4,840 research outputs found

    Provable Dynamic Robust PCA or Robust Subspace Tracking

    Full text link
    Dynamic robust PCA refers to the dynamic (time-varying) extension of robust PCA (RPCA). It assumes that the true (uncorrupted) data lies in a low-dimensional subspace that can change with time, albeit slowly. The goal is to track this changing subspace over time in the presence of sparse outliers. We develop and study a novel algorithm, that we call simple-ReProCS, based on the recently introduced Recursive Projected Compressive Sensing (ReProCS) framework. Our work provides the first guarantee for dynamic RPCA that holds under weakened versions of standard RPCA assumptions, slow subspace change and a lower bound assumption on most outlier magnitudes. Our result is significant because (i) it removes the strong assumptions needed by the two previous complete guarantees for ReProCS-based algorithms; (ii) it shows that it is possible to achieve significantly improved outlier tolerance, compared with all existing RPCA or dynamic RPCA solutions by exploiting the above two simple extra assumptions; and (iii) it proves that simple-ReProCS is online (after initialization), fast, and, has near-optimal memory complexity.Comment: Minor writing edits. The paper has been accepted to IEEE Transactions on Information Theor

    Enhanced tracking and recognition of moving objects by reasoning about spatio-temporal continuity.

    Get PDF
    A framework for the logical and statistical analysis and annotation of dynamic scenes containing occlusion and other uncertainties is presented. This framework consists of three elements; an object tracker module, an object recognition/classification module and a logical consistency, ambiguity and error reasoning engine. The principle behind the object tracker and object recognition modules is to reduce error by increasing ambiguity (by merging objects in close proximity and presenting multiple hypotheses). The reasoning engine deals with error, ambiguity and occlusion in a unified framework to produce a hypothesis that satisfies fundamental constraints on the spatio-temporal continuity of objects. Our algorithm finds a globally consistent model of an extended video sequence that is maximally supported by a voting function based on the output of a statistical classifier. The system results in an annotation that is significantly more accurate than what would be obtained by frame-by-frame evaluation of the classifier output. The framework has been implemented and applied successfully to the analysis of team sports with a single camera. Key words: Visua

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use

    Activity understanding and unusual event detection in surveillance videos

    Get PDF
    PhDComputer scientists have made ceaseless efforts to replicate cognitive video understanding abilities of human brains onto autonomous vision systems. As video surveillance cameras become ubiquitous, there is a surge in studies on automated activity understanding and unusual event detection in surveillance videos. Nevertheless, video content analysis in public scenes remained a formidable challenge due to intrinsic difficulties such as severe inter-object occlusion in crowded scene and poor quality of recorded surveillance footage. Moreover, it is nontrivial to achieve robust detection of unusual events, which are rare, ambiguous, and easily confused with noise. This thesis proposes solutions for resolving ambiguous visual observations and overcoming unreliability of conventional activity analysis methods by exploiting multi-camera visual context and human feedback. The thesis first demonstrates the importance of learning visual context for establishing reliable reasoning on observed activity in a camera network. In the proposed approach, a new Cross Canonical Correlation Analysis (xCCA) is formulated to discover and quantify time delayed pairwise correlations of regional activities observed within and across multiple camera views. This thesis shows that learning time delayed pairwise activity correlations offers valuable contextual information for (1) spatial and temporal topology inference of a camera network, (2) robust person re-identification, and (3) accurate activity-based video temporal segmentation. Crucially, in contrast to conventional methods, the proposed approach does not rely on either intra-camera or inter-camera object tracking; it can thus be applied to low-quality surveillance videos featuring severe inter-object occlusions. Second, to detect global unusual event across multiple disjoint cameras, this thesis extends visual context learning from pairwise relationship to global time delayed dependency between regional activities. Specifically, a Time Delayed Probabilistic Graphical Model (TD-PGM) is proposed to model the multi-camera activities and their dependencies. Subtle global unusual events are detected and localised using the model as context-incoherent patterns across multiple camera views. In the model, different nodes represent activities in different decomposed re3 gions from different camera views, and the directed links between nodes encoding time delayed dependencies between activities observed within and across camera views. In order to learn optimised time delayed dependencies in a TD-PGM, a novel two-stage structure learning approach is formulated by combining both constraint-based and scored-searching based structure learning methods. Third, to cope with visual context changes over time, this two-stage structure learning approach is extended to permit tractable incremental update of both TD-PGM parameters and its structure. As opposed to most existing studies that assume static model once learned, the proposed incremental learning allows a model to adapt itself to reflect the changes in the current visual context, such as subtle behaviour drift over time or removal/addition of cameras. Importantly, the incremental structure learning is achieved without either exhaustive search in a large graph structure space or storing all past observations in memory, making the proposed solution memory and time efficient. Forth, an active learning approach is presented to incorporate human feedback for on-line unusual event detection. Contrary to most existing unsupervised methods that perform passive mining for unusual events, the proposed approach automatically requests supervision for critical points to resolve ambiguities of interest, leading to more robust detection of subtle unusual events. The active learning strategy is formulated as a stream-based solution, i.e. it makes decision on-the-fly on whether to request label for each unlabelled sample observed in sequence. It selects adaptively two active learning criteria, namely likelihood criterion and uncertainty criterion to achieve (1) discovery of unknown event classes and (2) refinement of classification boundary. The effectiveness of the proposed approaches is validated using videos captured from busy public scenes such as underground stations and traffic intersections

    1st Workshop on Maritime Computer Vision (MaCVi) 2023: Challenge Results

    Full text link
    The 1st^{\text{st}} Workshop on Maritime Computer Vision (MaCVi) 2023 focused on maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicle (USV), and organized several subchallenges in this domain: (i) UAV-based Maritime Object Detection, (ii) UAV-based Maritime Object Tracking, (iii) USV-based Maritime Obstacle Segmentation and (iv) USV-based Maritime Obstacle Detection. The subchallenges were based on the SeaDronesSee and MODS benchmarks. This report summarizes the main findings of the individual subchallenges and introduces a new benchmark, called SeaDronesSee Object Detection v2, which extends the previous benchmark by including more classes and footage. We provide statistical and qualitative analyses, and assess trends in the best-performing methodologies of over 130 submissions. The methods are summarized in the appendix. The datasets, evaluation code and the leaderboard are publicly available at https://seadronessee.cs.uni-tuebingen.de/macvi.Comment: MaCVi 2023 was part of WACV 2023. This report (38 pages) discusses the competition as part of MaCV

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available
    • …
    corecore