
Alignment invariant image comparison implemented on the GPU

Abstract

This paper proposes a GPU implemented algorithm to
determine the differences between two binary images using
Distance Transformations. These differences are invariant to
slight rotation and offsets, making the technique ideal for
comparisons between images that are not perfectly aligned. The
parallel processing capabilities of the GPU allows for faster
implementation than on traditional desktop processors. In order
to take full advantage of this all aspects of the algorithm was
implemented on the GPU.

Key words: Distance transform, binary image, GPU,
parallel processing.

1. Introduction

In the field of image processing, image comparison has a
wide variety of applications. These applications range from
image retrieval to image registration [1]. In this paper we are
proposing to make use of graphics processing units (GPU),
parallel processing techniques and distance transformations to
compare images invariant to slight rotation or offsets.

The GPU was selected for this purpose due to its
computational power. Recent advances in graphics architecture
have ensured that GPUs have extensive memory bandwidth
along with tremendous increases in its computational
horsepower. These increases are clearly advantageous. Other
advantages of GPU algorithm implementations include the fact
that GPUs can perform these operations faster and their cost
versus computational power is much lower than that of central
processing units (CPU) [7, 8]. GPUs also provide better
performance per thread than CPUs can provide [7]. The
mentioned advantages have given GPUs a popular position
amongst researchers to use them for general purpose
computations [8, 9]. GPUs do however have their own set of
disadvantages: “they lack some fundamental computing
constructs” [8]. The absence of these constructs make GPUs ill
suited for tasks such as cryptography.

The Distance Transformation (DT) is an operation
performed on binary images (images containing black and white
pixels; or feature and non-feature pixels) which returns a
greyscale representation where each pixel value represents that
co-ordinate’s distance from its nearest feature pixel in the binary
image [3, 9]. The Distance Transform is an important tool in
image processing; however its uses have extended into other
fields including that of pattern recognition computer vision,
computer graphics to name a few [4, 9].

Various methods of determining Distance Transformation
exist. In this paper we utilize the 4-connected distance
(otherwise known as the city block distance map) [6]. Other
distance maps such as the Euclidean distance map may also be
used. The Euclidean map is described as a map which
corresponds to how real world objects are measured, which
makes it easily interpreted. That said, the brute force approach
to calculating the Euclidian distance is not feasible as it involves
measuring the distance between every feature pixel and every
non-feature pixel yielding a computational complexity of O(n2)
for every pixel [11]. However the 4-connected approach is the
least complex and provides a good enough approximation of the
distance for the purpose of this application.

2. Definitions

In this section we will more clearly define the concepts of
binary images and distance transformations. These definitions
are to be used at a later stage.

A point on an image can be defined in terms of x and y such

that },...,1{ widthx ∈ and },...,1{ heighty ∈ , where width and

height are the dimensions of the image. Hence),(yx is an

arbitrary point on the image.

Adding to the earlier definition of a binary image it can be
stated that binary images contain foreground pixels and
background pixels. The foreground pixels represent the objects
in the image. Thus it can be written as follows:

A binary image can be represented as a function,),(yxI

where },{),(BOyxI ∈ . O and B represents object and

background pixels respectively; in terms of

implementation }0,1{),(∈yxI . In other words the notation states

that the texture value at the point (x, y) is either a foreground
pixel or a background pixel.

For the definition of the Distance Transform, we can say:
the Distance Transform can be represented by the function,

),(yxD where }1,...,0{),(∈yxD . The set }1,...,0{ is the distance

to the nearest foreground pixel, the range of this set may vary
depending on implementation, convention and preference. For

example },...,1{),(imagesizeyxD ∈

In this paper we will refer to the input image and the image

to be compared, as),(1 yxI and),(2 yxI respectively. For each

comparison two Distance Transformations are required, one for

all the distances to the nearest object,),(yxDO and the other all

the distances to the nearest background pixel),(yxDB . These

Hans Roos
Highquest, Johannesburg
hans.jmroos@gmail.com

Yuko Roodt
Highquest, Johannesburg
yuko@highquest.co.za

Willem A. Clarke, MIEEE, SAIEE
University of Johannesburg

willemc@uj.ac.za

141

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Johannesburg Institutional Repository

https://core.ac.uk/display/43588786?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 2. Figure 1’s Distance Transform. Darker colours
are far from the objects.

Figure 1. Binary image containing 2 objects represented
as black pixels.

transformations are only done for one of the input images;
however both are done on the same input image.

3. Implementation

In this section we will discuss the implementations of the
main components of the papers, namely the Distance
Transformations and then the comparison algorithm.

3.1 Distance Transform Implementation

Initially our distance map was approximated using the
concept of a local distance map. The distances were calculated
around each pixel, but only for a small region or window as
implemented by É. Baudier et al using the Hausdorff distance
[1]. However, our implementation used a circular window
around each point and the Euclidian distance between each pixel
in the window and the centre of the window.

The 4-connected distance transform is implemented by
selecting the minimum value between a pixel’s four surrounding
values (above, below, left and right) and storing them into an
interim distance map. This interim distance map is then passed
back and is recursively processed until all the distances have
been computed [6].

3.2 Example of the distance transform

For the purpose of clarity the colours of the images have
been inverted, i.e. black represents the foreground and white
represents the background as opposed to the norm where white
represents the foreground (features) and black the background
(non-features). Figure 1 shows a binary image containing two
objects, where figure 2 represents figure 1’s distance
transformation. In figure 2, the darker the colour, the further
away from the object the point is.

3.3 Image Comparison Implementation

The proposed algorithm is as follows: in order to compare
the two images the distance maps of the first image, I1(x, y),
have to be computed; with respect to both background pixels
and foreground pixels i.e. two distance maps are created. One
containing distances to the nearest white feature, DO(x, y) and
another containing distances to the nearest black feature, DB(x,
y).

Once these distance maps have been acquired a pixel at
point (x, y) from the second image, I2(x, y), is compared to the 2
distance maps. If the pixel at the current point is black the
corresponding distance value in the nearest-to-black map, DB(x,
y), is returned. If the pixel is white the corresponding value is
returned from the nearest-to-white map, DO(x, y). The output of
the algorithm then represents the differences in the image, or
rather how far a point is to its closest feature. Figure 3 shows a
graphical representation of the algorithm where DO, DB and I2
are the input textures.

In terms of the GPU implementation of the algorithm;
OpenGL fragment programs were coded to generate the two
distance maps of the first image, I1. The distance maps are
stored in the GPU’s memory as a texture (or image). This is
done to avoid losing the GPU’s performance advantage by
passing information back and forth between the GPU and CPU.
The second distance map is done using the same algorithm as
the first. However, the inverse of the first image is used as an
input. The inversion is also implemented on the GPU. A
separate fragment program was created in order to do the
comparison on the GPU. The result of the comparison is then
stored as a texture and then displayed on screen.

The pseudo code below is the algorithm for comparing the 2
images as implemented in the comparison fragment program.
The value current_Pixel is the current texture value from

the second image, I2.The value current_Distance is the
texture value from either one of the two distance maps at the

142

current_Pixel<- current_Texture from I2

if current_Pixel = black then

 current_Distance<- value from DB
else

 current_Distance<- value from DO

return current_Distance

current (x, y) position; the same position where
current_Pixel was obtained. The current_Distance
is returned to a new texture in order to make the result
graphically viewable.

From the algorithm it is easy to see that a threshold can be
added which can be used to make decisions based on the result,
for example to discard any differences that are not intense
enough and only keep the differences that are clear enough.

4. Experimental Setup

The algorithm was tested on two different systems; both
systems had Windows XP Professional 32Bit Service Pack 3 as
operating systems. The main specifications of the two systems
are as follows:

 System A System B
CPU AMD Athlon X2 4200+ AMD Athlon 3200+
GPU 8800GTX 6800GE
RAM 2048 MB 2048 MB

Table 1. System used in the performance test of the algorithm

The systems were chosen as they are from two different eras
in terms of performance, System A being a lot more powerful
than System B especially in terms of graphics processing
capabilities.

 8800GTX 6800

Pixel Shaders 128 16

Core Clock (MHz) 575 350

Memory (MB) 768 256

Memory Clock (MHz) 900 (DDR3) 500 (DDR3)

Shader Model 4.0 3.0

Table 2. GPU specifications of the test systems

The algorithm was initially written and implemented in
RenderMonkey (version 1.81) to test and verify the OpenGL
syntax. Once verified, the OpenGL was implemented in C++ in
order to do more accurate performance tests and comparisons
between the two systems.

5. Results

The results of the tests will be discussed in the following
section. Firstly we will look at the results of the image
comparisons followed by the performance results

5.1 Comparison Results

 The algorithm was tested on various images. One of the tests
was done on a “spot the difference” game containing eight
differences. The results are discussed below.

DO DB I2

Distance transforms of I1 Image of I2

Comparison
Algorithm.

Output

DO(x0, y0)

DB(x0, y0)

I2(x0, y0)

Figure 3. Graphical representation of the algorithm

Figure 4. Input images. Spot the difference game
containing 8 differences [10].

Figure 5. Highlighted differences between the
images in figure 4.

143

Figure 6 a and b. The second part of the algorithm test
demonstrating possible uses in template matching and
character recognition.

Figure 7. Comparison results between figure 6 a and b

Figure 9. Comparison demonstrating a larger rotation,
where inevitably the test will begin to fail.

Figure 5 (above) highlights the differences between the
images in figure 4. Circles were placed round all eight of the
differences. The comparison seems to fail in regions where it is
difficult to compute distances as the differences are only subtle
changes in shape, see points 1 and 2 on figure 5. The fact that
these appear as light grey, shows that the algorithm is only
recognizing a minor difference. The grey outlines of the images
above are due to the fact that the images are not perfectly
aligned for demonstration purposes; showing the invariance
property of the algorithm.

Further tests were done with regards to more practical
applications such as template matching and character
recognition. Figure 6 a and b (the numbers “3” and “8”) were
compared. The result of the comparison can be seen in figure 7.

When comparing the image (example figure 6 a) to a
slightly rotated version of itself (figure 8 a) using the proposed
technique, only minor differences are highlighted (see figure 8
b). These changes can easily be discarded. However, when
comparing our results to an XOR comparison, the rotation is
clearly visible in the output (see figure 8 c). Rotating the image
further, still only highlights minor changes when using our

technique. Again the XOR comparison reveals very clear
changes due to the rotation (see figure 8 d, e and f).

Figure 9 demonstrates a situation where the comparison will
begin to fail. The rotation of the image is much greater than the
previous examples. However it will still be possible to threshold
out and discard many of the errors, but in such an extreme case
it leaves a lot of room for error.

Figure 8 a – f. Comparison of images with rotation
using the proposed algorithm and XOR comparisons.

a d

b e

c f

144

5.2 Performance test results

The performance was tested in terms of processing time and
frames per second (fps). When we refer to frames per second we
are referring to actual renders per second which is the inverse of
the processing time. The tests on both systems were done using
128 iterations to calculate each Distance Transformations.
Images of size 1024 by 1024 were used in the tests. The
performance results have been summarized as follows.

Processing time (s)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

System A System B

Graph 1 Processing time (s)

Frames per second (fps)

0

2

4

6

8

10

12

14

16

18

System A System B

Graph 2 Frames per second (fps)

The above results show that the performance of the
algorithm is sufficient even on older systems. Considering the
fact that number of calculations done to perform just one of the
Distance Transformations is a staggering 134,217,728 iterations

(13421772812810241024 =××).

6. Conclusion

We proposed a technique to comparing images using the
concept of distance maps. The entire algorithm was
implemented on the GPU in OpenGL to take maximum
advantage of the performance advantage of the GPU has over
traditional desktop processors.

 The comparisons were invariant to slight rotation and offset
as seen in the comparison results. This invariance makes the
technique useful in the fields of template matching and character
recognition.

7. References

[1.] Baudrier É, Nicoler F, Millon G and Ruan S, “Binary-
image comparison with local dissimilarity mapping”,
Pattern Recognition, Vol. 41, pp. 1461-1478, 2008

[2.] Kim HY and Araújo SA, “Grayscale Template-
Matching Invariant to Rotation, Scale, Translation,
Brightness and Contrast,” IEEE Pacific-Rim Symposium
on Image and Video Technology, Lecture Notes in
Computer Science, vol. 4872, pp. 100-113, 2007.

[3.] Gavrila DM, "Multi-Feature Hierarchical Template
Matching Using Distance Transforms", Proceedings of
14th International Conference on Pattern Recognition
(ICPR'98), Vol. 1, pp 439, 1998

[4.] Felzenszwalb PF, Huttenlocher DP, “Distance
Transforms of Sampled Functions”, Cornell, Computing
and Information Science, 2004

[5.] Saude AV, Couprie M, De Alencar Lotufo R, “Distance
Transform to seeds: computation and application”,
Proceedings of 8th International Symposium on
Mathematical Morphology, Vol. 2, pp 15-16, 2007

[6.] Bailey DG, “An Efficient Euclidean Distance
Transform”, International conference on combinatorial
image analysis, IWCIA, Vol. 3322, pp. 394-408, 2004

[7.] Owens J, Davis UC, “GPU Architecture Overview”
Proceedings of International Conference on Computer
Graphics and Interactive Techniques, Article 2, 2007

[8.] Owens J, Luebke D, Govindaraju N, Harris M, Krüger J,
Lefohn A and Purcell T. "A Survey of General-Purpose
Computation on Graphics Hardware". Proceedings in
Eurographics, State of the Art Reports, pp. 21-51, 2005

[9.] Rong G, Tiow-Seng T, “Jump Flooding in GPU with
Applications to Voronoi Diagrams and Distance
Transform”, Proceedings in ACM Symposium on
Interactive 3D Graphics and Games, pp. 109-116, 2006

[10.] “Wimphole Home Farm”, “spot the difference image”
found at http://www.wimpole.org/spot.html, 25
September 2008

[11.] Fabbri R, JC Torelli, Bruno OM, “2D Euclidean
Distance Transform Algorithms: A Comparative
Survey”, ACM Computing Surveys, Vol. 40, No. 1,
Article 2, 2008.

145

