63 research outputs found

    Efficient Generation of Craig Interpolants in Satisfiability Modulo Theories

    Full text link
    The problem of computing Craig Interpolants has recently received a lot of interest. In this paper, we address the problem of efficient generation of interpolants for some important fragments of first order logic, which are amenable for effective decision procedures, called Satisfiability Modulo Theory solvers. We make the following contributions. First, we provide interpolation procedures for several basic theories of interest: the theories of linear arithmetic over the rationals, difference logic over rationals and integers, and UTVPI over rationals and integers. Second, we define a novel approach to interpolate combinations of theories, that applies to the Delayed Theory Combination approach. Efficiency is ensured by the fact that the proposed interpolation algorithms extend state of the art algorithms for Satisfiability Modulo Theories. Our experimental evaluation shows that the MathSAT SMT solver can produce interpolants with minor overhead in search, and much more efficiently than other competitor solvers.Comment: submitted to ACM Transactions on Computational Logic (TOCL

    Efficient Interpolant Generation in Satisfiability Modulo Theories

    Get PDF
    The problem of computing Craig Interpolants for propositional (SAT) formulas has recently received a lot of interest, mainly for its applications in formal verification. However, propositional logic is often not expressive enough for representing many interesting verification problems, which can be more naturally addressed in the framework of Satisfiability Modulo Theories, SMT. Although {some} works have addressed the topic of generating interpolants in SMT, the techniques and tools that are currently available have some limitations, and their performance still does not exploit the full power of current state-of-the-art SMT solvers. In this paper we try to close this gap. We present several techniques for interpolant generation in SMT which overcome the limitations of the current generators mentioned above, and which take full advantage of state-of-the-art SMT technology. These novel techniques can lead to substantial performance improvements wrt. the currently available tools. We support our claims with an extensive experimental evaluation of our implementation of the proposed techniques in the MathSAT SMT solver

    Delayed theory combination vs. Nelson-Oppen for satisfiability modulo theories: a comparative analysis

    Get PDF
    Most state-of-the-art approaches for Satisfiability Modulo Theories (SMT(T))(SMT(\mathcal{T})) rely on the integration between a SAT solver and a decision procedure for sets of literals in the background theory T(T-solver)\mathcal{T} (\mathcal{T}{\text {-}}solver) . Often T\mathcal{T} is the combination T1âˆȘT2\mathcal{T}_1 \cup \mathcal{T}_2 of two (or more) simpler theories (SMT(T1âˆȘT2))(SMT(\mathcal{T}_1 \cup \mathcal{T}_2)) , s.t. the specific Ti-solvers{\mathcal{T}_i}{\text {-}}solvers must be combined. Up to a few years ago, the standard approach to SMT(T1âˆȘT2)SMT(\mathcal{T}_1 \cup \mathcal{T}_2) was to integrate the SAT solver with one combined T1âˆȘT2-solver\mathcal{T}_1 \cup \mathcal{T}_2{\text {-}}solver , obtained from two distinct Ti-solvers{\mathcal{T}_i}{\text {-}}solvers by means of evolutions of Nelson and Oppen's (NO) combination procedure, in which the Ti-solvers{\mathcal{T}_i}{\text {-}}solvers deduce and exchange interface equalities. Nowadays many state-of-the-art SMT solvers use evolutions of a more recent SMT(T1âˆȘT2)SMT(\mathcal{T}_1 \cup \mathcal{T}_2) procedure called Delayed Theory Combination (DTC), in which each Ti-solver{\mathcal{T}_i}{\text {-}}solver interacts directly and only with the SAT solver, in such a way that part or all of the (possibly very expensive) reasoning effort on interface equalities is delegated to the SAT solver itself. In this paper we present a comparative analysis of DTC vs. NO for SMT(T1âˆȘT2)SMT(\mathcal{T}_1 \cup \mathcal{T}_2) . On the one hand, we explain the advantages of DTC in exploiting the power of modern SAT solvers to reduce the search. On the other hand, we show that the extra amount of Boolean search required to the SAT solver can be controlled. In fact, we prove two novel theoretical results, for both convex and non-convex theories and for different deduction capabilities of the Ti-solvers{\mathcal{T}_i}{\text {-}}solvers , which relate the amount of extra Boolean search required to the SAT solver by DTC with the number of deductions and case-splits required to the Ti-solvers{\mathcal{T}_i}{\text {-}}solvers by NO in order to perform the same tasks: (i) under the same hypotheses of deduction capabilities of the Ti-solvers{\mathcal{T}_i}{\text {-}}solvers required by NO, DTC causes no extra Boolean search; (ii) using Ti-solvers{\mathcal{T}_i}{\text {-}}solvers with limited or no deduction capabilities, the extra Boolean search required can be reduced down to a negligible amount by controlling the quality of the T\mathcal{T} -conflict sets returned by the ${\mathcal{T}_i}{\text {-}}solvers

    Decision procedures for linear arithmetic

    Get PDF
    In this thesis, we present new decision procedures for linear arithmetic in the context of SMT solvers and theorem provers: 1) CutSat++, a calculus for linear integer arithmetic that combines techniques from SAT solving and quantifier elimination in order to be sound, terminating, and complete. 2) The largest cube test and the unit cube test, two sound (although incomplete) tests that find integer and mixed solutions in polynomial time. The tests are especially efficient on absolutely unbounded constraint systems, which are difficult to handle for many other decision procedures. 3) Techniques for the investigation of equalities implied by a constraint system. Moreover, we present several applications for these techniques. 4) The Double-Bounded reduction and the Mixed-Echelon-Hermite transformation, two transformations that reduce any constraint system in polynomial time to an equisatisfiable constraint system that is bounded. The transformations are beneficial because they turn branch-and-bound into a complete and efficient decision procedure for unbounded constraint systems. We have implemented the above decision procedures (except for Cut- Sat++) as part of our linear arithmetic theory solver SPASS-IQ and as part of our CDCL(LA) solver SPASS-SATT. We also present various benchmark evaluations that confirm the practical efficiency of our new decision procedures.In dieser Arbeit prĂ€sentieren wir neue Entscheidungsprozeduren fĂŒr lineare Arithmetik im Kontext von SMT-Solvern und Theorembeweisern: 1) CutSat++, ein korrekter und vollstĂ€ndiger KalkĂŒl fĂŒr ganzzahlige lineare Arithmetik, der Techniken zur Entscheidung von Aussagenlogik mit Techniken aus der Quantorenelimination vereint. 2) Der GrĂ¶ĂŸte-WĂŒrfeltest und der EinheitswĂŒrfeltest, zwei korrekte (wenn auch unvollstĂ€ndige) Tests, die in polynomieller Zeit (gemischt-)ganzzahlige Lösungen finden. Die Tests sind besonders effizient auf vollstĂ€ndig unbegrenzten Systemen, welche fĂŒr viele andere Entscheidungsprozeduren schwer sind. 3) Techniken zur Ermittlung von Gleichungen, die von einem linearen Ungleichungssystem impliziert werden. Des Weiteren prĂ€sentieren wir mehrere Anwendungsmöglichkeiten fĂŒr diese Techniken. 4) Die Beidseitig-Begrenzte-Reduktion und die Gemischte-Echelon-Hermitesche- Transformation, die ein Ungleichungssystem in polynomieller Zeit auf ein erfĂŒllbarkeitsĂ€quivalentes System reduzieren, das begrenzt ist. Vereint verwandeln die Transformationen Branch-and-Bound in eine vollstĂ€ndige und effiziente Entscheidungsprozedur fĂŒr unbeschrĂ€nkte Ungleichungssysteme. Wir haben diese Techniken (ausgenommen CutSat++) in SPASS-IQ (unserem theory solver fĂŒr lineare Arithmetik) und in SPASS-SATT (unserem CDCL(LA) solver) implementiert. Basierend darauf prĂ€sentieren wir Benchmark-Evaluationen, die die Effizienz unserer Entscheidungsprozeduren bestĂ€tigen

    Optimization Modulo Theories with Linear Rational Costs

    Full text link
    In the contexts of automated reasoning (AR) and formal verification (FV), important decision problems are effectively encoded into Satisfiability Modulo Theories (SMT). In the last decade efficient SMT solvers have been developed for several theories of practical interest (e.g., linear arithmetic, arrays, bit-vectors). Surprisingly, little work has been done to extend SMT to deal with optimization problems; in particular, we are not aware of any previous work on SMT solvers able to produce solutions which minimize cost functions over arithmetical variables. This is unfortunate, since some problems of interest require this functionality. In the work described in this paper we start filling this gap. We present and discuss two general procedures for leveraging SMT to handle the minimization of linear rational cost functions, combining SMT with standard minimization techniques. We have implemented the procedures within the MathSAT SMT solver. Due to the absence of competitors in the AR, FV and SMT domains, we have experimentally evaluated our implementation against state-of-the-art tools for the domain of linear generalized disjunctive programming (LGDP), which is closest in spirit to our domain, on sets of problems which have been previously proposed as benchmarks for the latter tools. The results show that our tool is very competitive with, and often outperforms, these tools on these problems, clearly demonstrating the potential of the approach.Comment: Submitted on january 2014 to ACM Transactions on Computational Logic, currently under revision. arXiv admin note: text overlap with arXiv:1202.140

    Renforcement du noyau d un démonstrateur SMT (Conception et implantation de procédures de décisions efficaces)

    Get PDF
    Cette thÚse s'intéresse à la démonstration automatique de la validité de formules mathématiques issues de la preuve de programmes. Elle se focalise tout particuliÚrement sur la Satisfiabilité Modulo Théories (SMT): un jeune domaine de recherche qui a connu de grands progrÚs durant la derniÚre décennie. Les démonstrateurs de cette famille ont des applications diverses dans la conception de microprocesseurs, la preuve de programmes, le model-checking, etc.Les démonstrateurs SMT offrent un bon compromis entre l'expressivité et l'efficacité. Ils reposent sur une coopération étroite d'un solveur SAT avec une combinaison de procédures de décision pour des théories spécifiques comme la théorie de l'égalité libre avec des symboles non interprétés, l'arithmétique linéaire sur les entiers et les rationnels, et la théorie des tableaux.L'objectif de cette thÚse est d'améliorer l'efficacité et l'expressivité du démonstrateur SMT Alt-Ergo. Pour cela, nous proposons une nouvelle procédure de décision pour la théorie de l'arithmétique linéaire sur les entiers. Cette procédure est inspirée par la méthode de Fourier-Motzkin, mais elle utilise un simplexe sur les rationnels pour effectuer les calculs en pratique. Nous proposons également un nouveau mécanisme de combinaison, capable de raisonner dans l'union de la théorie de l'égalité libre, la théorie AC des symboles associatifs et commutatifs et une théorie arbitraire deShostak. Ce mécanisme est une extension modulaire et non intrusive de la procédure de completion close modulo AC avec la théorie de Shostak. Aussi, nous avons étendu Alt-Ergo avec des procédures de décision existantes pour y intégrer d'autres théories intéressantes comme la théorie de types de données énumérés et la théorie des tableaux. Enfin, nous avons exploré des techniques de simplification de formules en amont et l'amélioration de son solveur SAT.This thesis tackles the problem of automatically proving the validity of mathematical formulas generated by program verification tools. In particular, it focuses on Satisfiability Modulo Theories (SMT): a young research topic that has seen great advances during the last decade. The solvers of this family have various applications in hardware design, program verification, model checking, etc.SMT solvers offer a good compromise between expressiveness and efficiency. They rely on a tight cooperation between a SAT solver and a combination of decision procedures for specific theories, such as the free theory of equality with uninterpreted symbols, linear arithmetic over integers and rationals, or the theory of arrays.This thesis aims at improving the efficiency and the expressiveness of the Alt-Ergo SMT solver. For that, we designed a new decision procedure for the theory of linear integer arithmetic. This procedure is inspired by Fourier-Motzkin's method, but it uses a rational simplex to perform computations in practice. We have also designed a new combination framework, capable of reasoning in the union of the free theory of equality, the AC theory of associative and commutativesymbols, and an arbitrary signature-disjoint Shostak theory. This framework is a modular and non-intrusive extension of the ground AC completion procedure with the given Shostak theory. In addition, we have extended Alt-Ergo with existing decision procedures to integrate additional interesting theories, such as the theory of enumerated data types and the theory of arrays. Finally, we have explored preprocessing techniques for formulas simplification as well as the enhancement of Alt-Ergo's SAT solver.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF

    New results on rewrite-based satisfiability procedures

    Full text link
    Program analysis and verification require decision procedures to reason on theories of data structures. Many problems can be reduced to the satisfiability of sets of ground literals in theory T. If a sound and complete inference system for first-order logic is guaranteed to terminate on T-satisfiability problems, any theorem-proving strategy with that system and a fair search plan is a T-satisfiability procedure. We prove termination of a rewrite-based first-order engine on the theories of records, integer offsets, integer offsets modulo and lists. We give a modularity theorem stating sufficient conditions for termination on a combinations of theories, given termination on each. The above theories, as well as others, satisfy these conditions. We introduce several sets of benchmarks on these theories and their combinations, including both parametric synthetic benchmarks to test scalability, and real-world problems to test performances on huge sets of literals. We compare the rewrite-based theorem prover E with the validity checkers CVC and CVC Lite. Contrary to the folklore that a general-purpose prover cannot compete with reasoners with built-in theories, the experiments are overall favorable to the theorem prover, showing that not only the rewriting approach is elegant and conceptually simple, but has important practical implications.Comment: To appear in the ACM Transactions on Computational Logic, 49 page

    New Techniques for Linear Arithmetic: Cubes and Equalities

    Get PDF
    International audienceWe present several new techniques for linear arithmetic constraint solving. They are all based on the linear cube transformation, a method presented here, which allows us to efficiently determine whether a system of linear arithmetic constraints contains a hypercube of a given edge length. Our first findings based on this transformation are two sound tests that find integer solutions for linear arithmetic constraints. While many complete methods search along the problem surface for a solution, these tests use cubes to explore the interior of the problems. The tests are especially efficient for constraints with a large number of integer solutions, e.g., those with infinite lattice width. Inside the SMT-LIB benchmarks, we have found almost one thousand problem instances with infinite lattice width. Experimental results confirm that our tests are superior on these instances compared to several state-of-the-art SMT solvers. We also discovered that the linear cube transformation can be used to investigate the equalities implied by a system of linear arithmetic constraints. For this purpose, we developed a method that computes a basis for all implied equalities, i.e., a finite representation of all equalities implied by the linear arithmetic constraints. The equality basis has several applications. For instance, it allows us to verify whether a system of linear arithmetic constraints implies a given equality. This is valuable in the context of Nelson-Oppen style combinations of theories

    Deciding Quantifier-Free Presburger Formulas Using Parameterized Solution Bounds

    Full text link
    Given a formula in quantifier-free Presburger arithmetic, if it has a satisfying solution, there is one whose size, measured in bits, is polynomially bounded in the size of the formula. In this paper, we consider a special class of quantifier-free Presburger formulas in which most linear constraints are difference (separation) constraints, and the non-difference constraints are sparse. This class has been observed to commonly occur in software verification. We derive a new solution bound in terms of parameters characterizing the sparseness of linear constraints and the number of non-difference constraints, in addition to traditional measures of formula size. In particular, we show that the number of bits needed per integer variable is linear in the number of non-difference constraints and logarithmic in the number and size of non-zero coefficients in them, but is otherwise independent of the total number of linear constraints in the formula. The derived bound can be used in a decision procedure based on instantiating integer variables over a finite domain and translating the input quantifier-free Presburger formula to an equi-satisfiable Boolean formula, which is then checked using a Boolean satisfiability solver. In addition to our main theoretical result, we discuss several optimizations for deriving tighter bounds in practice. Empirical evidence indicates that our decision procedure can greatly outperform other decision procedures.Comment: 26 page
    • 

    corecore