Analysis on One-Stage SSHC Rectifier for Piezoelectric Vibration Energy Harvesting

Abstract

Conventional SSHI (synchronized switch harvesting on inductor) has been believed to be one of the most efficient interface circuits for piezoelectric vibration energy harvesting systems. It employs an inductor and the resulting RLC loop to synchronously invert the charge across the piezoelectric material to avoid charge and energy loss due to charging its internal capacitor (CPC_P). The performance of the SSHI circuit greatly depends on the inductor and a large inductor is often needed; hence significantly increases the volume of the system. An efficient interface circuit using a synchronous charge inversion technique, named as SSHC, was proposed recently. The SSHC rectifier utilizes capacitors, instead of inductors, to flip the voltage across the harvester. For a one-stage SSHC rectifier, one single intermediate capacitor (CTC_T) is employed to temporarily store charge flowed from CPC_P and inversely charge CPC_P to perform the charge inversion. In previous studies, the voltage flip efficiency achieves 1/3 when CT=CPC_T = C_P. This paper presents that the voltage flip efficiency can be further increased to approach 1/2 if CTC_T is chosen to be much larger than CPC_P

    Similar works

    Full text

    thumbnail-image

    Available Versions