 

    else: 

        model.FluidCavityPressureBC(fixed=OFF, amplitude='Cavity P', createStepName=step1, 

            magnitude = Ppress, 

            fluidCavity = 'UC Cavity', 

            name        = 'UC Cavity P') 

        model.boundaryConditions['UC Cavity P'].deactivate(step2) 
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# BCs 

if Contact_or_BC == 0: 

    model.EncastreBC(name = p2_name + ' Encastre', createStepName=step1, localCsys=None,  

         region = assembly.sets['Origin RP']) 

 

if ((Contact_or_BC == 1 and BCthroughRP == 1) or (fillet == 0 and chamfer == 0)): 

    region1 = assembly.sets['F1 RP'] 

    region2 = assembly.sets['F2 RP'] 

    region3 = assembly.sets['F3 RP'] 

else: 

    region1 = inst1.sets['F1'] 

    region2 = inst1.sets['F2'] 

    region3 = inst1.sets['F3'] 

 

if pre_pressurize == 1: 

    model.DisplacementBC(name='F1 Pre-P', amplitude=UNSET, createStepName = step1, 

        localCsys = inst1.datums[D1.id], 

        region    = region1, # p1_name + '.F1' 

        distributionType = UNIFORM, fieldName='', fixed = OFF,  

        u1=UNSET, u2=UNSET, u3=0.0, ur1=UNSET, ur2=UNSET, ur3=UNSET) 

    model.DisplacementBC(name='F2 Pre-P', amplitude=UNSET, createStepName = step1, 

        localCsys = inst1.datums[D2.id], 

        region    = region2, # p1_name + '.F2' 

        distributionType = UNIFORM, fieldName='', fixed = OFF,  

        u1=UNSET, u2=UNSET, u3=0.0, ur1=UNSET, ur2=UNSET, ur3=UNSET) 

    model.DisplacementBC(name='F3 Pre-P', amplitude=UNSET, createStepName = step1, 

        localCsys = inst1.datums[D3.id], 

        region    = region3, # p1_name + '.F3' 

        distributionType = UNIFORM, fieldName='', fixed = OFF,  

        u1=UNSET, u2=UNSET, u3=0.0, ur1=UNSET, ur2=UNSET, ur3=UNSET) 

    model.boundaryConditions['F1 Pre-P'].deactivate(step2) 

    model.boundaryConditions['F2 Pre-P'].deactivate(step2) 

    model.boundaryConditions['F3 Pre-P'].deactivate(step2) 

 

if Contact_or_BC == 1: 

    model.DisplacementBC(name='F1 Vacuum', amplitude=UNSET, createStepName = step2, 

        localCsys = inst1.datums[D1.id], 

        region    = region1, # p1_name + '.F1' 

        distributionType = UNIFORM, fieldName='', fixed = OFF,  

        u1=UNSET, u2=UNSET, u3=0.0, ur1=UNSET, ur2=UNSET, ur3=UNSET) 

    model.DisplacementBC(name='F2 Vacuum', amplitude=UNSET, createStepName = step2, 

        localCsys = inst1.datums[D2.id], 

        region    = region2, # p1_name + '.F2' 

        distributionType = UNIFORM, fieldName='', fixed = OFF,  

        u1=UNSET, u2=UNSET, u3=0.0, ur1=UNSET, ur2=UNSET, ur3=UNSET) 

    model.DisplacementBC(name='F3 Vacuum', amplitude=UNSET, createStepName = step2, 

        localCsys = inst1.datums[D3.id], 

        region    = region3, # p1_name + '.F3' 

        distributionType = UNIFORM, fieldName='', fixed = OFF,  

        u1=UNSET, u2=UNSET, u3=0.0, ur1=UNSET, ur2=UNSET, ur3=UNSET) 

 

# Field Outputs 

model.FieldOutputRequest(name = p1_name + ' Poa S Coords', frequency = O_freq, createStepName=step1,  
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    region    = assembly.allInstances[p1_name].sets['Poa'], 

    variables = ('COORD',)) 

model.FieldOutputRequest(name = p1_name + ' Pia Load Input', frequency = O_freq, 

createStepName=step1,  

    region    = assembly.allInstances[p1_name].sets['Pia'], 

    variables = ('P',)) 

 

if step_type == 'NLIS': 

    model.FieldOutputRequest(name = p1_name + ' Whole', frequency = O_freq, createStepName=step1,  

        region    = assembly.allInstances[p1_name].sets['Whole'], 

        variables = ('S','LE','U','RF','P','CSTRESS','CDISP','COORD')) 

    model.FieldOutputRequest(name = 'Whole', frequency = O_freq, createStepName=step1,  

        region    = MODEL, 

        variables = ('S','LE','U','RF','P','CSTRESS','CDISP','COORD')) 

else: 

    model.FieldOutputRequest(name = p1_name + ' Whole', frequency = O_freq, createStepName=step1,  

        region    = assembly.allInstances[p1_name].sets['Whole'], 

        variables = ('S','LE','U','V','A','RF','P','CSTRESS','CDISP','COORD','ERV','VP')) 

    model.FieldOutputRequest(name = 'Whole', frequency = O_freq, createStepName=step1,  

        region    = MODEL, 

        variables = ('S','LE','U','V','A','RF','P','CSTRESS','CDISP','COORD','ERV','VP')) 

 

# History Outputs 

if Contact_or_BC == 0: 

    model.HistoryOutputRequest(name = p2_name + ' RP', frequency = O_freq, createStepName = step1, 

        rebar = EXCLUDE, sectionPoints = DEFAULT, 

        region    = assembly.sets['Origin RP'], 

        variables =('RF1', 'RF2', 'RF3', 'RM1', 'RM2', 'RM3')) 

 

if (Contact_or_BC == 1 and BCthroughRP == 1): 

    model.HistoryOutputRequest(name = 'F1 RP', frequency = O_freq, createStepName = step1, 

        rebar = EXCLUDE, sectionPoints = DEFAULT, useGlobal=OFF, 

        region    = assembly.sets['F1 RP'], 

        variables =('RF1', 'RF2', 'RF3')) 

    model.HistoryOutputRequest(name = 'F2 RP', frequency = O_freq, createStepName = step1, 

        rebar = EXCLUDE, sectionPoints = DEFAULT, useGlobal=OFF, 

        region    = assembly.sets['F2 RP'], 

        variables =('RF1', 'RF2', 'RF3')) 

    model.HistoryOutputRequest(name = 'F3 RP', frequency = O_freq, createStepName = step1, 

        rebar = EXCLUDE, sectionPoints = DEFAULT, useGlobal=OFF, 

        region    = assembly.sets['F3 RP'], 

        variables =('RF1', 'RF2', 'RF3')) 

 

if step_type == 'NLED': 

    model.HistoryOutputRequest(name = 'Whole', frequency = O_freq, createStepName=step1, 

        variables = ('ALLAE', 'ALLCD', 'ALLDC', 'ALLDMD', 'ALLFD', 'ALLIE', 'ALLKE',  

                     'ALLPD', 'ALLSE', 'ALLVD', 'ALLWK', 'ALLCW', 'ALLMW', 'ALLPW', 'ETOTAL')) 

    model.HistoryOutputRequest(createStepName=step1,rebar=EXCLUDE,sectionPoints=DEFAULT, 

        variables    =('PCAV','CVOL','CTEMP','CSAREA','CMASS'), 

        name         = 'UC Cavity',  

        region       = assembly.instances[p1_name].sets['UC RP'], 

        frequency    = O_freq) 

else: 
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    model.HistoryOutputRequest(name = 'Whole', frequency = O_freq, createStepName=step1, 

        variables = ('CFTM','CFT1','CFT2','CFT3','CAREA','XT1','XT2','XT3', 

                 'ALLAE','ALLCD','ALLDMD','ALLEE','ALLFD','ALLIE', 

                 'ALLJD','ALLKE','ALLKL','ALLPD','ALLQB','ALLSE', 

                 'ALLSD','ALLVD','ALLWK','ETOTAL','MASS')) 

    model.HistoryOutputRequest(createStepName=step1,rebar=EXCLUDE,sectionPoints=DEFAULT, 

        variables    =('PCAV','CVOL'), 

        name         = 'UC Cavity',  

        region       = assembly.instances[p1_name].sets['UC RP'], 

        frequency    = O_freq) 

 

# Modify Output Frequency for Explicit to Evenly-Spaced Intervals 

if step_type == 'NLED': 

    model.fieldOutputRequests[p1_name + ' Poa S Coords'].setValues(numIntervals = numInt, 

timeMarks=OFF) 

    model.fieldOutputRequests[p1_name + ' Pia Load Input'].setValues(numIntervals = numInt, 

timeMarks=OFF) 

    model.fieldOutputRequests[p1_name + ' Whole'].setValues(numIntervals = numInt, timeMarks=OFF) 

    model.fieldOutputRequests['Whole'].setValues(numIntervals = numInt, timeMarks=OFF) 

    model.historyOutputRequests['Whole'].setValues(numIntervals = numInt) 

    model.historyOutputRequests['UC Cavity'].setValues(numIntervals = numInt) 

    if Contact_or_BC == 0: 

        model.historyOutputRequests[p2_name + ' RP'].setValues(numIntervals = numInt) 

    elif (Contact_or_BC == 1 and BCthroughRP == 1): 

        model.historyOutputRequests['F1 RP'].setValues(numIntervals = numInt) 

        model.historyOutputRequests['F2 RP'].setValues(numIntervals = numInt) 

        model.historyOutputRequests['F3 RP'].setValues(numIntervals = numInt) 

 

# Deletes Auto Created Output Requests 

del model.fieldOutputRequests['F-Output-1'] 

del model.historyOutputRequests['H-Output-1'] 

 

# Contact Stabilization 

if (Contact_or_BC == 0 and (step_type == 'NLIS' or step_type == 'NLID')): 

    model.interactions[cont_name].stabilizationAssignments.appendInStep(stepName = step2, 

        assignments=((inst2.surfaces['Contact'], inst1.surfaces['Contact'], 'Contact Stabilization'), )) 

 

######################################################################################

################################## 

# Job 

######################################################################################

################################## 

 

# Creates Job 

mdb.Job(name=job_name, model=m_name, 

    type = ANALYSIS, memory = 90, memoryUnits=PERCENTAGE, getMemoryFromAnalysis=True, 

    queue=None, atTime=None, waitHours=0, waitMinutes=0, scratch='',userSubroutine='', description='', 

    contactPrint=ON, echoPrint=ON, historyPrint=ON, modelPrint=ON, 

    explicitPrecision = DOUBLE_PLUS_PACK, 

    resultsFormat = ODB, 

    multiprocessingMode = DEFAULT) 

 

if parallel == 'ON': 
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    mdb.jobs[job_name].setValues(numGPUs = numGPUs, numCpus = numCPUs, numDomains = 

numCPUs) 

 

# Submits Job 

#~ mdb.jobs[job_name].submit(consistencyChecking=OFF) 

#~ mdb.jobs[job_name].waitForCompletion() 
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APPENDIX D. LIST OF ABBREVIATIONS 

The following is an alphabetized list of the abbreviations used throughout this document. 

2D two-dimensional  W/B  weight-to-buoyancy  

3D three-dimensional  ZPB zero pressure balloons 

BC boundary conditions   

CNT carbon nanotubes    

DoD Department of Defense    

DOF degrees of freedom   

FE finite element    

FEM fininte element model   

HHT Hilber-Hughes-Taylor    

HTA heavier-than-air   

IE internal energy   

ISR intelligence, surveillance and reconnaissance    

JC Johnson-Cook (material model)   

KE kinetic energy   

LLDPE linear low-density Polyethylene    

LTA lighter-than-air    

LTAS lighter-than-air structures    

M&S modeling and simulation   

MD machine direction   

MMA Method of Moving Asymptotes    

NASA National Aeronautics and Space Administration   

ODB output database    

PEN Polyethylene Naphthalate   

PET Polyethylene Terephthalate   

RAMP Rational Approximations of Material Properties    

SF StratoFilm   

SIMP Isotropic Material with Penalization   

SPB super pressure balloons    

TD transverse direction   

UC unit cell   

UAV unmanned air vehicle    

ULDB ultra-long duration balloons   

U.S. United States    

UVI ultraviolet inhibitor    

VLTAS vacuum lighter-than-air structures    
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