481 research outputs found

    Analysis on One-Stage SSHC Rectifier for Piezoelectric Vibration Energy Harvesting

    Full text link
    Conventional SSHI (synchronized switch harvesting on inductor) has been believed to be one of the most efficient interface circuits for piezoelectric vibration energy harvesting systems. It employs an inductor and the resulting RLC loop to synchronously invert the charge across the piezoelectric material to avoid charge and energy loss due to charging its internal capacitor (CPC_P). The performance of the SSHI circuit greatly depends on the inductor and a large inductor is often needed; hence significantly increases the volume of the system. An efficient interface circuit using a synchronous charge inversion technique, named as SSHC, was proposed recently. The SSHC rectifier utilizes capacitors, instead of inductors, to flip the voltage across the harvester. For a one-stage SSHC rectifier, one single intermediate capacitor (CTC_T) is employed to temporarily store charge flowed from CPC_P and inversely charge CPC_P to perform the charge inversion. In previous studies, the voltage flip efficiency achieves 1/3 when CT=CPC_T = C_P. This paper presents that the voltage flip efficiency can be further increased to approach 1/2 if CTC_T is chosen to be much larger than CPC_P

    Maximum performance of piezoelectric energy harvesters when coupled to interface circuits

    Get PDF
    This paper presents a complete optimization of a piezoelectric vibration energy harvesting system, including a piezoelectric transducer, a power conditioning circuit with full semiconductor device models, a battery and passive components. To the authors awareness, this is the first time and all of these elements have been integrated into one optimization. The optimization is done within a framework, which models the combined mechanical and electrical elements of a complete piezoelectric vibration energy harvesting system. To realize the optimization, an optimal electrical damping is achieved using a single-supply pre-biasing circuit with a buck converter to charge the battery. The model is implemented in MATLAB and verified in SPICE. The results of the full system model are used to find the mechanical and electrical system parameters required to maximize the power output. The model, therefore, yields the upper bound of the output power and the system effectiveness of complete piezoelectric energy harvesting systems and, hence, provides both a benchmark for assessing the effectiveness of existing harvesters and a framework to design the optimized harvesters. It is also shown that the increased acceleration does not always result in increased power generation as a larger damping force is required, forcing a geometry change of the harvester to avoid exceeding the piezoelectric breakdown voltage. Similarly, increasing available volume may not result in the increased power generation because of the difficulty of resonating the beam at certain frequencies whilst utilizing the entire volume. A maximum system effectiveness of 48% is shown to be achievable at 100 Hz for a 3.38-cm3 generator

    Architecture of Micro Energy Harvesting Using Hybrid Input of RF, Thermal and Vibration for Semi-Active RFID Tag

    Get PDF
    This research work presents a novel architecture of Hybrid Input Energy Harvester (HIEH) system for semi-active Radio Frequency Identification (RFID) tags. The proposed architecture consists of three input sources of energy which are radio frequency signal, thermal and vibration. The main purpose is to solve the semi-active RFID tags limited lifespan issues due to the need for batteries to power their circuitries. The focus will be on the rectifiers and DC-DC converter circuits with an ultra-low power design to ensure low power consumption in the system. The design architecture will be modelled and simulated using PSpice software, Verilog coding using Mentor Graphics and real-time verification using field-programmable gate array board before being implemented in a 0.13 µm CMOS technology. Our expectations of the results from this architecture are it can deliver 3.3 V of output voltage, 6.5 mW of output power and 90% of efficiency when all input sources are simultaneously harvested. The contribution of this work is it able to extend the lifetime of semi-active tag by supplying electrical energy continuously to the device. Thus, this will indirectly  reduce the energy limitation problem, eliminate the dependency on batteries and make it possible to achieve a batteryless device.This research work presents a novel architecture of Hybrid Input Energy Harvester (HIEH) system for semi-active Radio Frequency Identification (RFID) tags. The proposed architecture consists of three input sources of energy which are radio frequency signal, thermal and vibration. The main purpose is to solve the semi-active RFID tags limited lifespan issues due to the need for batteries to power their circuitries. The focus will be on the rectifiers and DC-DC converter circuits with an ultra-low power design to ensure low power consumption in the system. The design architecture will be modelled and simulated using PSpice software, Verilog coding using Mentor Graphics and real-time verification using field-programmable gate array board before being implemented in a 0.13 µm CMOS technology. Our expectations of the results from this architecture are it can deliver 3.3 V of output voltage, 6.5 mW of output power and 90% of efficiency when all input sources are simultaneously harvested. The contribution of this work is it able to extend the lifetime of semi-active tag by supplying electrical energy continuously to the device. Thus, this will indirectly  reduce the energy limitation problem, eliminate the dependency on batteries and make it possible to achieve a batteryless device

    Power electronic interfaces for piezoelectric energy harvesters

    Get PDF
    Motion-driven energy harvesters can replace batteries in low power wireless sensors, however selection of the optimal type of transducer for a given situation is difficult as the performance of the complete system must be taken into account in the optimisation. In this thesis, a complete piezoelectric energy harvester system model including a piezoelectric transducer, a power conditioning circuit, and a battery, is presented allowing for the first time a complete optimisation of such a system to be performed. Combined with previous work on modelling an electrostatic energy harvesting system, a comparison of the two transduction methods was performed. The results at 100 Hz indicate that for small MEMS devices at low accelerations, electrostatic harvesting systems outperform piezoelectric but the opposite is true as the size and acceleration increases. Thus the transducer type which achieves the best power density in an energy harvesting system for a given size, acceleration and operating frequency can be chosen. For resonant vibrational energy harvesting, piezoelectric transducers have received a lot of attention due to their MEMS manufacturing compatibility with research focused on the transduction method but less attention has been paid to the output power electronics. Detailed design considerations for a piezoelectric harvester interface circuit, known as single-supply pre-biasing (SSPB), are developed which experimentally demonstrate the circuit outperforming the next best known interface's theoretical limit. A new mode of operation for the SSPB circuit is developed which improves the power generation performance when the piezoelectric material properties have degraded. A solution for tracking the maximum power point as the excitation changes is also presented.Open Acces

    Low power energy harvesting and storage techniques from ambient human powered energy sources

    Get PDF
    Conventional electrochemical batteries power most of the portable and wireless electronic devices that are operated by electric power. In the past few years, electrochemical batteries and energy storage devices have improved significantly. However, this progress has not been able to keep up with the development of microprocessors, memory storage, and sensors of electronic applications. Battery weight, lifespan and reliability often limit the abilities and the range of such applications of battery powered devices. These conventional devices were designed to be powered with batteries as required, but did not allow scavenging of ambient energy as a power source. In contrast, development in wireless technology and other electronic components are constantly reducing the power and energy needed by many applications. If energy requirements of electronic components decline reasonably, then ambient energy scavenging and conversion could become a viable source of power for many applications. Ambient energy sources can be then considered and used to replace batteries in some electronic applications, to minimize product maintenance and operating cost. The potential ability to satisfy overall power and energy requirements of an application using ambient energy can eliminate some constraints related to conventional power supplies. Also power scavenging may enable electronic devices to be completely self-sustaining so that battery maintenance can eventually be eliminated. Furthermore, ambient energy scavenging could extend the performance and the lifetime of the MEMS (Micro electromechanical systems) and portable electronic devices. These possibilities show that it is important to examine the effectiveness of ambient energy as a source of power. Until recently, only little use has been made of ambient energy resources, especially for wireless networks and portable power devices. Recently, researchers have performed several studies in alternative energy sources that could provide small amounts of electricity to low-power electronic devices. These studies were focused to investigate and obtain power from different energy sources, such as vibration, light, sound, airflow, heat, waste mechanical energy and temperature variations. This research studied forms of ambient energy sources such as waste mechanical (rotational) energy from hydraulic door closers, and fitness exercise bicycles, and its conversion and storage into usable electrical energy. In both of these examples of applications, hydraulic door closers and fitness exercise bicycles, human presence is required. A person has to open the door in order for the hydraulic door closer mechanism to function. Fitness exercise bicycles need somebody to cycle the pedals to generate electricity (while burning calories.) Also vibrations, body motions, and compressions from human interactions were studied using small piezoelectric fiber composites which are capable of recovering waste mechanical energy and converting it to useful electrical energy. Based on ambient energy sources, electrical energy conversion and storage circuits were designed and tested for low power electronic applications. These sources were characterized according to energy harvesting (scavenging) methods, and power and energy density. At the end of the study, the ambient energy sources were matched with possible electronic applications as a viable energy source

    Piezoelectric Energy Harvesting: Enhancing Power Output by Device Optimisation and Circuit Techniques

    Get PDF
    Energy harvesting; that is, harvesting small amounts of energy from environmental sources such as solar, air flow or vibrations using small-scale (≈1cm 3 ) devices, offers the prospect of powering portable electronic devices such as GPS receivers and mobile phones, and sensing devices used in remote applications: wireless sensor nodes, without the use of batteries. Numerous studies have shown that power densities of energy harvesting devices can be hundreds of µW; however the literature also reveals that power requirements of many electronic devices are in the mW range. Therefore, a key challenge for the successful deployment of energy harvesting technology remains, in many cases, the provision of adequate power. This thesis aims to address this challenge by investigating two methods of enhancing the power output of a piezoelectric-based vibration energy harvesting device. Cont/d

    Energy Harvesting for Tire Pressure Monitoring Systems

    Get PDF
    Tire pressure monitoring systems (TPMSs) predict over- and underinflated tires, and warn the driver in critical situations. Today, battery powered TPMSs suffer from limited energy. New sensor features such as friction determination or aquaplaning detection require even more energy and would significantly decrease the TPMS lifetime. Harvesting electrical energy inside the tire of a vehicle has been considered as a promising alternative to overcome the limited lifetime of a battery. However, it is a real challenge to design a system, that generates electrical energy at low velocities while being robust at 200 km/h where radial accelerations up to 20000 m/s2 occur. This work focusses on developing different electromechanical energy transducers that meet the high requirements of the automotive sector. Different approaches are addressed on how the change of acceleration and strain within the tire can be used to provide mechanical energy to the energy harvester. The energy harvester converts the mechanical energy into electrical energy. In this thesis, piezoelectric and electromagnetic transducers are discussed in depth, modelled as electromechanical networks. Since the transducers provide energy in the form of an AC voltage, but sensors require a DC voltage, various common interface circuits are compared, using LTspice and applying method of the stochastic signal analysis. Furthermore, a buck-boost converter concept for the electromagnetic energy harvester is optimized and improved. Experiments on a tire test rig validate the theoretically determined output and confirm that well designed energy harvesters in the tire can generate much more energy than required by an TPMS not only at high velocities but also at velocities as low as 20 km/h

    Implementation of a Single Supply Pre-biasing Circuit for Piezoelectric Energy Harvesters

    No full text
    AbstractIncreased output power can be obtained from piezoelectric energy harvesters by using switching circuits that modify the charge on the material at the extremes of cantilever travel. Here we present an implementation of the most efficient of these charge modification techniques, single-supply piezoelectric pre-biasing. We describe practical results from this scheme and circuit details, including power processing components and control circuits. The power circuit current paths are synchronously commutated with MOSFETs, removing inefficient diode voltage drops. The control circuit is implemented using low power discretes. A useful output power of 2.6 mW was achieved after a 400μW reduction required for the control circuitry. This is a factor of 4.3 greater than when the harvester was connected to a passive diode bridge and is greater than can be achieved by other piezoelectric interface circuits using an inductor with the same Q-factor

    The Design and Effect of Power Electronics on Vibration-Based Energy Harvesting Methods.

    Full text link
    Recent advancements in communication and low-power sensor nodes have led to innovative data acquisition systems for applications such as heart monitoring and forest-fire detection. Often these systems are in locations characterized by limited access to electrical power, yet they are in the presence of ambient mechanical vibrations. Therefore, energy harvesting from mechanical vibrations is proposed as a solution for powering these wireless sensor nodes. There are two devices that are commonly used for vibration-based energy harvesting: piezoelectric devices and electrostatic devices. This dissertation focuses on the power electronic interface between vibration energy harvesting devices and electrical energy storage elements. By including power electronic efficiency as a parameter in the analysis of variable-capacitance energy harvesting, new fundamental properties of these devices are derived: a threshold efficiency necessary for energy harvesting, analytical solutions for optimal harvesting conditions, a comparison of energy harvesting methods at practical power electronic efficiencies, and a comparison of energy harvesting capabilities of various device architectures. Case studies are presented to illustrate practical applications of the theory presented in this work. One case study demonstrates the advantage of using the Charge Pump Method for MEMs applications, and illustrates the use of these new fundamental properties to aid power electronic architecture selection. Ultimately, the analysis-aided design produces more than twice as much power as previous implementations on the same device. Recently, the dynamic active energy harvesting method has been proposed as a way to widen the bandwidth of resonant piezoelectric energy harvesters; however, the bandwidth extension is dependent on power electronic efficiency. In this dissertation a new energy harvesting system is proposed that includes a resonant inverter topology, in conjunction with new low-power analog control circuitry, in order to produce the first wideband autonomous dynamic active energy harvesting system. Experimental results using the Mide Volture V20w piezoelectric device shows that the harvested power is up to twice that of the adaptive rectifier method. These results include previously ignored loss mechanisms such as control losses, gating losses, and phase detection losses; making this system the first autonomous energy harvesting system of its kind.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120824/1/steinal_1.pd

    Choice of Piezoelectric Element over Accelerometer for an Energy-Autonomous Shoe-Based System

    Get PDF
    Shoe-based wearable sensor systems are a growing research area in health monitoring, disease diagnosis, rehabilitation, and sports training. These systems—equipped with one or more sensors, either of the same or different types—capture information related to foot movement or pressure maps beneath the foot. This captured information offers an overview of the subject’s overall movement, known as the human gait. Beyond sensing, these systems also provide a platform for hosting ambient energy harvesters. They hold the potential to harvest energy from foot movements and operate related low-power devices sustainably. This article proposes two types of strategies (Strategy 1 and Strategy 2) for an energy-autonomous shoe-based system. Strategy 1 uses an accelerometer as a sensor for gait acquisition, which reflects the classical choice. Strategy 2 uses a piezoelectric element for the same, which opens up a new perspective in its implementation. In both strategies, the piezoelectric elements are used to harvest energy from foot activities and operate the system. The article presents a fair comparison between both strategies in terms of power consumption, accuracy, and the extent to which piezoelectric energy harvesters can contribute to overall power management. Moreover, Strategy 2, which uses piezoelectric elements for simultaneous sensing and energy harvesting, is a power-optimized method for an energy-autonomous shoe system
    corecore