26 research outputs found

    Efficient Global Occupancy Mapping for Mobile Robots using OpenVDB

    Full text link
    In this work we present a fast occupancy map building approach based on the VDB datastructure. Existing log-odds based occupancy mapping systems are often not able to keep up with the high point densities and framerates of modern sensors. Therefore, we suggest a highly optimized approach based on a modern datastructure coming from a computer graphic background. A multithreaded insertion scheme allows occupancy map building at unprecedented speed. Multiple optimizations allow for a customizable tradeoff between runtime and map quality. We first demonstrate the effectiveness of the approach quantitatively on a set of ablation studies and typical benchmark sets, before we practically demonstrate the system using a legged robot and a UAV.Comment: 6 pages, presented in Agile Robotics Workshop at IROS202

    Alignment invariant image comparison implemented on the GPU

    Get PDF
    Abstract: This paper proposes a GPU implemented algorithm to determine the differences between two binary images using Distance Transformations. These differences are invariant to slight rotation and offsets, making the technique ideal for comparisons between images that are not perfectly aligned..

    Analysis of Steering Wheel Holding using In-Car Camera

    Get PDF
    V této práci je popsána metoda pro detekci a určení polohy rukou na volantu na základě zpracování obrazu z videozáznamu. Jde především o určení, zda ruce jsou ve správné bezpečné poloze na volantu. Implementace této metody je založena na segmentaci oblastí s barvou kůže z obrazu, s využitím open-source knihovny pro zpracování obrazu OpenCV. Jednotlivé sekce práce slouží k seznámení s barevnými modely, použitými technikami, popisem implementace a otestování funkčnosti a zhodnocení její úspěšnosti.In this work, a method for hand detection and position determination on a steering wheel based on the image processing of the video is described. It primarily focuses on determining whether hands are in correct and safe position. Implementation of the method is based on skin region segmentation from image with use of opensource library for image processing called OpenCV. Individual sections serve to familiarize with colour models, used techniques, implementation description and to test the method's functionality and evaluate its success rate.460 - Katedra informatikyvýborn

    Path and trajectory planning of a tethered UAV-UGV marsupial robotics system

    Full text link
    This paper addresses the problem of trajectory planning in a marsupial robotic system consisting of an unmanned aerial vehicle (UAV) linked to an unmanned ground vehicle (UGV) through a non-taut tether that has a controllable length. The objective is to determine a synchronized collision-free trajectory for the three marsupial system agents: UAV, UGV, and tether. First, we present a path planning solution based on optimal Rapidly exploring Random Trees (RRT*) that takes into account constraints related to the positions of UAV, UGV, tether and the 3D environment. The specialization of the main RRT* methods allows us to obtain feasible solutions in short times. Then, the paper presents a trajectory planner based on non-linear least squares. The optimizer takes into account aspects not considered in the path planning, like temporal constraints of the motion that impose limits on the velocities and accelerations of the robots. Results from simulated scenarios demonstrate that the approach is able to generate obstacle-free and smooth trajectories for the UAV, UGV, and tether.Comment: 8 pages, 4 figures, 2 table

    Approximation of the Euclidean distance by Chamfer distances

    Get PDF
    Chamfer distances play an important role in the theory of distance transforms. Though the determination of the exact Euclidean distance transform is also a well investigated area, the classical chamfering method based upon "small" neighborhoods still outperforms it e.g. in terms of computation time. In this paper we determine the best possible maximum relative error of chamfer distances under various boundary conditions. In each case some best approximating sequences are explicitly given. Further, because of possible practical interest, we give all best approximating sequences in case of small (i.e. 5x5 and 7x7) neighborhoods

    Fourier descriptors for broken shapes

    Get PDF

    Combining social-based data mining techniques to extract collective trends from twitter

    Full text link
    Social Networks have become an important environment for Collective Trends extraction. The interactions amongst users provide information of their preferences and relationships. This information can be used to measure the influence of ideas, or opinions, and how they are spread within the Network. Currently, one of the most relevant and popular Social Networks is Twitter. This Social Network was created to share comments and opinions. The information provided by users is especially useful in different fields and research areas such as marketing. This data is presented as short text strings containing different ideas expressed by real people. With this representation, different Data Mining techniques (such as classification or clustering) will be used for knowledge extraction to distinguish the meaning of the opinions. Complex Network techniques are also helpful to discover influential actors and study the information propagation inside the Social Network. This work is focused on how clustering and classification techniques can be combined to extract collective knowledge from Twitter. In an initial phase, clustering techniques are applied to extract the main topics from the user opinions. Later, the collective knowledge extracted is used to relabel the dataset according to the clusters obtained to improve the classification results. Finally, these results are compared against a dataset which has been manually labelled by human experts to analyse the accuracy of the proposed method.The preparation of this manuscript has been supported by the Spanish Ministry of Science and Innovation under the following projects: TIN2010-19872 and ECO2011-30105 (National Plan for Research, Development and Innovation), as well as the Multidisciplinary Project of Universidad Autónoma de Madrid (CEMU2012-034). The authors thank Ana M. Díaz-Martín and Mercedes Rozano for the manual classification of the Tweets

    Learning Generative Models for Multi-Activity Body Pose Estimation

    Get PDF
    We present a method to simultaneously estimate 3D body pose and action categories from monocular video sequences. Our approach learns a generative model of the relationship of body pose and image appearance using a sparse kernel regressor. Body poses are modelled on a low-dimensional manifold obtained by Locally Linear Embedding dimensionality reduction. In addition, we learn a prior model of likely body poses and a dynamical model in this pose manifold. Sparse kernel regressors capture the nonlinearities of this mapping efficiently. Within a Recursive Bayesian Sampling framework, the potentially multimodal posterior probability distributions can then be inferred. An activity-switching mechanism based on learned transfer functions allows for inference of the performed activity class, along with the estimation of body pose and 2D image location of the subject. Using a rough foreground segmentation, we compare Binary PCA and distance transforms to encode the appearance. As a postprocessing step, the globally optimal trajectory through the entire sequence is estimated, yielding a single pose estimate per frame that is consistent throughout the sequence. We evaluate the algorithm on challenging sequences with subjects that are alternating between running and walking movements. Our experiments show how the dynamical model helps to track through poorly segmented low-resolution image sequences where tracking otherwise fails, while at the same time reliably classifying the activity typ
    corecore