4,660 research outputs found

    Performance and Memory Space Optimizations for Embedded Systems

    Get PDF
    Embedded systems have three common principles: real-time performance, low power consumption, and low price (limited hardware). Embedded computers use chip multiprocessors (CMPs) to meet these expectations. However, one of the major problems is lack of efficient software support for CMPs; in particular, automated code parallelizers are needed. The aim of this study is to explore various ways to increase performance, as well as reducing resource usage and energy consumption for embedded systems. We use code restructuring, loop scheduling, data transformation, code and data placement, and scratch-pad memory (SPM) management as our tools in different embedded system scenarios. The majority of our work is focused on loop scheduling. Main contributions of our work are: We propose a memory saving strategy that exploits the value locality in array data by storing arrays in a compressed form. Based on the compressed forms of the input arrays, our approach automatically determines the compressed forms of the output arrays and also automatically restructures the code. We propose and evaluate a compiler-directed code scheduling scheme, which considers both parallelism and data locality. It analyzes the code using a locality parallelism graph representation, and assigns the nodes of this graph to processors.We also introduce an Integer Linear Programming based formulation of the scheduling problem. We propose a compiler-based SPM conscious loop scheduling strategy for array/loop based embedded applications. The method is to distribute loop iterations across parallel processors in an SPM-conscious manner. The compiler identifies potential SPM hits and misses, and distributes loop iterations such that the processors have close execution times. We present an SPM management technique using Markov chain based data access. We propose a compiler directed integrated code and data placement scheme for 2-D mesh based CMP architectures. Using a Code-Data Affinity Graph (CDAG) to represent the relationship between loop iterations and array data, it assigns the sets of loop iterations to processing cores and sets of data blocks to on-chip memories. We present a memory bank aware dynamic loop scheduling scheme for array intensive applications.The goal is to minimize the number of memory banks needed for executing the group of loop iterations

    Energy Saving Techniques for Phase Change Memory (PCM)

    Full text link
    In recent years, the energy consumption of computing systems has increased and a large fraction of this energy is consumed in main memory. Towards this, researchers have proposed use of non-volatile memory, such as phase change memory (PCM), which has low read latency and power; and nearly zero leakage power. However, the write latency and power of PCM are very high and this, along with limited write endurance of PCM present significant challenges in enabling wide-spread adoption of PCM. To address this, several architecture-level techniques have been proposed. In this report, we review several techniques to manage power consumption of PCM. We also classify these techniques based on their characteristics to provide insights into them. The aim of this work is encourage researchers to propose even better techniques for improving energy efficiency of PCM based main memory.Comment: Survey, phase change RAM (PCRAM

    Variable-based multi-module data caches for clustered VLIW processors

    Get PDF
    Memory structures consume an important fraction of the total processor energy. One solution to reduce the energy consumed by cache memories consists of reducing their supply voltage and/or increase their threshold voltage at an expense in access time. We propose to divide the L1 data cache into two cache modules for a clustered VLIW processor consisting of two clusters. Such division is done on a variable basis so that the address of a datum determines its location. Each cache module is assigned to a cluster and can be set up as a fast power-hungry module or as a slow power-aware module. We also present compiler techniques in order to distribute variables between the two cache modules and generate code accordingly. We have explored several cache configurations using the Mediabench suite and we have observed that the best distributed cache organization outperforms traditional cache organizations by 19%-31% in energy-delay and by 11%-29% in energy-delay. In addition, we also explore a reconfigurable distributed cache, where the cache can be reconfigured on a context switch. This reconfigurable scheme further outperforms the best previous distributed organization by 3%-4%.Peer ReviewedPostprint (published version

    Exploring Processor and Memory Architectures for Multimedia

    Get PDF
    Multimedia has become one of the cornerstones of our 21st century society and, when combined with mobility, has enabled a tremendous evolution of our society. However, joining these two concepts introduces many technical challenges. These range from having sufficient performance for handling multimedia content to having the battery stamina for acceptable mobile usage. When taking a projection of where we are heading, we see these issues becoming ever more challenging by increased mobility as well as advancements in multimedia content, such as introduction of stereoscopic 3D and augmented reality. The increased performance needs for handling multimedia come not only from an ongoing step-up in resolution going from QVGA (320x240) to Full HD (1920x1080) a 27x increase in less than half a decade. On top of this, there is also codec evolution (MPEG-2 to H.264 AVC) that adds to the computational load increase. To meet these performance challenges there has been processing and memory architecture advances (SIMD, out-of-order superscalarity, multicore processing and heterogeneous multilevel memories) in the mobile domain, in conjunction with ever increasing operating frequencies (200MHz to 2GHz) and on-chip memory sizes (128KB to 2-3MB). At the same time there is an increase in requirements for mobility, placing higher demands on battery-powered systems despite the steady increase in battery capacity (500 to 2000mAh). This leaves negative net result in-terms of battery capacity versus performance advances. In order to make optimal use of these architectural advances and to meet the power limitations in mobile systems, there is a need for taking an overall approach on how to best utilize these systems. The right trade-off between performance and power is crucial. On top of these constraints, the flexibility aspects of the system need to be addressed. All this makes it very important to reach the right architectural balance in the system. The first goal for this thesis is to examine multimedia applications and propose a flexible solution that can meet the architectural requirements in a mobile system. Secondly, propose an automated methodology of optimally mapping multimedia data and instructions to a heterogeneous multilevel memory subsystem. The proposed methodology uses constraint programming for solving a multidimensional optimization problem. Results from this work indicate that using today’s most advanced mobile processor technology together with a multi-level heterogeneous on-chip memory subsystem can meet the performance requirements for handling multimedia. By utilizing the automated optimal memory mapping method presented in this thesis lower total power consumption can be achieved, whilst performance for multimedia applications is improved, by employing enhanced memory management. This is achieved through reduced external accesses and better reuse of memory objects. This automatic method shows high accuracy, up to 90%, for predicting multimedia memory accesses for a given architecture

    Real-time human action recognition on an embedded, reconfigurable video processing architecture

    Get PDF
    Copyright @ 2008 Springer-Verlag.In recent years, automatic human motion recognition has been widely researched within the computer vision and image processing communities. Here we propose a real-time embedded vision solution for human motion recognition implemented on a ubiquitous device. There are three main contributions in this paper. Firstly, we have developed a fast human motion recognition system with simple motion features and a linear Support Vector Machine (SVM) classifier. The method has been tested on a large, public human action dataset and achieved competitive performance for the temporal template (eg. “motion history image”) class of approaches. Secondly, we have developed a reconfigurable, FPGA based video processing architecture. One advantage of this architecture is that the system processing performance can be reconfiured for a particular application, with the addition of new or replicated processing cores. Finally, we have successfully implemented a human motion recognition system on this reconfigurable architecture. With a small number of human actions (hand gestures), this stand-alone system is performing reliably, with an 80% average recognition rate using limited training data. This type of system has applications in security systems, man-machine communications and intelligent environments.DTI and Broadcom Ltd

    Architecture extensions for efficient managament of scratch-pad Memory

    Full text link
    Nowadays, many embedded processors include in their architecture on-chip static memories, so called scratch-pad memories (SPM). Compared to cache, these memories do not require complex control logic, thus resulting in increased efficiency both in silicon area and energy consumption. Last years, many papers have proposed algorithms to allocate memory segments in SPM in order to enhance its usage. However, very few care about the SPM architecture itself, to make it more controllable, more power efficient and faster. This paper proposes architecture extensions to automatically load code into the SPM whilst it is fetched for execution to reduce the SPM updating delays, which motivates a very dynamic use of the SPM. We test our proposal in a derivation of the Simplescalar simulator, with typical embedded benchmarks. The results show improvements, on average, of 30.6% in energy saving and 7.6% in performance compared to a system with cache. © 2011 Springer-Verlag.This research was sponsored by local Government “Generalitat Valenciana” under project GV07/ 2007/122.Busquets Mataix, JV.; Catalá, C.; Martí Campoy, A. (2011). Architecture extensions for efficient managament of scratch-pad Memory. En Integrated Circuit and System Design. Power and Timing Modeling, Optimization, and Simulation. Springer Verlag (Germany). (6951):43-52. https://doi.org/10.1007/978-3-642-24154-3_5S43526951Banakar, R., Steinke, S., Lee, B.-S., Balakrishnan, M., Marwedel, P.: Scratchpad memory: design alternative for cache on-chip memory in embedded systems. In: CODES 2002, pp. 73–78 (2002)Verma, M., Wehmeyer, L., Marwedel, P.: Cache-Aware Scratchpad Allocation Algorithm. In: DATE 2004, pp. 1264–1269 (2004)Verma, M., Marwedel, P.: Advanced memory optimization techniques for low-power embedded processors, pp. I-XII, 1–188. Springer, Heidelberg (2007)Nguyen, N., Dominguez, A., Barua, R.: Memory allocation for embedded systems with a compile-time-unknown scratch-pad size. In: CASES 2005, pp. 115–125 (2005)Egger, B., Kim, C., Jang, C., Nam, Y., Lee, J., Min, S.L.: A dynamic code placement technique for scratchpad memory using postpass optimization. In: CASES 2006, pp. 223–233 (2006)Egger, B., Lee, J., Shin, H.: Scratchpad memory management for portable systems with a memory management unit. In: EMSOFT 2006, pp. 321–330 (2006)Egger, B., Lee, J., Shin, H.: Dynamic scratchpad memory management for code in portable systems with an MMU. ACM Trans. Embedded Comput. Syst. 7(2) (2008)Cho, H., Egger, B., Lee, J., Shin, H.: Dynamic data scratchpad memory management for a memory subsystem with an MMU. In: LCTES 2007, pp. 195–206 (2007)Janapsatya, A., Parameswaran, S., Ignjatovic, A.: Hardware/software managed scratchpad memory for embedded system. In: ICCAD 2004, pp. 370–377 (2004)Balakrishnan, M., Marwedel, P., Wehmeyer, L., Grunwald, N., Banakar, R., Steinke, S.: Reducing Energy Consumption by Dynamic Copying of Instructions onto Onchip Memory. In: ISSS 2002, pp. 213–218 (2002)Poletti, F., Marchal, P., Atienza, D., Benini, L., Catthoor, F., Mendias, J.M.: An integrated hardware/software approach for run-time scratchpad management. In: DAC 2004, pp. 238–243 (2004)Li, L., Gao, L., Xue, J.: Memory Coloring: A Compiler Approach for Scratchpad Memory Management. In: IEEE PACT 2005, pp. 329–338 (2005)Lee, L.H., Moyer, B., Arends, J.: Instruction fetch energy reduction using loop caches for embedded applications with small tight loops. In: ISLPED 1999, pp. 267–269 (1999)Victorio, J.A., Torres Moren, E.F., Yúfera, V.V.: Vatios: Simulador de Procesador con Estimación de Potencia. XVIII Jornadas de Paralelismo, Zaragoza (2007)Burger, D., Austin, T.M.: The SimpleScalar Tool Set Version 2.0. Technical Report 1342, Computer Sciences Department. University of Wisconsin–Madison (May 1997)Brooks, D., Tiwari, V., Martonosi, M.: Wattch: a framework for architectural-level power analysis and optimizations. In: ISCA 2000, pp. 83–94 (2000)Tarjan, D., Thoziyoor, S., Jouppi, N.: CACTI 4.0, P. HPL-2006- 86 20060606The Mälardalen WCET research group. The Mälardalen WCET benchmarks homepage, http://www.mrtc.mdh.se/projects/wcet/benchmarks.htmlCho, D., Pasricha, S., Issenin, I., Dutt, N.D., Ahn, M., Paek, Y.: Adaptive Scratch Pad Memory Management for Dynamic Behavior of Multimedia Applications. IEEE Trans. on CAD of Integrated Circuits and Systems (TCAD) 28(4), 554–567 (2009

    FPGA implementation of real-time human motion recognition on a reconfigurable video processing architecture

    Get PDF
    In recent years, automatic human motion recognition has been widely researched within the computer vision and image processing communities. Here we propose a real-time embedded vision solution for human motion recognition implemented on a ubiquitous device. There are three main contributions in this paper. Firstly, we have developed a fast human motion recognition system with simple motion features and a linear Support Vector Machine(SVM) classifier. The method has been tested on a large, public human action dataset and achieved competitive performance for the temporal template (eg. ``motion history image") class of approaches. Secondly, we have developed a reconfigurable, FPGA based video processing architecture. One advantage of this architecture is that the system processing performance can be reconfigured for a particular application, with the addition of new or replicated processing cores. Finally, we have successfully implemented a human motion recognition system on this reconfigurable architecture. With a small number of human actions (hand gestures), this stand-alone system is performing reliably, with an 80% average recognition rate using limited training data. This type of system has applications in security systems, man-machine communications and intelligent environments

    Optimizing the flash-RAM energy trade-off in deeply embedded systems

    Full text link
    Deeply embedded systems often have the tightest constraints on energy consumption, requiring that they consume tiny amounts of current and run on batteries for years. However, they typically execute code directly from flash, instead of the more energy efficient RAM. We implement a novel compiler optimization that exploits the relative efficiency of RAM by statically moving carefully selected basic blocks from flash to RAM. Our technique uses integer linear programming, with an energy cost model to select a good set of basic blocks to place into RAM, without impacting stack or data storage. We evaluate our optimization on a common ARM microcontroller and succeed in reducing the average power consumption by up to 41% and reducing energy consumption by up to 22%, while increasing execution time. A case study is presented, where an application executes code then sleeps for a period of time. For this example we show that our optimization could allow the application to run on battery for up to 32% longer. We also show that for this scenario the total application energy can be reduced, even if the optimization increases the execution time of the code

    Scratchpad Management in Software Managed Manycore Architectures

    Get PDF
    abstract: Caches have long been used to reduce memory access latency. However, the increased complexity of cache coherence brings significant challenges in processor design as the number of cores increases. While making caches scalable is still an important research problem, some researchers are exploring the possibility of a more power-efficient SRAM called scratchpad memories or SPMs. SPMs consume significantly less area, and are more energy-efficient per access than caches, and therefore make the design of on-chip memories much simpler. Unlike caches, which fetch data from memories automatically, an SPM requires explicit instructions for data transfers. SPM-only architectures are thus named as software managed manycore (SMM), since the data movements of such architectures rely on software. SMM processors have been widely used in different areas, such as embedded computing, network processing, or even high performance computing. While SMM processors provide a low-power platform, the hardware alone does not guarantee power efficiency, if applications on such processors deliver low performance. Efficient software techniques are therefore required. A big body of management techniques for SMM architectures are compiler-directed, as inserting data movement operations by hand forces programmers to trace flow of data, which can be error-prone and sometimes difficult if not impossible. This thesis develops compiler-directed techniques to manage data transfers for embedded applications on SMMs efficiently. The techniques analyze and find out the proper program points and insert data movement instructions accordingly. The techniques manage code, stack and heap data of applications, and reduce execution time by 14%, 52% and 80% respectively compared to their predecessors on typical embedded applications. On top of managing local data, a technique is also developed for shared data in SMM architectures. Experimental results show it achieves more than 2X speedup than the previous technique on average.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Power-Efficient and Low-Latency Memory Access for CMP Systems with Heterogeneous Scratchpad On-Chip Memory

    Get PDF
    The gradually widening speed disparity of between CPU and memory has become an overwhelming bottleneck for the development of Chip Multiprocessor (CMP) systems. In addition, increasing penalties caused by frequent on-chip memory accesses have raised critical challenges in delivering high memory access performance with tight power and latency budgets. To overcome the daunting memory wall and energy wall issues, this thesis focuses on proposing a new heterogeneous scratchpad memory architecture which is configured from SRAM, MRAM, and Z-RAM. Based on this architecture, we propose two algorithms, a dynamic programming and a genetic algorithm, to perform data allocation to different memory units, therefore reducing memory access cost in terms of power consumption and latency. Extensive and intensive experiments are performed to show the merits of the heterogeneous scratchpad architecture over the traditional pure memory system and the effectiveness of the proposed algorithms
    corecore