48,698 research outputs found

    AN EMPIRICAL TEST FOR THE EXPANSION-CONTROL MODEL FOR MANAGING END-USER COMPUTING

    Get PDF
    The purpose of this research is to determine if the expansion-control model as proposed, adapted, and refined (Munro and Huff 1985; Munro, Huff and Moore 1987) is useful for understanding and predicting changes in EUC management strategy over time. The long-term interest is not so much in understanding the specific problem of managing end-user computing as in understanding the general problem of managing new information technology in organizations. A field study was conducted with eighteen large firms in manufacturing and services to review their experience with EUC management over a nine year period. As predicted, most firms took a hands-off approach to EUC management during the initiation phase and evolved toward a balance between control and slack by 1987. However, changes in firms\u27 EUC management strategy over time were more complex than predicted. In addition, the expansion and control constructs were not as independent as previously thought. The interaction between the two variables appears to be related, at least in part, to time and the stage of diffusion. The research suggests that current models of EUC management (and thus organizational learning about information technology) may be too simplistic. Suggestions for developing more general models of the process are offered

    Mapping Big Data into Knowledge Space with Cognitive Cyber-Infrastructure

    Full text link
    Big data research has attracted great attention in science, technology, industry and society. It is developing with the evolving scientific paradigm, the fourth industrial revolution, and the transformational innovation of technologies. However, its nature and fundamental challenge have not been recognized, and its own methodology has not been formed. This paper explores and answers the following questions: What is big data? What are the basic methods for representing, managing and analyzing big data? What is the relationship between big data and knowledge? Can we find a mapping from big data into knowledge space? What kind of infrastructure is required to support not only big data management and analysis but also knowledge discovery, sharing and management? What is the relationship between big data and science paradigm? What is the nature and fundamental challenge of big data computing? A multi-dimensional perspective is presented toward a methodology of big data computing.Comment: 59 page

    Enhancing aeropropulsion research with high-speed interactive computing

    Get PDF
    NASA-Lewis has committed to a long range goal of creating a numerical test cell for aeropropulsion research and development. Efforts are underway to develop a first generation Numerical Propulsion System Simulation (NPSS). The NPSS will provide a unique capability to numerically simulate advanced propulsion systems from nose to tail. Two essential ingredients to the NPSS are: (1) experimentally validated Computational Fluid Dynamics (CFD) codes; and (2) high performing computing systems (hardware and software) that will permit those codes to be used efficiently. To this end, NASA-Lewis is using high speed, interactive computing as a means for achieving Integrated CFD and Experiments (ICE). The development is described of a prototype ICE system for multistage compressor flow physics research

    ERP implementation methodologies and frameworks: a literature review

    Get PDF
    Enterprise Resource Planning (ERP) implementation is a complex and vibrant process, one that involves a combination of technological and organizational interactions. Often an ERP implementation project is the single largest IT project that an organization has ever launched and requires a mutual fit of system and organization. Also the concept of an ERP implementation supporting business processes across many different departments is not a generic, rigid and uniform concept and depends on variety of factors. As a result, the issues addressing the ERP implementation process have been one of the major concerns in industry. Therefore ERP implementation receives attention from practitioners and scholars and both, business as well as academic literature is abundant and not always very conclusive or coherent. However, research on ERP systems so far has been mainly focused on diffusion, use and impact issues. Less attention has been given to the methods used during the configuration and the implementation of ERP systems, even though they are commonly used in practice, they still remain largely unexplored and undocumented in Information Systems research. So, the academic relevance of this research is the contribution to the existing body of scientific knowledge. An annotated brief literature review is done in order to evaluate the current state of the existing academic literature. The purpose is to present a systematic overview of relevant ERP implementation methodologies and frameworks as a desire for achieving a better taxonomy of ERP implementation methodologies. This paper is useful to researchers who are interested in ERP implementation methodologies and frameworks. Results will serve as an input for a classification of the existing ERP implementation methodologies and frameworks. Also, this paper aims also at the professional ERP community involved in the process of ERP implementation by promoting a better understanding of ERP implementation methodologies and frameworks, its variety and history

    Research and Development Workstation Environment: the new class of Current Research Information Systems

    Get PDF
    Against the backdrop of the development of modern technologies in the field of scientific research the new class of Current Research Information Systems (CRIS) and related intelligent information technologies has arisen. It was called - Research and Development Workstation Environment (RDWE) - the comprehensive problem-oriented information systems for scientific research and development lifecycle support. The given paper describes design and development fundamentals of the RDWE class systems. The RDWE class system's generalized information model is represented in the article as a three-tuple composite web service that include: a set of atomic web services, each of them can be designed and developed as a microservice or a desktop application, that allows them to be used as an independent software separately; a set of functions, the functional filling-up of the Research and Development Workstation Environment; a subset of atomic web services that are required to implement function of composite web service. In accordance with the fundamental information model of the RDWE class the system for supporting research in the field of ontology engineering - the automated building of applied ontology in an arbitrary domain area, scientific and technical creativity - the automated preparation of application documents for patenting inventions in Ukraine was developed. It was called - Personal Research Information System. A distinctive feature of such systems is the possibility of their problematic orientation to various types of scientific activities by combining on a variety of functional services and adding new ones within the cloud integrated environment. The main results of our work are focused on enhancing the effectiveness of the scientist's research and development lifecycle in the arbitrary domain area.Comment: In English, 13 pages, 1 figure, 1 table, added references in Russian. Published. Prepared for special issue (UkrPROG 2018 conference) of the scientific journal "Problems of programming" (Founder: National Academy of Sciences of Ukraine, Institute of Software Systems of NAS Ukraine

    Integrated Green Cloud Computing Architecture

    Full text link
    Arbitrary usage of cloud computing, either private or public, can lead to uneconomical energy consumption in data processing, storage and communication. Hence, green cloud computing solutions aim not only to save energy but also reduce operational costs and carbon footprints on the environment. In this paper, an Integrated Green Cloud Architecture (IGCA) is proposed that comprises of a client-oriented Green Cloud Middleware to assist managers in better overseeing and configuring their overall access to cloud services in the greenest or most energy-efficient way. Decision making, whether to use local machine processing, private or public clouds, is smartly handled by the middleware using predefined system specifications such as service level agreement (SLA), Quality of service (QoS), equipment specifications and job description provided by IT department. Analytical model is used to show the feasibility to achieve efficient energy consumption while choosing between local, private and public Cloud service provider (CSP).Comment: 6 pages, International Conference on Advanced Computer Science Applications and Technologies, ACSAT 201

    Single-Board-Computer Clusters for Cloudlet Computing in Internet of Things

    Get PDF
    The number of connected sensors and devices is expected to increase to billions in the near future. However, centralised cloud-computing data centres present various challenges to meet the requirements inherent to Internet of Things (IoT) workloads, such as low latency, high throughput and bandwidth constraints. Edge computing is becoming the standard computing paradigm for latency-sensitive real-time IoT workloads, since it addresses the aforementioned limitations related to centralised cloud-computing models. Such a paradigm relies on bringing computation close to the source of data, which presents serious operational challenges for large-scale cloud-computing providers. In this work, we present an architecture composed of low-cost Single-Board-Computer clusters near to data sources, and centralised cloud-computing data centres. The proposed cost-efficient model may be employed as an alternative to fog computing to meet real-time IoT workload requirements while keeping scalability. We include an extensive empirical analysis to assess the suitability of single-board-computer clusters as cost-effective edge-computing micro data centres. Additionally, we compare the proposed architecture with traditional cloudlet and cloud architectures, and evaluate them through extensive simulation. We finally show that acquisition costs can be drastically reduced while keeping performance levels in data-intensive IoT use cases.Ministerio de Economía y Competitividad TIN2017-82113-C2-1-RMinisterio de Economía y Competitividad RTI2018-098062-A-I00European Union’s Horizon 2020 No. 754489Science Foundation Ireland grant 13/RC/209

    Optimizing intermittent water supply in urban pipe distribution networks

    Full text link
    In many urban areas of the developing world, piped water is supplied only intermittently, as valves direct water to different parts of the water distribution system at different times. The flow is transient, and may transition between free-surface and pressurized, resulting in complex dynamical features with important consequences for water suppliers and users. Here, we develop a computational model of transition, transient pipe flow in a network, accounting for a wide variety of realistic boundary conditions. We validate the model against several published data sets, and demonstrate its use on a real pipe network. The model is extended to consider several optimization problems motivated by realistic scenarios. We demonstrate how to infer water flow in a small pipe network from a single pressure sensor, and show how to control water inflow to minimize damaging pressure gradients
    corecore