8,391 research outputs found

    A beacon-enabled least-time and energy efficient with one-level data aggregation routing protocol for WSNs using IEEE 802.15.4

    Get PDF
    The Wireless Sensor Networks (WSNs) field of research is an interesting topic in the research community these days, because of its applicability in various fields such as civilian and medical research applications. Due to the resources and energy constraints in WSNs, routing can be considered as one of the most important issues in these networks. Every routing protocol designed for WSNs should be reliable, energy-efficient and prolong the network lifetime. This research proposes a beacon-enabled least-time and energy-efficient routing protocol with one-level data-aggregation using an IEEE 802.15.4 which is suitable for Low-Rate Wireless Personal Area Networks as WSNs, because of its low power consuming feature. The proposed protocol is compared to popular ad hoc and WSNs routing protocols i.e., Ad hoc On-Demand Distance Vector, Dynamic Source Routing, Destination-Sequenced Distance Vector routing, Directed Diffusion and Minimum Cost Forwarding. The propose work is simulated using network simulator 2. The simulation results show that the proposed protocol outperformed the routing protocols in the literature in terms of latency, throughput, average energy consumption and average network lifetime

    An Energy Efficient, Load Balancing, and Reliable Routing Protocol for Wireless Sensor Networks

    Get PDF
    AN ENERGY EFFICIENT, LOAD BALANCING, AND RELIABLE ROUTING PROTOCOL FOR WIRELESS SENSOR NETWORKS by Kamil Samara The University of Wisconsin-Milwaukee, 2016 Under the Supervision of Professor Hossein Hosseini The Internet of Things (IoT) is shaping the future of Computer Networks and Computing in general, and it is gaining ground very rapidly. The whole idea has originated from the pervasive presence of a variety of things or objects equipped with the internet connectivity. These devices are becoming cheap and ubiquitous, at the same time more powerful and smaller with a variety of onboard sensors. All these factors with the availability of unique addressing, provided by the IPv6, has made these devices capable of collaborating with each other to accomplish common tasks. Mobile AdHoc Networks (MANETS) and Wireless Sensor Networks (WSN) in particular play a major role in the backbone of IoT. Routing in Wireless Sensor Networks (WSN) has been a challenging task for researchers in the last several years because the conventional routing algorithms, such as the ones used in IP-based networks, are not well suited for WSNs because these conventional routing algorithms heavily rely on large routing tables that need to be updated periodically. The size of a WSN could range from hundreds to tens of thousands of nodes, which will make routing tables’ size very large. Managing large routing tables is not feasible in WSNs due to the limitations of resources. The directed diffusion algorithm is a well-known routing algorithm for Wireless Sensor Networks (WSNs). The directed diffusion algorithm saves energy by sending data packets hop by hop and by enforcing paths to avoid flooding. The directed diffusion algorithm does not attempt to find the best or healthier paths (healthier paths are paths that use less total energy than others and avoid critical nodes). Hence the directed diffusion algorithm could be improved by enforcing the use of healthier paths, which will result in less power consumption. We propose an efficient routing protocol for WSNs that gives preference to the healthier paths based on the criteria of the total energy available on the path, the path length, and the avoidance of critical nodes. This preference is achieved by collecting information about the available paths and then using non-incremental machine learning to enforce path(s) that meet our criteria. In addition to preferring healthier paths, our protocol provides Quality of Service (QoS) features through the implementation of differentiated services, where packets are classified as critical, urgent, and normal, as defined later in this work. Based on this classification, different packets are assigned different priority and resources. This process results in higher reliability for the delivery of data, and shorter delivery delay for the urgent and critical packets. This research includes the implementation of our protocol using a Castalia Simulator. Our simulation compares the performance of our protocol with that of the directed diffusion algorithm. The comparison was made on the following aspects: • Energy consumption • Reliable delivery • Load balancing • Network lifetime • Quality of service Simulation results did not point out a significant difference in performance between the proposed protocol and the directed diffusion algorithm in smaller networks. However, when the network’s size started to increase the results showed better performance by the proposed protocol

    ROUTING PROTOCOL BERBASIS DIRECTED DIFFUSION UNTUK EFISIENSI DAYA PADA WIRELESS SENSOR NETWORK SEBAGAI SISTEM PREVENTIF KEBAKARAN HUTAN TAMAN NASIONAL TESSO NILO (TNTN)

    Get PDF
    Routing protocol implementation on a wireless sensor network (WSN) system is useful in controlling communication effectivity among sensor nodes. However improper routing protocol selection will impact to energy cost in overall WSN system. One of approaches to achieve energy efficiency in WSN is Directed Diffusion (DD) based routing protocol implementation which will be discussed on this paper. There are 4 stages of scenarios involved in this approach. It’s started by appointing of sampling area through GPS coordinate. The sampling area is determined by optimization processes from 500m x 500m up to 1000m x 1000m with 100m increment in between. The next stage is sensor node placement. Sensor node is distributed in sampling area with three different quantities i.e. 20 nodes, 30 nodes and 40 nodes. One of those quantities is choose as an optimized sensor node placement. The third stage is to implement all scenarios in stages 1 and stages 2 on DD processes. The last stage is the evaluation process to achieve most energy efficient. The result shows combination between sampling area 500m x 500m and 20 nodes able to achieve energy efficiency to support a forest preventive fire system at Tesso Nilo National Park

    Survey on Data-Centric based Routing Protocols for Wireless Sensor Networks

    Full text link
    The great concern for energy that grew with the technological advances in the field of networks and especially in sensor network has triggered various approaches and protocols that relate to sensor networks. In this context, the routing protocols were of great interest. The aim of the present paper is to discuss routing protocols for sensor networks. This paper will focus mainly on the discussion of the data-centric approach (COUGAR, rumor, SPIN, flooding and Gossiping), while shedding light on the other approaches occasionally. The functions of the nodes will be discussed as well. The methodology selected for this paper is based on a close description and discussion of the protocol. As a conclusion, open research questions and limitations are proposed to the reader at the end of this paper

    Katakan tidak pada rasuah

    Get PDF
    Isu atau masalah rasuah menjadi topik utama sama ada di peringkat antarabangsa mahupun di peringkat dalam negara. Pertubuhan Bangsa- bangsa Bersatu menegaskan komitmen komuniti antarabangsa bertegas untuk mencegah dan mengawal rasuah melalui buku bertajuk United Nations Convention against Corruption. Hal yang sama berlaku di Malaysia. Melalui pernyataan visi oleh mantan Perdana Menteri Malaysia, Tun Dr. Mahathir bin Mohamed memberikan indikasi bahawa kerajaan Malaysia komited untuk mencapai aspirasi agar Malaysia dikenali kerana integriti dan bukannya rasuah. Justeru, tujuan penulisan bab ini adalah untuk membincangkan rasuah dari beberapa sudut termasuk perbincangan dari sudut agama Islam, faktor-faktor berlakunya gejala rasuah, dan usaha-usaha yang dijalankan di Malaysia untuk membanteras gejala rasuah. Perkara ini penting bagi mengenalpasti penjawat awam menanamkan keyakinan dalam melaksanakan tanggungjawab dengan menghindari diri daripada rasuah agar mereka sentiasa peka mengutamakan kepentingan awam

    A new QoS routing algorithm based on self-organizing maps for wireless sensor networks

    Get PDF
    For the past ten years, many authors have focused their investigations in wireless sensor networks. Different researching issues have been extensively developed: power consumption, MAC protocols, self-organizing network algorithms, data-aggregation schemes, routing protocols, QoS management, etc. Due to the constraints on data processing and power consumption, the use of artificial intelligence has been historically discarded. However, in some special scenarios the features of neural networks are appropriate to develop complex tasks such as path discovery. In this paper, we explore and compare the performance of two very well known routing paradigms, directed diffusion and Energy- Aware Routing, with our routing algorithm, named SIR, which has the novelty of being based on the introduction of neural networks in every sensor node. Extensive simulations over our wireless sensor network simulator, OLIMPO, have been carried out to study the efficiency of the introduction of neural networks. A comparison of the results obtained with every routing protocol is analyzed. This paper attempts to encourage the use of artificial intelligence techniques in wireless sensor nodes

    Amorphous Placement and Informed Diffusion for Timely Monitoring by Autonomous, Resource-Constrained, Mobile Sensors

    Full text link
    Personal communication devices are increasingly equipped with sensors for passive monitoring of encounters and surroundings. We envision the emergence of services that enable a community of mobile users carrying such resource-limited devices to query such information at remote locations in the field in which they collectively roam. One approach to implement such a service is directed placement and retrieval (DPR), whereby readings/queries about a specific location are routed to a node responsible for that location. In a mobile, potentially sparse setting, where end-to-end paths are unavailable, DPR is not an attractive solution as it would require the use of delay-tolerant (flooding-based store-carry-forward) routing of both readings and queries, which is inappropriate for applications with data freshness constraints, and which is incompatible with stringent device power/memory constraints. Alternatively, we propose the use of amorphous placement and retrieval (APR), in which routing and field monitoring are integrated through the use of a cache management scheme coupled with an informed exchange of cached samples to diffuse sensory data throughout the network, in such a way that a query answer is likely to be found close to the query origin. We argue that knowledge of the distribution of query targets could be used effectively by an informed cache management policy to maximize the utility of collective storage of all devices. Using a simple analytical model, we show that the use of informed cache management is particularly important when the mobility model results in a non-uniform distribution of users over the field. We present results from extensive simulations which show that in sparsely-connected networks, APR is more cost-effective than DPR, that it provides extra resilience to node failure and packet losses, and that its use of informed cache management yields superior performance
    corecore