1,563 research outputs found

    VIRTUALIZED BASEBAND UNITS CONSOLIDATION IN ADVANCED LTE NETWORKS USING MOBILITY- AND POWER-AWARE ALGORITHMS

    Get PDF
    Virtualization of baseband units in Advanced Long-Term Evolution networks and a rapid performance growth of general purpose processors naturally raise the interest in resource multiplexing. The concept of resource sharing and management between virtualized instances is not new and extensively used in data centers. We adopt some of the resource management techniques to organize virtualized baseband units on a pool of hosts and investigate the behavior of the system in order to identify features which are particularly relevant to mobile environment. Subsequently, we introduce our own resource management algorithm specifically targeted to address some of the peculiarities identified by experimental results

    Efficient Clustering Protocol Based on Stochastic Matrix & MCL and Data Routing for Mobile Wireless Sensors Network

    Get PDF
    In this paper, we have already presented a new approach for data routing dedicated to mobile Wireless Sensors Network (WSN) based on clustering. The proposed method is based on stochastic matrix and on the Markov Chain Cluster (MCL) algorithm to organize a large number of mobile sensors into clusters without defining the required clusters number in advance. It is based on mobile sensors connectivity to determinethe optimal number of clusters and to form compact and well separated clusters. Our proposed approach is a distributed method using nodes locations, degrees and theirs residual energies during the cluster head election. Simulation results showed that the proposed approach reduced the loss packets rate by 80%, the energy consumption by 30% and improved the data delivery rate by 70% compared to LEACH-M protocol. Moreover, it outperforms the E-MBC protocol and reduced the average energy consumption and loss packets rate by 60%; as well as it improved the success packets delivery rate by 40%

    A Novel Routing Protocol For Wireless Sensor Networks With Improved Energy Efficient LEACH

    Get PDF
    Wireless Sensor Networks (Wsns) Have Been Widely Considered As One Of The Most Important Technologies For The Twenty-First Century. A Typical Wireless Sensor Network(WSN) Used For Environmental Condition Monitoring, Security Surveillance Of Battle-Fields, Wildlife Habitat Monitoring, Etc. Cluster-Based Hierarchical Routing Protocols Play An Essential Role In Decreasing The Energy Consumption Of Wireless Sensor Networks (Wsns). A Low-Energy Adaptive Clustering Hierarchy (LEACH) Has Been Proposed As An Application-Specific Protocol Architecture For Wsns. However, Without Considering The Distribution Of The Cluster Heads (Chs) In The Rotation Basis, The LEACH Protocol Will Increase The Energy Consumption Of The Network. To Improve The Energy Efficiency Of The WSN, We Propose A Novel Modified Routing Protocol In This Paper. The Newly Proposed Improved Energy-Efficient LEACH (IEE-LEACH) Protocol Considers The Residual Node Energy And The Average Energy Of The Networks. To Achieve Satisfactory Performance In Terms Of Reducing The Sensor Energy Consumption, The Proposed IEE-LEACH Accounts For The Numbers Of The Optimal Chs And Prohibits The Nodes That Are Closer To The Base Station (BS) To Join In The Cluster Formation. Furthermore, The Proposed IEE-LEACH Uses A New Threshold For Electing Chs Among The Sensor Nodes, And Employs Single Hop, Multi-Hop, And Hybrid Communications To Further Improve The Energy Efficiency Of The Networks. The Simulation Results Demonstrate That, Compared With Some Existing Routing Protocols, The Proposed Protocol Substantially Reduces The Energy Consumption Of Wsns

    Advanced Protocols for Peer-to-Peer Data Transmission in Wireless Gigabit Networks

    Get PDF
    This thesis tackles problems on IEEE 802.11 MAC layer, network layer and application layer, to further push the performance of wireless P2P applications in a holistic way. It contributes to the better understanding and utilization of two major IEEE 802.11 MAC features, frame aggregation and block acknowledgement, to the design and implementation of opportunistic networks on off-the-shelf hardware and proposes a document exchange protocol, including document recommendation. First, this thesis contributes a measurement study of the A-MPDU frame aggregation behavior of IEEE 802.11n in a real-world, multi-hop, indoor mesh testbed. Furthermore, this thesis presents MPDU payload adaptation (MPA) to utilize A-MPDU subframes to increase the overall throughput under bad channel conditions. MPA adapts the size of MAC protocol data units to channel conditions, to increase the throughput and lower the delay in error-prone channels. The results suggest that under erroneous conditions throughput can be maximized by limiting the MPDU size. As second major contribution, this thesis introduces Neighborhood-aware OPPortunistic networking on Smartphones (NOPPoS). NOPPoS creates an opportunistic, pocket-switched network using current generation, off-the-shelf mobile devices. As main novel feature, NOPPoS is highly responsive to node mobility due to periodic, low-energy scans of its environment, using Bluetooth Low Energy advertisements. The last major contribution is the Neighborhood Document Sharing (NDS) protocol. NDS enables users to discover and retrieve arbitrary documents shared by other users in their proximity, i.e. in the communication range of their IEEE 802.11 interface. However, IEEE 802.11 connections are only used on-demand during file transfers and indexing of files in the proximity of the user. Simulations show that NDS interconnects over 90 \% of all devices in communication range. Finally, NDS is extended by the content recommendation system User Preference-based Probability Spreading (UPPS), a graph-based approach. It integrates user-item scoring into a graph-based tag-aware item recommender system. UPPS utilizes novel formulas for affinity and similarity scoring, taking into account user-item preference in the mass diffusion of the recommender system. The presented results show that UPPS is a significant improvement to previous approaches

    DESIGN OF EFFICIENT IN-NETWORK DATA PROCESSING AND DISSEMINATION FOR VANETS

    Get PDF
    By providing vehicle-to-vehicle and vehicle-to-infrastructure wireless communications, vehicular ad hoc networks (VANETs), also known as the “networks on wheels”, can greatly enhance traffic safety, traffic efficiency and driving experience for intelligent transportation system (ITS). However, the unique features of VANETs, such as high mobility and uneven distribution of vehicular nodes, impose critical challenges of high efficiency and reliability for the implementation of VANETs. This dissertation is motivated by the great application potentials of VANETs in the design of efficient in-network data processing and dissemination. Considering the significance of message aggregation, data dissemination and data collection, this dissertation research targets at enhancing the traffic safety and traffic efficiency, as well as developing novel commercial applications, based on VANETs, following four aspects: 1) accurate and efficient message aggregation to detect on-road safety relevant events, 2) reliable data dissemination to reliably notify remote vehicles, 3) efficient and reliable spatial data collection from vehicular sensors, and 4) novel promising applications to exploit the commercial potentials of VANETs. Specifically, to enable cooperative detection of safety relevant events on the roads, the structure-less message aggregation (SLMA) scheme is proposed to improve communication efficiency and message accuracy. The scheme of relative position based message dissemination (RPB-MD) is proposed to reliably and efficiently disseminate messages to all intended vehicles in the zone-of-relevance in varying traffic density. Due to numerous vehicular sensor data available based on VANETs, the scheme of compressive sampling based data collection (CS-DC) is proposed to efficiently collect the spatial relevance data in a large scale, especially in the dense traffic. In addition, with novel and efficient solutions proposed for the application specific issues of data dissemination and data collection, several appealing value-added applications for VANETs are developed to exploit the commercial potentials of VANETs, namely general purpose automatic survey (GPAS), VANET-based ambient ad dissemination (VAAD) and VANET based vehicle performance monitoring and analysis (VehicleView). Thus, by improving the efficiency and reliability in in-network data processing and dissemination, including message aggregation, data dissemination and data collection, together with the development of novel promising applications, this dissertation will help push VANETs further to the stage of massive deployment

    Immune System Based Control and Intelligent Agent Design for Power System Applications

    Get PDF
    The National Academy of Engineering has selected the US Electric Power Grid as the supreme engineering achievement of the 20th century. Yet, this same grid is struggling to keep up with the increasing demand for electricity, its quality and cost. A growing recognition of the need to modernize the grid to meet future challenges has found articulation in the vision of a Smart Grid in using new control strategies that are intelligent, distributed, and adaptive. The objective of this work is to develop smart control systems inspired from the biological Human Immune System to better manage the power grid at the both generation and distribution levels. The work is divided into three main sections. In the first section, we addressed the problem of Automatic Generation Control design. The Clonal Selection theory is successfully applied as an optimization technique to obtain decentralized control gains that minimize a performance index based on Area Control Errors. Then the Immune Network theory is used to design adaptive controllers in order to diminish the excess maneuvering of the units and help the control areas comply with the North American Electric Reliability Corporation\u27s standards set to insure good quality of service and equitable mutual assistance by the interconnected energy balancing areas. The second section of this work addresses the design and deployment of Multi Agent Systems on both terrestrial and shipboard power systems self-healing using a novel approach based on the Immune Multi-Agent System (IMAS). The Immune System is viewed as a highly organized and distributed Multi-Cell System that strives to heal the body by working together and communicating to get rid of the pathogens. In this work both simulation and hardware design and deployment of the MAS are addressed. The third section of this work consists in developing a small scale smart circuit by modifying and upgrading the existing Analog Power Simulator to demonstrate the effectiveness of the developed technologies. We showed how to develop smart Agents hardware along with a wireless communication platform and the electronic switches. After putting together the different designed pieces, the resulting Multi Agent System is integrated into the Power Simulator Hardware. The multi Agent System developed is tested for fault isolation, reconfiguration, and restoration problems by simulating a permanent three phase fault on one of the feeder lines. The experimental results show that the Multi Agent System hardware developed performed effectively and in a timely manner which confirms that this technology is very promising and a very good candidate for Smart Grid control applications

    Improved Unequal-Clustering and Routing Protocol

    Get PDF
    Increased network lifetime is a desired property of low-powered and energy-constrained Internet of Things (IoT) devices that are deployed in wireless network environments. Clustering is used as a technique in multiple solutions to improve overall network lifetime. Further variants in the clustering process are defined to optimize the results. One such variant is equal clustering, where all the clusters have the same size. However, this approach suffers from the issue of nodes closer to the base station (BS) dying out earlier. As an alternative, unequal clustering is proposed, where clusters close to the BS are of smaller size; thus, cluster heads (CHs) consume a substantial proportion of their energy for being acting as data forwarding nodes. In this paper, we propose an unequal clustering approach with the BS at the center of a circular area. The size of each cluster is fixed and computed based on the node density of the area. The number of clusters increases from outwards to inwards towards the BS. The results show considerable performance gain over selected benchmark works

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks
    • …
    corecore