
Università degli Studi di Padova

Facoltà di Ingegneria Meccatronica

Corso di Laurea Magistrale in Ingegneria Meccatronica

Adaptive Control for Rehabilitation
Systems

Laureando Relatore

Luca Corrà Roberto Oboe

Co-relatore

Tomoyuki Shimono

Anno Accademico 2016/2017



ii



Acknowledgement

Vorrei dedicare un momento per ringraziare tutti coloro che mi hanno sostenuto
e permesso di raggiungere questo importante traguardo.

Ringrazio anzitutto il mio relatore, il professor Roberto Oboe, grazie al quale
ho potuto apprendere moltissimo ed ho avuto l'opportunità di lavorare in
Giappone. La ringrazio per la �ducia dimostratami.

I want to thank to my co-supervisor Tomoyuki Shimono sensei for welcoming
me to the Shimono lab at YNU in Japan. Thank you for your support.

Un grandissimo ringraziamento va alla mia famiglia per aver sempre creduto
in me. Vi ringrazio per ogni singolo sacri�cio che avete fatto, permettendomi
di arrivare �no alla realizzazione di questo grande sogno.

Ovviamente ringrazio tutti i miei amici italiani, in particolare Andrea, Pier-
paolo e Tammy per le serate passate a giocare a briscola o a perdere tempo
in generale. Ringrazio tutta la compagnia di Castegnero, in quanto non sarei
quel che sono senza di voi.

Another special thanks goes to my Japanese friends, especially to Kouta for
having shown himself a great friend immediately and who supported me in
the 6 months of thesis.

Per �nire, il ringraziamento più importante va alla mia �danzata Lorenza
che ha condiviso con me tutte le gioie ed i dolori di questo percorso, dandomi
la forza di arrivare �no al traguardo.



iv



Contents

1 Introduction 1
1.1 Medical Background . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Strokes . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.1.1 Di�erent types of stroke . . . . . . . . . . . . 3
1.1.1.2 Risk factors and symptoms . . . . . . . . . . 4
1.1.1.3 Neuromuscular rehabilitation after stoke . . . 8

1.2 Robotic Rehabilitation . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 State of the art of robots for rehabilitation . . . . . . . 10

1.2.1.1 Upper limb rehabilitation . . . . . . . . . . . 11
1.2.1.2 Lower limb rehabilitation . . . . . . . . . . . 15

1.3 Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.1 Purpose of the project . . . . . . . . . . . . . . . . . . 20
1.3.2 Structure of the Thesis . . . . . . . . . . . . . . . . . . 21

2 Impedance of the Human Arm End-Point 23
2.1 Identi�cation of Human Arm Impedance . . . . . . . . . . . . 23

2.1.1 System Modeling . . . . . . . . . . . . . . . . . . . . . 24
2.1.2 Recursive Least Square estimator (RLS) . . . . . . . . 27

2.1.2.1 Theory . . . . . . . . . . . . . . . . . . . . . 28
2.1.2.2 Implementation . . . . . . . . . . . . . . . . . 29

2.2 State Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.2 Discrete Time Kalman Filter . . . . . . . . . . . . . . . 32
2.2.3 Accelerometer Aided Kalman Filter (aaKF) estimator . 35
2.2.4 Reset of the State Estimation . . . . . . . . . . . . . . 39

2.3 Experimental Set-up . . . . . . . . . . . . . . . . . . . . . . . 40
2.4 Experimental Testing . . . . . . . . . . . . . . . . . . . . . . . 43

2.4.1 Experiment description . . . . . . . . . . . . . . . . . . 43
2.4.1.1 Preliminary Tests . . . . . . . . . . . . . . . . 43
2.4.1.2 Tuning of Accelerometer Aided Kalman Filter 45
2.4.1.3 Estimation of a Linear Motor's parameters . . 46



vi CONTENTS

2.4.1.4 Estimation of a Virtual Arm's Impedance . . 47
2.4.1.5 Estimation of "mechanical" parameters of the

Human Arm . . . . . . . . . . . . . . . . . . 48
2.4.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4.2.1 Preliminary Tests . . . . . . . . . . . . . . . . 49
2.4.2.2 Tuning of Accelerometer Aided Kalman Filter 53
2.4.2.3 Estimation of a Linear Motor's parameters . . 55
2.4.2.4 Estimation of a Virtual Arm's Impedance . . 57
2.4.2.5 Estimation of "mechanical" parameters of the

Human Arm . . . . . . . . . . . . . . . . . . 59

3 Adaptive Controller 63
3.1 Control System Design . . . . . . . . . . . . . . . . . . . . . . 63

3.1.1 Rehabilitation Task and Control Strategy . . . . . . . 64
3.1.2 Local Optimal Design . . . . . . . . . . . . . . . . . . 66
3.1.3 Variable weight cost for the input Force (Fcmd) . . . . . 69
3.1.4 Waiting system . . . . . . . . . . . . . . . . . . . . . . 74

3.2 Experimental Set-up . . . . . . . . . . . . . . . . . . . . . . . 76
3.3 Experimental Testing . . . . . . . . . . . . . . . . . . . . . . . 76

3.3.1 Experiment description . . . . . . . . . . . . . . . . . . 77
3.3.1.1 Test to validate the replication of the phys-

ioterapist intervention . . . . . . . . . . . . . 77
3.3.1.2 Test to validate the waiting system . . . . . . 78

3.3.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3.2.1 Test to validate the replication of the phys-

ioterapist intervention . . . . . . . . . . . . . 78
3.3.2.2 Test to validate the waiting system . . . . . . 78

4 Conclusions 81

A Zero-Order Holder discretization of the system 83
A.1 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.2 Connection between Discrete and Continuous Systems . . . . . 86

B Second Subject Estimation Results 87

Bibliography 93



Abstract

This master thesis describes the design of control strategies for the recovery
of motor skills of patients a�ected by particular diseases that damage the
neuromuscular apparatus of the human body, such as stroke. There are two
di�erent but related activities in this project. At �rst, a non linear parame-
ter identi�cation procedure has been used to identify the impedance at the
end-point of the human arm, represented by a mass attached to a spring and
a damper. By this choice, the action of all muscle bundles is summarized
by three parameters. The identi�cation of such parameters is based on the
Recursive Least Square (RLS) method. To obtain more accurate estima-
tion values, the RLS algorithm uses the state values (position and velocity)
provided by a state observer based on Kalman Filter (KF). This observer
is a sensor fusion algorithm that uses measurements provided by a low-cost
accelerometer and encoder to obtain more accurate state estimates, reduc-
ing the measurement and process noises. The estimates of the impedance
at the end-point of the human arm can be used by physiotherapists to ob-
tain a quantitative evaluation of patient's improvements. So, comparing the
impedance values obtained before starting the therapy with the values af-
ter the exercise sessions, it's possible to adapt future rehabilitation session
according to the patient's current conditions. In the second part of the job
is described the design of a Non-Linear Adaptive Controller (based on the
arm's characteristic) to help the patient during the rehabilitation exercises.
A local optimal control approach is used for the o�-line design of several
gains of a Proportional-Derivative (PD) controller, using the previous esti-
mates of the impedance to personalize the therapy. The gains change during
the repetitive exercise, according to the patient's ability to follow a moving
target along predetermined trajectory. In this way it's possible to emulate
the help of the physiotherapist, teaching the patient the correct execution
of the exercise only if necessary. The idea of this algorithm is to make the
code as simple as possible to be used in cheap rehabilitation systems. Some
experiments have been carried out with healthy subjects, to demonstrate the
e�ective functioning of identi�cation and control strategies. As a further
development of this thesis, new experimental tests should be performed, in
order to prove the e�ectiveness of the motor recovery in actual patients.
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Chapter 1

Introduction

1.1 Medical Background

The ability to move the body independently or to reach the normal everyday
goals of life is an essential prerequisite for a good and healthy life. For this
reason in the latest years, the detection of body posture and activity received
a signi�cant interest in the �eld of the physical rehabilitation aimed at pro-
viding advanced medical therapies to patients who have some motor function
disabilities related to the Upper Motor Neuron (UMN) and Lower Motor Neu-
ron (LMN) syndromes [77] and caused by stroke, joint replacements/recon-
structions, amputation, or Parkinson's diseases ([88], [67]). There is an im-
plicit assumption that a causal relationship exists between spasticity (present
in the previous pathologies) and activity limitations, partecipation restric-
tions, including independence [16], because it's usually associated with a
lesion (or lesions) involving both the "pyramidal" and "parapyramidal" sys-
tems (the cortico-reticular pathways that connect the primary motor cortex
(MI) and all other cortex area with the motor neurons mediating voluntary
movements, and the reticulospinal and vestibulospinal cord) [20], [44]. Nev-
ertheless, progresses in medicine have made treatments of such pathologies
possible, reducing the severity of their e�ects and increasing the survival
rate. In fact it has been demonstrated that the treatment of spasticity is
a central part to the clinical management of patients with injuries to the
UMN pathway. For this reason it's important to remember that, one funda-
mental function of MI is to control voluntary movements. Recent evidence
suggests that this role emerges from distributed networks rather than dis-
crete representations and that in adult mammals these networks are capable
of modi�cation. Neuronal recordings and activation patterns revealed with
neuroimaging methods have shown considerable plasticity of MI representa-
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2 CHAPTER 1. INTRODUCTION

tions and cell properties following pathological or traumatic changes and in
relation to everyday experience, including motor-skill learning and cognitive
motor actions. The intrinsic horizontal neuronal connections in MI are a
strong candidate substrate for map reorganization: They interconnect large
regions of MI, they show activity-dependent plasticity, and they modify in
association with skill learning. These �ndings suggest that MI cortex is not
simply a static motor control structure. It also contains a dynamic substrate
that participates in motor learning and possibly in cognitive events as well
[71]. This is the basis on which every kind of rehabilitation is based, from
that with physiotherapist to the most modern robotic rehabilitation. Now,
a focus to the main pathology will be presented to understand better the
need to develop new solutions for ever-increasing demand of rehabilitation
assistance.

1.1.1 Strokes

The current World Health Organization de�nition of stroke (introduced in
1970 and still used) is � rapidly developing clinical signs of focal (or global)
disturbance of cerebral function, lasting more than 24 hours or leading to
death, with no apparent cause other than that of vascular origin � [56]. Stroke
is one of the most common diseases in the developed world and its incidence
continues to rise [4]. Every year in the US and Europe there are between 200
and 300 new cases per 100,000, in which 30% of them survive with serious
disabilities and limitations on daily activities, mainly due to a deterioration
in motor control and the loss of dexterity in the use of limbs [76], [79]. Specif-
ically, as reported on the site of the Italian Ministry of Health in [6], in Italy
stroke is the third cause of death after ischemic heart disease and neoplasms;
it causes 10 − 12% of all deaths per year and represents the �rst cause of
invalidity. Every year there are about 196,000 strokes in Italy, of which 20%
are recurring. 10− 20% of people a�ected by stroke die within a month and
another 10% within the �rst year of life. Only 25% of patients surviving
a stroke recover completely, 75% survive with some form of disability, and
half of them carry a de�cit so severe that they lose self-su�ciency. Stroke is
more frequent after 55 years, its prevalence doubles after every decade; 75%
of stroke occurs in people over 65 years of age. The prevalence of stroke in
65-84 years of age is 6.5% (in men 7.4%, in women 5.9%) and considering the
rise in the average age of the population, stroke is a growing phenomenon
over the next few years. The process of forming the stroke can be explained
as the cessation of blood supply due to occlusion or hypoperfusion in a cere-
bral vessel, death of neuronal cells in the core of the infarcted area takes place
within minutes. The area around the core, called ischemic penumbra, has
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cells functionally involved but still vital for the presence of collateral circles.
This area may turn into infarction for secondary neuronal damage induced
by the cascade of biochemical events that occur after ischemia leading to
cytotoxic and excitotoxic e�ects. In the following section will be shown the
di�erent ways in which a stroke may occur.

1.1.1.1 Di�erent types of stroke

Stroke is a damage caused by vascular causes. The brain receives blood from
di�erent arteries (blood vessels that carry blood and oxygen throughout the
body from the heart): front of two arteries called carotid (right and left) and
posteriorly from the vertebral arteries, which protrude on both sides of the
neck. The brain, in order to work properly, needs more than any other organ
of a continuous supply of oxygen and nourishment through the blood, the
smooth functioning of the blood vessels and the normal contraction of the
heart. Depending on how it is presented it can be divided mainly into two
principal cases [1],[73], also shown in the Fig. 1.1:

• Ischemic stroke
It represents the most frequent form of stroke (approximately 80%) and
a�ects mainly subjects over the age of 65, more often than men and
women; In ischemic forms, the part of the brain that is sprayed by the
occluded vessel is no longer fed with blood and oxygen, which is essen-
tial for the survival of the brain cells, which is therefore due to cell death
(necrosis) and that brain area loses its function, manifesting the symp-
tom of stroke. In order to achieve this situation, it is necessary that the
period of ischemia is prolonged and persistent, otherwise if it lasts for
a short time and then there is a complete recovery of the brain func-
tions, the one that is classi�ed as T.I.A (Transient Ischemic Attack) or
minor stroke. It is a transient ischemic attack with the duration of the
event less than 24 hours (typically a few minutes). Transient cerebral
ischemic episodes occur in about a third of subjects who subsequently
exhibit a de�nitive ischemic stroke and thus represent an important
factor in identifying subjects at risk of severe cerebrovascular disease.
Patients with mild ischemic stroke have a long-term prognosis similar
to that of patients with TIA, so many believe that there is no speci�c
utility in treating them separately.

• Hemorrhagic stroke(Primary intracerebral hemorrhage)

It accounts for 15− 20% of cases and a�ects slightly younger subjects,
always with mild prevalence for men and has a high rate of acute mor-
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tality;. Is a condition determined by the presence of non-traumatic
intracerebral hemorrhage (often caused by hypertension). A particular
case of haemorrhagic stroke is the subarachnoid hemorrhage (ESA). It
is a condition in which the presence of blood in the subarachnoid space
occurs and it's predominantly present in feminine subjects of about 50
years.

Figure 1.1: Types of stroke [2]

1.1.1.2 Risk factors and symptoms

A risk factor is something that increases your likelihood of getting a disease
or condition. It is possible to have a stroke without the risk factors listed
below. However, if a lot of risk factors are present in a person's life, It is
more likely to have a stroke. The main types of risk factors are divided in
three main branches:

1. Medical Conditions:

- Hypertension: It is the leading risk factor for stroke. Blood pres-
sure is the force of blood on walls of arteries. High blood pressure
is when this pressure is higher than expected over a prolonged pe-
riod of time. Normal blood pressure is in the range of 120/80 mm
Hg. Hypertension is de�ned as blood pressure 140/90 mm Hg. If
you have diabetes or chronic kidney disease, it is de�ned as 130/80
mm Hg. Hypertension causes turbulent blood �ow that can dam-
age blood vessels walls and overtime causes them to weaken. If
you have hypertension and are not keeping your blood pressure
in a speci�c target range, you have an increased risk of having a
stroke. Hypertension has no symptoms, so it is important to have
your blood pressure checked regularly.
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- Cardiovascular Diseases: Cardiovascular diseases are major con-
tributors to stroke. Many chronic conditions, such as coronary
artery disease or atrial �brillation , a�ect heart function, making
it di�cult to meet the body's demands. Long-term problems cause
damage to blood vessels, increasing the risk of blockage (ischemic
stroke) or bleeding (hemorrhagic stroke).

- Vascular Dementia: Vascular dementia is a type of dementia that
is caused by problems with blood supply to the brain. These
de�cits may be caused by multiple TIAs. Both conditions are
signs of increased risk of having a major stroke.

- Psychological Disorders: Having certain psychological disorders,
such as depression, panic disorder, anxiety, or prolonged emo-
tional or occupational stress are associated with an increased risk
of stroke. Some disorders and treatments may lead to poor lifestyle
choices, such as smoking, weight gain, or lack of physical exercise.

- Sleep Apnea: Obstructive sleep apnea (OSA) is a disorder char-
acterized by repeated episodes of complete or partial airway ob-
struction during sleep. The disorder is associated with disrupted
sleep patterns and decreased oxygen saturation (the amount of
oxygen carried in the bloodstream). OSA has been linked to sev-
eral disorders, including cardiovascular disease and early death.
OSA is also an independent risk factor for hypertension, heart
failure, diabetes, and heart attack.

2. Factors That Cannot Be Changed:

- Age: Brain function normally decreases as we age. This decrease
is generally not enough to cause problems, but can increase the risk
of developing cardiovascular disease, which can lead to a stroke.
Some changes include sti�er blood vessels, small breaks in blood
vessels, and minor cognitive and memory loss

- Sex: The risk of stroke increases as you age. Although men are
more likely to have a stroke at a younger age, women overall tend
to have more strokes and die from them. This may be due to risk
factors that are unique to women in combination with standard
ones.
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- Genetics and Ethnicity: Having family members that have had
a stroke or history of cardiovascular disease increases your risk
as well. You are also at a higher risk if you have certain genetic
abnormalities. For example, your blood may have a tendency to
clot, which can increase the risk of narrowed or blocked arteries.
About the ethnicity, African Americans have a higher incidence
of hypertension than Caucasians and, therefore, a higher risk of
having a stroke. Stroke risk is also higher among American Indians
and Native Alaskans.

3. Factors That Can Be Modi�ed or Changed:

- Smoking: it is a major contributing factor to stroke. Smoking
can irritates and narrows blood vessels which can narrow blood
vessel and decrease blood �ow, contributes to the build up of ar-
terial plaque and raises heart rate and blood pressure which can
place extra pressure on weakened blood vessel walls. As a result,
cigarette smokers are 2-4 times as likely as nonsmokers to have a
stroke than nonsmokers. Nonsmokers who are exposed to smoking
are at risk as well.

- Dietary Choices: A diet that is high in trans fat, saturated fat,
and low in fruits, vegetables, whole grains, and �ber increases
your risk of having a stroke. Poor diet contributes to to high
cholesterol , obesity , and glucose intolerance disorders such as
metabolic syndrome and diabetes , which are all independent risk
factors for stroke.

- Physical Inactivity: Physical inactivity doubles your risk for a
heart attack or stroke. Regular moderate to intense exercise im-
proves heart function and promotes healthy arteries. It also helps
reduce the chance of other stroke risk factors such as hypertension,
high cholesterol, and diabetes.

- Excess Alcohol Intake: Drinking too much alcohol can increase
blood pressure, blood triglycerides that contribute to plaque build
up, and increase the risk of abnormal heart rhythms (arrhythmia).
Drinking too much alcohol can increase blood pressure and lead
to other cardiovascular problems.
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- Drug Use: Illicit drug use, especially cocaine, can cause blood
vessel damage, which can lead to blood clots and arterial spasms.
Strokes are more likely in people with vascular damage.

With control and treatment of the risk factors it's possible to reduce the
increasing number of strokes in the world [45]. For subjects who are at risk,
it's good to know the main symptoms of stroke, in order to intervene in
time. For this purpose, it better to remember the acronym F.A.S.T [62],
that means:

F ace drooping: If you notice a droop or uneven smile on a person's face,
this is a warning sign.

A rm weakness: Arm numbness or weakness can be a warning sign. Asking
the person to raise their arms It's a warning sign if the arm drops down
or isn't steady.

S peech di�culty: Slurred speech can indicate that the person is having a
stroke.

T est

This is a stroke identi�cation instrument to recognize the possible start of a
stroke. Other important signs are:

- Loss of strength on one side of the body: hemiplegia or emiparesi;

- Dizziness, loss of balance;

- Sudden trouble seeing in one or both eyes;

- Tingling and loss of sensitivity on one side of the body (paresthesia)
and diminished response to stimulation (emiypoesthesia);

- Sudden severe headache with no known cause.

Accurate identi�cation of stroke by pre-hospital personnel could expe-
dite triage of patients to acute stroke units and facilitate delivery of acute
stroke therapies either in hospital or in the community. in fact, acting fast if
someone is experiencing stroke symptoms it' possible to reduce the e�ects of
this pathology and to obtain the best result with the future rehabilitation, if
necessary.
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1.1.1.3 Neuromuscular rehabilitation after stoke

Rehabilitation is the process by which the person a�ected by stroke is helped,
after the post-acute phase, to achieve, recover or maintain the highest level
of autonomy allowed by the disease [7]. It allow the achievement of the best
quality of life possible for surviving patients, paying particular attention to
the psychosocial issues that this pathology entails. Already in the period
of acuity, it is necessary to pursue rehabilitation-related goals, namely pre-
vention of disability (early mobilization and rehabilitation), integrated with
the diagnostic program and emergency treatment. The stage of acuity also
includes the period of clinical stabilization, during which the patient can not
be required to perform special care. The post-acute phase (also referred to
as the "Rehabilitation" or "Recovery phase") begins when the person is no
longer in immediate danger of life, does not risk further deterioration and
starts to stabilize his general conditions. It is at the this stage that a pro-
gressive improvement of the person's functions and abilities can take place,
which takes the name of recovery [33]. Generally, the post-acute phase be-
gins one to two weeks after the stroke, and ends when the person has reached
the maximum possible improvement based on brain damage and his general
physical condition. Some studies have revealed that the brain reorganizes
after stroke in relation to recovery of motor function [59],[64]. The result of
these studies suggests that training after a lesion may revive neural plasticity
and functional recovery of the limb. Rehabilitation therapy, in fact, avoids
further loss of hand representation in the intact bark and induces expansion of
the hand territory into the adjacent cortex, in conjunction with the recovery
of skill movements. Although in recent years several scientists had seen the
possibility of a cortical reorganization after a lesion, the scienti�c world has
de�nitively accepted this thesis only after the publication of Liepert, Taub
et al. [51] con�rming not only the fact that the human brain is physiologi-
cally sensitive to experience, but above all that this plasticity is maintained
in cases of injury. This is the �rst demonstration in the human being of a
long-term alteration in brain function associated with rehabilitation-induced
improvement after neurological damage. About the intensity of the rehabili-
tation, more and longer training sessions have positive recovery e�ects in the
post-acute phase and also in chronic phase. So, it is clear that training inten-
sity is crucial to promote cortical reorganization after stroke, and so to obtain
better rehabilitation progresses [86],[50]. Current stroke rehabilitation guide-
lines (described in [61],[35]) are generally centred around physiotherapy and
occupational therapy regimens and are often focused on decreasing disabil-
ity from stroke-induced impairment, to encourage patient independence as
much as possible. For this purpose, in traditional physical rehabilitation, the
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physiatry, physiotherapist and neuro-orthopedic work together, using motor
re-education and speci�c exercises to avoid worsening spasticity. There are
two main types of individual exercises [9]:

• Physical therapy: For most stroke patients, physical therapy (PT) is
the cornerstone of the rehabilitation process. A physical therapist uses
training, exercises, and physical manipulation of the stroke patient's
body with the intent of restoring movement, balance, and coordina-
tion. The aim of PT is to have the stroke patient relearn simple motor
activities such as walking, sitting, standing, lying down, and the process
of switching from one type of movement to another.

• Occupational therapy: Another type of therapy involving relearning
daily activities is occupational therapy (OT). OT also involves exercise
and training to help the stroke patient relearn everyday activities such
as eating, drinking, dressing, bathing, cooking, reading and writing,
and toileting. The goal of OT is to help the patient become independent
or semi-independent.

These therapies are based on rehabilitation, neuroscience and motor learn-
ing theories but, also, on the past experiences of the rehabilitation's team.
In particular, after the acute phase, physiotherapists continuously tailor the
exercises according to patient's impairments, challenging them to improve
their skills. Patients performances and progresses are subjectively evaluated
by therapist's perceptions. In this way it's possible to get customized assis-
tance to get the best possible recovery result. On the other hand, for society,
it costs a lot of time to devote a physiotherapist to a single person and it be-
comes impossible if one looks at the ever-increasing trend of stroke evolution
in the world. Therefore, a new rehabilitation strategy is underway in recent
years to cut costs and improve the results of rehabilitation therapies. It is
robot-assisted rehabilitation.
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1.2 Robotic Rehabilitation

The �eld of automated or robot-assisted motor rehabilitation has emerged
since the 1990s and is rapidly developing. Traditional physical therapies can
improve post-stroke functional recovery but are expensive, require a lot of
workforce and need to be durable [52]. Accordingly, intelligent machines may
o�er a solution to increase the intensity of therapy. In fact, the rehabilitation
robotics in recent years has become essential in the �eld of neuroradiation
because the amount of recovery is directly proportional to the number of rep-
etitions of the exercises carried out. Advanced robotics are able to provide
continuous therapy at a lower cost compared to the rehabilitation activity
performed by physiotherapists, giving patients more chance of recovery. Fur-
thermore, for physicians and therapists, a rehabilitation system based on
haptic interfaces1 is highly desirable. Ideally, a sophisticated man-machine
interaction should try to simulate the experienced hand of the therapist guid-
ing the paretic limbs in a gentle manner, avoiding abrupt perturbations and
providing as little assistance as necessary. So, one physiotherapist can follow
several patients at the same time, reducing the cost of rehabilitation. Fur-
thermore, it is an e�cient measurement system that allow, using the several
typologies of sensors (e.g. position sensors, force/torque sensors and elec-
tromyography (EMG) sensors), to evaluate the patient conditions in order
to improve the rehabilitation tasks. Finally, taking advantage of recent im-
provements in robotics and information technology, traditional rehabilitation
practice can be enriched providing advanced and more technological tools.
The latter can better enhance and quantify rehabilitation and, concurrently,
productivity and, in turn, optimize the quality of care.

1.2.1 State of the art of robots for rehabilitation

Below, it will shown some of the most famous examples of robots and existing
rehabilitation control systems, giving you a brief description of the state of
the art.

1A haptic interface is a computer-controlled mechanism designed to detect motion of a
human operator without impeding that motion, and to feed back forces from a teleoperated
robot or virtual environment [28]
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1.2.1.1 Upper limb rehabilitation

Our motor system enables the selective movement of the shoulder, elbow,
wrist and �nger joints in multiple ways, either isolated or within movement
chains. No machine can compete with this incredible movement variety at
present, and any additional degree of freedom (DoF) of any applied robot
arm causes exponential costs. A restriction of movements to be practised was
thus inevitable, nevertheless aiming at a generalized motor recovery of the
whole upper limb. Below is a brief description of some famous rehabilitation
robots.

MIT-Manus
The �rst clinically tested robot was a planar robot for the rehabilitation
of the upper limb in the 1997, called MIT-Manus [48]. It consists
of a 2 degree of freedom (DOF) robot manipulator with a SCARA
con�guration, characterized by low inertia and friction, with which it's
possible to assists shoulder and elbow movements by applying di�erent
force to the arm, acting on the robot's end-e�ector, to which the patient
is connected via a manipulator. In rehabilitation therapies, the patient
is assisted in movements on the horizontal plan in order to reach, with
the sick arm, the visual targets that a graphic interface indicates on
the monitor, as shown in Fig. 1.2.

Figure 1.2: MIT-Manus [10]



12 CHAPTER 1. INTRODUCTION

For the �rst evaluation of the MIT-Manus, several controlled random-
ized trials were conducted on a total of 96 acute hemiparetic subjects
for an average of 2/3 weeks after their �rst single stroke [11],[82],[81].
In the experimental activity, these patients performed an hour per day
for 5 days a week, with a minimum of 1500 repetitions of goal-directed
movements over the whole treatment period. Another consideration
to do is that the MIT-Manus is modular, in fact it's possible to add
other three DOF using a robot for the manipulation and rehabilitation
of the wrist [49]. In this way, the MIT-Manus can become a robot
that manages three-dimensional movements, in addition to planar ones
in the horizontal axis. Finally, it's necessary to discuss brie�y about
the control law implemented in this robot. it has to interact with the
patient, so it needs to transmit forces and control the movements of
the patient safely, avoiding to damage more the injured limb. This
speci�c result was obtained using impedance controls that modulate
the way the robot reacts to mechanical perturbations. These controls
are designed to simulate the manual manual made by the experienced
therapist, transmitting light and delicate corrections of the movements.

MIME
The Mirror Image Movement Enabler (MIME) is a therapy system for
the upper limb rehabilitation (focuses on shoulder and elbow function)
[55], designed by Burgar and his collaborators at Stanford University
[19]. This device consists of two arm supports, modi�ed to limit move-
ment to the horizontal plane only, and a 6 (DOF) manipulator (Staubli
PUMA-560) that transmits forces and pairs to the patient's arm in a
three-dimensional space by the robot's end-e�ector (Fig. 1.3). Cur-
rently MIME operates in unimanual and bimanual modes. For uni-
manual opertions the control can operates in three di�erent ways:

1. Passive control: The subject is relaxed and the robot moves the
limb to a target with predetermined trajectory.

2. Active-assisted: The patient voluntarily triggers the movement
towards a target working with the robot, which partially assists
the movement.

3. Active-bound: The robot provides a viscous resistance in the
desired movement direction.
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Figure 1.3: MIME [10]

About the bimanual mode there are two di�erent control law:

1. Master/Slave control: The robot assistance of the a�ected limb
is obtained by the healthy arm of the patient if possible, mirroring
the movements and allowing the subject to perform coordinated
movements, bi-manuals and at a speed determined by the patient
himself.

2. Di�erent bimanual control: The two limbs are stressed dif-
ferently using one of the techniques previously described for the
unimanual modes.

NeReBot
NeReBot is a cable robot (Fig. 1.4) for the rehabilitation of the up-
per limbs developed by a team of Padua University [29],[70]. Three
nylon cables convert the rotary motion of three motors into c.c. in a
spatial trajectory for the patient's limb. Real-time software manages
phases of acquisition of points and cyclic repetition of spatial trajecto-
ries obtained by interpolation of acquired points. So, the �rs step is the
manual movement of the patient's arm, acquiring motion data. Once
a certain position has been reached, the therapist starts the automatic
movement, reproducing the real one in a comfortable way for the pa-
tient. The �rst clinical trial of 30 patients demonstrated the e�cacy
of the robot in the post-stroke rehabilitation treatment of sub-acute
patients [58].
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Figure 1.4: NeReBot [8]

ARM-Guide
Less sophisticated device are the Assisted Rehabilitation and Measure-
ment (ARM) Guide [38] shown in Fig. 1.5. The robot consists of
a manipulator, powered by a single motor, that follows a linear con-
straints. The manipulator can be oriented with di�erent pitch and yaw
angles to allow to reach all working areas. It is used for the evaluation
and treatment of hemiparetic patients:

1. Diagnostic tool: With the ARM-Guide it's possible to evaluate
several key motor impairments, including abnormal tone, incoor-
dination and weakness (for more details, see[69].

2. Therapeutic tool: Using the same stategies described before
for the unimanual con�guration of the MIME, the ARM-Guide
applies support or obstruction forces to the patient in order to
perform linear movements within the work space [46].

Figure 1.5: ARM-Guide [69]
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1.2.1.2 Lower limb rehabilitation

Three months after the incident one third of the surviving patients has not
yet regained independent walking ability, and those ambulatory walk in a
typical asymmetric manner, as they avoid to load the paretic limb. At the
same time their walking velocity and endurance are markedly reduced. Stairs,
sudden obstacles,uneven terrain or other perturbations further challenge the
patients' gait ability outside the clinic. The rehabilitation process toward
regaining a meaningful mobility can be divided into three phases [72]:

1. The bedridden patient has to be mobilized into the wheelchair to avoid
more problems related to the inactivation of the muscles.

2. Restoration of gait, using rehabilitation robot to improve the e�ects of
the exercise. In fact, they relieve the physiotherapists from hard manual
labour and enable an increase in training intensity for the patients. In
this phase, the patient regains the ability to walk, even without support.

3. Improvement of gait in order to meet the requirements of daily mobility.

To achieve these results, robots allow more e�ective training sessions. For
example, still in [72], 1000 steps within a typical training session of 15�20
min are possible, whereas during manually assisted training only approx. 100
steps/session were performed. A second major e�ect is the relief of the phys-
iotherapists, who can now concentrate on training supervision. The ideas
behind the realization of this type of devices are mainly two: machines that
applies the principle of movable footplates and the exoskeleton type machines.

Movable footplates machines

• GT I Gait Trainer
Hesse and co-workers [36] presented the electromechanical gait
trainer, GT I, aimed at relief of the strenuous e�ort of thera-
pists during locomotor therapy on the treadmill when setting the
paretic limbs. Each of the patients feet is positioned on a sepa-
rate footplate whose movements are controlled by a planetary gear
system, simulating foot motion during stance and swing. Cadence
and stride length can be set individually.
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Figure 1.6: GT I Gait Trainer [5]

• HapticWalker
The device is a robotic walking simulator for gait rehabilitation
based on the principle of programmable foot plates; i.e., it con-
tinues the successfully applied approach of movable foot plates
and allows patient-physiotherapist interaction during training [37].
The HapticWalker accomplishes the paradigm for optimal train-
ing, because it is the �rst gait rehabilitation device which is not
restricted to training of walking on even ground. In contrast to all
treadmill bound machines, it enables the patient to train arbitrary
gait trajectories and daily life walking situations.

Figure 1.7: HapticWalker [72]



1.2. ROBOTIC REHABILITATION 17

Exoskeleton type machines

• LOKOMAT
The Lokomat (Hocoma AG) consists of a robotic gait orthosis
and an advanced body weight support system, combined with a
treadmill [25]. Many algorithms based on position, impedance or
adaptive controllers, have been implemented in order to obtain the
desired movement for rehabilitation. To achieve the pre-�xed goals
it uses computer controlled motors (drives) which are integrated
in the gait orthosis at each hip and knee joint (Fig. 1.8). It has
been extensively used in many clinical researches, in fact it is the
most clinically evaluated system and one of the �rsts of its type
[83],[42],[84].

Figure 1.8: LOKOMAT [3]
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• AAFO
The AAFO is largely composed of a polypropylene AFO [32] with
a hinged ankle joint, the sensor unit, the controller and the se-
ries elastic actuator. The sensor unit detects the gait phase dur-
ing walking and the controller controls dorsi�exion/plantar�exion
based on the output signals from the sensors. The series elastic
actuator provides the movement of an ankle joint based on signals
from the controller [40]. It is shown in Fig. 1.9:

Figure 1.9: AAFO [40]
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1.3 Project

In recent years, due to an increase in the number of patients a�ected by
various diseases such as stroke, neurological lesions and musculoskeletal dis-
orders, many projects and research studies have begun the development of
speci�c robotic systems, focusing on particular robotics rehabilitation in or-
der to reduce the total cost of traditional rehabilitation. This has also become
necessary due to an increase in the elderly population (particularly suscep-
tible to previous pathologies), which is expected to increase further in the
coming years, as reported by the World Health Organization (WHO) [66]
and shown in Fig. 1.10.

Figure 1.10: Increasing of elderly people in the world [66]
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This situation and the improvement in medical treatments of previous
pathologies (particularly stroke, as described above) have led to a reduction
in the mortality rate, increasing the demand for rehabilitation therapies to
return to a life of full autonomy [65].

1.3.1 Purpose of the project

One of the biggest challenges of recent years is the low-cost development of
robots and rehabilitation techniques for rehabilitation. In this regard, more
and more projects start with the aim of lowering the development costs of
these machines, in order to make robotized rehabilitation more accessible at
the patient's home. At the same time, they must ensure satisfactory results
that simulate the behavior of the physiotherapist during a rehabilitation
exercise, possibly giving a quanti�able idea of the results obtained by the
patient. Starting from a pre-existing project sponsored by the Ministry of
Health, whose Padua University is a partner, an alternative way of reducing
the computational cost of planar rehabilitation robots algorithm, developed
by Davide Pilastro in the PhD thesis [68], has been considered in this Master
thesis. In this regard, starting from the widely used industrial model identi-
�cation techniques that use only position encoders (usually present in every
equipment to be controlled) and low-cost accelerometers (i.e. MEMS), we
tried to model and parametrize the impedance of the end point of the hu-
man arm, then quantify it by experimental data. This allows to include the
parameters related to the physical condition of the patient directly into the
control system, by customizing the rehabilitation process according to the
initial needs and improvements achieved during the therapy. As regards the
development of the control algorithm, it is based on the idea of optimizing
di�erent controllers at speci�c points of the task required by the physiothera-
pist, taking into account about the di�erent parameters of the patient's arm,
depending on the arm con�guration during the execution of the exercise and
the required level of assistance. All this is done o�-line using simple optimal
control techniques. In addition, the main purpose is to create a system that
implements an adaptive help control that emulates the physiotherapist's help
when needed, using only standard position sensors. To this end, a control
mechanism has been implemented that can adapt the on-line help force de-
pending on the patient's degree of compromise. In conclusion, using this
method, it is possible to obtain a control system that can assist the patient
during repetitive exercises, taking into account the physical condition of the
subject and the ability to follow the predetermined trajectories.
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1.3.2 Structure of the Thesis

The explanation of the project is subdivided into three chapters, excluding
the present chapter (Chapter 1). Chapter 2 presents modelization, parametriza-
tion and identi�cation of the system used, taking into account the human
arm pattern reported at the end-e�ector of this one. This model also in-
cludes the non-linearity of the mechanical and electrical system, purging the
arm estimate not only from the mechanical model of the motor, but also
from overlapping noise / errors. This will then show the approach used (in-
cludes a non-linear identi�cation procedure and a sensor fusion algorithm)
and the relative results obtained experimentally to verify the validity of this
method. Chapter 3, however, presents the adaptive control system designed
to emulate the help of the physiotherapist during rehabilitation exercises.
Experiments are shown to evaluate the functioning of the adaptation system
implemented. Unfortunately, there have been no speci�c clinical trials with
patients with pathological illnesses for lack of time, so this will be one of the
future work. In the end, in Chapter 4, some conclusions about the work done
are reported.
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Chapter 2

Impedance of the Human Arm

End-Point

2.1 Identi�cation of Human Arm Impedance

As describe in Chapter 1, Purpose of the project, the main point of this the-
sis is the development of an adaptive controller that take into account about
the patient conditions to customize the rehabilitation session to improve the
bene�ts of the exercises. But the investigation of human motor control is not
simple and have led to a wide variety of viewpoints concerning the strategy
of the central nervous system (CNS) in controlling limb movements. Several
researchers, for example [31] and [39], have proposed the control of mechan-
ical impedance as an important means of human motor control. For this
kind of control it's necessary to simplify the complex joint-based model of
the human arm presented in [39] as a Cartesian impedance model, propagat-
ing the internal model of the arm out to the human arm end-point in the
horizontal plane [26]. So, sti�ness, damping, and mass become three basic
components of mechanical impedance of the human arm end-point, relating
force to position, velocity, and acceleration, respectively. To use this model-
ing to take account of human-machine interaction in rehabilitation systems,
an estimate of the impedance of the end-point of the human arm it's neces-
sary. For this purpose, di�erent parametric 1 and non-parametric 2 approach
are used in literature. The main di�erence presented in this Chapter is the
improvement of the estimation using a parametric approach considering the
non-linear Coulomb friction of the motor and based on the combination of
the RLS estimator and a state observer (aaKF).

1i.e Recursive Least Square estimator (RLS)
2 i.e Empirical transfer function estimate (ETFE) method [53])

23
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2.1.1 System Modeling

First of all it is necessary to decide an appropriate representation of the
considered system. So, modeling the human arm as a mass-damper-spring
system concentrated at the end point of the arm (model present in literacture,
as [80] and [13]) it is possible to add the human arm model to the model of
the motor in a simple way (Fig. 2.1, the meaning of all parameters are in
Tab. 2.1). The closed-loop position control of the system is used to �x the
working-point position using a band limited random white noise as the input.
In this way the system is properly excited and in the same time are avoiding
too big unknown movements.

Figure 2.1: Block Diagram of that include Motor and Arm model

From Fig. 2.1 it's possible to obtain the transfer function between voltage
and position:

G(s) =
Xm(s)

Ucmd(s)
=

KtKi

Mms2+Dms

1 + Mas2+Das+Ka

Mms2+Dms

=
KtKi

Ms2 +Ds+Ka

(2.1)

With:
M = Mm +Ma , D = Dm +Da

Eq. 2.1 represents the continuous model of the system, with a physical
meaning. For a correct implementation in a digital environment it's neces-
sary to discretize the previous system using the Zero-Order Holder (ZOH)
method. The relationship between Dicrete and Continuous parameters, us-
ing ZOH is shown in Appendix A. In this way, the problem changes from the
estimation of the arm parameters to estimation of the discrete parameters of
the following system:
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xcmd Command position (White noise) [m]

ucmd Command Voltage [V ]

Kt Thrust Constant [N
A

]

Ki Trans-conductance [A
V

]

Kp Position Gain [ V
m

]

Fc Coulomb Friction [N ]

Fh Reaction Force of the Human Arm [N ]

Mm Motor Mass [kg]

Dm Motor Damping factor [Ns
m

]

Ma Human Arm Mass [kg]

Dm Human Arm Damp. fact. [Ns
m

]

Dm Human Arm Sti�ness [N
m

]

xm Real position of the motor with Arm [m]

Table 2.1: Meaning of the Fig. 2.1 parameters

Gd(z) =
Xm(z)

Ucmd(z)
=

z−1b1 + z−2b0
1 + z−1a1 + z−2a0

(2.2)

In eq. 2.2 the Discrete Transfer Function between �digital voltage� and �dig-
ital output position� is presented. But in this way it is not possible to take
into account about the non-linearity of the motor, like Coulomb Friction, be-
cause Gd is a linear dynamic model. To solve that problem, a modi�cation
in the input signal de�nition is necessary, i.e.:

ucmd(k) = uref (k)− Fc
KiKt

= ...

... = uref (k)− fcsign(ẋm(k))

KiKt

= uref (k)− uc(k)

(2.3)

In Fig. 2.2 it is possible to see the Block Diagram of the Discrete System
de�ned in this way. Furthermore, in the same �gure it is possible to see the
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model that generates the data under noisy condition (like encoder quantiza-
tion or other unknown noise).

To take into account about this problem, the representation with Discrete
Transfer Function (with abuse of notation) is obtain using an ARMAX [60]
model:

xenc(k) =
B(z)

A(z)
ucmd(k) +

C(z)

A(z)
e(k) = ...

... =
z−1b1 + z−2b0

1 + z−1a1 + z−2a0
ucmd(k) +

1 + z−1c1 + z−2c0
1 + z−1a1 + z−2a0

e(k)

(2.4)

The regression form of the previous system is obtained by combining eq.
2.3 and the Discrete Time representation of eq. 2.4, obtaining:

xenc(k) = vTstate(k)Cd(k) + e(k) = ...

... =



−xenc(k − 1)

−xenc(k − 2)

uref (k − 1)

uref (k − 2)

e(k − 1)

e(k − 2)

−sign(ẋm(k − 1))

−sign(ẋm(k − 2))



T 

a1(k)

a0(k)

b1(k)

b0(k)

c1(k)

c0(k)

fcb1
KiKt

(k)

fcb0
KiKt

(k)


+ e(k)

(2.5)

Where the estimation of e(k) is:

ê(k|k − 1) = xenc(k)− vTstate(k)Ĉd(k − 1) (2.6)

And the estimation of the Coulomb friction becomes:

f̂c = f̂c1 =
f̂cb1
KiKt

KiKt

b̂1
= f̂c2 =

f̂cb0
KiKt

KiKt

b̂0
7→ f̂c =

f̂c1 + f̂c2
2

(2.7)
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The Regression form allows to describe the system as a sum of two terms.
The �rst describe the system behavior and the second is a white noise3 e(k)
that is independent of vstate(k), in fact it is possible to see that in eq. 2.6
e(k) is obtained from the new data xenc(k), ), removing the behavior of the
previous states (k − 1, k − 2, etc. . . ).

Figure 2.2: Block Diagram of Discrete System

To obtain the estimation of the real parameters of the arm using the
estimation of the discrete system, see appendix A.

2.1.2 Recursive Least Square estimator (RLS)

In least square estimation, unknown parameters of a linear model are chosen
in such a way that the sum of the squares of the di�erence between the actu-
ally observed and the computed values is a minimum [14]. The result of this
method can be viewed as a �lter that averages the data to give optimal esti-
mates. Averaging is a good strategy if parameters of the model are constant
in nature. However, many times the parameters that it's necessary to esti-
mate are time-varying. So, for a better estimation, another similar approach
is used to keep track of the variations. In fact, Human-Arm- parameters are
not constant and the RLS estimator with forgetting factor is used. To use
this approach, an assumption is needed, that is, the parameters of the model

3Sequence of independent, identically distributed (i.i.d.) random variables with zero
mean.
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must be considered slowly varying in the time if the patient doesn't move his
limb, as it's possible to see in [63].

2.1.2.1 Theory

The RLS estimator with forgetting factor is useful if the parameters vary
continuously but slowly. That is the concept of forgetting in which older
data is gradually discarded in favor of more recent information. In the least
square method, forgetting can be viewed as giving less weight to older data
and more weight to recent data. The `loss-function' is then de�ned as follows:

J(Cd, k) =
1

2

k∑
i=1

βk−iff [xenc(k)− vTstate(k)Ĉd(k)]2 (2.8)

Where vTstate(k)Ĉd(k−1) is the estimate of the system output in the sample
k using the previous values.

0 < βff ≤ 1 is called forgetting factor and it is useful for:

• Tracking time varying parameters

• Recovering a correct estimate by starting from an imprecise initial es-
timate (i.e. discarding the e�ect of the initial conditions)

The forgetting factor can be determined as follows:

βff = e
− Ts

Tf (2.9)

Where Ts is the sampling time and Tf is the time constant of the expo-
nential forgetting (i.e. the time after which old data is weighted less than
37% with respect to new data). Using the model described in eq. 2.5 it is
possible to provide a �correct� estimate Ĉd of the �true� value of Cd thanks to
the use of the RLS estimator with data generated under "noisy" conditions.
�Correct� estimate, as describe in [27] and in [24] means that the estimation
of Cd is:

• Unbiased, i.e E[Ĉd] = Cd
4

• Consistent, i.e [Ĉd] 7→ Cd as k →∞5

4E(•) denotes the expectation operator.
5The limit has to be considered in some statistical sense. Mean square convergence is a

possibility, which implies to analyze the behavior of the estimation variance as the number
of observation grows.
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2.1.2.2 Implementation

Solving 2.8 for the minimizing parameters and considering the recursive form
that update the estimates on-line, the implementation is given by:

Ĉd(k) = Ĉd(k − 1) +K(k)ε(k) (2.10)

Where Ĉd(k − 1) represent the old values of plant parameters, which is
updated through an appropriate innovation weighing. ε(k) is the innovation
and it is de�ned as:

ε̂(k|k − 1) = xenc(k)− vTstate(k)Ĉd(k − 1) (2.11)

It takes into account the error between the output value at time k, y(k),
and the estimated output using the old values of the estimated parameters
and regression variable vstate(k). If ε(k) = 0, the estimated parameters cor-
rectly describe the system in case of constant values. To implement RLS
estimator, the gain K(k) that minimizes the estimation error is derived as
follows:

K(k) = P (k)vstate(k) = ...

... = P (k − 1)vstate(k)[βff + vTstate(k)P (k − 1)vstate(k)]−1
(2.12)

With the covariance matrix:

P (k) =
1

βff
[I −K(k − 1)vTstate(k)]P (k − 1) (2.13)

That represents the con�dence with which it is possible to estimate the
parameters of the system. It is very important to evaluate the contribution of
the new output value into parameters estimates. In fact the main di�erence
with the classic least square method is how the covariance matrix P (k) is
updated. In the classic RLS the covariance vanishes to zero with time, losing
its capability to keep track of changes in the parameter. In equation 2.14
however, the covariance matrix is divided by βff < 1 at each update. This
slows down fading out of the covariance matrix.

The exponential convergence of the above scheme is shown in some text-
books and research papers (see e.g. the proof provided in [43] or [17]) for
the case of unknown but constant parameters. In general, exponential con-
vergence in the constant case implies a certain degree of tracking capability
in the time varying case [21]. However rigorous mathematical analysis of
tracking capabilities of an estimator when the parameters are time-varying
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is rare in the literature and many properties are demonstrated through sim-
ulation results. Campi [21] provides rigorous mathematical arguments that
if the covariance matrix of the estimator is kept bounded the tracking error
will remain bounded. Ljung and Gunnarsson present a survey of algorithms
for tracking time-varying systems in [54]. For the conversion to physical
parameters see eq. A.7 and A.8 in Appendix A

2.2 State Estimator

In real systems there are several types of disturbances that impede a correct
estimation of the real state of the system. Di�erent solution have been im-
plemented to solve this problem. To improve the estimation of the systems
parameters, a method to reduce the e�ect of the output position noise and
to estimate the velocity in the best way, a State Estimator will be used [15].

2.2.1 Theory

In almost all processes it is practically impossible to access to all the real state
variables. Therefore, it is necessary to make use of an appropriate estimators
that are able to reconstruct the state in acceptably accurate manner, relying
solely on the input and the output (or only the outputs) of the observation
process, in order, for example, to use this estimate as a feedback from the
state (as shown in Fig. 2.3).

Figure 2.3: Scheme with a feedback from estimated state

So, being the real system su�ering from noise (unaccessible input), it is
necessary to include in the mathematical model of the estimator a term that
weighs the di�erence between the real and estimated output. There are many
di�erent type of estimator, but the main ones are the asymptotic estimator.
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• PREDICTOR FORM

The model of this estimator is the following:

x̂(k + 1) = Fx̂(k) +Gu(k) + L[y(k)−Hx̂(k)] (2.14)

Where Hx̂(k) represents the actual output y(k) estimation and y(k)−
Hx̂(k) represents the innovation error.

If the model of the system is:{
x(k + 1) = Fx(k) +Gu(k)

y(k) = Hx(k)
(2.15)

It is simple to derive the behavior of the estimation error, that is:

e(k + 1) = x̂(k + 1)− x(k + 1) = [F − LH]e(k) (2.16)

In eq. 2.16 it is shown that, if it is possible to design L so that all the
eigenvalues (λ) of [F − LH] are stable (|λ| < 1), the estimator that is
obtained is asymptotic (limk 7→∞ e(k) 7→ 0).

Furthermore, in this case, the calculations of the estimator necessarily
require a time less than the sampling period Ts. This means that the
predicted state x̂(k + 1) will be available before the instant (k + 1)Ts
and it will be retained by a Zero-Holder in order to synchronize the
feedback signal with the sampling instants (Fig. 2.4).

Figure 2.4: Steps of asymptotic estimator in predictor form
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• CORRECTOR FORM

The basic principle is similar to that of the previous estimator, but in
this case the estimation is done in several steps:

1. x̂(k + 1|k) = Fx̂(k|k) +Gu(k)

2. ŷ(k + 1|k) = Hx̂(k + 1|k)

3. x̂(k + 1|k + 1) = x̂(k + 1|k) + L[y(k + 1)− ŷ(k + 1|k)]

In this way, the estimation error is governed by [F − LHF ] instead of
[F − LH]. The advantage is that there is a static connection between
state and output, so the estimate is better but there is time-shift and it
may cause an alteration in the discretization of the system if the state
is used like a feedback. In order to obtain L, Discrete Kalman Filter
will be presented in the next section.

2.2.2 Discrete Time Kalman Filter

Consider the following discrete system:{
x̄(k + 1) = Fx̄(k) +Gu(k) + η̄d(k)

yq(k) = Hx̄(k) + w(k)
(2.17)

This system is used very often in the con�guration where x̄ is a vector
that represent the state of the system (for example position x, velocity ẋ
etc...), while yq represents the measured position xenc. This system repre-
sents the actual case in which, in addition to the required inputs, are present
unknown inputs (noises) and hardly measurable. The two noises w(k) and
η̄d(k), considered Gaussian White Noises with zero mean, are respectively
measurement noise and process noise.
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1. Measurement noise

It is mainly due to the quantization noise present in an encoder (Fig.
2.5):

Figure 2.5: Encoder quantization

For each measurement, it belongs to the range [− q
2
, q
2
] because it can

be modeled as a uniform distribution with density shown in Fig. 2.6:

Figure 2.6: Model noise of the quantizer

This is an equivalent stochastic model of the quantizer and the variance
of this type of noise (considering a lot of measurements and using the
central limit theorem to consider this noise as a normal distribution
[18]) is R = q2

12
, where q is the quantization step (resolution) of the

encoder. If other kind of sensor are used, a speci�c experiment to
evaluate the variance of the noise is needed.
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2. Process noise

It is impossible to perfectly know the real model of a system. So, the
process noise is used to represent the imperfect knowledge of the real
system. This translates, for a motor, to take into account the unknown
e�ects of:

- Non-linear friction

- Non-linearity at input (there is a DAC)

- Variation of motor parameters Jm, Bm, KtKi

- Electrical noise

In this case an analytical approach is really di�cult, therefore, to de-
termine the variance Qd of this error it is necessary to go to attempts
with experimental tuning procedure of Kalman Filter's parameters.

Kalman �lter uses these values of the variances of noise as a lower limit
of the state error variance estimation in order to obtain the best possible
estimation of the state of the model, avoiding the stop of the update of some
state parameters. The implementation of the Kalman Filter algorithm is
divided in two steps: Prediction Step and Corrector Step. In the Predic-
tion Step the algorithm use the state space model of the system (ignoring
the noises because unpredictable), described in the eq. 2.17 to update the
current estimation with the data from the previous time step. In this way
there are some errors due to the di�erence between real and mathematical
system. To solve this problem the Corrector Step provides a method to cor-
rect the estimation, taking into account about the innovation error between
the actual output value of the system and the previous prediction. A weight
L is used to know how much and when the innovation error modify the
estimation, taking into account about the variance of the estimation error
P (k) = V ar{x(k)− x̂(k)}. To model L, the Kalman Filter algorithm use an
optimal technique that minimize the expected value of the square error be-
tween the real (unknown) and estimate states of the system. Using a generic
representation of a discrete system (eq. 2.17), the code used to implement
the Kalman Filter algorithm is [47]:

Prediction Step

̂̄x(k|k − 1) = F ̂̄x(k − 1|k − 1) +Gu(k − 1)

P (k|k − 1) = FP (k − 1|k − 1)F T +Qd

(2.18)
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Corrector Step

L(k) = P (k|k − 1)HT [HP (k|k − 1)HT +Rd]
−1̂̄x(k|k) = ̂̄x(k|k − 1) + L(k)[yq(k)−Ĥ̄x(k|k − 1)]

P (k|k) = [I − L(k)H]P (k|k − 1)

(2.19)

With P (0) = P0 = Iδ (where δ is a constant value) symmetric and
positive semide�nite matrix and x̂(0) = 0 if some informations about the
state of the system are not available.

2.2.3 Accelerometer Aided Kalman Filter (aaKF) esti-
mator

Normally, Kalman Filter algorithm uses the output of the encoder and a
mathematical-mechanical model of the system, that uses the voltage (or
force) like an input, to describe the behavior of the state. In this case the
problem is that Kalman Filter provides an optimal estimation for a single
system. The aaKF is an implementation of a sensor fusion algorithm that
provides to solve some problems of a classic algorithm:

- Measurements are provided, respectively, by position sensor, such as
linear encoder, and accelerometers placed in the motion part of the
motor where will be attached the arm

- They are fused by the aaKF in order to obtain better system position,
velocity and acceleration estimations in terms of reduced residual noise.

- The robustness of the estimate is enhanced by making use of a kinematic
model in the aaKF. With this choice, no mechanical parameters of the
system are necessary in the aaKF implementation, thus ensuring an
accurate estimate even in case of large variations of such parameters
(like the parameters of di�erent arms)

- The aaKF estimator is also insensitive to the input disturbance and
friction forces acting on the plant (Process noise).

The �lter model has been developed considering kinematic relation be-
tween acceleration and position of rigid single-DOF motor-load system [41]
and the added noise in the motor position and load acceleration measure-
ments [12]. For the encoder noise see the description of Measurement noise.
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If the acceleration sensor is not able to provide an accurate acceleration
measurements (for example when the measurements are provided by low
cost MEMS sensors), a model of the error of the accelerometer is required.
The common problems of this type of sensors are the bias, drifts and noise,
caused by variations of temperature and other stochastic factors. To take
into account about these problems, an augmented model for acceleration
measurement has been considered:

ẍacc = ẍacc + b+ wacc (2.20)

Where:

- ẍacc is the acceleration measured with the sensor

- ẍm is the real acceleration of the motor. It is obtained from the jerk
ẍm = dẍm

dt
= ηa like a random walk (ηa) is a white random process),

avoiding to use the mathematical-mechanical model of the motor/arm

- b is the bias that a�ect the measurements. It is modeled as a random
walk because the real variations of the bias are unknown (ηb is a white
random process);

- wacc is an additional Gaussian with zero-mean noise that corrupt the
measurements.

Figure 2.7: Block Diagram of Kinematic Model used for Kalman Filter
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Taking into account about the model shown in Fig. 2.7, it is possible to
describe the system with the Space State approach in the Continuous Time:



˙̄x(t) =


ẋm

ẍm
...
xm

ḃ

 =


0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0



xm

ẋm

ẍm

b

 +


0

0

0

0

 0 +


0 0

0 0

1 0

0 1


[
ηa

ηb

]
= ...

... = Ax(t) +Bu(t) +Bηη̄(t)

ȳ(t) =

[
1 0 0 0

0 0 1 1

]
xm

ẋm

ẍm

b

 +

[
wenc

wacc

]
= Cx̄(t) + w̄(t)

(2.21)
An important condition for the convergence of the estimate is that the

(A,C) pair must be observable. So, the following relationship is the Observ-
ability matrix [74]:

O =


C

CA

CA2

CA3

 =



1 0 0 0

0 0 1 1

0 1 0 0

0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0


(2.22)

In this case the rank of the Observability matrix is full and the system is
fully observable.

In the implementation of aaKF, process noises η̄(t) = [ηa ηb]
T and mea-

surements noises w̄(t) = [wenc wacc]
T are considered uncorrelated white

Gaussian random noises, with zero-mean and variances ηa 7→ σ2
a, ηb 7→ σ2

b ,
wenc 7→ σ2

enc, wacc 7→ σ2
acc.
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In this way, the corresponding process noise covariance matrix is:

Q = E[(Bηη̄(t))(Bηη̄(t))T ] =


0 0 0 0

0 0 0 0

0 0 σ2
a 0

0 0 0 σ2
b

 (2.23)

And measurement noise covariance matrix is:

R = E[w̄(t)w̄T (t)] =

σ2
enc 0

0 σ2
acc

 (2.24)

To use eq. 2.18 and 2.19 as an implementation of aaKF, it is necessary
to discretize the model in eq. 2.21 and it is necessary to know the variance
of the noises. As regards the measurement noises, they can be divided as:

- Noise of the accelerometers

- Noise of the encoder, related with the quantization error

For the �rst noise, an experiment is required to see the output of the
accelerometer without movement of the system. In this way it is possible to
calculate the variance of the accelerometer's noise. About the quantization
error, it's described previously in Measurement noise. The result is Rd = R.
In aaKF, the process noises are related to the velocity of change of motor
acceleration and bias signals, so the correct values of the variances are set
following the physical meaning. In fact σ2

b is set very small compared to
σ2
a because the bias is like a constant disturbance. For σ2

a it's necessary an
experimental tuning of the aaKF, that will be presented later, in the sub-
section Tuning of Accelerometer Aided Kalman Filter. Qd is the discrete
version of Q and it's possible to obtain this one thinking the noises as two
�unaccessible� inputs in the State Space Model of the system (eq. 2.21). So,
the result is:

E[η̄d(k)η̄Td (k)] = Qd =

∫ Ts

0

eAσQ(eAσ)T dσ (2.25)

This quantity describes the noise variance watching how state values dis-
perse in a sampling time Ts, after an excitement due to the unaccessible
inputs.
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To solve this equation it is necessary to approximate eAσ with the Taylor
expansion:

eAσ = I + Aσ +
A2σ2

2
+ ...+

Anσn

n!
; with n 7→ ∞ (2.26)

For the experiment it is possible to approximates eAσ with a second order
system eAσ = I + Aσ + A2σ2

2
. So, now, it is possible to de�ne explicitly:

Qd =


σ2
aT

5
s

20
σ2
aT

4
s

8
σ2
aT

3
s

6
0

σ2
aT

4
s

8
σ2
aT

3
s

3
σ2
aT

2
s

2
0

σ2
aT

3
s

6
σ2
aT

2
s

2
σ2
aTs 0

0 0 0 σ2
bTs

 (2.27)

Referred to the system describe in eq. 2.17, the method to obtain the
other matrices necessary to complete the implementation of the aaKF is the
ZOH method, with: F = eATs ; G =

∫ Ts
0
eAσB dσ; H = C

2.2.4 Reset of the State Estimation

The model described in eq. 2.17 and used for aaKF is only an approximation
of the real system and some unknown behaviour are not considering, so it
may produce inconsistent estimation of the state compared with the actual
measurements. To take into account about this problem, a reset of the state
estimation is required ([87] and [68]) . Using the model of the quantization
error of the encoder in a speci�c sample k, it is possible to de�ne a range
where it is sure to �nd the real actual position of the motor, i.e:

xenc(k)− q

2
≤ xm(k) ≤ xenc(k) +

q

2
(2.28)

In the same way, using the discrete derivative of the real actual posi-
tion xm(k) it is possible to obtain the estimation of the real actual velocitŷ̇xm(k) = xm(k)−xm(k−1)

Ts
, where Ts is the sampling time. Combine this one

with eq. 2.28, an equation to take into account about the range where it is
possible to �nd the real velocity, is obtained:

xenc(k)− xenc(k − 1)

Ts
− q

Ts
≤ ̂̇xm(k) ≤ xenc(k)− xenc(k − 1)

Ts
+

q

Ts
(2.29)

Using eq. 2.28 and 2.29 it is simple to de�ne the boundaries of the esti-
mation, to be sure that aaKF code is able to provide consistent estimation
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(between prediction and correction step in eq. 2.18 and 2.19) with the real
position and velocity.

2.3 Experimental Set-up

The experimental setup used for the experiments explained in this thesis is
divided in �ve parts (Fig. 2.8):

Figure 2.8: Experimental Setup

Now it will be brie�y presented each of the various components of the setup:

⇒ PC Station is used as a HMI (Human-Machine Interface) to allow the
tracking and the controlling of the motor and controller's parameters.
It is possible with RTAI Application Interface, a modi�cation of the
source code of the Linux kernel used to simulate a Real-Time system
direct using C-code [57]; it allows rapid prototyping or hardware-in-the-
loop simulation of the control system and signal processing algorithms.
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⇒ PCI Multifunction I/O Board is the interface between the servo-
drive and the PC station. It allows to manage digital and analog I/O
with an ADC/DAC. The principal parameters are:

Interface Parameters Description

PCI - D/A

Type PCI-3340

Resolution 16 bit

Output ±5 [V] or ±10 [V]

Channels 8

Conversion time 5 [µs]

PCI - A/D

Type PCI-3178

Resolution 16 bit

Output ±5 [V] or ±10 [V]

Channels 4

Conversion time 20 [µs]

Counter Boards

Type
PCI-6201 (Linear Motors)

PCI-6205C (X-Y System)

Resolution 16 bit

Input 5 [V]

Channels
4 (Linear Motors)

8 (X-Y System)

Max input freq.
1 [MHz] (Linear Motors)

2 [MHz] (X-Y System)

⇒ External Box includes a terminal board, used to connect the external
encoder and the servo drive to the PCI. The main parameters are:

Interface Parameters Description

Servo-Driver

Type SVFM1 DSP-model

Trasconductance Ki 0.2 [AV ]

Voltage (Vmax/rms) ±5 [V] or ±10 [V]

Voltage
Vmax = 84 [V]

Vrms = 59.4 [V]

Current
Amax = 2.75 [A]

Arms = 2.0 [A]
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The current loop reference must be limited to ±2 [A] to avoid exceeding
the maximum current so, the maximum voltage became 10 [V] using
Ki value.

⇒ Linear Motor/X-Y System + Encoder + Accelerometer is the
�chain� used to control the Virtual Arm/Human Arm. Following, the
parameters of Linear motor, X-Y System, Encoder and Accelerometer:

Interface Parameters Description

X-Y system

Two equal

Linear Motors

Type S160Q

Thrust constant Kt = 33 [NA ]

Mover weight (without sliders) Mm = 0.3 [kg]

Windings Resistance R = 43 [ω]

Max voltage 240 [V]

Continuous Current (rms) 0.62 [A]

Acceleration Current (rms) 2.5 [A]

Encoder
Type RGH24Y30A30A

Resolution 0.1 [µm]

Accelerometer

Type ARJ-200A

Capacity 200 [ms2 ]

Frequency range 0 - 500 [Hz]

⇒ Virtual Arm/Human Arm are the loads applied to the two di�erent
systems. The Virtual Arm is another linear motor (Fig. 2.9, Motor 2)
with the same nominal speci�cations as before.

Figure 2.9: Linear Motor + Virtual Arm connected with a link
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About the Human Arm, an experimental test is necessary to obtain the
parameters using the con�guration shown in Fig. 2.10

Figure 2.10: X-Y System with Human Arm

2.4 Experimental Testing

The principal purpose of this section is to describe the sequence of experi-
ments to test the e�ectiveness and practical implementation of the estimator
previously discussed. It is divided into the following steps: Experiment de-
scription

2.4.1 Experiment description

2.4.1.1 Preliminary Tests

Preliminar test is conducted to �nd the nominal value of the Mass, Damping
factor and coulomb friction of the linear motors.

• MASS For the Mass the strategy is very simple and it consists in eval-
uating the necessary force to counteract the weight force of the motor.
So, the motors are positioned in vertical position to let the movable
part free to move under its own weight force. The values of two mass
are obtained using the relation between force, mass and acceleration:

F = ma = Mmg = Mm9.81 (2.30)

So, if the value of the mass is correct, the force F used to counteract
the weight force allow to have no movement in vertical position.
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• DAMPING FACTOR (Dm) and COULOMB FRICTION (Fc) In this
case, the principal relation used for the experiment is the following [22]

Ftot = Ffric +Mmẍm (2.31)

Where:

Ffric = F0 + Fc + Fv = F0 + fcsign(ẋm) +Dmẋm (2.32)

With:

Ffric 7→ Part of the input force of the motor used to compensate the
friction

F0 7→ Static Friction: friction that tends to prevent stationary surface
from being set in motion

Fc 7→ Coulomb friction: model that shows the direction and magni-
tude of the friction force between two bodies with dry surfaces in
contact

Fv 7→ Viscous Friction: model that shows the friction force of a body
that moves immersed in a �uid (air, water or other)

Figure 2.11: Friction model
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To conduct the experiments, a digital PI controller is used to set the
desired velocity (ẋm) to follow, that in this case is a trapezoidal velocity.
With this choice it is possible to avoid to use a part of acceleration force
(Mmẍm) in the part where the velocity is constant. So, the total force
used by the motor is only to compensate the friction. In this way it is
possible to obtain, with di�erent velocity, an estimation of the model
shown in Fig. 2.11. F0 is ignored in the estimation because it is not
used in the RLS model and it represent only the friction in a static
condition. So, the model used for the estimation is only:

Ffric = fcsign(ẋm) +Dmẋm (2.33)

Using the Least Square method (LS method), the estimation of the
coe�cient fc of the coulomb friction and the Damping factor Dm is
performed by minimizing the sum of square error between real and
estimated values of the force (eq 2.33), using real input (Ftot = Ffric)
and �real� output (estimation of the velocity using a �ltered derivative)
with di�erent constant velocity.

2.4.1.2 Tuning of Accelerometer Aided Kalman Filter

As describe in the section Accelerometer Aided Kalman Filter (aaKF) es-
timator, an experimental tuning of aaKF is necessary to obtain the best
possible result. The experimental tuning consists, �rstly, in the description
of the variance of the noise of the accelerometer via a further preliminary
test. This test consists to take the acceleration measurements for some sec-
onds without some input. In this way it is possible to see that the correct
model to describe the noise of the accelerometers is a Gaussian white noise
with zero mean (after removing the average) and σ2

acc as the variance. Then,
the BartLett's test is used to obtain the correct values of the variance of the
process noises ([75]). It consists to compare the real value and the predicted
value. If the residuals (innovation) are a white noise process (�at spectrum),
it's impossible to predict better the real state because all residuals are un-
correlated and totally random, so the aaKF is an optimal state observer. it
is actually better to evaluate the integral innovation being subject to less
variation and more easily comparable with the ideal behavior wanted, that
is a constant and growing straight line.
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2.4.1.3 Estimation of a Linear Motor's parameters

This test is necessary to prove the abilities of the algorithm to estimate
correctly the nominal parameters of a Linear Motor to subtract later to
obtain the Human Arm parameters from the total system. The experiment
is divided in two parts. The �rst one uses only the RLS estimator with the
encoder's values and its �ltered derivative to obtain the position and velocity,
Fig. 2.12, where M = Mm, D = Dm and K = 0).

Figure 2.12: Block Diagram used for the estimation (Only Encoder)

In the second part, the aaKF observer and RLS estimator are used to-
gether to estimate Mm, Dm (Fig. 2.12).

Figure 2.13: Block Diagram used for the estimation (Encoder and Accelerom-
eter)
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For both cases, a comparison with the previous nominal values, estimated
in Preliminary Tests, is made.

2.4.1.4 Estimation of a Virtual Arm's Impedance

In this test, using the motor 2 (Fig. 2.9) as a Virtual Arm connected with mo-
tor 1 by a rigid link, it is possible to demonstrate that using only an encoder
and an accelerometer in motor 1 is possible to evaluate the real mechanical
values of the Virtual Arm. The block diagram used for the estimation is
the same as before (Fig. 2.13, where M = Mm + Ma, D = Dm + Da and
K = Ka). Motor 2 is used as an arm with Mass, Damping factor and Sti�-
ness. To obtain this result, it's used a zero position control. In Fig. 2.14 it
is possible to see the block diagram used for this purpose.

Figure 2.14: Block Diagram to control the Virtual Arm

From Fig. 2.14 it is possible to obtain the Transfer Function between F2

and x:

Gh(s) =
X(s)

F2(s)
=

1
Mas2+Das

1 + KpKiKt

Mas2+Das

=
1

Mas2 +Das+KpKiKt

=
1

Mas2 +Das+Ka

(2.34)
Motor 2 (Virtual Arm) is attached with motor 1, so F2 represent the part

of the force Fref (Fig. 2.13) that is used to move Motor 2. For the same
reason, x is the position of both motor. So, it is possible to write, taking
into account about eq. 2.34, the following relationship:

F2 = (Mas
2 +Das+Ka)x (2.35)

That is the same relationship used to describe the e�ect of the arm in Fig.
2.1. So, changing the value of Kp it is possible to obtain di�erent nominal
sti�ness for the Virtual Arm.
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2.4.1.5 Estimation of "mechanical" parameters of the Human Arm

For this test, the considerations are the same as before, but the con�guration
of the system is changed (X-Y System with Human Arm, Fig. 2.10). To
get an idea about the variation of the Human Arm parameters in di�erent
conditions, a series of experiments is performed in di�erent position. The
choice of the positions where to estimate (point 1,2,3,4 shown in Fig. B.1) is
related to the design of the controller.

Figure 2.15: Working System, X-Y plane

The block diagram used to estimate human arm's parameters for each
position and for each axis is the same as before (Fig. 2.13, where M =
Mm +Ma, D = Dm +Da and K = Ka).

2.4.2 Result

The results of the experiments about the estimation's part of the project,
with their comments, will be now presented, according to the previous scheme
presented in section Experiment description.
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2.4.2.1 Preliminary Tests

• MASS As describe before, the �rst step is to �nd the nominal values
of the linear motors mass. Di�erent values of the mass are used in eq.
2.30 to �nd the correct range of the real mass. The results are reported
in Tab. 2.2:

Motor 1 Motor 1

Mass [kg] 0.610± 0.030 0.605± 0.020

Table 2.2: Range of the nominal mass of two linear motors

• DAMPING FACTOR (Dm) and COULOMB FRICTION (Fc) A series
of six di�erent trapezoidal velocity are used to �nd the friction behav-
ior. For each velocity, it has been considered three positive movements
and three negative movements (Fig. 2.16) to allow to evaluate the av-
erage of this three situations and in the same time the variance. In
Tab. 2.3 it is possible to see the averages values of the positive and
negative velocity used for the experiments and the relative real values
of the forces for motor 1.

Motor 1:

Prove Force [N ] Velocity [m
s

] Force [N ] Velocity [m
s

]

1 0.3118 0.0998 -0.3122 -0.1002

2 0.2583 0.0797 -0.2621 -0.0798

3 0.1604 0.0499 -0.1574 -0.0499

4 0.1392 0.0400 -0.1268 -0.0400

5 0.0771 0.0200 -0.0857 -0.0200

6 0.0570 0.0160 -0.0529 -0.0160

Table 2.3: Positive and negative velocity and force for motor 1
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Figure 2.16: Behavior of real trapezoidal velocity and respective real Force
to move the system.

In table (Tab. 2.4) the values of the positive and negative estimated
friction parameters are shown.

fc[N ] Dm[m
s

]

Positive Values 0.0137± 0.0017 3.0176± 0.3329

Negative Values 0.0116± 0.0032 3.0314± 0.7354

Average Values 0.0127± 0.0032 3.0245± 0.7354

Table 2.4: Estimated values of the Coulomb (fc) and Viscous (Dm) friction
parameters of the motor 1



2.4. EXPERIMENTAL TESTING 51

In the same way for Virtual Arm (motor 2), the values are reported in
Tab. 2.5 and Tab. 2.6.

Motor 2:

Prove Force [N ] Velocity [m
s

] Force [N ] Velocity [m
s

]

1 0.3382 0.0998 -0.3459 -0.1000

2 0.2871 0.0799 -0.2901 -0.0799

3 0.1833 0.0501 -0.1883 -0.0498

4 0.1187 0.0400 -0.1378 -0.0401

5 0.0745 0.0199 -0.0762 -0.0199

6 0.0720 0.0161 -0.0583 -0.0160

Table 2.5: Positive and negative velocity and force for motor 2

fc[N ] Dm[Ns
m

]

Positive Values 0.0079± 0.0012 3.3559± 0.7718

Negative Values 0.0060± 0.0015 3.4692± 0.3113

Average Values 0.0070± 0.0015 3.4125± 0.7718

Table 2.6: Estimated values of the Coulomb (fc) and Viscous (Dm) friction
parameters of the motor 2
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Fig. 2.17 shows the behavior of the friction of the motor 1, estimated
using the real relation between constant velocity and force:

Figure 2.17: Behavior of the estimated friction for motor 1

The same is shown for motor 2 in Fig. 2.18:

Figure 2.18: Behavior of the estimated friction for motor 2
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2.4.2.2 Tuning of Accelerometer Aided Kalman Filter

To use correctly the Bartlett's test to tune the aaKF it's necessary to eval-
uate the variance of the accelerometer. As describe in the previous section
Experiment description - Tuning of Accelerometer Aided Kalman Filter, an
experiment with zero input is provided and the results are shown in Fig. 2.19.
With this experiment it's possible to demonstrate that the distribution of the
acceleration noise (after removing the bias value) is a Gaussian distribution
with zero mean.

Figure 2.19: Behavior of acceleration noise and its Gaussian distribution

So, it's possible to represent the acceleration noise (after removing the
bias value) as a white Gaussian noise with zero mean and sample variance:

σ̂2
acc =

N∑
i=0

(ẍi − ẍav)2

N − 1
(2.36)

Where ẍi is the sample of the instant i of the acceleration, ẍav is the mean
value and N is the total number of samples.

The next step is the tuning of aaKF using the Bartlett's test. For motor
1, three di�erent test are performed to see the variations in the time with
the same tuning. These tests are shown in Fig. 2.20. Then, to prove that
aaKF is usable with the same tuning for di�erent con�gurations of the system
(robustness of aaKF), the same prove it's performed with motor 1 attached
to motor 2 (in con�guration of Virtual Arm with di�erent Sti�ness Ka). The
results of these proves are shown in Fig. 2.21
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Figure 2.20: Bartlett's tests for motor 1

Figure 2.21: Bartlett's tests for motor 1 and Virtual Arm togheter



2.4. EXPERIMENTAL TESTING 55

2.4.2.3 Estimation of a Linear Motor's parameters

In Fig. 2.22 it is possible to see the estimation of the mechanical parameters
of the motor 1. As in the case of Bartlett's test, three di�erent experiments
are performed to evaluate the variation of the estimation in di�erent time
for a system with �constant� nominal values. It is possible to see that using
aaKF to estimate the real position and real velocity, no particular bene�ts
are achieved. For the value of the sti�ness it is not perfectly zero because of
the input disturbances (however reduced using ARMAX model in the RLS
estimator), but the estimation of all other principal parameters is correct. In
Tab. 2.7, the values of the estimation are reported as an average value and
relative standard deviation with 95% of the probability (from time 30 [s]).

Motor (without aaKF)

Prove Mm[kg] Dm[Ns
m

] Km[N
m

] fc[N ]

1 0.6099± 0.0030 2.8974± 0.0662 −0.0101± 0.0007 0.0130± 0.0011

2 0.6213± 0.0045 3.1111± 0.1355 −0.0121± 0.0016 0.0136± 0.0009

3 0.6122± 0.0042 3.0862± 0.1214 −0.0121± 0.0013 0.0131± 0.0009

Motor (with aaKF)

Prove Mm[kg] Dm[Ns
m

] Km[N
m

] fc[N ]

1 0.6089± 0.0029 2.8813± 0.0695 −0.0100± 0.0007 0.0131± 0.0011

2 0.6200± 0.0042 3.1076± 0.1188 −0.0121± 0.0014 0.0136± 0.0008

3 0.6115± 0.0043 3.0809± 0.1196 −0.0121± 0.0013 0.0131± 0.0009

Table 2.7: Estimation of the motor 1 parameters
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Figure 2.22: Estimation of the linear motor 1 parameters
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2.4.2.4 Estimation of a Virtual Arm's Impedance

Using the same method as before, it is possible to estimate the mechanical
parameters of the sum of motor 1 and 2 and subtracting the average values
of the three proves estimated before it is possible to obtain the estimation of
the parameters of the Virtual Arm. Three proves are performed with three
di�erent values of the sti�ness, using three tipical values of the arms sti�ness
(reported in [13]). So, in Fig. 2.23 it is possible to see the behavior of the
estimated parameters. In this case, the estimation using aaKF is better than
using only RLS estimator. It is because the noise that a�ect the output is
reduced. In the same way as before, in Tab. 2.8, the values of the Virtual
Arm parameters are reported:

Virtual Arm (without aaKF)

Ka[
N
m

] Ma[kg] Da[
Ns
m

] Ka[
N
m

] fc[N ]

300 0.5821± 0.0117 3.0628± 1.0873 280.8472± 24.2212 0.0069± 0.0022

600 0.5842± 0.0087 3.2243± 0.8106 580.3065± 28.7515 0.0070± 0.0021

900 0.5653± 0.00125 3.5093± 0.8985 859.2655± 29.1999 0.0070± 0.0018

Virtual Arm (with aaKF)

Ka[
N
m

] Ma[kg] Da[
Ns
m

] Ka[
N
m

] fc[N ]

300 0.6033± 0.0086 3.6758± 0.2614 297.8203± 7.6927 0.0058± 0.0005

600 0.6097± 0.0045 3.3997± 0.4595 596.4068± 13.1209 0.0064± 0.0007

900 0.6075± 0.0071 3.5074± 0.5396 883.9797± 18.2726 0.0076± 0.0011

Table 2.8: Estimation of the Virtual Arm parameters
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Figure 2.23: Estimation of the Virtual Arm parameters
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2.4.2.5 Estimation of "mechanical" parameters of the Human Arm

This is the �nal step about the estimation problem. So, �rstly, The estima-
tion of the X-Y system parameters is necessary in both direction (Fig. 2.24,
Tab. 2.9).

Motor

Axis Mm[kg] Dm

X 4.1408± 0.072 12.7184± 0.3777

Y 0.9548± 0.0023 6.2157± 0.1918

Table 2.9: Estimation of the parameters of the X-Y system's motors

Human Arm (X-Axis)

Point Ma[kg] Da[
Ns
m

] Ka[
N
m

] fc[N ]

1 0.7740± 0.0473 21.0660± 1.7040 171.1142± 13.4549 5.7806± 0.2586

2 0.4236± 0.0342 22.3898± 1.8630 159.9294± 23.2716 5.1323± 0.2011

3 0.7114± 0.0375 31.5313± 4.1188 246.4368± 13.9612 6.0177± 0.2503

4 0.5460± 0.0331 24.7030± 1.7247 224.6979± 30.1885 6.6220± 0.1832

Human Arm (Y-Axis)

Point Ma[kg] Da[
Ns
m

] Ka[
N
m

] fc[N ]

1 0.5634± 0.0270 44.7817± 9.9531 546.9010± 98.4803 1.7792± 0.1021

2 0.8420± 0.0429 65.8075± 4.0016 454.7515± 42.3808 1.9790± 0.1027

3 0.7202± 0.0363 52.2867± 5.0709 397.1847± 37.9193 1.9658± 0.0950

4 0.8002± 0.0397 51.9557± 4.3640 555.4930± 28.9554 2.0490± 0.0836

Table 2.10: Estimation of the Human Arm parameters
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Then, the results of the estimation of the arm parameters in X and Y axis
and for each considered point (1,2,3,4 Fig. B.1) are shown in Fig. 2.25 and
reported in Tab. 2.10. This experiment is performed with an healthy subject.
The results are that, in di�erent position of the End- Point of the Human
Arm and in the time, it's possible to see a variation of the condition of the
Human Arm. In the same position, the variations are slow and contained
within a range .

Figure 2.24: Estimation of the X-Y System parameters
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Figure 2.25: Estimation of the Human Arm parameters

As a conclusion of this chapter, a series of estimates of another healthy
subject are performed to show the variable behavior of the estimation be-
tween di�erent subject and to design the controller. The results are reported
in Appendix B.
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Chapter 3

Adaptive Controller

3.1 Control System Design

When a person becomes unable to interact physically with the environment,
and thus able to achieve their personal goals, due to injury or illness, it's
necessary to use the technology-based solutions to improve the re-learning
of the basic repetitive movements. In fact, the advanced robotics is able to
provide a continuous therapy at a lower cost compared to the activity car-
ried out by physiotherapists rehabilitation, giving patients greater chance of
recovery [30]. Furthermore, for doctors and therapists, a system based on
haptic interfaces is highly desired, since it is an e�cient system for measuring
the patient condition and it can provide an intense exercise rehabilitation by
providing the objective information about the progress of the patient. An-
other good quality of the robotic rehabilitation is that it's possible to use for
a lot time the robot. In this way, in fact, the abilities of the patient can im-
prove because the human neuromuscular system has an intrinsic dependence
on the brain plasticity. For the patient, furthermore, a visual feedback from
the virtual reality can improve the quality of the motion recovery. That said,
one of the most important focus of the rehabilitation robots is the control
law that is designed to achieve di�erent pre-�xed goals. In this thesis, the
main purpose is the emulation of the physiotherapist's help during a reha-
bilitation session. This one, in fact, adapts the reaction force based on the
patient and his ability to properly perform the proposed exercise. So, if the
patient has some problem, the physiotherapist help the patient to teach him
the correct exercise. Then the patient has to try to perform the exercise with
a less help to promote his partecipation and to stimulate better his plasticity.
This condition need an implementation of an adaptive control type that �ts
its parameters according to the patient arm conditions and to the mistake

63
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that the patient does during a repetitive exercise. In this chapter, a possible
approach is proposed to achieve the previous described goals, considering a
low computational cost compare to the most functional but complex work
described in [68]. A simple representation of the "chain" described above is
shown in Fig. 3.1

Figure 3.1: Schematic representation of a typical stand-alone robotic reha-
bilitation system and related therapy [68]

3.1.1 Rehabilitation Task and Control Strategy

Considering the X-Y System (shown in Fig. 2.10), a speci�c task is devel-
oped as an example, but the following rehabilitation controller can be used
with di�erent exercise decided in collaboration with the physiotherapist. A
schematic representation of the working system with the exercise chosen to
demonstrate the validity of the controller are shown in Fig. 3.2. During the
exercise session, the patient (represented as Real Pos in the previous �gure)
has to follow the command position (Cmd Pos) around the circle in the vir-
tual environment (created with the OPEN GL libraries). It's divided in four
sectors (A,B,C,D sectors) and for each one an estimation of the arm and
motor parameters in the middle point is required (1,2,3,4 point). So, using
the previous estimates, it's possible to include the conditions of the patient
in the design of a custom PD controller that allow to help the patient to
follow correctly the speci�c position and velocity.
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Figure 3.2: Schematic representation of the exercise in the X-Y working
system

To achieve this goal and the adaptation of the assistance during the ex-
ercise, an appropriate Optimization of the controller is developed for each
point and for each axis. The steps of the control strategy are shown below:

1. In the �rst revolution, the patient is helped to follow the command
position. So, at �rst, the controller teaches the patient the exercise to
do.

2. During the revolution, the controller evaluates, for each sector, the
patient's ability to perform the exercise properly.

3. The controller adjust the gains for the next revolution. So, if the patient
is able to follow correctly the reference, the help for the next revolution
will be not high, allowing a high and active participation by the patient.
In the other way, the controller try to re-learn the exercise, based on
the error of the previous revolution.

4. This control strategy is repeated for several revolution, decided with
the physiotherapist.
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3.1.2 Local Optimal Design

The �rst step to develop the controller is the inclusion of the characteris-
tics of the patient's arm. So, using the end-point impedance model (System
Modeling) estimated with the combination of RLS and aaKF estimators,
and the Optimal Control theory, it's simple to achieve this result. Following
the previous control strategy to optimize the controller, the optimal control
approach is developed in function of the position and velocity error (respec-
tively, ep and ev) between real and command behavior and in the same time
in function of the command force (Fcmd) used to help the patient during the
exercise. So, the cost function to minimize and used for the optimization is
the following:

J =
∞∑
k=0


ep(k)

ev(k)

T Qopt

ep(k)

ev(k)

 + F 2
cmd(k)Ropt

 = ...

... =
∞∑
k=0


ep(k)

ev(k)

T Qpos 0

0 Qvel

ep(k)

ev(k)

 + F 2
cmd(k)Ropt


(3.1)

Qopt is a cost matrix 2x2 that weight the position and velocity errors and Ropt

is a parameter that weight the command force. So, if the costs of the errors
are high compered with the cost of the input force, the optimization keep
high the position and velocity gains of the control law to reduce as much as
possible (in relation with the costs) the values of the errors, allowing a good
tracking of the trajectory of the exercise and in the same time teaching that
to the patient. In the opposite way, if the cost of the command force is the
most high, the controller keep low the gains to reduce the assistance force,
promoting active patient involvement. To include the human arm parameters
(the estimate are shown in Appendix B) and in the same time also the motor
parameters in the optimization, it's necessary to de�ne the Algebraic Riccati
Equation (ARE)

M∞ = Qopt + F TM∞F − F TM∞G[Ropt +GTM∞G]−1GTM∞F (3.2)

Where Qopt and Ropt are de�ned before, while F and G represents the discrete
matrix of the state space model of the motor/arm system (shown in Appendix
A, section A.1 Discretization1).

1Remembering that Fcmd = KtKiucmd. F and G matrices are the same as the system
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So, deciding a cost value of Ropt, keeping constant Qpos 6= 02 and Qvel 6= 03

and minimizing the eq. 3.1 following the method described in [34] it's possible
to obtain a stable PD controller:

Fcmd(k) = [R +GTM∞G]−1GTM∞Fx(k) = [Kp Kv]

ep(k)

ev(k)

 = ...

... = Kopt

ep(k)

ev(k)

 (3.3)

The presented approach is used for both axis and for each point 1,2,3,4 repre-
sented in Fig. 3.2 separately and o�-line. About this, to connect on-line the
di�erent controller's gain values between adjacent sections during the same
revolution, it's possible to use a strategy that weight the two values of the
position/velocity gains, depending on the angle in which the arm is located,
as the following (for example for the movement from A to B):

Kp1 7→2

Kv1 7→2

 =

Kp1

Kv1

 (1− p) +

Kp2

Kv2

 p (3.4)

Where Kp1 , Kp2 and Kv1 , Kv1 are respectively the position and the velocity
gains of the point 1 and 2. Kp1 7→2 and Kv1 7→2 are the position and velocity
gains implemented directly in the controller described in eq. 3.3. ”p” is a
parameter that represent in percentage how much space (in term of real an-
gle) has traveled the arm from the point 1 (sector A) to point 2 (sector B).
In this way is avoided the discontinuity of the behavior of the gain from the
�rst sector to the next.

considered in the appendix A.1 Discretization because, changing the state reference, it's
possible to arrive to the same system with position and velocity error as states of the
system)

2The value of Qpos is choise 10
6[ 1

m2 ] to weight in the same way force and position errors
with di�erent sizes of unit of measure.

3Qpos is around the 99% of the total value of Qopt because, for this implementation,
the position value is the most important target.
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Following, a part of the C code that describe the implementation of the
solution just discussed (where ”theta_max” represent the maximum angle
between two point, that in this case is 90 degree):

Figure 3.3: C-code about the weighing of the controller gains

In the same �gure it's possible to see that the variation of the controller,
during the transition between two points, depends on the actual real posi-
tion of the hand (referring to the angle of the circumference and represent as
”theta_real” describe in the sub-section Waiting system in Fig. 3.7), and
not from the one commanded. So, if the patient fails to move his arm, there
will be no sudden changes in term of gains.
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3.1.3 Variable weight cost for the input Force (Fcmd)

The principal point of this sub-section is to de�ne Ropt to allow to take into
account on-line about the variation of the abilities of the patient to perform
correctly the exercise. As describe before, Ropt represent the cost about the
use of the control energy that in this case it is the force used to help the
patient to do the rehabilitation exercise (Fcmd).

Using only the classic Optimal Control approach describe in the previous
sub-section Local Optimal Design it's not possible to fully replicate on-line
the physiotherapist's intervention during the exercise:

• PROBLEM: The control law is always the same for each revolution
and it's possible to choose only if the reaction force to help the patient
is:

- Strong (Ropt "low" 7→ Kopt "high"): The patient is helped a lot
in exercising because the controller tries to keep the position and
velocity errors very small, so he will never be moved to participate
actively.

- Weak (Ropt "low" 7→ Kopt "high"): The controller, is this case,
not help a lot the patient, so he is always invited to participate
actively in the exercise, even in the case of a lot of di�culties.
This situation is not very good because morally, the patient may
be a�ected by the fact that he is never able to �nish the exercise
and in the same time the plasticity of the brain is not trained.

- Not weak and not strong (Ropt "middle" value 7→ Kopt "middle"
value): The system tries to mediate between a small error and a
non-excessive reaction force. This is not a bad situation, but the
patient never provided complete help to learn the exercise well in
the event of di�culty and at the same time, he is never left "free"
to perform the exercise to actively participate in the rehabilitation
session.

• PROPOSED SOLUTION: To avoid the previous situation and to
promote the participation of the patient, using the force to help only
if necessary and with the correct intensity, a simple strategy is imple-
mented (another kind of Assist-as-Needed Controller is shown in [85]
and [68]).
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The proposed approach can be divided into two parts:

- O�-line part: The idea is to set a constant value of Qopt and
pre-calculate o�-line di�erent values of Optimal Control Gains for
each point 1,2,3,4 of the exercise and for both axis, depending of
the variation of Ropt (that is di�erent for each sector A,B,C,D and
for both axis). Then, a law that connect the variations of the
gains with the variation of the input cost Ropt is developed using
the previous Optimal gains.

- On-line part: Finally, an on-line strategy to update the values
of Ropt is necessary to evaluate, during the revolution M (actual
revolution), the gains of the controller that will be used in the
M+1 revolution (next revolution).

Figure 3.4: Comparison between real and approximate behavior of Kp1 and
Kv1 in function of Ropt (Point 1, both axis)
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About the o�-line part of the design of the adaptive control law, a series
of optimal control design have been carried out for each point (1,2,3,4 in Fig.
3.2) and for each axis, varying the value of Ropt from 1 to 1000 [ 1

N2 ] (with
step of 1 [ 1

N2 ]). In this way it's possible to describe o�-line the behavior
of Kopt in function of Ropt, shown, as an example for the point 1, in Fig.
3.4. In the same �gure are shown the approximation of the law to limit the
computational cost to reproduce correctly the same relationship for the on-
line application. So, a series of straight line are implemented to connect 7
di�erent values of the gains using the simple relation of a straight through
two point. Therefore, depending on the range in which the Ropt values falls,
the correct linear relationship will be chosen on-line. An example of the
implementation of this solution in sector A for the point 1 and for X-axis is
shown in Fig. 3.5 (For all other sector and for Y-axis the implementation is
the same):

Figure 3.5: C-code about the behavior of the gains in relation to the Ropt in
the point 1, sector A, X-axis

All pre-calculated gains (Position Gains [N
m
] and Velocity Gains [Ns

m
]) used

to develop the controller's law are shown in Tab. 3.1 for both axis.
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Point KpxR1
KpxR5

KpxR10
KpxR25

KpxR100
KpxR500

KpxR1000

1 787.7902 397.2571 288.3015 185.7766 92.9947 39.9039 27.1804

2 785.6777 395.6752 286.8034 184.3411 91.6218 38.6279 25.9712

3 786.9422 393.8043 284.4925 181.7795 89.0130 36.2283 23.7478

4 787.1622 395.3552 286.2245 183.6059 90.8269 37.8755 25.2646

Point KvxR1
KvxR5

KvxR10
KvxR25

KvxR100
KvxR500

KvxR1000

1 81.3090 42.2169 31.2933 20.99878 11.5812 6.0231 4.6055

2 81.2393 42.1962 31.2779 20.9730 11.5586 5.9821 4.5541

3 81.6969 42.3290 31.3587 21.0135 11.5578 5.9311 4.4792

4 81.4977 42.4203 31.3235 20.9980 11.5656 5.9702 4.5333

Point KpyR1
KpyR5

KpyR10
KpyR25

KpyR100
KpyR500

KpyR1000

1 684.9462 230.3403 132.4906 58.9382 15.0526 2.5687 1.0898

2 758.9197 281.5911 171.5351 82.5351 23.3698 4.5824 2.1728

3 775.3160 298.5336 185.8500 92.3205 27.2652 5.5303 2.6654

4 766.9077 292.5020 180.9285 88.9779 25.9000 5.1816 2.4787

Point KvyR1
KvyR5

KvyR10
KvyR25

KvyR100
KvyR500

KvyR1000

1 98.0700 46.9666 33.8870 21.8287 11.0640 4.9676 3.5108

2 98.7983 47.7983 34.7346 22.5999 11.5781 5.2232 3.6946

3 97.5739 47.4080 34.5295 22.5531 11.6182 5.2574 3.7207

4 97.3545 47.2541 34.3835 22.4205 11.5234 5.2079 3.6847

Table 3.1: Position and Velocity pre-calculated gains
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This kind of implementation is developed considering the actual Ropt in
the revolution M to evaluate the future values of the gains in the revolution
M+1. With this in mind, all Ropt have to change on-line to adapt the values
of the gains in relation to the abilities of the patient to follow the target.
The idea to update the values of Ropt is the evaluation of the average of the
position square error of the patient in the sector in which the arm is present.
In this way the update law depends only on the magnitude of the error (the
error can be present in both directions, positive and negative), giving more
weight to the average for bigger errors due to the quadratic form of the error.
So, taking as an example the evaluation of the error in sector A related to
the Fig. 3.2, the on-line law becomes:

RoptxA
= par1 +

par2
N−1∑
i=0

e2pxA
(i)

N

= par1 +
par2
eAindex

(3.5)

Where par1 and par2 are two parameters used to design the behavior of
the weight in the desired way solving a simple equation system shown below:

{
1 = par1 + par2

max(eAindex
)

1000 = par1 + par2
min(eAindex

)

(3.6)

1 and 1000 are, respectively, the minimum and the maximum values of Ropt.
These two values are the limit values of the Ropt's range. max(eAindex

and
min(eAindex

are respectively the decided maximum and minimum values of
the average square error desired. They are chosen by the physical consid-
erations made by the physiotherapist in relation of the approximation of
a constant minimum and maximum desired error during the exercise. So,
changing that values, it's possible to weigh more or less the mistake made by
the patient, a�ecting the intensity of help on the next revolution.
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3.1.4 Waiting system

In order to obtain a safe and correct behavior for the patient, another con-
strain is applied to the controller. In fact, if the patient has some problem
to follow the command target (for example, for a sudden sti�ening of the
arm that prevents movement in one of the two directions), the error between
command position and real position could become to high and the reaction
of the controller could be dangerous for the patient. Anyway, if Kopt is high,
the controller help the patient to follow the target, so this constrain is use-
ful only in the situation where Kopt in the visited area is not high and the
patient has to follow the target �alone�. In fact, in this situation, a too high
discrepancy between the command and real position angle may arise because
the reaction force initially is not very high (Kopt is not high) and changing
the normal gain values update (Fig. 3.3), creating discontinuities and sharp
movement in wrong directions. This situation is shown in Fig. 3.6.

Figure 3.6: Wrong direction of the movement caused by the controller

The implementation of the constrain is not just thought to avoid move-
ment outside of the area around the circle caused by controller. In fact,
setting that, if the error between θcmd and θreal is more big than a pre-�xed
value, θcmd doesn't change its value until this error will be reduced (Fig. 3.7).
So, it is also used to increase the patient's self-con�dence, that will see the
target position to reach move depending on their abilities.
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Figure 3.7: θreal and θcmd

Finally, it's better to specify that the values of θreal and θcmd are calculated
from the position of the two linear motor using X and Y coordinates in the
following way:

θcmd = atan2(
ycmd
xcmd

)
180

π

θreal = atan2(
yreal
xreal

)
180

π

(3.7)

De�ned in the range [−180◦, 180◦] and with the conditions:

if θcmd < 0
θcmd = 360◦ + θcmd

end

if θreal < 0
θreal = 360◦ + θreal

end
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3.2 Experimental Set-up

To test the validity of the controller, the X-Y system set-up described in the
section Experimental Set-up of Chapter 2 is used in the way shown in Fig.
3.8:

Figure 3.8: X-Y System with/without Human Arm

3.3 Experimental Testing

The implementation of the control law, based on the scheme in Fig. 3.9,
is used in the X-Y system shown in Fig. 3.8 to test the validity of the
emulation of the physiotherapist's help during the exercise and the waiting
system implemented.

Figure 3.9: Scheme used to control the system during the rehabilitation task
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In order to reduce the e�ect of the non-linear Coulomb friction during
the exercise (not considered in the previous design of the controller) a com-
pensation is performed using the previous estimated parameters fc and the
estimation of the velocity 4.

3.3.1 Experiment description

3.3.1.1 Test to validate the replication of the physioterapist in-
tervention

This experiment is performed to prove that the controller law works in the
correct way. So, for this purpose, the healthy subject under the test (his
impedance parameters are listed in the Appendix B) tried to follow the com-
mand target with his own arm. In Fig. 3.10 it is possible to see the real
behavior of the arm during �ve revolutions of the circle starting from point
1 and proceeding in counterclockwise direction.

4Here shown only with a �ltered derivative for lack of two accelerometers with which
to implement for both axis an aaKF estimator to improve the e�ectiveness
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Figure 3.10: Revolutions during the exercise

3.3.1.2 Test to validate the waiting system

In a second time, the subject under the test tried to simulate the situation
in which the patient has a big problem to follow the target with "minimal"
assistance, blocking the movement of the arm, until reaching the limit con-
strain about the di�erence between θcmd and θreal, selected for this test as
30◦.

3.3.2 Result

3.3.2.1 Test to validate the replication of the physioterapist in-
tervention

In Fig. 3.11 a representation of the square error committed by the subject
and the relative behavior of the position gain (the most important) is shown
(for both axis). It is possible to see that, during the revolution with a low
gain, it is possible to commit some error because the patient has to try to
follow the target alone. But, if the error is high, the gains increases for the
following revolution, teaching the patient the right path to follow.

3.3.2.2 Test to validate the waiting system

The �nal test shows, in Fig. 3.12 the correct operation of the waiting system.
In fact, when the subject blocked the arm, θcmd continues for another 30◦,
then the system block the target, waiting the movement of the patient.
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Figure 3.11: Behaviors of the square error and position gain for both axis



80 CHAPTER 3. ADAPTIVE CONTROLLER

Figure 3.12: Stop of the θcmd to wait the patient

The last thing to clarify is that, after a training session is over, it's pos-
sible to re-evaluate the condition of the patient, by adjusting the controller
depending on the improvements achieved.



Chapter 4

Conclusions

After commenting the experiment results, the main �nal considerations are
now reported. Firstly, the estimation of the human arm parameters allows
to know better the real condition of the patient. For example, the estimation
of the sti�ness of the arm is a parameter that could be used to understand if
there have been improvements with the rehabilitation training, leaving any
medical consideration to the subjectivity of the doctor or physiotherapist.
To obtain a good result of the estimates, an appropriate system model is
necessary to describe it in the best way. It's possible to model the arm as
a Mass-Damper-Sti�ness system (many examples of this kind of model for
the arm exist in literature , for example [78]). But the real system with the
motor is a�ected by unknown noises and non-linearity, so a state space ap-
proach, using the RLS estimator with an ARMAX model, allows to obtain
a proper estimation of the total system. Then, subtracting the mechanical
values of the motor it is possible to obtain an accurate estimation of the arm
parameters. In this thesis, it has also been demonstrated that, using a state
observer, it is possible to achieve a better result. In fact, using aaKF it's
possible to remove the quantization noise of the encoder, obtaining a better
estimation of the velocity (used to take into account about the non-linear
Coulomb friction in the system). The implementation of the aaKF, in ad-
dition, allows to solve the problem about the variation of the human arm
parameters for di�erent patients. So, it is not necessary to tune the aaKF
for each patient. Finally, using the average values of the arm's estimation,
it has been shown an implementation of a control law that allows to design
an appropriate controller that is di�erent for each person. This control law
changes during the exercise, allowing to follow the condition and the capabil-
ities of the patient, improving the reaction force to help the patient to follow
the command target if the error committed is high, and in the opposite way,
relaxing the reaction force if the patient is able to follow the target. In this
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way the patient is more motivated to continue the exercise and the brain
plasticity is exiting to remember better the correct movement. More exper-
iment are necessary in the future to understand better the bene�ts of this
approach, especially with a�ected arms. Furthermore, the development of a
more accurate arm's model is necessary to consider other e�ects, for example
the combined response of the x and y directions during the movements.



Appendix A

Zero-Order Holder discretization

of the system

The Zero-Order Holder discretization method is a technique used to go from
continuous time to discrete time. There are many reasons why it's important
to discretize a continuous-time system. First of all, a lot of system now are
controlled by digital controller, so it's better to uniform the controller with
the plant to control. Another reason is that a lot of identi�cation code are
more easily implementable in discrete time because the systems are described
as a linear function of the previous and actual sample. So, taking into ac-
count about the holder H (that keep constant the input u(t) from to di�erent
step) and about the sampling device S (that take an information from the
continuous output x(t) of the system in form of sample in the step k) it's
simple to describe a continuous sistem as a "digital" system. Thanks the
system used for taking into account about the discretization, this method is
called also "Step-Invariant Trasformation" and a schematic representation is
shown in Fig. A.1. For more details about the theory of this kind of dis-
cretization, see [23].

Figure A.1: Step Invariant Trasformation
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A.1 Discretization

The purpose of this appendix is to show the mathematical approach to con-
nect the continuous time (used to describe the natural system consisting of
motor and arm) with the discrete time (used to describe the system in an
appropriated form for the identi�cation and for the controller). So, �rstly,
only the part of the �gure used for the Model of the system is reported here
(Fig. A.2):

Figure A.2: Block Diagram to describe the Motor-Arm system

For the same reason, eq. 2.1 is reported only for semplicity of compre-
hension:

G(s) =
Xm(s)

Ucmd(s)
=

KtKi

Mms2+Dms

1 + Mas2+Das+Ka

Mms2+Dms

=
KtKi

Ms2 +Ds+Ka

(A.1)

With: M = Mm +Ma, D = Dm +Da

Using eq. A.1 in the Continuous Time Domain is possible to obtain the
State Space Model representation:
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The next step is the discretization of the system using the Zero-Order
Holder method, considering Ts as a sample time from two di�erent samples,
where the signals are keeping constant. So, the discrete version of the State
Space Model describe before is the following:
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Where:
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(A.4)

Using the Z-transform in the system A.3, the Discrete Transfer Function
becomes:

Gd(z) =
Xm(z)

Ucmd(z)
= H(zI − F )−1GU =

zG1 + (−FF22G1+F12G2)

z2 + z(−F22 − F11) + (F11F22 − F21F12)
= ...

... =
zb1 + b0

z2 + za1 + a0
=

z−1b1 + z−2b0
1 + z−1a1 + z−2a0

(A.5)

In this way, a simple discrete representation of the initial system was created.
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A.2 Connection between Discrete and Contin-

uous Systems

When the estimation of the discrete system is achieved, it's necessary to
return to the initial continuous system to obtain an information about the
condition of the patient. For this purpose, from A.3, eq. A.4 and A.5 it's
possible to de�ne an approximation of the coe�cients a1, a0, b1, b0:
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With these equations system is possible to estimate the value of the parame-
ters α, β, γ. Using these last parameters it's simple to derive the information
of the total continuous system:

M̂ = KiKt

γ̂

D̂ = −β̂M̂
K̂a = −α̂M̂

(A.7)

To obtain the parameters of the Arm, the �nal step is only to remove the
values of the motor from the total values estimated:

M̂a = M̂ − M̂m

D̂a = D̂ − D̂m

K̂a = K̂a − 0

(A.8)



Appendix B

Second Subject Estimation

Results

In this appendix some test are conducted to test with another subject the
estimation code and in the same way to obtain the speci�c results of Mass,
Damping factor and Sti�ness to use to design the controller. The estimation
are performed in four di�erent point of the X-Y working system and in both
direction, as shown in Fig. B.1 for the previous estimation and here reported
to understand better the situation:

Figure B.1: Working System, X-Y plane

The circle represent only the behavior to follow by the patient during the
exercise. The choice of only four point is related with the necessity to limit
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the stress of the patient's arm before the exercise session. So, in Tab. B.1
the average values with the standard deviation of the Human Arm of the
second subject are reported and in Fig. B.2 are shown the behavior for each
estimation for each point and for each axis.

Human Arm (X-Axis)

Point Ma[kg] Da[
Ns
m ] Ka[

N
m ] fc[N ]

1 0.4615± 0.0428 9.6650± 2.2057 93.3894± 15.7535 5.7186± 0.1698

2 0.4788± 0.0184 15.5574± 1.1058 124.8165± 17.1971 5.4962± 0.1469

3 0.3724± 0.0051 17.2736± 1.7418 177.6957± 6.3052 5.4710± 0.1573

4 0.4179± 0.0126 12.5843± 0.7528 139.9010± 21.1631 5.8165± 0.1132

Human Arm (Y-Axis)

Point Ma[kg] Da[
Ns
m ] Ka[

N
m ] fc[N ]

1 0.4546± 0.0494 40.1667± 6.0451 554.4791± 45.1490 1.8232± 0.1034

2 0.4225± 0.0196 44.8716± 2.3351 354.6298± 51.3641 1.7328± 0.1062

3 0.5859± 0.0183 44.2142± 2.9372 375.6720± 25.6326 2.5645± 0.0634

4 0.6082± 0.0145 42.3212± 2.6487 407.8477± 123.4616 1.9870± 0.0920

Table B.1: Estimation of the Human Arm parameters of the second subject
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Human Arm (X-Axis)



90 APPENDIX B. SECOND SUBJECT ESTIMATION RESULTS



91

Human Arm (Y-Axis)
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Figure B.2: Estimation of the Human Arm parameters of the second subject
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