
Scratchpad Management in Software Managed Manycore Architectures

by

Jian Cai

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved October 2017 by the
Graduate Supervisory Committee:

Aviral Shrivastava, Chair
Carole Wu
Fengbo Ren

Partha Dasgupta

ARIZONA STATE UNIVERSITY

December 2017

ABSTRACT

Caches have long been used to reduce memory access latency. However, the in-

creased complexity of cache coherence brings significant challenges in processor design

as the number of cores increases. While making caches scalable is still an important re-

search problem, some researchers are exploring the possibility of a more power-efficient

SRAM called scratchpad memories or SPMs. SPMs consume significantly less area,

and are more energy-efficient per access than caches, and therefore make the design

of on-chip memories much simpler. Unlike caches, which fetch data from memories

automatically, an SPM requires explicit instructions for data transfers. SPM-only

architectures are thus named as software managed manycore (SMM), since the data

movements of such architectures rely on software. SMM processors have been widely

used in different areas, such as embedded computing, network processing, or even

high performance computing. While SMM processors provide a low-power platform,

the hardware alone does not guarantee power efficiency, if applications on such pro-

cessors deliver low performance. Efficient software techniques are therefore required.

A big body of management techniques for SMM architectures are compiler-directed,

as inserting data movement operations by hand forces programmers to trace flow of

data, which can be error-prone and sometimes difficult if not impossible. This thesis

develops compiler-directed techniques to manage data transfers for embedded appli-

cations on SMMs efficiently. The techniques analyze and find out the proper program

points and insert data movement instructions accordingly. The techniques manage

code, stack and heap data of applications, and reduce execution time by 14%, 52%

and 80% respectively compared to their predecessors on typical embedded applica-

tions. On top of managing local data, a technique is also developed for shared data

in SMM architectures. Experimental results show it achieves more than 2X speedup

than the previous technique on average.

i

ACKNOWLEDGMENTS

PhD life is the most challenging yet the most rewarding time of my life. It not

only teaches me how to think critically, but also makes me realize the importance of

communicating clearly with people, a skill that keeps helping me even after graduate

school. It lets me learn patience and persistence. I can never finish my 7 years of

study without them. Most importantly, it allows me to find the passion of my life

and start a career I love.

I would never complete my PhD study without the help I received. My advisor,

Professor Aviral Shrivastava, enlightened me with his insight, and never lost faith

in me. My labmates, Di Lu, Bryce Holton, Yooseong Kim, and Moslem Didehban,

always encouraged me, and brainstormed with me when I faced technical difficul-

ties. Mahesh Balasubramanian, Mohammadreza Mehrabian, Shail Dave, Mohammad

Khayatian, and the rest labmates all offered their help so I could focus on the de-

fense towards the end of my PhD life. My committee members, Professor Fengbo

Ren, Professor Partha Dasgupta, and Professor Carole-Jean Wu, offered their valu-

able opinions so that I could refine my work. Because of all these lovely people, my

PhD life was so enjoyable and memorable.

Finally, I would like to thank my parents and my girlfriend Tianran. There are so

many times I felt lost in life, it was always their unconditional support that helped

me through.

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER

1 INTRODUCTION . 1

1.1 Scratchpad Memory. 1

1.2 Software Managed Manycore and Its Management 4

1.3 Overview of This Thesis . 7

1.3.1 Efficient Code Management . 7

1.3.2 Efficient Stack Management . 8

1.3.3 Efficient Heap Management . 8

1.3.4 Shared Data Management . 9

2 CODE MANAGEMENT ON SPM . 10

2.1 Introduction . 10

2.2 Related Work . 13

2.3 Motivating Example . 15

2.4 Our Approach . 16

2.4.1 Notation . 17

2.4.2 Always-hit Analysis . 18

2.4.3 First-miss Analysis . 21

2.5 Evaluation . 22

2.5.1 Experimental setup . 22

2.5.2 Code Management Overhead Reduction 23

2.5.3 Comparison with Hardware Caching . 24

2.6 Conclusion . 26

iii

CHAPTER Page

3 STACK MANAGEMENT ON SPM . 29

3.1 Introduction . 29

3.2 Related Work . 31

3.3 Background . 34

3.4 Key Ideas of Our Approach . 36

3.5 Details of Our Approach . 38

3.5.1 Steps of Our Approach . 38

3.6 Experiments . 45

3.6.1 Improvement Over The State of The Art 45

3.6.2 Comparable Performance Compared to Caches 48

3.6.3 Choice of SPM Stack Size . 49

3.6.4 Integrated Management . 51

3.7 Conclusion . 52

4 OPTIMIZING HEAP DATA MANAGEMENT ON SOFTWARE MAN-

AGED MANYCORE ARCHITECTURES . 53

4.1 Introduction . 53

4.2 Related Work . 56

4.3 Limitation of the State of The Art . 58

4.4 Key Ideas of Our Approach . 60

4.5 Details of Our Approach . 61

4.5.1 Statically detect heap accesses . 61

4.5.2 Simplify management framework . 64

4.5.3 Inline and combine management calls . 66

4.6 Experiments . 68

iv

CHAPTER Page

4.6.1 Experimental setup . 68

4.6.2 Significantly reduces execution time . 70

4.6.3 Scales well with SPM size . 73

4.7 Conclusion . 75

5 SHARED DATA MANAGEMENT . 78

5.1 Introduction . 78

5.1.1 Related Work . 80

5.1.2 Previous Approach . 82

5.1.3 Our Approach . 83

5.1.4 Experimental Results . 87

6 MY CONTRIBUTIONS . 93

7 SUMMARY . 94

REFERENCES . 96

v

LIST OF TABLES

Table Page

3.1 Overhead Of Pointer Management . 45

4.1 Maximum Heap Usage Of Benchmarks . 68

4.2 Number Of G2l Calls Called Before And After Identifying Heap Access

Statically With The Previous Technique . 70

4.3 Instructions Executed Per G2l Under Different Cases With Optimiza-

tions Incrementally Added. 71

5.1 Benchmarks . 87

vi

LIST OF FIGURES

Figure Page

1.1 Difference Between Cache And SPM—the Hardware View. 2

1.2 Difference Between Cache And SPM—the Software View. 3

1.3 An Example Of SMM Architectures. 4

1.4 Our Approach Analyzes Programs And Inserts Management Instruc-

tions For Efficient Data Movement Between SPM And Main Memory. . 7

2.1 Code Management Increases Instruction Count By 22% On Average

Even When The SPM Is Larger Than The Code Size. 11

2.2 Our Analysis Avoids Unnecessary Management Functions. 15

2.3 Overview Of Our Approach. 16

2.4 Always-hit Program Points In Main Function, Given The Function-

to-region Mapping. 19

2.5 First-miss Program Points In Loop L2 Of Main Function. 20

2.6 Our Approach Reduces The Management Overhead By 84% And The

Overall Execution Time By 15% On Average. 23

2.7 Execution Time Is Reduced By Over 14% On Average. 24

2.8 The Execution Times Are Normalized To Those With Hardware Caching. 25

3.1 Pointer Management Problem. 30

3.2 The Way Pointer Management Functions Work. 33

3.3 The Key Ideas Of Our Approach. 36

3.4 Identification Of The Potential Pointer To Stack. 38

3.5 The Analysis To Find Out At Which Stack Frames Will Exist In SPM

At The Same Time. 40

vii

Figure Page

3.6 Compared To Previous Pointer Management, Our Approach Reuses

The Local Buffer Created By G2l Function And Saves Management

Overhead. 44

3.7 The Compilation Process Of Benchmarks Used In Experiments. 46

3.8 Execution Time Of Our Approach Normalized To The Previous Pointer

Management. 47

3.9 Normalized Execution Time Of Our Approach Normalized To Caching. 49

3.10 Execution Time Of Our Approach Using Three Different SPM Sizes,

All Normalized To The Execution Time With The Minimum SPM Size. 50

3.11 Execution Time Of Integrated Code And Stack Management, Normal-

ized To The Execution Time Of Caching. 51

4.1 Percent Of Heap Accesses Among All The Accesses (excluding Code

Accesses). 54

4.2 How Heap Management Function G2l Works. 55

4.3 The State-of-the-art Heap Management Approach. 57

4.4 Performance Overhead Caused By The State-of-the-art Heap Manage-

ment Approach. 59

4.5 The Previous Approach Inserts G2l Before Every Memory Access,

While Our Approach Skips Unnecessary G2ls. 61

4.6 When A Memory Access May Be To Heap But Is Not For Certain, We

Check At Runtime Before Managing The Access. 63

4.7 Reduced Complexity Of Our Approach Compared To The Previous

Approach. 65

viii

Figure Page

4.8 We Inline Management Calls And Move Common Operations To The

Beginning Of The Caller Function. 66

4.9 The Execution Time Of Our Approach Normalized To The Previous

Work With Optimizations Incrementally Added. 69

4.10 Implementing A Direct-mapped Cache Other Than A 4-way Set-associative

Cache Reduces More Execution Time Than The Extra Time Intro-

duced Due To Increased Cache Misses. 72

4.11 Execution Time Of Our Approach Normalized To The Previous Work,

When The SPM Size Increases From 4KB To 64KB. 74

5.1 An Example Of Cache Coherence Problem. 79

5.2 The Way COMIC Works. 83

5.3 The Way Our Approach Works. 84

5.4 Code Transformation With Our Management Functions. 85

5.5 Comparison Of The Performance Of Our Approach And COMIC. 88

5.6 The Comparison Of Runtime Overhead Of Our Approach And COMIC. 90

5.7 Compute-intensity Is Varied By Changing The NumIters Parameter. . . 91

ix

Chapter 1

INTRODUCTION

Multi-/many-core processors have been widely used to improve processor perfor-

mance, as gains from increasing operating frequency on uniprocessors gradually di-

minished. In a typical multi-/many-core processor, caches are used to store frequently

accessed data to bridge the gap of processing speed and memory access latency. As

a result, cache coherence is required to maintain coherence of shared data (which is

cached in multiple cores), so that the semantics of applications running on the proces-

sors are not changed. Cache coherence largely improves programmability, as it hides

the underlying details of the memory subsystem and creates an illusion of a single

image of memory. However, it comes at a price—scaling cached-based architectures

becomes increasingly difficult, as area and power overhead of implementing cache co-

herence increases rapidly as the number of cores grows Bournoutian and Orailoglu

(2011); Choi et al. (2011); Garcia-Guirado et al. (2011); Xu et al. (2011). While de-

signing scalable cache coherence mechanisms remains as an important research prob-

lem, many researchers pay attention to use more power-efficient fast memory instead

of caches in processor designs. An noticeable example of such efforts is scratchpad

memory (SPM).

1.1 Scratchpad Memory

An SPM is the local memory incorporated into a processor or System on Chip

(SoC) architecture and controlled by software (the application itself, compiler, operat-

ing system, or a combination of them). SPMs can be found in many processors, such

as in high performance computing Carter et al. (2013); REX Computing, Inc. (2014),

1

Data Array Tag
Array

Tag Comparators,
MUXes

Address
Decoder

(a) Hardware Controlled Cache

Data Array

Address
Decoder

(b) Software Programmable Memory

Figure 1.1: Difference between cache and SPM—the hardware view: SPM is raw

memory without the hardware mechanism to manage it (as is present in caches).

gaming and multimedia processing Gschwind et al. (2006b), and networking Olofsson

(2016). SPM is attached to the processor in much the same way as an L1 cache.

However, an SPM is a piece of raw memory, in the sense that it only contains de-

coding and column access logic, without the complex circuitry required to achieve

hardware control of replacement policies, and managing coherence (tag directory, tag

look-up circuitry, etc.). As Figure 1.1 shows, while a cache stores both the data and

its address, an SPM only stores data, avoiding the extra lookup circuitry. As a result,

SPMs use less area yet consuming significantly less power than caches (for the same

data capacity) Banakar et al. (2002); Redd et al. (2014).

Functionally SPMs are similar to caches, in that they allow for fast access to

frequently used data, but with lower power and latency. However, replacing caches

with SPMs comes with its own set of challenges, as in Figure 1.2. Using caches is

automatic; if desired data is not present in the cache, hardware mechanisms are built

to bring the requested data into the cache, potentially preventing the necessity of a

repeated operation if the data is reused. However, SPM contains no such hardware

mechanism to automatically bring the data that is requested to the SPM. It must be

brought in explicitly through memory transfer instructions that trigger DMA trans-

2

CPU

Cache

Memory

SPM

Memory

DMA

DMA instruction
moves data between

memory and SPM

Load and store
instructions transfer
data from/to SPM

If the data is not in the
cache, it is brought into

the cache from the
memory automatically

Load and store
instructions request
data from/to cache

CPU

Figure 1.2: Difference between Cache and SPM—the software view: the data move-

ment to and from the cache is performed automatically in hardware, in SPM-based

systems, it must be present in the software in the form of data movement instructions.

fers. Furthermore, once data is brought in, it must be accessed using its new address

in the SPM, and not the original address in the main memory.

While there are challenges in using SPMs instead of caches, the promise is the

movement of application data (including code) on SPM is very flexible. Caches are a

one-size-fits-all approach. They have one way of managing data, regardless of how the

data is actually accessed. Whether some data is accessed randomly, or is accessed in

a first-in-first-out manner, on a cache-based system, it will always be accessed in the

manner implemented in hardware. On the other hand, users of SPMs can make use of

application semantics and knowledge of data access patterns to create more efficient

management of data, thereby enabling customization of data movement across the

memory hierarchy. For example, stack data in SPMs can be managed on stack-frame

level instead of cache blocks, as when a function call happens, it is likely that all the

data within the stack frame will be needed during the execution of the function. By

loading all the data in a stack frame at once, we can reduce the overhead for checking

if the requested cache blocks during the execution of the function are already in the

3

SPM. In addition, if we know multiple stack frames of function calls along some path

in the call graph can be held in the SPM at the same time, we can bring all these

stack frames from the main memory into the SPM at once, instead of fetching each

of them separately. By doing so, we can further reduce number of memory transfers,

and eliminate status checking of stack frames between these calls.

1.2 Software Managed Manycore and Its Management

DM
A

En
gi

ne

M
ai

n
M

em
or

y

CPU

SPM

Figure 1.3: An example of SMM architectures.

Since code and data must be explicitly transferred by executing additional in-

structions to manage code and data between an SPM and main memory, SPM-based

multi-/many-core architectures are called software managed manycore (SMM) archi-

tectures. Figure 1.3 shows an example of SMM architectures. In an SMM architec-

ture, each core has a local SPM. A core can directly access the required code and data

in slow main memory, or first load the code and data into its local SPM to improve

performance. Code and data that are not immediately required can be evicted from

SPM (to main memory).

To manage data on an SMM architectures, the space of an SPM is divided into

different partitions, with one partition for code, stack, heap and global/static data

4

correspondingly (each core runs one task at a time). Different management tech-

niques are developed to manage each type of application data. The differences of

management techniques are required due to the distinct characteristics of different

types of data. For example, the addresses of stack variables in a stack frame is

all based on the value of stack pointer, therefore we can easily change addresses of

stack frames by simply changing the value of stack pointer. On the other hand, it

is more difficult to change instruction addresses at runtime as doing so would affect

PC(Program Counter)-relative memory accesses. Therefore, stack management tech-

niques on SMM architectures can move stack frames to any available SPM or mem-

ory or memory locations at runtime, while code management techniques on SMM

architectures typically uses the same address for different functions, and rely on a

technique called overlaying to load only the required functions (thus evicting the

functions currently occupying the same memory addresses) at runtime. Similarly, we

can not simply apply the same techniques of stack or code management to manage

heap data, as heap objects are generally scattered in memory. We need to develop

different techniques for heap management, such as software caching.

A big body of SPM management techniques for SMM architectures are compiler-

directed, as inserting data movement operations by hand force programmers to trace

flow of data, which can be error-prone. Early SPM management are mostly static

approaches Panda et al. (1997); Sjödin and von Platen (2001); Avissar et al. (2001,

2002); Nguyen et al. (2005); Verma et al. (2003); Steinke et al. (2002b), which di-

vides application data into SPM and memory. In other words, part of application

data (typically most frequently accessed) goes to the fast SPM, while the rest is al-

located and accessed in the slower main memory. Such techniques are limited as the

size of application data grows, when most of the application data has to be directly

accessed in main memory. Most recent works use dynamic techniques. Many dy-

5

namic techniques are driven by profiling Egger et al. (2008a, 2010); Ishitobi et al.

(2010); Kandemir et al. (2001); Panda et al. (2000); Li et al. (2005a); Jia et al.

(2015); Udayakumaran and Barua (2003); Dominguez et al. (2005); Udayakumaran

and Barua (2006); Udayakumaran et al. (2006a); Dominguez et al. (2007); Verma

and Marwedel (2006); Chakraborty and Panda (2012). Profilers are used to collect

various information, such as loop bounds or outcomes of branches, provided repre-

sentative program inputs are present. These information is then used to decide most

frequently used data that can be stored in SPM, either statically or dynamically. Such

approaches, while can be very efficient, cannot be applied when program behaviors

change drastically when inputs vary, and are therefore lack of generality. To solve

this problem, we present non-profiling-driven compiler-directed approaches to manage

data movement between SPM and main memory, as in Figure 1.4. Such an approach

takes as input a program, analyzes and inserts instructions for data transfers to the

intermediate-representation (IR) of the program, and then generates the binary file

for the SMM processors.

It is sometimes necessary to manage shared data in different cores, on top of

the management of local data. This topic has been extensively studied in clusters.

However, those approaches does not apply well to SMM architectures. In traditional

clusters, inter-process communication is very expensive, while computation is rela-

tively cheap thanks to powerful processors used in the clusters. Therefore, shared

data management usually tries to minimize communication at the cost of introducing

more computation. In SMM processors, however, inter-core communication becomes

faster, while computation power of each core is weakened to save power. Instead,

number of cores is increased to offset the lost of computation speed. Therefore, we

developed a different approach that can significantly reduce computation overhead,

even though it may increase data transfers among cores.

6

Source	files
Executable	with	

manage	
instructions

Our	
compiler

Figure 1.4: Our approach analyzes programs and inserts management instructions

for efficient data movement between SPM and main memory.

1.3 Overview of This Thesis

This thesis develops efficient non-profiling-driven automatic compiler-directed data

management techniques to manage different types of application data on SMM ar-

chitectures. Chapter 2, 3, 4 and 5 explain the details and experimental results

of the code, stack, heap and shared data management techniques developed in this

thesis. Chapter ?? summarizes this thesis and introduces publications contribute to

this thesis.

1.3.1 Efficient Code Management

One way to manage code on SMM architectures is to divide the space of each SPM

into regions, and map the functions in a program into these regions. Each function is

mapped to exact one region, and therefore multiple functions may be mapped to the

same region, if there are more functions than regions, which is not uncommon as SPM

space is typically limited, just like caches. Code management introduces overhead

in the form of increased memory transfers and dynamic instructions. To reduce

such overhead, we can either i) reduce memory transfers, or ii) reduce number of

instructions executed. Existing code management techniques for SMM architectures

focus on the first issue Lu et al. (2015a). In Chapter 2, we show the second issue is

very important, introducing 22% extra instructions on typical embedded applications

even when SPM size is larger than code size. Our technique reduces the instruction

7

overhead by 16% and execution time by 14% respectively, compared to managing

code without solving the second issue. Our approach reduces execution time by

9% on average compared to caches, when only code management is considered, i.e.

assume the accesses to the rest of application data always hits.

1.3.2 Efficient Stack Management

Stack management is also very important, as stack accesses account for around

64% of overall memory accesses Kannan et al. (2009) in Mibench Guthaus et al.

(2001a), which consists of typical embedded applications. To ensure the functionality

of applications, stack management techniques on SMM architectures have to i) copy

stack frames between SPMs and main memories at right timing, and ii) solve the

pointer corruption issue caused by changed addresses of stack variables. An existing

work Lu et al. (2013) has solved the first problem efficiently. The solution to solve the

second problem is however still relatively preliminary, focusing on correctness but not

efficiency. In Chapter 3, we show an approach of efficient manage stack pointers that

reduces execution time by 52% compared to the basic pointer management approach.

Additional experiments show our approach reduces execution time by 12% on average

compared to caches, when only stack data is considered, i.e. assume the accesses to

the rest of application data always hits.

1.3.3 Efficient Heap Management

Heap management on SMM architectures are mostly based on software caching,

i.e. manage data movements between SPM and data in a way emulating how a

cache works. Memory accesses are intercepted and replaced by management calls

that transfers data between SPM and main memory when necessary. For example,

one technique Bai and Shrivastava (2013) blindly intercepts all the memory accesses

8

at runtime, and then filters non-heap accesses at run time. The management func-

tion treat an SPM as a 4-way set-associative cache and manages data accordingly.

In Chapter 4, we develop a heap management that identifies heap objects and their

alias at compile time, and eliminate most of runtime checking. Next, we reduce the

instruction overhead of manage calls by emulating a direct-mapped cache, which does

not require the sequential search of four entries in each set (assuming parallel search

is not supported) and complex cache replacement policy. Furthermore, we inline the

management calls and remove redundant steps. Finally, we show an optional opti-

mization that relies on profiling. The experimental results show it reduces execution

time of benchmarks by 80%. With the optional profile information, the reduction can

be increased to 83%.

1.3.4 Shared Data Management

Last but not least, we present a technique to manage shared data among different

cores in SMM architectures. Traditional shared data management favors coarse-grain

data movement, such as at page level, to reduce number of communication. Such

coarse-grain data management typically ends up introducing more computation. For

example, if multiple cores need to write to different locations of the same page, each

core needs to create a local copy to work on, and finally compare it with the original

page to apply the differences accordingly. This is necessary to avoid false sharing.

However, the comparison of two pages is compute-intensive and is not efficient in

SMM processors. We develop a technique that records the exact location and the size

of each change, so that we can notify other cores about the exact changes to avoid

transferring an entire page and comparing. While it may cause higher number of

communication, the expensive page comparison is saved. The technique we developed

achieved more than 2X speedup than the previous technique.

9

Chapter 2

CODE MANAGEMENT ON SPM

2.1 Introduction

The power and area overheads of cache coherence logic increase exponentially

with the increasing number of cores, posing serious challenges in designing multicore

architectures Bournoutian and Orailoglu (2011); Choi et al. (2011); Xu et al. (2011).

Using scratchpad memories (SPMs), on the other hand, considerably simplifies the

hardware by removing circuitry for tag comparison, replacement and coherence Ba-

nakar et al. (2002). The simplified hardware, however, shifts the work of memory

management from hardware to software and requires executing additional manage-

ment instructions in software. Multicore architectures based on SPMs are, therefore,

called software-managed multicore (SMM) architectures. In an SMM architecture,

each core has a local SPM. Instructions or data can be transferred into an SPM to

reduce access latency, by direct memory access (DMA) operations.

One way to manage instructions on a local SPM is overlaying Levine (1999). Over-

laying divides SPM space into different regions, with each function allocated to one

of the region. Before every function call, additional code for calling the management

function must be inserted. The management function checks the SPM state to see

if the called function is loaded in the SPM and if not, performs a DMA operation.

Similarly, the management function needs to be called again right before the called

function returns back to the caller, because the caller function might have been evicted

by the called function, in case they share the SPM space.

There are two sources of overhead in such code management. The long-latency

10

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

No
rm

al
ize

d	
Dy

na
m
ic	

In
st
ru
ct
io
n	
Co
un
ts

Management	 overhead Original	program	without	code	mangement	

Figure 2.1: Code management increases instruction count by 22% on average even

when the SPM is larger than the code size.

DMA operations are one source of overhead. The SPM allocation determines the

sharing among functions, and a poor allocation scheme can increase the overhead of

DMA operations by causing frequent reloading of functions. Another source of over-

head comes with calling the management function at every call site. A management

function call can cause a noticeable overhead even without any DMA operation, as

it involves multiple table lookups for obtaining the information (allocated address,

size, SPM state) of functions. If the required function is absent in SPM, the manage

function will need to perform additional operations updating the SPM state after the

loading operation.

Most previous code management efforts based on overlaying focus on the first

overhead and try to find memory allocation schemes that avoid reloading functions

frequently Pabalkar et al. (2008); c. Jung et al. (2010); Baker et al. (2010); Jang

et al. (2012); Bai et al. (2013); Lu et al. (2015b). For example, allocating the caller

and the called function in a loop to different memory addresses eliminates competi-

tion for SPM space between them, and thus is a desirable allocation scheme. These

approaches, however, do not address the second overhead and blindly insert manage-

11

ment function calls to every call site even though some of them may not be necessary.

For instance, even if a function is loaded into its private space in the SPM, a man-

agement function has to be called every time the function is called, only to find out

that the function is already loaded in the SPM. Figure 2.1 shows such overhead of

executing code management instructions in vain. It shows that over a set of typical

embedded programs Guthaus et al. (2001b), 18% of executed instructions on average

are from management functions. Note that this is the lower bounds of the overhead

when the SPM size is large enough to assign a private region to every function. For

smaller SPM sizes, the number of loading operations will increase as the conflicts be-

tween functions increases, thus the overhead of executing management instructions,

e.g. looking up function sizes and addresses for DMA operations, and updating the

SPM state after DMA.

In this chapter, we present a compiler-based approach to reduce the overhead of

management function calls. Given the allocation of functions to the SPM, our analysis

statically determines whether a function can be safely assumed to be loaded before

each call site. If a function is guaranteed to be already loaded at a call site, we label

the call site as always-hit and do not insert a management function call. Similarly, a

call site in a loop is labeled as first-miss, if the called function cannot be guaranteed

to be always loaded but once loaded, is never evicted until the end of the loop. In

this case, we place the management function call in the loop preheader to call the

management function only once before entering the loop.

The static instruction cache analysis based on abstract interpretation Ferdinand

and Wilhelm (1999); Cullmann (2013) also tries to identify always-hit and first-miss

cache lines. However, within nested loops, their first-miss analysis Cullmann (2013)

is only able to identify cache lines that are first-miss at the outermost loop. On

the other hand, our first-miss analysis can identify any first-miss call site including

12

those that are only first-miss within inner loops. In addition, our solution consists

of two steps: i) static analysis for finding always-hits and first-misses; ii) inserting

management function calls based on the analysis result. The cache analysis techniques

only deal with the first part and cannot be directly used for reducing overhead of code

management on SPM.

For evaluation, we use the state-of-the-art overlay-based function allocation tech-

nique Lu et al. (2015b), and various benchmarks from Mibench suite Guthaus et al.

(2001b), with varying SPM sizes. The results show that our approach reduces the

management overhead by 84%, and overall dynamic instruction counts by 16%. Con-

sequently, execution time is reduced by 14% on average. In addition, our approach

is able to reduce the execution time by 9% on average and up to 15% compared to

hardware caching, even with conservative measurement.

2.2 Related Work

The early approaches on code management are based on static management Steinke

et al. (2002b); Angiolini et al. (2004); Verma et al. (2004). In static management,

a selected part of the code is loaded into the SPM only at loading time before the

execution. These techniques can become inefficient for large programs when most of

the code remains in the slow main memory.

Dynamic management techniques overcome this problem by loading instructions

at run-time. A large body of these approaches Janapsatya et al. (2006); Verma

and Marwedel (2006); Udayakumaran et al. (2006b); Steinke et al. (2002a); Egger

et al. (2006, 2010), however, allocates only part of the code to the SPM, assuming

that instructions can be directly fetched from the main memory as in ARM ARM

(2004). These techniques first find a set of reloading points, and then determine the

(frequently-used) code blocks to be loaded at each reloading point. Whenever the

13

control reaches a reloading point, the corresponding loading operation is performed

without checking the SPM state. Any instruction left in the main memory has to

be fetched from the main memory. All these approaches are profiling-driven, and are

not applicable if representative inputs of programs are not present.

Our analysis techniques directly target non-profiling-driven code management

techniques Pabalkar et al. (2008); c. Jung et al. (2010); Baker et al. (2010); Jang et al.

(2012); Bai et al. (2013); Lu et al. (2015b); Kim et al. (2014). All these approaches

work at the granularity of function and conceptually perform as a direct-mapped

cache where the entire code of a function is loaded into a cache line at once. Here,

each cache line is called region, and management techniques find a mapping of func-

tions to the regions with the goal of reducing the conflicts between functions. In this

chapter, we apply our approach to the latest among these techniques Lu et al. (2015b)

and compare the performance before and after using our approach for evaluation.

It is worth noting that the key idea of our approach is not limited to function-

level code management approaches. Our analysis technique can be extended for any

management techniques where code blocks are conditionally loaded after checking the

SPM state.

Some approaches Francesco et al. (2004); Egger et al. (2008b) require hardware

support such as MMUs, which may not be available in some processors Gschwind et al.

(2006b); Texas Instrument (2014) and therefore are not considered in this chapter.

Previous code management techniques for SMMs solve the problem of “where-

to-load” each function but not “when-to-load”; management functions are inserted

blindly at every call site. Even with an ideal allocation where each function is assigned

to a private region, management functions are executed before and after every func-

tion call, just finding out loading is unnecessary. On the other hand, the technique

presented in this chapter focuses on reducing management instructions.

14

r0:	main
r1:	F1,F3
r2:	F0,	F2

_get(F1)
call	F1

_get(main)

_get(F0)
call	F0

_get(main)

_get(F2)
call	F2

_get(main)

_get(F3)
call	F3

_get(main)

_get(F0)
call	F0

_get(main)

call	F1

_get(F0)
call	F0

_get(F2)
call	F2

_get(F3)
call	F3

_get(F0)
call	F0
_get(F1)

(a)	Before	our	approach (b)	After	our	approach

overlaying

Figure 2.2: Our analysis avoids unnecessary management functions.

2.3 Motivating Example

Figure 2.2 shows that current code management techniques may insert unnecessary

management function calls, and how we can avoid them. The code management

function, referred as get in the rest of our discussion, is inserted around each function

call. The get function checks if the required function is currently in the region it is

allocated to. If not, it loads the function into the SPM. The SPM space is divided

into three regions r0, r1 and r2. Functions are allocated to the regions respectively as

follow: {main}, {F1,F3}, {F0, F2}. Previous code management approaches insert

code management functions around each function call as in Figure 2.2(a). However,

with proper analysis, we can remove some of code management function calls as

15

Overlaying	
Scheme

AH	&	FM	
locations

Compiler

Our	
analysesProgram CFGs

Executable	with	
only	necessary	
code	mgmt.

Figure 2.3: Overview of our approach.

Figure 2.2(b) shows. For example, throughout the execution, main will never be

evicted since it is the only function mapped to r0, so none of the calls of get(main)

after each function call is necessary. Also, since we know F1 is the only function

called within the loop in region r1, it will not be evicted after it is loaded into the

region for the first time. On the other hand, the get function called before each call

to F0 and F2 in the loop are required, since the exact order of execution is not know

at compile-time, so we have to conservatively assume either of them may be evicted

in previous iterations from r2.

2.4 Our Approach

Figure 2.3 shows the general flow of our approach. The compiler takes as input

a program, and generates a control flow graph (CFG) for each function. All the

CFGs, as well as the mapping between functions and regions, are then fed as input

to our analyses. The output of our analyses are as follow: i) before each function

call, whether the called function is always-hit/first-miss; ii) after the function call,

whether the caller function is always-hit/first-miss. The result is then used to insert

(necessary) code management functions accordingly.

16

2.4.1 Notation

For ease of discussion, we define the following symbols. Let the set of regions the

SPM space is divided into be R = {r1, ..., rn}, and the set of functions called in a

program (including the main function) be F = {f1, ..., fm}. We define a SPM state

as the function ss : R→ F . Given a region id rx, ss(rx) returns the current function

that owns this region. Each SPM state describes the memory state of the SPM at

a certain moment in time—it specifies the current owner function in each region. In

our analyses, we maintain an in and an out SPM state for each function, basic block,

and call instruction, which record the current functions in the SPM before and after

the function, basic block and call instruction, respectively. In particular, each call

instruction maintains an extra int SPM state. It is used to record the state of the

SPM right before the called function returns. The difference between int and out is

as follow. Let Fx be the caller function of a call instruction, and rx be the region Fx is

mapped to. If the caller function is evicted during the execution of the called function,

then int[rx] 6= Fx. Right before the called function returns, the caller function must be

brought to the SPM in order for the execution to continue. Therefore, out[rx] ≡ Fx,

while int[rx] may not always be Fx. A helper function map : F → R tells which

region a function is mapped to.

Two SPM states can be joined via the following function:

⋃ah
(ss1, ss2) =

ri ← ss1(ri) if ss1(ri) = ss2(ri)

ri ← null otherwise,

17

and

⋃fm
(ss1, ss2) =

ri ← ss1(ri) if ss1(ri) = ss2(ri)

ri ← ss1(ri) if ss2(ri) = NULL

ri ← ss2(ri) if ss1(ri) = NULL

ri ← null otherwise

where ri denotes the ith region, 1 ≤ i ≤ n. The
⋃ah operation keeps only a function

when it appears in its mapped region on both SPM states. This is because for

a function to be always-hit, it must has been loaded and not be evicted in all the

possible paths leading to the program point. On the other hand,
⋃fm keeps a function

when it is the only possible function in its mapped region of the two SPM states, since

for a function to be first-miss, all we need is to ensure that it is impossible for the

function to be evicted by other functions mapped to its region once it is loaded in a

loop.

2.4.2 Always-hit Analysis

Algorithm 1 shows the procedure of always-hit analysis. simFunc serves as the

entry point of the analysis. It repeatedly calls sim function to statically simulates the

execution of main function and other functions called either directly or transitively

by main and record changes of SPM states, until the output (out) SPM state of each

call instruction does not change any more. Initially all the SPM states are empty.

Figure 2.4 shows an example of applying the analysis from Algorithm 1 to find

always-hit functions. Initially only the main function is in the SPM. Every time a

function is called, it becomes the current function of the region it is mapped to. We

assume none of F0, F1 and F2 calls any functions, therefore, after they return, they

are still current functions in corresponding regions. When a basic block has multiple

18

call	F1

call	F0

f/o:{main},{},{}

f/o:{main},{F1},{F0}

f/o:{main},{},{F0}
f/o:{main},{},{F0}

f/o:{main},{F1},{F0}

r0:	main
r1:	F1
r2:	F0,	F2

overlaying

main	

call	F1

call	F0
f/o:{main},{},{F0}

f/o:{main},{},{F0}

f/o:{main},{},{F0}

f/o:{main},{},{F0} f/o:{main},{},{F0}

Figure 2.4: Always-hit program points in main function, given the overlaying

(function-to-region mapping). The out SPM state of each basic block is shown at

the edge leaving the basic block. f in the prefix denotes the output is for the first

traversal, o denotes the output is for the other traversals, and f/o means the output

are the same for both.

predecessors, all their output should be joined (line 10 to 14). Since Algorithm 1

ignores the output of the back edge of a loop (which are empty) when producing the

input to the loop header during the first traversal (skipBE is set to true in line 2),

the input to the loop header in the example is therefore the same as the output after

the first call to F0. In the second traversal, the output of the back edge is used to

join with the output of F0 before entering the loop (skipBE is set to false in line 4).

19

call	F1

call	F2

call	F0

f:{main},{F1},{}

f:{main},{},{} f:{main},{},{}

f/o:{main},{F1},{F2}

main	

f:{main},{},{}

f:{main},{},{}

f:/o:{main},{F1},{F0}

o:{main},{F1},{F0}

o:{main},{F1},{F0} o:{main},{F1},{F0}

o:{main},{F1},{F0} o:{main},{F1},{F0}

r0:	main
r1:	F1
r2:	F0,	F2

L2
L1

overlaying

Figure 2.5: First-miss program points in loop L2 of main function.

The join operation however does not change the input, thus the other SPM states.

Therefore, after the second traversal, the algorithm stops.

The identification of both always-hit and first-miss program points after the anal-

ysis stops is as follow: for each function call, if the called function is in the in state

of a call instruction, then the program point before the function call is always-hit; if

the caller function is in the int state, then the program point after the function call

is always-hit. The program point before the call to F0 after the loop is categorized

as always-hit, since F0 is in r2 within the in SPM state of the function call. There-

fore, we do not need to insert get(F0) there. For the same reason, the management

functions after every call that checks for main can be skipped.

20

2.4.3 First-miss Analysis

First-miss analysis is performed following always-hit analysis Algorithm 2 explains

the analysis. The entry point is at simLoop function, where each loop L of a program

is singled out and passed to simL function, which statically simulates the execution

of L and functions called transitively. The analysis is done on each loop individually

and independent of other loops, so before the analysis for each loop starts, all the

SPM states are reset as empty.

Figure 2.5 shows an example of applying Algorithm 2 to find first-miss program

points in the outer loop L2. Again, we assume F0, F1 and F2 do not have any

function calls. The output of the back edge of L2 (initially empty) is used as the

input of its header, since we do not care about the SPM states before the loop (line 6).

Since L2 must be executed within its parent function, main must have been brought

into the SPM. Therefore, the in SPM state of the loop head becomes {main}, {}, {}.

When entering loop L1, the output from its back edge is ignored when calculating

the input to its loop header (line 10). This is because if any function is evicted in L1,

it will not show up in out states of all the edges leaving L1. Disregarding the back

edge therefore will not affect the correctness, since the eviction is already reflected in

the forward edge(s). At the bottom of L1, SPM states of the two branches are joined

by the
⋃fm operation. The output of loop L2 after the first iteration then becomes

the input of its loop header when the second traversal starts. The same process is

repeated, until all the output SPM states do not change.

The program point before the only call to F1 are first-miss in L2, since F1 is in r1

within the in SPM state of the call when the analysis for loop L2 stops. Notice that

our first-miss analysis is done loop by loop, so while the program point before the

call to F2 is not classified as first-miss in L2, it will be identified when the analysis

21

runs on L1.

The first-miss analysis based on abstract interpretation Cullmann (2013) is done

for all the loops at the same time. As a result, it is not able to identify program

points before F2 in the above example to be first-miss in the inner loop L1, since the

analysis finds out that F2 will be evicted in the outer loop L2 by F0. On the other

hand, since our first analysis is done loop by loop, L2 is not considered during the

analysis of loop L1. Therefore, it is able to identify F2 to be first-miss in the inner

loop L1.

2.5 Evaluation

2.5.1 Experimental setup

We run our always-hit and first-miss analysis on top of CMSM Lu et al. (2015b),

the state-of-the-art function-level code management, and compare its performance

with the original CMSM. We implement both approaches as transformation passes

in LLVM compiler infrastructure Lattner and Adve (2004). We compile benchmarks

from Mibench Guthaus et al. (2001b) with the passes enabled. Then, we run and

collect performance statistics of generated binaries on gem5 CPU simulator Binkert

et al. (2011b).

The CPU frequency is set to 3.2 GHz in gem5. We built an SPM along main

memory, and implemented DMA operations. The cost of a DMA transfer consists of

setup time and transfer time. The setup time is set to 91 nanoseconds (about 291

CPU cycles), and the data transfer is set to 0.075 nanoseconds per byte (0.24 CPU

cycles) for each byte of data. These specs are borrowed to the well-known IBM Cell

BE Processor Kistler et al. (2006).

22

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

Be
fo
re
	

Af
te
r

Be
fo
re
	

Af
te
r

Be
fo
re
	

Af
te
r

Be
fo
re
	

Af
te
r

Be
fo
re
	

Af
te
r

Be
fo
re
	

Af
te
r

Be
fo
re
	

Af
te
r

Be
fo
re
	

Af
te
r

Be
fo
re
	

Af
te
r

Be
fo
re
	

Af
te
r

Be
fo
re
	

Af
te
r

dijkstra stringsearch rijndael.enc rijndael.dec sha IFFT FFT basicmath adpcm.dec adpcm.enc AVERAGE

No
rm

al
ize

d	
Dy

na
m
ic	

In
st
ru
ct
io
n	
Co
un
ts

Original	program	without	code	management	 Management	function	call	overhead

Figure 2.6: Our approach reduces the management overhead by 84% and the overall

execution time by 15% on average.

2.5.2 Code Management Overhead Reduction

Figure 2.6 compares the dynamic instruction count before and after applying our

techniques, both normalized to the dynamic instruction count of the original program

without code management. The instruction counts for management functions calls

are represented as red portions above 1, as overhead. The number of regions is set

to the middle number between one and the number of functions of each benchmark.

Such choice of the SPM size is for demonstration of the average-case performance

between two extremes: i) the SPM space is so restrictive that all functions have

to be mapped to one region, and ii) the SPM space is so large that each function

can be placed in a separate region. Our approach reduces the number of instructions

executed significantly,, with the management instructions in most benchmarks almost

eliminated, e.g. basicmath, FFT or rijndael.enc. Overall, as the rightmost columns

show, the normalized dynamic instruction counts are decreased by 16% on average as

a result of reducing 84% of the management overhead on average.

Benchmarks that receive insignificant overall performance improvement, such as

adpcm.dec and adpcm.enc, have only a few function calls so the overhead of code

management was already negligible before our approach. However, the management

overhead is reduced over 99% in these benchmarks. For stringsearch, while it has

many function calls, it has only three functions, with the main function calling the

23

Figure 2.7: Execution time is reduced by over 14% on average.

other two in a loop. Since there are only two regions (average of one and three), two

of the three functions have to be mapped to one region, causing them to evict each

other at every iteration. The management function calls are necessary and cannot be

reduced.

Figure 2.7 shows the reduction in execution time after using our approach. On

average, the execution time is reduced by more than 14%. The reduction in execution

time is less than the reduction of dynamic instruct count. This is because manage-

ment overhead includes both instructions and DMAs, and our approach only reduces

management instructions.

2.5.3 Comparison with Hardware Caching

We compare our approach with caching in a cache-based architecture. The cache-

based system has a 2-way L1 instruction cache with 64-byte cache lines on gem5

simulator. The sizes of the SPM are the same as the experiments in section 2.5.2,

24

0
0.2
0.4
0.6
0.8
1

1.2

N
or
m
al
ize

d	
Ex
ec
ut
io
n	
Ti
m
e	

Figure 2.8: The execution times are normalized to those with hardware caching.

in which the number of regions is a half of the number of functions. Cache size for

each benchmark is set to the smallest power of two that is no less than the SPM

size. Cache miss latency is the same as the DMA setup time. This configuration is

conservative since it leads to significantly larger cache sizes than SPM sizes in several

benchmarks, sha, IFFT, FFT, adpcm.dec and adpcm.enc.

Figure 2.8 shows the normalized execution time of benchmarks with our approach

compared to hardware caching. The overhead of code management in a cache-based

architecture is measured as the number of cache misses times the cache miss penalty,

while the overhead in the SMM architecture is measured as the sum of the time spent

executing instructions of code management function calls and DMA cost.

In several benchmarks, using an SPM-based architecture with our approach can

significantly reduce the execution time. However, caching is better in adpcm.dec and

adpcm.enc, in which most of the execution time is spent on small loops that are small

enough to fit in the instruction cache. However, even in these cases, the execution

times are comparable, and the differences are not more than 6%.

25

2.6 Conclusion

In this chapter, we focus on management of code in SPM-based SMM architec-

tures and present two analyses that find the locations where the outcomes of checking

can be safely guaranteed and thus the management code can be removed or hoisted.

With various benchmarks and various memory configurations, our experimental re-

sults show that our techniques can reduce the execution time by 14% on average.

Using our approach on an SPM-based architecture, we observe that the execution

times of benchmarks are significantly less or at least comparable to those on a cache-

based architecture.

26

Algorithm 1 Always-hit analysis

1: function simFunc

2: sim(main,true)

3: while not converged do

4: sim(main,false)

5: function sim(F , skipBE)

6: region = map(F)

7: F.in[region] = F

8: F.Entry.in = F.in

9: for each basic block B in F do

10: if B is not F.Entry then

11: if skipBE then

12: B.in =
⋃ah

P a forward predecessor of B P.out

13: else

14: B.in =
⋃ah

P a predecessor of B P.out

15: for each call instruction I in B do

16: I.in = B.in or out of the previous call

17: I.CalledFunction.in = I.in

18: sim(I.CalledFunction, skipBE)

19: I.int = I.CalledFunction.out

20: I.out = I.int[region]← F

21: B.out = out of the last call

22: F.out =
ah⋃

Ra return instruction

R.out

27

Algorithm 2 First-miss analysis

1: function simLoop

2: for each loop L in the program do

3: while not converged do

4: simL(L)

5: function simL(L)

6: L.Header.in = L.BackEdge.output

7: L.Header.in[region] = F, the parent function of L

8: for each basic block B ∈ L do

9: if B is not L.Header then

10: B.in =
⋃fm

P a forward predecessor of B, P∈L P.out

11: for each call instruction I in B do

12: I.in = B.in or out of the previous call

13: I.CalledFunction.in = I.in

14: sim(I.CalledFunction, true)

15: I.int = I.CalledFunction.out

16: I.out = I.int[region]← F

17: B.out = out of the last call

28

Chapter 3

STACK MANAGEMENT ON SPM

3.1 Introduction

Low-power, yet high core-count embedded processors cannot afford the overhead

of coherent caches Bournoutian and Orailoglu (2011); Choi et al. (2011); Garcia-

Guirado et al. (2011); Xu et al. (2011). The scratchpad memory (SPM) based system

is a promising alternative, as it provides a fast, low-power, and scalable memory hier-

archy—the SPM has 34% less area and consumes 40% less power than a cache of the

same capacity Banakar et al. (2002). Using SPMs instead of caches not only improves

power, but also greatly simplifies the hardware design (and verification). SPMs shift

the task of data management from hardware to the software, and therefore, multi-

core architectures with SPM-based memory hierarchy are termed Software Managed

Multicore (SMM) architectures.

In SMM architectures, a core has to fetch data it needs to its local SPM before

accessing it. Therefore we need techniques to manage data transfers between the SPM

and the main memory. Among all the different types of data (heap, stack or global)

to manage, optimized data management for stack data is especially important for

performance. Kannan et al. (2009) shows (via profiling) that stack accesses account

for around 64% of overall data accesses in Mibench, a benchmark suite of typical

embedded applications Guthaus et al. (2001c).

State-of-the-art techniques to manage stack data on SMM architectures move

stack data between SPM and main memory at the function call level. Therefore,

these techniques need to solve two inter-related problemsBai et al. (2011). i) Stack

29

Figure 3.1: Pointer management problem.

frame management: stack frame of the function that is going to be executed must

be brought into the SPM before it executes, and the stack frames of the functions

that are not immediately needed may be evicted to the main memory. ii) Pointer

management: if a stack frame of a function was evicted to the main memory, and

the currently executing function accesses a local variable of the evicted stack frame

(typically through a pointer), then the access is invalid, as shown in figure 3.1. This is

because the pointer still contains the address of the local variable in the SPM before

it is evicted. It is therefore vital to correct the address of the pointer, as otherwise

the result of the execution will be incorrect.

A previous work, Bai et al. (2011) solves the problem of pointer management, by

instrumenting the code to translate the pointer address at each definition and use—A

definition refers to the write of a new value to the pointer, while a use refers to the

read of the value defined by the reaching definition or the last write. While this

enables correct execution, it incurs high performance penalty. In this chapter, we

30

present an efficient compiler technique for managing pointers to stack data on SMM

architectures. The two key ideas of our approach are: i) instead of translating the

pointer address at each use of the pointer inside a function, we translate it only once

when it is passed as the argument of the function. As a result, our technique is able

to remove a significant portion of the overall translations. ii) if the stack frame of the

function whose local variables are being accessed through pointers is guaranteed to

be present in the SPM, then when any of the pointers is accessed, no translation is

needed.

Experiments on benchmarks from the MiBench suite Guthaus et al. (2001c) show

that our approach almost completely eliminates the pointer management overhead,

and results in 52% reduction of the average execution time, as compared to the state-

of-the-art pointer management technique Bai et al. (2011) on top of the state-of-the-

art stack frame management technique Lu et al. (2013) on SMM architectures. We

also compare the performance of our stack pointer management on SPM with that on

a cache-based architecture. Even with conservative estimates, stack data management

on SPM outperforms stack data management on a cache-based architecture by 12%

on average.

3.2 Related Work

Stack management techniques in general can be divided into static approaches and

dynamic approaches. Static approaches Avissar et al. (2002); Verma et al. (2003);

Nguyen et al. (2005) map the most frequently used data to SPM and keep the alloca-

tion fixed throughout execution, while dynamic approaches allow the changes to the

locations of stack data at run-time. Static approaches do not perform well since they

do not take dynamic program behaviors into consideration. As a result, most recent

works focus on dynamic SPM management techniques.

31

Many dynamic techniques Mamidipaka and Dutt (2003); Poletti et al. (2004); Park

et al. (2007); Cho et al. (2007); Dominguez et al. (2007); Kandemir et al. (2001); Li

et al. (2005b); Udayakumaran et al. (2006c); Gauthier and Ishihara (2011); Kannan

et al. (2009); Bai et al. (2011); Lu et al. (2013) have been developed to manage

stack data on SPM. Mamidipaka and Dutt (2003); Poletti et al. (2004); Park et al.

(2007); Cho et al. (2007) introduce new hardware functionality to manage the SPM,

while the interest of this chapter lies in providing software solution to simplified

hardware. Among software solutions, Kandemir et al. (2001) and Li et al. (2005b)

target on arrays specifically, Dominguez et al. (2007) mainly focuses on managing

stack data for recursive functions on SPM, while we manage all the data in stack.

Udayakumaran et al. (2006c) and Gauthier and Ishihara (2011) both rely on profile

information, therefore the input has to be representative for either of them to deliver

high-quality output, which is generally difficult. In addition, both approaches have

limited support for pointer management. Udayakumaran et al. (2006c) relies on

pointer analysis to identify and translate the address for any pointer that refers to

the variable that is moved from the main memory to the SPM. If the point analysis

fails to identify any such accesses through pointers and thus the requested memory

addresses are not translated, the execution may fail, since these accesses end up

accessing incorrect locations. Gauthier and Ishihara (2011) simply does not support

using stack pointers as call arguments. In this chapter we are interested in generic

approaches of stack management that do not rely on profiling or pointer analysis,

and are able to manage pointers correctly. To our best knowledge, only the Circular

Stack Management (CSM) Kannan et al. (2009); Bai et al. (2011); Lu et al. (2013)

approaches provide such solution. In this chapter we will compare our work with Lu

et al. (2013), which is the latest CSM work with the best performance.

32

(a) Code transformation.

(b) Illustration of pointer management functions.

Figure 3.2: The way pointer management functions work.

33

3.3 Background

All the CSM techniques use the pointer management presented in Bai et al. (2011).

The pointer management maintains two stack pointers: one in SPM and one in main

memory (assume the stack grows from the higher address (stack base) to the lower

address (stack top)). It uses three pointer management functions: l2g, g2l, and ptr wr.

Figure 3.2 explains the functionality of these pointer management functions. Fig-

ure 3.2a shows the original code and the transformed code with pointer management.

Figure 3.2b illustrates l2g and g2l calls at line 2 and line 4 in the transformed code

respectively, assuming the SPM is not large enough to hold both the stack frames

of function F1 and F2. When F1 calls F2, the stack frame of F1 must be evicted

from SPM to the main memory to make space. The SPM address of stack variable

a defined in F1 which is passed to F2 will become an invalid reference by the time

it is accessed, since the entire frame of F1 (thus the the stack variable a) will have

been moved to the main memory. In this case, l2g function should be called on a

in F1 to calculate the address of the actual location of a in the main memory (line

2 in the transformed code in Figure 3.2a). Notice when l2g(a) is called, the stack

frame of F1 has not been evicted to the main memory yet. Therefore, the value of

l2g(a) indicates the memory location a will be moved to. At that time, l2g(a) is

smaller than the value of the memory stack pointer, and their distance is the same

as the difference between the value of the SPM stack base and the SPM address of

a, as offset in Figure 3.2b indicates (the upper figure of Figure 3.2b). After F1 is

evicted to the main memory, the value of memory stack pointer is decreased by the

size of the stack frame of F1. Consequently, l2g(a) refers to the actual location of

a, which becomes larger than the value of memory stack pointer (the lower figure of

Figure 3.2b).

34

The result of l2g(a) is passed as an argument to F2 as its parameter p. F2 then

calls g2l function before dereferencing it (line 4 in the transformed code). Since cores

cannot access main memory directly, g2l(p) allocates a local buffer in SPM, followed

by a DMA instruction to read the value from the main memory location specified by

p—or equally l2g(&a)—and then return the address of the local buffer. The correct

value can then be read from the local buffer. Finally, F2 modifies the value pointed

by p, and calls ptr wr to write back the modification from SPM to main memory (line

6 in the transformed code).

Pointer management functions will not alter program semantics. Consider the

example in Figure 3.2 again, but this time we assume that the SPM is large enough

to hold the stack frames of both F1 and F2. Therefore, when F2 is called, the stack

frame of F1 is still in the SPM, and we can safely remove the stack frame management

around line 3 at the transformed code in Figure 3.2a. In such a case, the call to g2l

in F2 (line 4) will do nothing but reverting the address translation done by the l2g

function in F1 (line 2), and reading from the SPM address of a, which is the input to

the l2g function. Similarly, ptr wr will revert the translation and write to the SPM

address of a directly. Whether a stack variable has been evicted from the SPM to

the main memory can be told as below. If an address that is passed to g2l or ptr wr

is smaller than or equal to the value of memory stack pointer, then the stack variable

the address refers (thus the enclosing stack frame) is still in the SPM. In this case,

g2l or ptr wr just need to revert the address translation done by l2g and read from or

write to the SPM address. Otherwise, if the address is greater than the value of the

memory stack pointer, then the stack variable has been evicted, and g2l and ptr wr

will go ahead and perform required DMA operations. Therefore, even though pointer

management from Bai et al. (2011) unnecessarily inserts extra pointer management

functions, it can still ensure the correctness of the execution of programs.

35

Figure 3.3: The key ideas of our approach.

Pointer management from Bai et al. (2011) solves the problem for correctness, but

not for performance. On the other hand, our approach removes unnecessary calls to

pointer management functions and improves performance of applications noticeably.

3.4 Key Ideas of Our Approach

While the state-of-the-art pointer management from Bai et al. (2011) solves the

pointer corruption issue correctly, it calls the l2g function at every definition of stack

data pointers, and the g2l function on every use of the pointers, and results in un-

necessary calls to pointer management functions, which eventually slows down the

execution of programs.

Figure 3.3a and 3.3b show the original code and the code with the pointer man-

agement from Bai et al. (2011). The calls to l2g in line 4 in Figure 3.3b is not

necessary, since the pointer p2 is only used in the same function the variable b is de-

fined. Meanwhile, although the calls to g2l in line 6 is necessary, it can be promoted

to be outside of the loop to avoid repeated computations. Notice the calls to g2l in

36

line 6 can not be eliminated or reduced by standard compiler optimizations such as

common subexpression elimination or loop invariant code motion. This is because g2l

function needs to access some global states (implemented as global/static variables),

such as the current values of the stack pointers, which could be changed by function

calls and stack frame management between any two consecutive g2l calls. These in-

teractions with global states prevent standard compiler optimizations from removing

or relocating g2l calls, since the compiler cannot guarantee the changes will not cause

any unexpected side effect to the semantic of programs.

This work aims to reduce these overheads based on two key ideas: i) we only

manage pointers when they are used as call arguments instead of each of the uses, so

that we only need to translate once at the caller and the called function respectively.

ii) if the stack frame of a function is definitely in the SPM, then any accesses via

pointers to the local variables in the stack frame do not need management. Figure 3.3c

demonstrates the first idea. Instead of calling l2g on every definition of pointers (line

2 and 4 in Figure 3.3b), we only call l2g once in F1 when it calls F2 and passes a

pointer-type argument (line 2 in Figure 3.3c). Also, we only call g2l function once

at the beginning of F2 and reuse the result (line 5, 7 and 8 in Figure 3.3c), instead

of calling it for every use (line 6 and 7 in Figure 3.3b). The g2l function is called

outside the for loop to reduce overhead. Figure 3.3d shows the further optimized

code with the second idea. If we know for sure the stack frames of F1 is in the SPM

when F2 is called, then no stack frame management is needed, neither the pointer

management—the references to the array a of F1 through pointer p in F2 will be

guaranteed to access the correct locations, as the stack frame of F1 is not moved. The

code in Figure 3.3d becomes exactly the same as the original code. In other words,

it eliminates the overhead of stack management—both stack frame management and

pointer management.

37

Figure 3.4: Identification of the potential pointer to stack.

3.5 Details of Our Approach

3.5.1 Steps of Our Approach

To achieve the efficient pointer management, our approach takes three steps. First,

we need to decide if any pointer-type arguments of a function can be potential ref-

erences to stack variables. Second, we will run the analysis to divide function calls

in the call graph into groups, so that all the stack frames of each group can fit into

the SPM at once. In the last step, we insert pointer management functions properly

based on the previous analyses.

38

Identifying Stack Data Pointers at Function Calls

First of all, we perform an inter-procedural analysis to find out if any pointer-type

arguments at function calls are potentially referring to stack variables. A function

may be called at multiple locations during the execution of a program, therefore the

same parameter may refer to multiple arguments that can be stack, heap or global

variables, depending on the control flow at run-time. Consider the call graph in

Figure 3.4. When F0 is called, the type of the argument that is referred by the

parameter p1 may have three different types. If the control flow comes from F2, and

cond is evaluated to be true in F2, then the argument passed to F0 is a pointer to stack

variable a, which is defined in F1 and passed to F2 when it is called; Otherwise, if

the cond is evaluated to be false, then the argument is a pointer to the global variable

g. If the control flow comes from F3 to F0, then p1 in F0 refers to the heap data

referred by hp in F3. Since the actual control flow is not known at compile-time, we

have to conservatively assume p1 refers to a stack variable.

To accomplish such analysis, we first go though all the functions and identify all

the pointer-type formal parameters. Once we find such a parameter, we check all

the call sites of the function, and find out all the possible arguments. Any of these

arguments that refers to stack data needs to be managed.

Several cases pose challenges for this analysis. When a pointer to stack data is

passed as an argument to a recursive function, then we need to call l2g on the pointer,

and call g2l on the result of l2g function that is passed to the called function in the

called function. This is because we do not know how many times the recursion will

happen at compile time, so we need to conservatively assume the stack frame of the

caller is evicted when the called function is executed. When the type of the variable

a pointer refers to cannot be identified, we conservatively assume it is a stack pointer

39

Figure 3.5: The analysis to find out at which stack frames will exist in SPM at the

same time.

and manage it.

Identifying Coexistent Stack Frames

This step decides which stack frames can exist in SPM at the same time. We use the

same analysis from Smart Stack Data Management heuristic (SSDM)Lu et al. (2013).

Here we just explain the high-level idea. Details of the algorithm can be found in Lu

et al. (2013).

The general idea of SSDM is that instead of managing stack frames one at a time

at every function call, we can manage multiple stack frames of consecutive function

40

calls along any path of a call graph at the same time. Instead of evicting the stack

frame of the caller function from the SPM to main memory to make space for the

called function whenever a function call happens, we can keep allocating SPM space

for stack frames of function calls, and perform the stack frame management all at

once only when there is not enough SPM space.

In the given call graph in Figure 3.5, the size of the stack frame of each function is

128 KB, and the size of the available SPM space is 256 KB. Therefore, the available

SPM space can hold two stack frames at once. Assume the SPM is empty at first,

then in the given call graph, we know the stack frame management are only necessary

when F1 calls F2, or when F1 calls F4. Any other function calls do not need such

management. For example, right before F0 calls F1, the SPM only keeps the stack

frame of F0, which takes up 128 KB space. The spare space in the SPM is large

enough to hold the stack frame of F1. Therefore, no stack frame management is

needed when this call happens. As a result, we can divide the call graph into three

groups, {F0,F1}, {F2,F3}, and {F4}. The three groups are separated from each

other by the dash lines in the figure, or what are termed cuts. Each cut between two

adjacent groups indicates the need for inserting stack frame management functions.

When any function call crosses a cut, the stack frames of the group the caller is in

(currently in the SPM) are moved to the SPM, and the stack frames of the group the

called function is in are brought from the main memory to the SPM. For instance,

before F1 calls F2 in Figure 3.5, the SPM holds the stack frames of F0 and F1.

When F1 calls F2, the stack frames of F0 and F1 are evicted to the main memory,

and the stack frames of F2 and F3 are brought to the SPM.

Once we divide the call graph into different groups, we know the stack frame

management is only needed for function calls that crosses any two different groups.

This is true for pointer management as well, since pointer management is necessary

41

only if stack frames are moved due to stack frame management.

Our analysis initially places a cut on each edge of the call graph, which spec-

ifies the need of stack management (both of stack frame management and pointer

management) for the call represented by the edge, and then greedily remove the cut

which will result in the greatest reduction of stack management overhead—for in-

stance, inserting management functions within a loop should be avoided as far as

possible—while not violating the constraint that the sizes of stack frames between

any two cuts should not be greater than the available SPM space, until it can not

find any such cut.

Inserting Pointer Management Functions

Once we have the necessary information ready, we can decide where to insert pointer

management functions. We first go through the call graph and check (1) if any

function call passes any pointers that may refer to stack variables (from the analysis

done in 3.5.1), and (2) if the stack frames that enclose these stack variables are in

the SPM when the pointers are accessed in the called function, or in other words,

if the called function that accesses the pointers belongs to the same group of the

function that defines the stack variables (from the analysis done in 3.5.1). Upon

the confirmation of both conditions, we need to call l2g function on these pointers;

otherwise, if any such pointer is not referring to a stack variable, or the stack variable

the pointer refers to is in the SPM, then no pointer management is required for this

pointer.

If we call l2g on a pointer-type argument on any call site of the called function, we

need to call g2l and ptr wr function in the called function for reads and writes to the

pointer respectively, since we do not know which call site will the control flow comes at

compile-time. While this may cause unnecessary calls to g2l and ptr wr functions, we

42

have explained that extra pointer management functions will not affect the correctness

of programs. On the other hand, if we do not conservatively insert these pointer

management functions in the called function, the correctness of execution will not be

guaranteed, since there is a chance that the control flow may come from the caller

function with l2g function calls at run-time.

As an optimization, we reuse the local buffer created by g2l function, in contrast to

creating new buffer and destroying it every time by the previous approach. Figure 3.6

shows an example. The previous pointer management Bai et al. (2011) will call g2l

and ptr wr function on each read and write to stack data pointer p in F2 respectively,

even if these memory accesses are to the same memory location. On the other hand,

our approach only inserts g2l before the first read and ptr wr after the last write of

p, and redirect the other memory request to the local buffer g2l p created by the g2l

function call. With such a policy, we can avoid redundant memory allocation and

DMA requests.

When g2l or ptr wr function is called, the compiler needs to pass the size of the

stack variable in case of triggering DMA transfers. When there are multiple possible

sizes, we need to use the maximal possibility. For example, a function may be called

at two different cites with two array-type arguments of different sizes. In this case,

since we do not know from which call site control will flow at run-time, we have to use

the size of the larger array. While this approach may transfer more than necessary

data if at run-time the control flow comes from the function with the smaller array,

using the maximum size will not affect the correctness of the program being executed.

43

(a) Previous pointer management calls g2l and ptr wr functions on every read and write to

stack variables.

(b) Our pointer management calls the g2l function before the first read and ptr wr after

the last write, and reuse the local buffer for other accesses to the same memory location.

Figure 3.6: Compared to previous pointer management, our approach reuses the local

buffer created by g2l function and saves management overhead.
44

3.6 Experiments

3.6.1 Improvement Over The State of The Art

We compare our pointer management with the state-of-the-art pointer manage-

ment presented by Bai et al. (2011), on top of the latest stack frame management

technique Smart Stack Data Management (SSDM) Lu et al. (2013). We implement

the two approaches of stack management as passes in LLVM compiler infrastructure

Lattner and Adve (2004). We compile benchmark applications from Mibench bench-

mark suite Guthaus et al. (2001c) with each of the two LLVM passes, then run and

collect performance statistics of the execution of generated binaries in the Gem5 CPU

simulator Binkert et al. (2011b).

The compilation process of benchmarks is shown in Figure 3.7. All the compila-

tions in our experiments are done with O3 optimization on. The LLVM passes are

implemented at the Intermediate Representation (IR), a transitional stage between

Table 3.1: Overhead of pointer management

Previous Pointer

Management

Our Pointer Management Hardware Caching

benchmark #l2g #g2l #ptr wr #l2g #g2l #ptr wr #DMA Overall DMA Size #Management Instructions #L1D Misses

adpcm.decode 3428 2740 1370 0 0 0 0 0 0 30

adpcm.encode 3427 2740 1370 0 0 0 0 0 0 63

CRC 1368874 2737731 1368866 2 2 2 2 160 156 5361

dijkstra 90548 45309 44925 0 0 0 30758 1477664 784309 51964

patricia 104017 52763 3801 0 0 0 4902 436896 124551 274607

rijndael.decode 136447 1422796 11 1 1 0 2 2336 87 244983

rijndael.encode 155940 1442301 28 1 1 0 2 2336 87 244983

sha 5041 19827 12270 0 0 0 2 608 50 1578

stringsearch 606 798 57 0 0 0 0 0 0 756

susan.corners 50 242719 103 5 4 3 44 1703104 1331 36

susan.edges 50 550091 2716 5 4 3 44 1703104 1331 37

susan.smoothing 48 1630815 1535 7 6 4 46 2423392 1459 29

45

Figure 3.7: The compilation process of benchmarks used in experiments.

the translation from source code to machine language. In other words, our passes are

independent of the Instruction Set Architecture (ISA) used, and should work with

different compiler back ends for code generation.

We build the SPM aside the main memory, and implement a DMA instruction

for data transfers between them in the Gem5 simulator. The DMA cost in our

experiments consists of the start-up cost and the transfer time. The start up cost

includes all the time spent setting up the DMA transfer, and the transfer time is the

time spent on transferring the requested data, which can be calculated by dividing

the size of the data by the bandwidth. The CPU frequency is set to 3.2 GHz in the

46

Figure 3.8: Execution time of our approach normalized to the previous pointer man-

agement. Our pointer management reduces the execution time by 52% on average.

Gem5 simulator. The start up cost is set to 91 nanoseconds (about 291 CPU cycles),

and the data transfer rate is set to 0.075 nanoseconds (0.24 CPU cycles) per byte

of data Kistler et al. (2006) (4 bytes/cycle). These numbers are consistent with the

parameters used in Lu et al. (2013).

Table 3.1 shows the number of pointer management function calls introduced by

the state-of-the-art pointer management and our approach (the first three columns

under Previous Pointer Management and Our Pointer Management categories re-

spectively). The numbers show that our approach almost completely eliminates calls

to the pointer management functions, i.e. l2g, g2l and ptr wr. For example, for ri-

jndael.encode, the numbers of calls of l2g, g2l, and ptr wr are reduced from 155940,

1442301, 28 to 1, 1, and 0 respectively. These results are for experiments on SMM

architecture with the SPM size equal to the average of the minimum and maximum

stack size for each application. We will explain our choice of the SPM size later.

The reduction of pointer management consequently reduces the execution time of

47

applications. Figure 3.8 shows the normalized execution time of benchmarks using

our approach over the previous approach. Our approach achieves on average 52%

reduction of execution time. Notice that even for the benchmarks in which we do

not achieve significant performance improvement, for instance, adpcm.decode, and

adpcm.encode our pointer management still reduces the pointer management over-

head. We get less improvement because the time spent on pointer management is

insignificant compared to the execution time in these applications.

3.6.2 Comparable Performance Compared to Caches

On top of the comparison with the state-of-the-art stack management techniques

for SMM architectures, we also compare the performance of our technique with hard-

ware caching. We perform a conservative comparison with cache-based architectures.

The cache-based system is configured to have a 4-way L1 data cache which only caches

the stack data. All the other memory accesses are considered as cache hits. The size

of the cache is configured to be the smallest power of two greater than the SPM size.

Also, we set the cache miss penalty to be the same as the DMA start-up cost. The

overhead in a cache-based architecture is equal to the number of cache misses times the

cache miss penalty. Meanwhile, the overhead of stack management in a SPM-based

architecture includes both the time for executing the extra management instructions,

and the time for DMA operations to move data. For each application, the SPM size

is the average of the minimum and maximum stack size of the application (again the

reason will be explained later).

Table 3.1 shows the stack management overhead caused by our approach on an

SMM architecture (the fourth to sixth columns under Our Pointer Management cat-

egory) versus that caused by hardware caching. The DMA transfers for benchmarks

without pointer management are triggered by stack frame management. When the

48

Figure 3.9: Normalized execution time of our approach on an SMM architecture

normalized to caching.. Our approach achieves 12% reduction of execution time on

average, even with conservative estimates.

benchmark rijndael.encode is executed on the SMM architecture, our approach re-

quires 87 management instructions and 2 DMA calls which transfers 2336 bytes of

data. When this benchmark is executed on a cache-based system with the stack data

being managed on a cache slightly larger than the SPM, it incurs 244983 misses.

Therefore, even with the extra instructions, SPM management is still more efficient.

Figure 3.9 plots the execution time of a benchmarks on the SMM architecture, nor-

malized to the execution time of the same application running on the cache-based

system. The plot shows that our approach reduces the execution time by 12% on

average.

3.6.3 Choice of SPM Stack Size

Figure 3.10 shows the execution time of the benchmarks with three SPM sizes:

the minimum required stack size (size of the largest stack frame in the application),

49

Figure 3.10: Execution time of our approach using three different SPM sizes, all

normalized to the execution time with the minimum SPM size.

the maximum possible stack size (sum of the sizes of all the stack frames), and their

average. All of them are normalized to the execution time when using the minimum

size. As the figure shows, while using the minimum size may cause longer execution,

using the average size or using the maximum size are not much different.

This is because in all the benchmarks we used, the size of the largest stack frame

is much larger than the others, so even if we only use the average SPM size (greater

than the size of the largest stack frame), it is large enough to hold multiple small

stack frames, which is able to eliminate pointer management for calls between these

functions with small stack frames. However, if we only allocate the minimum required

size (exactly equal to the size of the largest sack frame), and the function with largest

stack frame happens to be called in the loop, there will be no other choices but to

evict stack frames within the loop every time the function is called, which causes

much higher overhead, such as rijndael.encode and rijndael.decode. Therefore, the

50

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 3.11: Execution time of integrated code and stack management, normalized

to the execution time of caching.

average size is chosen to balance the execution time and SPM space used.

3.6.4 Integrated Management

We integrate the stack management technique with code management technique

from Chapter 2, and compare the performance with caches. The caches-based ar-

chitecture has an L1 instruction and L1 data cache. For each application, the SPM

size is the sum of i) the average of the minimum code size and maximum code size,

and ii) the average of minimum and maximum stack size of the application. The L1

instruction cache size is set to the smallest power of 2 equal to or greater than the

average of i), and the L1 data cache size is set to the smallest power of 2 equal to or

greater than the average of ii). Figure 3.11 shows the execution time of benchmarks

on the SMM architecture, normalized to the execution time of the same application

51

running on the cache-based system. The combined execution time is6% slower on

average. This is because while our code management outperforms cache, the stack

management was worse than caches 1 , causing the integrated performance slightly

worse than caches.

3.7 Conclusion

In this chapter we presented an approach of pointer management on stack data

for Software Managed Multicore (SMM) architectures. Our approach divides function

calls of a program into groups based on the call graph and inserts pointer management

functions only if a pointer to stack data is defined and used in two different groups.

The experimental results demonstrate that our approach not only significantly im-

proves overall performance compared to the state-of-the-art pointer management in

stack management, but also delivers comparable performance over using the cache

for stack data management.

1While the experiments in Section 3.6.2 includes stack data of library calls, the integrated man-
agement technique only manages user-defined stack data in order to be consistent with the code
management technique introduced in Chapter 2, which only manages user-defined code. Therefore,
the results are different when compared to caches

52

Chapter 4

OPTIMIZING HEAP DATA MANAGEMENT ON SOFTWARE MANAGED

MANYCORE ARCHITECTURES

4.1 Introduction

Caches significantly reduces memory access latency in today’s processors. How-

ever, they consume significant amount of silicon area and energy Niar et al. (2004),

and the cost of maintaining cache coherence increases rapidly with the number of

cores Bournoutian and Orailoglu (2011); Choi et al. (2011); Garcia-Guirado et al.

(2011); Xu et al. (2011). For these reasons, Processor vendors have opted to remove

caches and use only Scratchpad Memories (SPMs) Gschwind et al. (2006b), or re-

configurable SRAMs that can be configured as SPMs Texas Instrument (2014). An

SPM is raw memory that stores only data, without the complex circuitry in a cache

to implement automatic movement of data between the lower-level and upper-level

memories, replacement policies and coherence. As a result, SPMs consume about

40% less area and energy per access Banakar et al. (2002).

To use SPMs, however, data movements in and out of the SPM must be managed

explicitly by software. For this reason, we refer to such an SPM-only manycore

architecture as Software Managed Manycore (SMM) architecture. SMM processors

have been used for high performance computing Carter et al. (2013); REX Computing,

Inc. (2014), gaming and multimedia processing Gschwind et al. (2006b), digital signal

processing Texas Instrument (2014), and networking Olofsson (2016).

Different management techniques for each type of data is required. This is because

different types of data each has its own characteristics. For example, stack frames of

53

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Pe
rc
en

ta
ge
	o
f	H

ea
p	
Ac
ce
ss
es

Figure 4.1: Percent of heap accesses among all the accesses (excluding code accesses).

adjacent function calls are stored contiguously in memory, therefore we can manage

stack frames at groups. On the other hand, heap accesses are more unpredictable, as

heap objects typically scattered in memory, even for those accessed within the same

function. Therefore, typically the space of an SPM is separated into different division,

with one division dedicated to the management of one type of data. In this paper, we

focus only on heap data management, assuming code, global and stack data have been

properly managed. Heap management is very important to application performance,

since heap accesses may account for a significant portion of overall memory accesses.

Figure 4.1 shows the percentage of heap accesses out of all the data accesses in

MiBench benchmarks. While heap accesses may not be present in all the programs,

it is dominant in some, with more than 90% in Susan Smoothing.

By default, all heap data are accessed via memory addresses (that run correctly on

cache-based processors). However, when we bring the heap data to the SPM, it must

54

intmain()	{
int *a;
a	=	malloc(20);
a[3]	=	5;
}

intmain()	{
int *a;
a	=	malloc(20);
*g2l(&a[3]) =	5;
}

SPM

Main	Memory

g2l(&a[3])

&a[3]

DMA

(a)	Original	
code

(b)	With	heap	
management

Figure 4.2: The heap management function g2l takes an memory address as input

and maps it to a location in SPM. If the data in the memory location is not already

present in the SPM location, g2l function will also issue a DMA to copy the data.

be accessed using the SPM address , which is different from the main memory address

(unlike caches). Figure 4.2 (a) shows that in the original code, malloc function is

called to allocate a heap object in the main memory. The accesses to the heap object

are directly to the main memory. For an SPM-based processor, we first fetch the data

into SPM before accesses. This is achieved by calling a heap management function,

that we refer as g2l in the rest of the paper. In Figure 4.2 (b), the function g2l first

brings the data into SPM if it is not present in the SPM yet.

The implementation of the g2l function in the state-of-the-art dynamic heap man-

agement techniques on SMM architectures Bai and Shrivastava (2013) enables the

correct execution of programs with heap data on an SPM-based processor, but caus-

ing high overhead. It is due to i) many g2l calls are not necessary, and ii) the

implementation of g2l introduces high instruction overhead.

To solve the problems, we propose optimization techniques i) reduce management

55

overhead by not calling g2l when absolutely not needed, ii) simplify complexity and

reduces the instruction overhead of g2l, iii) inline and remove redundant operations of

g2l calls. We implement the proposed techniques on LLVM Lattner and Adve (2004),

and evaluate them on Gem5 CPU simulator Binkert et al. (2011a). The benchmarks

used are from Mibench suite Guthaus et al. (2001a). Experimental results show that

compared to the state of the art, our techniques our approaches reduce execution

time by 80% on average.

4.2 Related Work

Heap management on SPM can be generally divided into static approaches, quasi-

static approaches and dynamic approaches. Static approaches treat an SPM as a heap,

and implement efficient memory allocator to manage heap data on the SPM Wilson

et al. (1995); McIlroy et al. (2008) to avoid run-time overhead at every memory access.

However, such methods may be forced to allocate heap objects to main memory

when there are not enough space on SPM. Quasi-static approaches divide execution

into time intervals, and bring the most frequently used data into the SPM at the

beginning of each interval Dominguez et al. (2005). Within the interval, locations of

heap data are fixed (thus the name), either in SPM or in the main memory. Such

approaches usually rely on profiling, which becomes inaccurate when representative

input is absent.

Dynamic approaches change the set of data objects and the location of each object

in SPM as program executes, and are the most flexible. Previous dynamic approaches

for heap management, including ours, are mostly based on software caching, due to

the high dynamism of heap data. They are however different from ours. For example,

Moritz et al. implemented a compiler-based software cache on a raw SRAM Moritz

et al. (2001). The technique relies on fast translation, which requires on additional

56

Figure 4.3: The state-of-the-art heap management implements a 4-way set-associative

software cache on SPM.

registers, while our technique does not require additional hardware. Chakraborty et

al. proposed an array management technique on SPM Chakraborty and Panda (2012)

that labels arrays into either statically allocated in SPM or dynamically managed via

software cache. The decision relies on the knowledge of array sizes, while our technique

does not require array sizes, and can be used to manage any data aggregates, such as

linked lists or trees.

The state of the art dynamic heap management for SMM architectures from Bai

et al. Bai and Shrivastava (2013) is the most related work to our technique. The state

of the art implemented a 4-way set-associative software cache with first-in-first-out

(FIFO) replacement policy on SPM. The details of the technique will be explained

57

shortly. However, it introduces very high management overhead. Our technique can

significantly reduce overhead and improve performance.

4.3 Limitation of the State of The Art

The state of the art heap management Bai and Shrivastava (2013) emulates a 4-

way set-associative cache on an SPM. The SPM is partitioned into a data region and

a heap management table (HMT), as shown in Figure 4.3. The data region stores the

actual heap data in fixed-sized blocks, while the management table stores a tags, a

modified bit, and a valid bit for each block in the data region, i.e. there is a one-to-one

mapping between each block in the data region and each entry in the management

table. Every 4 entries in the management table forms a set, with a victim index for

round-robin replacement policy.

The g2l function in the state of the art takes a main memory address as input,

and checks if the given address is in heap. The input address is immediately returned

if it is not in heap. Otherwise, the set index of the input address is calculated. A

sequential search is done to compare the tag of the input address with the tags of the

four entries in the set. The data block at target heap address is brought to SPM if it

is not present, before the SPM address is returned.

Although the state of the art correctly manages the heap data of an application,

it incurs high performance overhead. Figure 4.4 shows its management overhead on

some typical embedded applications. It is important to note that the heap manage-

ment technique not only significantly increases the execution time of applications,

but also inflicts high overhead on the benchmarks without any heap accesses, Adpcm

Decode, Adpcm Encode, SHA, and String Search.

The high overhead is caused by two main reasons.

i) heap management function g2l called before each memory access. Since

58

0
2
4
6
8
10
12
14
16
18
20

Ex
ec
ut
io
n	
tim

e	
no

rm
al
ize

d	
to

w
ith

ou
t	m

an
ag
em

en
t

Figure 4.4: Performance overhead caused by the state-of-the-art heap management

approach.

the management functions check if an access is to heap at runtime, it has to be called

before each memory access (including those are not to heap). The checking is expen-

sive, not only because it happens at every memory access, but also because it involves

branch operations, and potentially memory operations.

ii) set-associate heap management. The second major source of overhead comes

from the fact the previous technique manages heap data in a set-associative manner.

The software implementation of the set-associate structure has to sequentially search

all the entries in the set at every heap access. It also complicates the calculation of

the set index, and the translation of a main memory address to the corresponding

SPM address. The set index of the input main memory address is calculated with

the following hash function:

set index = ((mem addr >> log(block size)) ∧ (mem addr >> (log(block size) +

59

1)))&(set num− 1)

where mem addr is the input main memory address, block size is the size of a data

block, and set num is the number of sets. The SPM address is then calculated as:

spm addr = spm base+(set index∗set assoc+entry index)∗block size+mem addr%block size

where spm base is the start address of the data region, set assoc is the set associa-

tivity (4 in this case), and entry index is the index of the entry in the set specified

by set index. The complexity of the calculations translates to significant instruction

overhead.

4.4 Key Ideas of Our Approach

To solve the problems in state of the art, we use a series of optimizations that can

greatly reduce the overhead of heap management on SMM architectures:

i) statically detecting heap accesses. This optimization identifies heap access

at compile-time and eliminates heap management function g2l when the memory is

definitely not a heap accesses, and significantly reduces the number of (unnecessary)

management calls at runtime. It also eliminates the runtime checking within the

management function.

ii) simplifying management framework. We implemented a direct-mapped cache

on SPM. In a direct-mapped cache, it is no longer required to sequentially go through

different entries and search for the requested data block for each heap access. In

addition, it simplifies the calculation of set index and the SPM address in the man-

agement functions. Therefore, this optimization can effectively reduce the number of

instructions in each management function.

iii) inlining and combining management calls. Once g2l functions are inserted,

we inline the function calls. We also remove the (redundant) heap management func-

tions and execute them once before all the management calls. This optimization is

60

intmain()	{
int *a;
a	=	malloc(20);
a[3]	=	5;
}

intmain()	{
int *a;
a	=	malloc(20);
*g2l(&a[3]) =	5;
}

SPM

Main	Memory

g2l(&a[3])

&a[3]

DMA

(a)	Original	
code

(b)	With	heap	
management

Figure 4.5: The previous approach inserts g2l before every memory access, while our

approach tries to identify the heap accesses statically and skip unnecessary g2ls.

particularly beneficial, when management functions are called within loops, and the

common operations are hoisted to be outside of the loops.

4.5 Details of Our Approach

4.5.1 Statically detect heap accesses

This optimization identifies heap accesses at compile-time, so that the manage-

ment function g2l can be avoided at memory accesses that are absolutely not to heap.

Figure 4.5 illustrates the effect of this optimization. The original program defines a

structure, which consists of two integer pointers a and b. It then creates a global

variable s as an instance of the structure, and assigns s->a with an heap object cre-

ated by a call to the malloc function. The program then points s->b to the fourth

integer element starting from the address in s->a. Later s->b is used to access the

heap object. The program also defines a pointer p that refers to a stack variable.

61

Even though only s->a and s->b points to heap data in this program, the previous

heap management technique Bai and Shrivastava (2013) will insert a g2l call at every

memory access unnecessarily as in Figure 4.5(b), including memory accesses via p and

s (not s->a or s->b), which are to stack and global data respectively. On the other

hand, with static detection of heap accesses, we only insert g2l before the memory

instructions via these two pointers.

To find out heap accesses, we first identify all the the heap pointers. Algorithm 3

explains the method we use to identify heap pointers, which includes both the pointers

that directly points to heap objects created by memory allocators (e.g. malloc or

calloc), and their aliases. The analysis starts at getHeapPtr. In this procedure, the

analysis first executes getAlloc procedure, taking as input the main function (line

2). The getAlloc procedure identifies all the invocation of memory allocators in

the input function F, and record the pointers that are used to store the created

heap objects (line 8 and 9). If F calls any other functions F’, getAlloc recursively

accesses and identifies the memory allocations in F’ (line 11 and 12). Once all the heap

pointers that stores the heap objects created by memory allocations are identified, the

analysis continues to identify all the possible alias of these heap pointers by executing

the getAlias procedure on the main function (line 4). The getAlias procedure

goes through each instruction in the input function F, and recognizes any instruction

that performs pointer arithmetic on a heap pointer and assigns the result to another

pointer. The destination pointer of such an instruction is identified as an alias of the

heap pointer. Similar to the getAlloc procedure, in case F calls any other function

F’, the getAlias procedure recursively calls itself on F’ to identify aliases created in

F’. Since each iteration of the getAlias procedure may recognize new aliases, this

procedure is repeated until no new aliases can be recognize (line 3 to 5).

Once all the heap pointers are recognized, we can identify heap accesses and insert

62

Figure 4.6: When a memory access may be to heap but is not for certain, we check

at runtime before managing the access.

g2l function as follow. All the memory access (i.e. loads ans stores) via any of the

heap pointers identified in Algorithm 3 are considered as potential heap accesses. An

g2l function is inserted right before the memory instructions to first translate the

memory address to an SPM address. The SPM address is then used to substitute for

the original memory address in the instructions.

There are cases when the compiler cannot determine whether a pointer refers to

heap data. In Figure 4.6(a), the pointer c can either refer to heap data or stack

data, depending on the outcome of the call to rand function, which returns a random

number. We introduce a new management function, called g2l rc, that checks at

63

runtime and see whether the memory address is in heap, similar to the previous

work. When we are sure an access is to heap, we call the g2l function, which does not

have any runtime checking. If an access may be to heap, we call g2l rc. Otherwise, if

we are sure an access is definitely not to heap, we do not call any heap management

functions. Figure 4.6(b) shows the transformed code with heap management function.

We call g2l before accessing the data referred by the pointer b, because we are sure it

is in heap. We call g2l rc before accessing c, because it may refer to heap data, but

are not for sure. We do not insert any heap management function when accessing a,

because it is definitely in stack.

4.5.2 Simplify management framework

Whenever a memory access happens, a software-cache based approach has to

first calculate the set index of the memory address. The software cache will then

sequentially access the entries in the set and compare the tag of the target address

with the tags in the entries. Once the data block that contains the target address is

located, either already in the SPM in a hit, or first copied from the main memory in

a miss, the final SPM address is generated and used to replace the original memory

address in the memory access.

Since this process happens within each management function call, it is perfor-

mance critical to speed up this process. With a direct-mapped cache on software,

this process can be noticeably simplified to execute much less instructions at run-

time, compared to a set-associative cache. Figure 4.7(a) and Figure 4.7(b) shows

two examples using the previous approach and our approach respectively. The edge

in both figures specify dependence between two steps. The previous approach as in

Figure 4.7(a) calculate set index with the following function:

set index = ((mem addr >> log(block size)) ∧ (mem addr >> (log(block size) +

64

Figure 4.7: (a) The steps of a management in the previous work (b) The steps of a

management function in our approach The steps of a management function in the

previous work and our approach.

1)))&(set num− 1),

where mem addr is the input main memory address, block size is the size of a data

block, and set num is the number of sets. The software cache then searches the

corresponding set for the requested data block. Only after the data block is found

(either after a hit or after a miss), can then the SPM address be generated as

spm addr = spm base+(set index∗set assoc+entry index)∗block size+mem addr%block size,

where spm base is the start address of the data region, set assoc is the set associa-

tivity (4 in this case), and entry index is the index of the entry in the set specified

by set index. Notice this equations required both the index of the set and the index

of the entry in the set, which explains the dependence of the calculation of the SPM

address on the sequential searching in Figure 4.7(a). On the other hand, our approach

65

Figure 4.8: We inline management calls and move common operations to the begin-

ning of the caller function.

in Figure 4.7(b) simplifies the calculation of the set index of a memory address into

set index = global addr >> log(block size)%set num,

Since each set has only one entry, sequential searching is not necessary. The soft-

ware can simply go ahead and calculate the final SPM address as spm addr =

spm base + mem addr%(set num ∗ block size).

In addition, the calculation of SPM does not depend on any previous steps. Elim-

ination of such dependence may allow the compiler to have more parallelism when

generating and scheduling the machine instructions for the management functions.

4.5.3 Inline and combine management calls

Once g2l function is inserted after identifying heap accesses statically, we can re-

duce the management overhead by inlining the management functions, which enables

66

further optimization. In Section 5.1.2 we explained the previous approach divided

SPM into two memory regions for heap management table and data region. Our

approach makes similar usage of SPM space. Every g2l thus has to load the start

address of the heap management table and data region at the beginning of its exe-

cution, before executing any other call-specific instructions. Therefore, we can move

these common instructions outside of the g2l function and execute it once before any

g2l calls, so that all the subsequent g2l calls can reuse the results, similar to common

subexpression elimination.

Figure 4.8 shows an example. Figure 4.8(a) lists the original code. Figure 4.8(b)

is the transformed code before inlining. Each g2l call first executes the common

instructions redundantly, and then execute specific instructions for that call. We rep-

resent the common instructions and specific instructions in a g2l with function calls

g2l common and g2l specific respective in the example, but they are plain instruc-

tions in the actual implementation. In Figure 4.8(c), we inline the g2l calls, move and

execute the common instructions at the beginning of the caller function. After the

optimization, only call-specific instructions are executed at where a g2l was called.

While this optimization generally will improve performance, its importance is maxi-

mized when g2l was originally called within loops, as this example shows —instead of

repeatedly and excessively executing the common steps in a loop nest, moving these

common instructions to be outside can significantly reduce such overhead.

The algorithm of this optimization is shown in Algorithm 4. The compiler goes

through every function in the program and inlines g2l calls with call-specific instruc-

tions. The common instructions are moved to the beginning of the function.

67

4.6 Experiments

4.6.1 Experimental setup

We implemented both the state-of-the-art technique Bai and Shrivastava (2013)

and our technique as intermediate representation (IR) passes on LLVM 3.8 Lattner

and Adve (2004) respectively. We then compiled the same benchmarks with different

heap management techniques, ran the executable code on Gem5 Binkert et al. (2011a)

and compared the performance. The block size in the software cache is set to 64 bytes

in both techniques.

We emulated the SMM architecture on Gem5, by modifying the linker script and

Benchmark Heap Size (KB)

Adpcm Decode 0

Adpcm Encode 0

Dijkstra 6.43

FFT 32

iFFT 32

Patricia 766

SHA 0

String Search 0

Susan Corner 92.16

Susan Edge 42.81

Susan Smoothing 17.35

Typeset 32

Table 4.1: Maximum heap usage of benchmarks

68

Figure 4.9: The execution time of our approach normalized to the previous work with

optimizations incrementally added.

reserving part of the memory address space as the SPM. We implemented an DMA

instruction that copies data between the SPM and the main memory. DMA cost is

modeled as a constant startup time and the time for actual data movement. The

startup time is set to 291 cycles, and the rate for transferring data is set to 0.24

cycles/byte. The CPU frequency is set to 3.2 GHz. All these parameters are based

on the IBM cell processor Kistler et al. (2006).

We evaluated the proposed technique on benchmarks from Mibench benchmark

suite Guthaus et al. (2001a). Table 4.1 lists the maximum usage of heap size in the

benchmarks, i.e. the maximum sum of sizes of heap objects at any moment. The

benchmarks that have zero heap usage do not have any heap accesses.

69

Benchmark Before After

Adpcm Decode 116702082 0

Adpcm Encode 10211280 0

Dijkstra 149209166 19077784

FFT 336608 90188

iFFT 336671 90204

Patricia 3114668 893184

SHA 8350153 0

String Search 2198090 0

Susan Corner 1238553 273717

Susan Edge 2628207 579221

Susan Smoothing 37252034 4891730

Typeset 274118 3826

Table 4.2: Number of g2l calls called before and after identifying heap access statically

with the previous technique

4.6.2 Significantly reduces execution time

Figure 4.9 shows the execution time of our approach normalized to the previ-

ous work, as optimizations incrementally introduced. Overall, our approach reduces

execution time by 80% on average.

We can clearly see from the result in Figure 4.9 that statically detecting heap

accesses contributes the largest reduction of execution time, especially in benchmarks

that do not have any heap accesses, i.e. Adpcm Decode, Adpcm Encode, SHA, and

String Search. Overall, statically detecting heap access reduces the execution time

by 57% on average. This is because of two reasons: reduced management calls and

70

Case Previous Work Statically Detect-

ing Heap Accesses

Simplifying Man-

agement Frame-

work

Inlining and

Combining Man-

agement Calls

read hit 52 46 19 8

write hit 59 53 23 10

read miss w/o

write-back

145 139 41 36

write miss w/o

write-back

145 139 44 37

read miss w.

write-back

172 166 58 45

write miss w.

write-back

172 166 58 45

Table 4.3: Instructions executed per g2l under different cases with optimizations

incrementally added.

less executed instructions in each call. Table 4.2 shows the number of calls to the

g2l function before and after statically detecting heap accesses in the previous work.

The management calls is significantly reduced in all the benchmarks. For example,

the number of management calls is reduced from 2628207 to 579221 in Susan Edge.

In the benchmarks that do not have any access, management calls are completed

eliminated.

Statically detecting heap accesses also allows us to eliminate runtime checking at

g2ls, and thus reduces number of instructions. Table 4.3 shows the average number of

instructions each g2l executes under different cases, after we incrementally introduce

71

1.E+00
1.E+01
1.E+02
1.E+03
1.E+04
1.E+05
1.E+06
1.E+07
1.E+08

Re
du

ce
d	
Cy
cle

s/
Ad

de
d	
DM

As

Figure 4.10: Implementing a direct-mapped cache other than a 4-way set-associative

cache reduces more execution time than the extra time introduced due to increased

cache misses.

the optimizations. There are 3 possible cases when a g2l function is called: a cache

hit; a cache miss and a clean data block is evicted; a cache miss and a dirty data

block is evicted. The memory access may either be a read access or a write access,

so there are 6 different cases overall that may happen when calling a g2l function.

The table shows there is a constant difference of 6 instructions between the Previous

Work column and the Statically Detecting Heap Accesses column in any case.

Simplifying management framework, by implementing a direct-mapped software

cache instead of a 4-way set-associative cache, reduces execution time by 42% on

average (on top of statically detecting heap accesses). This is because average dynamic

instruction count of g2l calls in all the cases of Table 4.3 is significant reduced. For

example, the average instructions executed in the sixth case is reduced from 166 to 58

72

after simplifying management framework. Since a direct-mapped cache causes more

cache misses compared to a 4-way set-associative cache, we also compare the benefit

(reduced cycles) due to less management instructions to the penalty (increased cycles)

due to increases cache misses. Figure 4.10 shows the reduced CPU cycles thanks to

less management instructions normalized to the increased CPU cycles because of more

cache misses. The simplification of management framework improves the performance

of a benchmark, as long as the quotient of that benchmark is greater than 1. For

example, in Patricia, the reduced cycles are more than 10000000 times than the

increased cycles. The figure shows that the increased cycles almost are ignorable

compared to the reduced cycles, in all the benchmarks.

Inlining and combing management calls can further reduce execution time by 21%

(on top of statically detecting heap accesses and simplifying management framework),

thanks to the removed function calls and redundant operations. For example, as

Table 4.3 shows, the average instructions executed in the sixth case is reduced from

166 to 58 after simplifying management framework, and is further reduced from 58 to

45 after inlining and combing management calls. Notice we apply this optimization

after statically detecting heap accesses. So if the heap management calls are all

eliminated after that step, inlining and combining management calls will not improve

performance. For example, the management calls of Adpcm Decode, Adpcm Encode,

SHA, and String Search are reduced to 0 after the compiler statically finds out there

are no heap accesses in these benchmarks. The performance is therefore not further

improved after the first optimization.

4.6.3 Scales well with SPM size

In the above experiments, the SPM size is set to 4KB. Figure 4.11 shows the

execution time before and after applying the optimizations to the previous technique,

73

0

0.1

0.2

0.3

0.4

0.5

4 8 16 32 64

Ex
ec
ut
io
n	
Ti
m
e	
N
or
m
al
ize

d	
to
	P
rio

r	
W
or
k

SPM	Size	(KB)

Patricia

Dijkstra

FFT/iFFT

Average

Susan	
Corner
Susan	
Edge
Susan	
Smoothing
ADPCM	
Dec.
ADPCM	
Enc.
SHA

String	
Search

Figure 4.11: Execution time of our approach normalized to the previous work, when

the SPM size increases from 4KB to 64KB. The order of the names on the right side

is the same as the order of endpoint of the line for the corresponding benchmark.

as the SPM size increases from 4KB to 64KB.

Under any SPM size, our technique achieves significant improvement over the

previous work. In addition, as the SPM size increases, the normalized execution

time of most benchmarks decreases. The only exception is Dijkstra. The reason

is because in our experiments, we assume the source code of library functions is not

available. Therefore, we can not insert g2l function in the code of library functions.

Notice this is a common problem for most if not all the compiler based approaches.

As a result, all the modified data blocks in the software cache must be flushed to the

74

main memory whenever a library function may modified heap data, to conservatively

ensure the correctness of execution. In Dijkstra, malloc and free functions are

extensively called. These two functions modify heap data, therefore we have to flush

the software cache every time either of the functions is called. While both the previous

technique and our technique suffer from the overhead, it is worse for our technique.

The proof is briefly given as follows. When we flush a software cache, we have to

check all the blocks in the cache and write back dirty data. Since the capacity and

block size of the cache are the same for both techniques, the number of blocks to

check are the same in both techniques. The overheads of flushing software cache are

therefore roughly the same in both techniques. Let the time for flushing the software

cache be Tflush in both techniques. Let the time for the rest of execution be T1 with

the previous technique, and T2 with our technique. The normalized execution time

can be calculated as (Tflush + T1)/(Tflush + T2). As the cache size increases (the data

block size remains), Tflush becomes higher, since the number of data blocks to check

increases. Therefore, the normalized execution time becomes larger. For the similar

reason, we can have the source code of library functions, we can eliminate the flushing

in both techniques and the normalized execution time will be further reduced.

4.7 Conclusion

Due to the expense of caches, some processor designers have opted to use SPM as

an alternative. SPM-only software manged manycore (SMM) processors have been

widely used in various area. However, the data management must be explicitly done

on SPM, which introduces overhead. In this paper, we propose an efficient manage-

ment technique for heap. The experimental results show that with the optimizations,

we can reduce the execution time by 80% on average compared to the state of the

art.

75

Algorithm 3 Identify heap pointers

1: function getHeapPtr

2: getAlloc(main)

3: repeat

4: getAlias(main)

5: until cannot find new aliases

6: function getAlloc(Function F)

7: for each instruction I in F do

8: if I is a call to any memory allocator then

9: Record destination pointer P as a heap pointer

10: else

11: if I is a call to any user function F’ then

12: getAlloc(F’)

13: function getAlias(Function F)

14: for each instruction I in F do

15: if I is an assignment statement and one of the operands P is a heap pointer

then

16: Record destination pointer P’ as an alias of P

17: else

18: if I is a call to any user function F’ then

19: getAlias(F’)

76

Algorithm 4 Inline and combine g2l calls

1: function inlineManagementFunction(Function F)

2: for each function F do

3: if F has any call to g2l then

4: insert common operations of g2l at the beginning of F

5: for each g2l call I in F do

6: inline the call

7: remove the common operations

77

Chapter 5

SHARED DATA MANAGEMENT

5.1 Introduction

So far, we have introduced management of the local SPM for each core. If tasks

running on different cores do not interact with each other, then the presented work

is able to run them correctly. However, in the presence of shared data for inter-

task/inter-core communication, we need to make sure they are coherence among cores,

in order to get expected results.

The challenges of coherence management of SMM architectures are extremely

analogous to the coherence management of non-coherent cache (NCC) architectures.

NCC architectures are cached-based multicore architectures yet without cache coher-

ence. For example the 8-core TI TMS320C6678 processor features a non-coherent

cache memory architecture, or in the more general purpose domain, the 48-core In-

tel SCC Howard et al. (2011) has non-coherent cache memory architecture. NCC

architecture require explicit memory transfers to synchronize shared data that are

modified and/or accessed by different cores when running parallel programs, just

liken any SMM architecure. This problem is illustrated in Figure 5.1. Without ex-

plicit communication, modifications of shared data are not propagated properly and

cause unexpected problems. The only difference between an SMM architecture and

an NCC architecture is that in the NCC architecture, code and data are automat-

ically managed between local caches and main memory, which could be taken care

by the management of local SPMs presented earlier. We therefore demonstrate our

work in an NCC architecture, which allows us to focus on the coherence management

78

Figure 5.1: Coherence of data has to be managed explicitly on a Non-coherent Cache

(NCC) multi-core architecture. Suppose physical memory location x initially contains

value 0 and both cores P0 and P1 caches it. If P0 writes a new value 5 at address x,

P1 will still stay uninformed and access the stale value.

problem. More importantly, the coherence management work in NCC architectures

can be easily exported to SMM architectures.

A lot of research has been done on coherence management of shared data Kon-

tothanassis and Scott (1995); Stenstrom (1990); Reinhardt et al. (1994). Most pre-

vious work maintains coherence of shared data at fixed granularity, either at block

level Scales et al. (1996) or page level Carter et al. (1991); Bershad et al. (1993).

Typical approaches either rely on hardware such as the page fault hander of Memory

Management Unit (MMU) to identify writes to shared pages and invalidate its copies

in all other cores Stenstrom (1990); Carter et al. (1991); Bershad et al. (1993), or

develop software to manage the modifications on each core and do compute-intensive

comparisons between the original and the modified copy to apply the change Lee

et al. (2008). The hardware approaches are not considered in this proposal since

modern multi-cores are usually designed without complex hardware to save power.

But even with the software approach, a fixed granularity approach may not be the

best option for NCC architectures—such approaches usually incur much computa-

tion power. For example, when multiple cores write to the same shared page, each

writing core needs to create and modify its local copy, and compare the modified

79

copy to the original copy in order to apply changes to the original copy, to prevent

its modifications from overwritting changes done by other cores Lee et al. (2008).

In traditional multi-processor systems with computationally strong processors and

relatively slow inter-process communications, increasing computation to avoid (more

expensive) communication makes sense. However, in modern multi-core systems,

each core is designed with relatively weak computational power to preserve power ef-

ficiency, with relatively fast communication speed. For example, the theoretical peak

performance of an accelerator core on the Cell processor is around 20 GFLOPS IBM

Technical Library (2005), while that of a conventional Xeon processor reaches over

600 GFLOPS AMD (2012). Therefore, we need to a different solution to adapt to

the changes on processor design.

In this chapter, we present a pure software approach at byte granularity on NCC

architectures to manage coherence of shared data among cores while reducing the

computational overhead caused by the management. Our approach achieves more

than 2X performance improvement compared to the state-of-art approach Lee et al.

(2008) on an 8-core non-cache coherent TI TMS320C6678 processor Texas Instru-

ments (2017). Experiments also show that the performance overhead of managing

coherence via our approach is more lower.

5.1.1 Related Work

Maintaining coherence of shared data has been a heavily studied topic for multi-

processor systems, e.g., cluster computing, grid computing, and distributed com-

puting, in an effort to provide a Distributed Shared Memory (DSM) to applica-

tions Nitzberg and Lo (1991). A DSM manages data coherence between proces-

sors and creates an illusion of shared memory over a distributed memory system on

multi-processor systems. A compendium of many important approaches to provide

80

coherence among the processors of a multi-processor system can be found in Tartalja

(1997). DSMs are closely related to software cache coherence as both try to provide

a single image of memory to all processors. Most software DSMs use page-grain co-

herence management Protic et al. (1995). If a page-grain DSM is implemented by

modifying page-fault handler, it is also called Software Virtual Memory, or SVM. All

these coarse-grain approaches aim to reduce the communication between processors,

even if it results in a slight increase in the computation required.

Although page-grain coherence management reduces communication, it is prone

to false sharing. To avoid the adverse effects of false sharing on the performance, some

researches propose to manage coherence at variable granularity. Carter et al. Carter

et al. (1991) introduced a method of managing coherence at size of the data items,

through user-defined association between synchronization objects and data items.

Their approach relies on Memory Management Unit (MMU) trapping page faults,

Scales et al. Scales et al. (1996) transparently rewrite the application executable to

intercept loads and stores in compiler. Sandhu et. al. Sandhu et al. (1993) introduced

a program-level abstraction called shared region, and users explicitly call a function

that binds a shared region to a set of memory locations with variable sizes, and access

shared regions via some provided functions which guarantee the synchronization of

different processors. Bershad et. al. Bershad et al. (1993) also provides variable

granularity coherence management by asking users to explicitly associate data items

and synchronization objects.

More recently, providing coherence and consistency in multi-cores has become a

more important research topic. Several hardware based schemes have been proposed

to assist in coherence implementation, and make it more efficient. A recent proposal

from Zhao et al. Zhao et al. (2013) proposes two adaptive cache coherence schemes.

The first scheme supports adaptive granularity of storage but fixed cache line size,

81

while the other supports both adaptive granularity of storage and cache line size.

Ophelders et al. Ophelders et al. (2009) proposed a hardware-software hybrid scheme

which places private data in write-back cacheable memory regions and shared data in

write-through cacheable memory regions. While these approaches attempt fine-grain

coherence management, they are implemented by introducing new hardware, while

we are seeking for software based solutions.

Among the software approaches, Kim et. al. Kim et al. (2011) proposed a software

shared virtual memory for the Intel SCCHoward et al. (2011) without cache coherence.

Their approach requires modification of page-fault handler and manages coherence

at page granularity. However, several NCC multi-core architectures including the TI

TMS320C6678 do not have a MMU for each core, therefore page-fault handler based

schemes are not applicable for these embedded NCC architectures. The work most

closely related to our work is COMIC Lee et al. (2008). It is a software approach

designed for multi-core processors without hardware cache coherence Gschwind et al.

(2006a) and MMU in each core. In the experiments section, we will compare the

performance of COMIC with our approach. We describe COMIC in more detail in

the next section.

5.1.2 Previous Approach

COMICLee et al. (2008) proposes a software approach which implements Release

Consistency model Gharachorloo et al. (1990) at page granularity. Release Consis-

tency consists of two special operations: acquire and release. The program execution

between acquire and release is called interval. All memory accesses after an acquire

operation should be performed only after the acquire operation has been performed

while all memory accesses before a release operation must have been performed by

the time when the release operation is performed. Acquire and release operation are

82

Figure 5.2: The way COMIC works.

performed in program order.

Figure 5.2 illustrates how COMIC works. It requires one core to act as coherence

manager, which is the only processing element that can directly access the main

memory. All the other cores have to make memory requests via coherence manager.

In addition, whenever write requests to a shared page arrive, the coherence manager

creates a copy of the page (termed twin), and sends the page to all the requesting

cores. When the cores are done, they send back the modified pages, and coherence

manager then finds out the changes of each core by comparing the unmodified copy

to the modified pages. Only the changes are apllied to the original page in the main

memory.

5.1.3 Our Approach

Our approach implements Release Consistency model at byte granularity. Figure

5.3 shows an overview of our approach. Whenever a core wants to modified shared

data, it first performs an acquire operation. Upon its success, the core creates a

private duplicate in main memory and all the subsequent writes go to the duplicate.

83

Figure 5.3: The way our approach works.

All writes during the interval are recorded in write notices. Each write notice is a

record of the the starting memory location and the number of bytes modified. On

the release operation, the core makes all the write notices visible to other cores by

pushing them back to the main memory, together with the modified values. The

subsequent acquiring core can then read the write notices from the main memory and

either update or invalidate its local copy of modified data.

Code Transformation

We implement our own synchronization primitives. Figure 5.4 shows an example

of how the code will be changed with our management functions. The lock per-

forms an acquire operation once the exclusiveness to the critical region is obtained,

while the unlock function performs a release operation and releases the lock. The

write notice add function records the start address and size of the modification.

Fine-Grain Coherence via Write-Notice

Write notice is the key component in implementing release consistency model, and the

content of a write notice determines coherence granularity. For example, in traditional

84

Figure 5.4: Code transformation with our management functions. Figure (a) shows

the snippet of original code. Figure (b) shows the transformed code.

page-grain coherence scheme, e.g., COMIC, a write notice will mark which page is

updated but not where exactly the page is modified. So whenever any coherence

operation (e.g., acquire and release) happens, it either invalidates or updates the

entire page, which usually causes unnecessary data transfer. Our coherence scheme

works at byte granularity, assuming that no more than one processing elements should

access different bits on the same byte simultaneously. In our approach, a write notice

records the beginning address and the exact size of the memory locations. By doing

so, a core only needs to write back the exact modified part of shared data at the

release operation. For example, if a core modified only one word in a cache block, it

will write only that word instead of flushing the whole cache line.

Reduced Computation Overhead

Compared to communication pattern of COMIC (Figure 5.2), our approach (Figure

5.3) writes back the exact modified bytes to main memory instead of pages. As

a result, when the modified data is written back to main memory, no comparison

is needed to figure out the modification. Also, the duplicate and write notices are

created by each acquiring core, but not by the coherence manager as in COMIC.

By doing so, we avoid compute-intensive tasks of creating twins, comparing different

85

copies of the same page and applying the difference. Moreover, it also distributes the

load to multiple cores and mitigates the throttle of a centralized manager.

Further Optimizations

To further reduce the runtime overhead of our approach, we propose two more ways

of optimization. The first optimization aims to reduce the contention to memory

locations if multiple cores are trying to create write notices at the same time, while

the second one tries to reduce the number of write notices.

Private Write Notices Two types of write notices are used in our design - private

write notices and global write notices. Private write notices record modifications

by a specific core during an interval, while global write notices keep records of all

modifications from all cores. When a core works on an interval, it works on its

private write notices. Private write notices will be merged with global write notices

at the release operation. Global write notices can be accessed by any core. During

acquire operation, modifications done by other cores can thereby be propagated to

the subsequent core. 1 With private write notice, we can avoid creating performance

bottleneck caused by centralization.

Merging Write Notices Less number of write notices should reduce the number

of inquiries and DMA transfers on acquire operation, while a core goes through all

the write notices and apply modifications on shared data. Therefore, merging and

reducing number of write notices will reduce its overhead and improve performance.

To do so, before creating a write notice, we first check if the range of new write

completely or partly overlaps with or is adjacent to any existing write notices. If so,

1Unless noted, write notices mentioned in the rest of this chapter refers to the global write notices.

86

we change the existing notice of interest to include the new write instead of creating

a new write notice. In particular, at release stage, we also merge private write notices

with the existing global write notices.

5.1.4 Experimental Results

Experimental Setup

Our experiment platform is TI TMS320C6678 evaluation board Texas Instruments

(2017). The board has a single C6678 processor and a 2GB DDR3 memory. It is

based on TI’s KeyStone multi-core architecture, and has eight cores on chip, each of

which can run at up to 1.25 GHz. Cores are connected by on-chip teraNet with a

bandwidth of 2 Tbps. Each core has its private L1 cache and shares an L2 cache.

We took several commonly-used routines in many numerical or multimedia appli-

cations. The benchmarks and their input sizes are described in the first two columns

Table 5.1: Benchmarks

Benchmark Input Size numIters

Compress 512x512 2048

Laplace 512x512 2048

Lowpass 512x512 2048

Wavelet 4096x4096 8192

MMT M=4, N=16384, P=64 -

MV M=4, N=16384, P=1 -

MM M=4, N=16384, P=64 -

MT M=512, N=512 8192

87

Figure 5.5: Comparison of the performance of our approach and COMIC.

of Table 5.1. MM, MV, and MMT, are matrix-matrix, matrix-vector, and matrix-

transposed matrix multiplication, respectively. MT stands for matrix-transpose. All

benchmarks are implemented as multi-threaded programs. We divide the computa-

tion equally by dividing the output array into equal sub-arrays and making each core

be responsible to compute on one of the sub-array, and put a barrier at the end to

ensure all cores have finished the computation on its own portion before the final

result can be provided as an output.

Better Performance than COMIC

Our metric of performance is execution time. The shorter the execution time the

better the performance. In this experiment, we compare the performance of our co-

herence scheme and COMIC. The numbers are normalized to a baseline approach that

disables cache. As shown in Figure 5.5, we achieve over 2X performance improvement

compared to the COMIC for all benchmarks.

To better understand the individual performance results of the benchmarks, we

analyzed the access patterns of benchmarks and categorized their temporal locality

and spatial locality as strong or weak. A benchmark shows strong spatial locality,

if more than one contiguous memory locations are accessed in each iteration of the

innermost loop. Otherwise the benchmark has weak spatial locality, if it only accesses

discontinuous memory locations. Similarly, a benchmark shows strong temporal lo-

88

cality if any memory location is accessed more than once over time. Otherwise the

benchmark shows weak temporal locality, if it accesses memory locations only once.

Compress, Laplace and Lowpass show both strong temporal and spatial locality, since

to compute an element in the target array, the program needs to access some sur-

rounding neighbors in the source array, e.g., to calculate b[i][j], the program needs

to access a[i-1][j-1], a[i-1][j], a[i-1][j+1], a[i][j-1], a[i][j], a[i][j+1], a[i+1][j-1], a[i+1][j],

a[i+1][j+1], and over the time a[i][j] needs to be accessed for the calculation of b[i-

1][j-1], b[i-1][j], b[i-1][j+1], b[i][j-1], b[i][j], b[i][j+1], b[i+1][j-1], b[i+1][j], b[i+1][j+1].

Wavelet shows strong temporal locality. However, it writes to two discontinuous lo-

cations in each iteration, which impairs the spatial locality. Both MV and MMT

access a large region of contiguous memory for many times in a loop, showing both

relatively strong temporal and spatial locality. Although MMT provides the same

functionality as MM (multiplying two matrices), it has stronger spatial locality. This

is because MM accesses matrix in column-wise order, while the data for the matrix is

laid out in memory in row-major order (assume arrays are stored in row-major order).

As a result, MM does not show as much performance improvement as MMT does.

MT shows limited locality of reference. Array elements are accessed in a column-

wise manner in the transposed matrix, and each element in both the original and

transposed matrix is accessed only once and never again.

Note that the performance of our approach over MMT, MV, MM and MT vary

significantly, while the performance of COMIC does not show much variation. This

is because for every shared data access, COMIC has to check a dirty bit to find out

if the page has been invalidated, whereas our approach does not. As a result, the

performance gained from locality of references is compromised in COMIC because of

the extra memory accesses introduced may poison the cache.

89

Figure 5.6: The comparison of runtime overhead of our approach and COMIC.

Reduced Runtime Overhead than COMIC

We show other factors that could affect performance in this section. First, note

that COMIC dedicates one core to coherence management, so only seven of all the

cores were used for actually executing threads. Note that this limitation of being

able to execute only one thread on a core is quite a common limitation in several

real multi-core architectures, e.g., the IBM Cell processor Gschwind et al. (2006a),

the 48-core Intel SCC Howard et al. (2011), and the TI Keystone architecture Texas

Instruments (2017)—our experimental platform. This is to minimize the overhead

of operating system on the cores and to allow extremely power-efficient bare-metal

execution. Using less number of threads affects the performance of COMIC. However,

that is not the only reason for the worse performance of COMIC. Figure 5.6 shows

the fractions of coherence management and the actual execution of benchmarks in

total execution time for both approaches. Overhead comprises all the actions related

to coherence management, e.g., comparison of different copies of the same page. As

shown in the figure, COMIC takes up to 51% of overall execution time, while our

approach takes only 19% on average. By using our write-notice based approach,

we successfully avoid expensive twin-page comparison, and eliminate the checking of

dirty-bits of pages for every shared data access.

90

Figure 5.7: Compute-intensity is varied by changing the numIters parameter.

More Scalable Overheads with Increasing Computation-to-Communication

Ratio

We compare the scalability of our approach to COMIC as the inter-core computation-

to-communication ratio increases. To show that, we increase the workload assigned to

each core before the synchronization by increasing loop counters in this experiment.

By repeating the same work before the barrier, the workload of each core is increased

before it needs to communicate with other cores at the barrier, while the amount of

time for inter-core communication at the barrier remains the same, since each core

modifies the same shared memory locations and thus only needs to propagate the same

amount of information to subsequent accessing cores to these locations. Therefore,

it reduces the time spent on inter-core communication in the overall running time.

The third column of Table 5.1, i.e., numIters, shows the number of iterations the

workload will be repeated. The bigger numIters is, the lower the weight of inter-core

communication in the overall running time. Figure 5.7 shows the impact of reducing

the weight of inter-core communication on the two different approaches. The Y

axis shows the performance normalized to the baseline, which disables caches. The

figure clearly shows that benchmarks using our approach gets near-linear performance

improvement as the number of iterations increases, while their performance suffers

from the increasing overhead of COMIC. The overhead of COMIC increases because

dirty-bit checking has to be done for every shared data access. Although that bit

91

checking can be done by a cheap modular operation, it accumulates to a large overhead

as the number of iterations increases.

Another important observation is that, when the iteration count is small, the

overhead of our coherence management stands out more, and our approach performs

worse than COMIC. This is because our approach uses write-update protocol. Under

such protocol, each core needs to fetch more data than they actually need to. When

there is very little computation in each interval (for example, when each thread mostly

updates some elements of array with some constants without any calculation), this

drawback will become more prominent. However, the overhead of our coherence

management gets amortized off as the amount of workload increases, which should

be acceptable as the communication should not be dominant most of the time.

92

Chapter 6

MY CONTRIBUTIONS

The code management technique in Chapter 2 is based on the published paper

Reducing Code Management Overhead in Software-Managed Multicores Cai et al.

(2017). The paper was published in Proceedings of the 2017 International Conference

on Design Automation and Test in Europe (DATE), 2017. I conceived the idea of

eliminating unnecessary code management functions when function-to-region is given,

and implemented the technique.

The stack management in Chapter 3 is based on the published paper Efficient

Pointer Management of Stack Data for Software Managed Multicores Cai and Shri-

vastava (2016). The paper was published in Proceedings of the International Confer-

ence on Application Specific Systems, Architectures and Processors (ASAP), 2016.

I was one of the major contributors to the idea of removing unnecessary pointer

management functions in stack management, and implemented the technique .

The heap management technique in Chapter 4 is based on a paper we recently

finished. I coauthored the paper and was a major contributor to the idea implemented

in the paper. The paper currently for review at the time of writing.

The shared data management technique in Chapter 5 is based on a paper textit-

Software Coherence Management on Non-Coherent Cache Multi-cores Cai and Shri-

vastava (2016) published in International Conference on VLSI Design (VLSID), 2016.

I conceived the idea of managing shared data in fine granularity to reduce computa-

tion overhead, and implemented the technique.

93

Chapter 7

SUMMARY

The swiftly increased overhead on area and power of cache coherence makes multi-

/many-core system difficult to scale. While we can keep improving the efficiency of

cache coherence mechanism, some processor designs have sought to use scratchpad

memories instead of caches in memory hierarchy to curb the cost. The scratchpad

memory (SPM) is a low-cost SRAM memory —it removes the hardware logics (such

as tag array and tag comparators) used in caches to automate the data transfers, and

therefore uses 34% less area and consumes 40% less power than a cache of the same

capacity Banakar et al. (2002). As a result, data management on SPMs is explicitly

managed on software, typically automated in compilers to save programmers from

manually programming the data transfers. For this reason, SPM-only architectures

are also referred as software managed multi-/many-core (SMM) architectures.

SMM architectures consume much less power and area compared to traditional

cache-based many architectures (thanks to the using of SPMs), and therefore is easier

to scale as number of cores increases. However, efficient software SPM management

techniques are still required for applications to deliver high performance on SMM

architectures. It would be otherwise meaningless if SMM processors only deliver poor

performance, not matter how much power it may have saved. In other words, SMM

processors may overcome the scaling issue of multi-/many-core architectures, only

if they can deliver high performance with low power consumption. Therefore, it is

extremely important to produce software that solves the problem both correctly and

—more importantly—efficiently.

This thesis develops different automatic compiler-based SPM management tech-

94

niques to manage code, stack and heap on SMM architectures. These techniques

insert data transfer instructions automatically in programs at compile-time, after

proper analysis. They improve performance by 14%, 52%, and 80% on average com-

pared to the state of the art techniques, respectively. The SPM code and stack

management techniques can even outperform caches by 9% and 12 % on average

respectively. On top of the local data management, a technique for shared data

management among different cores in an SMM processor is also developed, achieving

more than 2X speedup compared to its predecessor. Overall, this thesis provides an

complete solution to manage both the local and shared data on SMM architectures

efficiently.

95

REFERENCES

AMD, “HPC Processor Comparison”, URL http://i.dell.com/
sites/doccontent/shared-content/data-sheets/en/Documents/
ESG-AMD-HPC-Processor-Comparison-Aug-2.pdf (2012).

Angiolini, F., F. Menichelli, A. Ferrero, L. Benini and M. Olivieri, “A Post-compiler
Approach to Scratchpad Mapping of Code”, in “Proc. of CASES”, (2004).

ARM, “ARM1176JZF-S Technical Reference Manual”, http://infocenter.arm.com/
(2004).

Avissar, O., R. Barua and D. Stewart, “Heterogeneous memory management for
embedded systems”, in “Proceedings of the International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems”, (2001).

Avissar, O., R. Barua and D. Stewart, “An Optimal Memory Allocation Scheme for
Scratch-pad-based Embedded Systems”, ACM TECS 1, 1, 6–26 (2002).

Bai, K., J. Lu, A. Shrivastava and B. Holton, “CMSM: An Efficient and Effective
Code Management for Software Managed Multicores”, in “Proc. of CODES+ISSS”,
(2013).

Bai, K. and A. Shrivastava, “Automatic and efficient heap data management for
limited local memory multicore architectures”, in “Design, Automation Test in
Europe Conference Exhibition (DATE), 2013”, (2013).

Bai, K., A. Shrivastava and S. Kudchadker, “Stack Data Management for Lim-
ited Local Memory (LLM) Multi-core Processors”, in “Proceedings of the Inter-
national Conference on Application Specific Systems, Architectures and Processors
(ASAP)”, (2011).

Baker, M. A., A. Panda, N. Ghadge, A. Kadne and K. S. Chatha, “A performance
model and code overlay generator for scratchpad enhanced embedded processors”,
in “Proc. of CODES+ISSS”, (2010).

Banakar, R., S. Steinke, B.-S. Lee, M. Balakrishnan and P. Marwedel, “Scratchpad
memory: a design alternative for cache on-chip memory in embedded systems”, in
“Proc. of CODES”, (2002).

Bershad, B., M. Zekauskas and W. Sawdon, “The Midway Distributed Shared Mem-
ory System”, in “Proc. of Compcon Spring”, (1993).

Binkert, N., B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish,
M. D. Hill and D. A. Wood, “The gem5 simulator”, SIGARCH Comput. Archit.
News (2011a).

96

http://i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/ESG-AMD-HPC-Processor-Comparison-Aug-2.pdf
http://i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/ESG-AMD-HPC-Processor-Comparison-Aug-2.pdf
http://i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/ESG-AMD-HPC-Processor-Comparison-Aug-2.pdf

Binkert, N., B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish,
M. D. Hill and D. A. Wood, “The Gem5 Simulator”, SIGARCH Comput. Archit.
News 39 (2011b).

Bournoutian, G. and A. Orailoglu, “Dynamic, Multi-core Cache Coherence Architec-
ture for Power-sensitive Mobile Processors”, in “Proc. of CODES+ISSS”, (2011).

c. Jung, S., A. Shrivastava and K. Bai, “Dynamic code mapping for limited local
memory systems”, in “Proc. of ASAP”, (2010).

Cai, J., Y. Kim, Y. Kim, A. Shrivastava and K. Lee, “Reducing code management
overhead in software-managed multicores”, in “Proceedings of the 2017 Interna-
tional Conference on Design Automation and Test in Europe (DATE)”, (2017).

Cai, J. and A. Shrivastava, “Efficient pointer management of stack data for software
managed multicores”, in “Proceedings of the International Conference on Applica-
tion Specific Systems, Architectures and Processors (ASAP)”, (2016).

Carter, J. B., J. K. Bennett and W. Zwaenepoel, “Implementation and Performance
of Munin”, in “Proc. of SOSP”, (1991).

Carter, N. P., A. Agrawal, S. Borkar, R. Cledat, H. David, D. Dunning, J. Fryman,
I. Ganev, R. A. Golliver, R. Knauerhase, R. Lethin, B. Meister, A. K. Mishra, W. R.
Pinfold, J. Teller, J. Torrellas, N. Vasilache, G. Venkatesh and J. Xu, “Runnemede:
An Architecture for Ubiquitous High-Performance Computing”, in “Proceedings of
the 2013 IEEE 19th International Symposium on High Performance Computer
Architecture (HPCA)”, HPCA ’13 (2013).

Chakraborty, P. and P. R. Panda, “Integrating software caches with scratch pad
memory”, in “Proceedings of the 2012 International Conference on Compilers, Ar-
chitectures and Synthesis for Embedded Systems”, CASES ’12 (2012).

Cho, H., B. Egger, J. Lee and H. Shin, “Dynamic Data Scratchpad Memory Manage-
ment for a Memory Subsystem with an MMU”, in “Proceedings of the 2007 ACM
SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded
Systems”, LCTES ’07 (2007).

Choi, B., R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V. Adve, V. S.
Adve, N. P. Carter and C.-T. Chou, “DeNovo: Rethinking the Memory Hierarchy
for Disciplined Parallelism”, in “Proc. of PACT”, (2011).

Cullmann, C., “Cache persistence analysis: Theory and practice”, ACM Trans. Em-
bed. Comput. Syst. 12 (2013).

Dominguez, A., N. Nguyen and R. K. Barua, “Recursive Function Data Allocation
to Scratch-pad Memory”, in “Proceedings of the 2007 International Conference
on Compilers, Architecture, and Synthesis for Embedded Systems”, CASES ’07
(2007).

97

Dominguez, A., S. Udayakumaran and R. Barua, “Heap data allocation to scratch-
pad memory in embedded systems”, J. Embedded Comput. (2005).

Egger, B., C. Kim, C. Jang, Y. Nam, J. Lee and S. L. Min, “A Dynamic Code
Placement Technique for Scratchpad Memory Using Postpass Optimization”, in
“Proc. of CASES”, (2006).

Egger, B., S. Kim, C. Jang, J. Lee, S. L. Min and H. Shin, “Scratchpad Memory
Management Techniques for Code in Embedded Systems without an MMU”, IEEE
Transactions on Computers 59 (2010).

Egger, B., J. Lee and H. Shin, “Dynamic scratchpad memory management for code
in portable systems with an mmu”, ACM Trans. Embed. Comput. Syst. (2008a).

Egger, B., J. Lee and H. Shin, “Dynamic scratchpad memory management for code
in portable systems with an mmu”, ACM Trans. Embed. Comput. Syst. 7 (2008b).

Ferdinand, C. and R. Wilhelm, “Efficient and Precise Cache Behavior Prediction for
Real-TimeSystems”, Real-Time Syst. 17 (1999).

Francesco, P., P. Marchal, D. Atienza, L. Benini, F. Catthoor and J. M. Mendias, “An
Integrated Hardware/Software Approach for Run-time Scratchpad Management”,
in “Proc. of DAC”, (2004).

Garcia-Guirado, A., R. Fernandez-Pascual, A. Ros and J. Garcia, “Energy-Efficient
Cache Coherence Protocols in Chip-Multiprocessors for Server Consolidation”, in
“Proc. of ICPP”, (2011).

Gauthier, L. and T. Ishihara, “Implementation of Stack Data Placement and Run
Time Management Using a Scratch-Pad Memory for Energy Consumption Reduc-
tion of Embedded Applications”, IEICE (2011).

Gharachorloo, K., D. Lenoski, J. Laudon, P. Gibbons, A. Gupta and J. Hennessy,
“Memory Consistency and Event Ordering in Scalable Shared-memory Multipro-
cessors”, in “Proc. of ISCA”, (1990).

Gschwind, M., H. Hofstee, B. Flachs, M. Hopkin, Y. Watanabe and T. Yamazaki,
“Synergistic Processing in Cell’s Multicore Architecture”, IEEE Micro (2006a).

Gschwind, M., H. P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe and T. Yamazaki,
“Synergistic Processing in Cell’s Multicore Architecture”, IEEE Micro 26 (2006b).

Guthaus, M. R., J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge and R. B. Brown,
“Mibench: A free, commercially representative embedded benchmark suite”, in
“Workload Characterization, 2001. WWC-4. 2001 IEEE International Workshop
on”, (2001a).

Guthaus, M. R., J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge and R. B. Brown,
“MiBench: A free, commercially representative embedded benchmark suite”, in
“Proc. of IWCC”, (2001b).

98

Guthaus, M. R., J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge and R. B.
Brown, “Mibench: A Free, Commercially Representative Embedded Benchmark
Suite”, Proc. of Workload Characterization pp. 3–14 (2001c).

Howard, J. et al., “A 48-Core IA-32 Processor in 45 nm CMOS Using On-Die Message-
Passing and DVFS for Performance and Power Scaling”, IEEE Journal of Solid-
State Circuits (2011).

IBM Technical Library, “Cell Broadband Engine Architecture and its First
Implementation”, URL http://www.ibm.com/developerworks/power/library/
pa-cellperf/ (2005).

Ishitobi, Y., T. Ishihara and H. Yasuura, “Code and data placement for embedded
processors with scratchpad and cache memories”, J. Signal Process. Syst. (2010).

Janapsatya, A., A. Ignjatović and S. Parameswaran, “A Novel Instruction Scratch-
pad Memory Optimization Method Based on Concomitance Metric”, in “Proc. of
ASPDAC”, (2006).

Jang, C., J. Lee, B. Egger and S. Ryu, “Automatic Code Overlay Generation and
Partially Redundant Code Fetch Elimination”, ACM Trans. Archit. Code Optim.
9 (2012).

Jia, Z., Y. Li, Y. Wang, M. Wang and Z. Shao, “Temperature-aware data allocation
for embedded systems with cache and scratchpad memory”, ACM Trans. Embed.
Comput. Syst. (2015).

Kandemir, M. T., J. Ramanujam, M. J. Irwin, N. Vijaykrishnan, I. Kadayif and
A. Parikh, “Dynamic Management of Scratch-Pad Memory Space”, in “Proc. of
DAC”, pp. 690–695 (2001).

Kannan, A., A. Shrivastava, A. Pabalkar and J.-e. Lee, “A Software Solution for
Dynamic Stack Management on Scratch Pad Memory”, in “Proceedings of the 2009
Asia and South Pacific Design Automation Conference”, ASP-DAC ’09 (2009).

Kim, J., S. Seo and J. Lee, “An Efficient Software Shared Virtual Memory for the
Single-chip Cloud Computer”, in “Proc. of APSys”, (2011).

Kim, Y., D. Broman, J. Cai and A. Shrivastava, “WCET-aware dynamic code man-
agement on scratchpads for Software-Managed Multicores”, in “Proc. of RTAS”,
(2014).

Kistler, M., M. Perrone and F. Petrini, “Cell multiprocessor communication network:
Built for speed”, IEEE Micro (2006).

Kontothanassis, L. and M. Scott, “Software Cache Coherence for Large Scale Multi-
processors”, in “Proc. of HPCA”, (1995).

Lattner, C. and V. Adve, “LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation”, in “Proc. of CGO”, (2004).

99

http://www.ibm.com/developerworks/power/library/pa-cellperf/
http://www.ibm.com/developerworks/power/library/pa-cellperf/

Lee, J., S. Seo, C. Kim, J. Kim, P. Chun, Z. Sura, J. Kim and S. Han, “COMIC: a
Coherent Shared Memory Interface for Cell BE”, in “Proc. of PACT”, (2008).

Levine, J. R., Linkers and Loaders (Morgan Kaufmann Publishers Inc., 1999).

Li, L., L. Gao and J. Xue, “Memory coloring: a compiler approach for scratchpad
memory management”, in “14th International Conference on Parallel Architectures
and Compilation Techniques (PACT’05)”, (2005a).

Li, L., L. Gao and J. Xue, “Memory Coloring: A Compiler Approach for Scratchpad
Memory Management”, in “Proc. of PACT”, (2005b).

Lu, J., K. Bai and A. Shrivastava, “SSDM: Smart Stack Data Management for Soft-
ware Managed Multicores (SMMs)”, in “Proceedings of the 50th Design Automa-
tion Conference (DAC)”, (2013).

Lu, J., K. Bai and A. Shrivastava, “Efficient code assignment techniques for local
memory on software managed multicores”, ACM Trans. Embed. Comput. Syst.
14, 4 (2015a).

Lu, J., K. Bai and A. Shrivastava, “Efficient Code Assignment Techniques for Local
Memory on Software Managed Multicores”, ACM Trans. Embed. Comput. Syst.
14 (2015b).

Mamidipaka, M. and N. Dutt, “On-chip Stack Based Memory Organization for Low
Power Embedded Architectures”, in “Proc. of DATE”, pp. 1082–1087 (2003).

McIlroy, R., P. Dickman and J. Sventek, “Efficient Dynamic Heap Allocation of
Scratch-pad Memory”, in “Proceedings of the 7th International Symposium on
Memory Management”, ISMM ’08 (2008).

Moritz, C. A., M. I. Frank and S. Amarasinghe, FlexCache: A Framework for Flexible
Compiler Generated Data Caching (2001).

Nguyen, N., A. Dominguez and R. Barua, “Memory Allocation for Embedded Systems
with A Compile-time-unknown Scratch-pad Size”, in “Proc. of CASES”, pp. 115–
125 (2005).

Niar, S., S. Meftali and J. L. Dekeyser, “Power consumption awareness in cache
memory design with SystemC”, in “Proceedings. The 16th International Conference
on Microelectronics, 2004. ICM 2004.”, (2004).

Nitzberg, B. and V. Lo, “Distributed Shared Memory: A Survey of Issues and Algo-
rithms”, Computer 24, 52–60 (1991).

Olofsson, A., “Epiphany-V: A 1024 processor 64-bit RISC System-On-Chip”, CoRR
(2016).

Ophelders, F., M. J. Bekooij and H. Corporaal, “A Tuneable Software Cache Coher-
ence Protocol for Heterogeneous MPSoCs”, in “Proc. of CODES+ISSS”, (2009).

100

Pabalkar, A., A. Shrivastava, A. Kannan and J. Lee, “SDRM: Simultaneous Deter-
mination of Regions and Function-to-region Mapping for Scratchpad Memories”,
in “Proc. of HiPC”, (2008).

Panda, P. R., N. D. Dutt and A. Nicolau, “Efficient Utilization of Scratch-Pad Mem-
ory in Embedded Processor Applications”, in “Proceedings of the 1997 European
Conference on Design and Test”, EDTC ’97, pp. 7– (IEEE Computer Society, 1997).

Panda, P. R., N. D. Dutt and A. Nicolau, “On-chip vs. off-chip memory: The data
partitioning problem in embedded processor-based systems”, ACM Trans. Des.
Autom. Electron. Syst. (2000).

Park, S., H.-w. Park and S. Ha, “A Novel Technique to Use Scratch-pad Memory for
Stack Management”, in “Proc. of DATE”, (2007).

Poletti, F., P. Marchal, D. Atienza, L. Benini, F. Catthoor and J. M. Mendias, “An
Integrated Hardware/Software Approach for Run-time Scratchpad Management”,
in “Proc. of DAC”, (2004).

Protic, J., M. Tomasevic and V. Milutinovic, “A survey of distributed shared memory
systems”, in “Proc. of the Hawaii International Conference on System Sciences”,
vol. 1, pp. 74–84 vol.1 (1995).

Redd, B., S. Kellis, N. Gaskin and R. Brown, “The impact of process scaling on
scratchpad memory energy savings”, Journal of Low Power Electronics and Appli-
cations (2014).

Reinhardt, S. K., J. R. Larus and D. A. Wood, “Tempest and Typhoon: User-level
Shared Memory”, SIGARCH Comput. Archit. News (1994).

REX Computing, Inc., “THE NEO CHIP”, http://rexcomputing.com/ (2014).

Sandhu, H., B. Gamsa and S. Zhou, “The Shared Regions Approach to Software
Cache Coherence on Multiprocessors”, in “Proc. of PPoPP”, (1993).

Scales, D. J., K. Gharachorloo and C. A. Thekkath, “Shasta: a Low Overhead,
Software-only Approach for Supporting Fine-grain Shared Memory”, SIGPLAN
Not. (1996).

Sjödin, J. and C. von Platen, “Storage Allocation for Embedded Processors”, in “Pro-
ceedings of the International Conference on Compilers, Architecture, and Synthesis
for Embedded Systems”, (2001).

Steinke, S., N. Grunwald, L. Wehmeyer, R. Banakar, M. Balakrishnan and P. Mar-
wedel, “Reducing Energy Consumption by Dynamic Copying of Instructions Onto
Onchip Memory”, in “Proc. of ISSS”, (2002a).

Steinke, S., L. Wehmeyer, B.-S. Lee and P. Marwedel, “Assigning program and data
objects to scratchpad for energy reduction”, in “Proc. of DATE”, (2002b).

101

Stenstrom, P., “A Survey of Cache Coherence Schemes for Multiprocessors”, Com-
puter (1990).

Tartalja, I., The Cache Coherence Problem in Shared-Memory Multiprocessors: Soft-
ware Solutions (IEEE Computer Society Press, Los Alamitos, CA, USA, 1997).

Texas Instrument, “TMS320C6678 Multicore Fixed and Floating-Point Digital Signal
Processor (Rev. E)”, http://www.ti.com (2014).

Texas Instruments, “TMS320C6678”, URL http://www.ti.com/product/
tms320c6678 (2017).

Udayakumaran, S. and R. Barua, “Compiler-decided dynamic memory allocation
for scratch-pad based embedded systems”, in “Proceedings of the 2003 Interna-
tional Conference on Compilers, Architecture and Synthesis for Embedded Sys-
tems”, CASES ’03 (2003).

Udayakumaran, S. and R. Barua, “An integrated scratch-pad allocator for affine and
non-affine code”, in “Proceedings of the Conference on Design, Automation and
Test in Europe: Proceedings”, DATE ’06 (2006).

Udayakumaran, S., A. Dominguez and R. Barua, “Dynamic allocation for scratch-
pad memory using compile-time decisions”, ACM Trans. Embed. Comput. Syst.
(2006a).

Udayakumaran, S., A. Dominguez and R. Barua, “Dynamic Allocation for Scratch-
pad Memory Using Compile-time Decisions”, ACM Trans. Embed. Comput. Syst.
5 (2006b).

Udayakumaran, S., A. Dominguez and R. Barua, “Dynamic Allocation for Scratch-
pad Memory Using Compile-time Decisions”, ACM TECS 5, 2, 472–511 (2006c).

Verma, M. and P. Marwedel, “Overlay techniques for scratchpad memories in low
power embedded processors”, IEEE TVLSI 14 (2006).

Verma, M., S. Steinke and P. Marwedel, “Data Partitioning for Maximal Scratchpad
Usage”, in “Proceedings of the 2003 Asia and South Pacific Design Automation
Conference”, ASP-DAC ’03 (2003).

Verma, M., L. Wehmeyer and P. Marwedel, “Cache-Aware Scratchpad Allocation
Algorithm”, in “Proc. of DATE”, (2004).

Wilson, P. R., M. S. Johnstone, M. Neely and D. Boles, Dynamic storage allocation:
A survey and critical review (1995).

Xu, Y., Y. Du, Y. Zhang and J. Yang, “A Composite and Scalable Cache Coherence
Protocol for Large Scale CMPs”, in “Proc. of ICS”, (2011).

Zhao, H., A. Shriraman, S. Kumar and S. Dwarkadas, “Protozoa: Adaptive Granu-
larity Cache Coherence”, in “Proc. of ISCA”, (2013).

102

http://www.ti.com/product/tms320c6678
http://www.ti.com/product/tms320c6678

	LIST OF TABLES
	LIST OF FIGURES
	1
	1.1 Scratchpad Memory
	1.2 Software Managed Manycore and Its Management
	1.3 Overview of This Thesis
	1.3.1 Efficient Code Management
	1.3.2 Efficient Stack Management
	1.3.3 Efficient Heap Management
	1.3.4 Shared Data Management

	2
	2.1 Introduction
	2.2 Related Work
	2.3 Motivating Example
	2.4 Our Approach
	2.4.1 Notation
	2.4.2 Always-hit Analysis
	2.4.3 First-miss Analysis

	2.5 Evaluation
	2.5.1 Experimental setup
	2.5.2 Code Management Overhead Reduction
	2.5.3 Comparison with Hardware Caching

	2.6 Conclusion

	3
	3.1 Introduction
	3.2 Related Work
	3.3 Background
	3.4 Key Ideas of Our Approach
	3.5 Details of Our Approach
	3.5.1 Steps of Our Approach

	3.6 Experiments
	3.6.1 Improvement Over The State of The Art
	3.6.2 Comparable Performance Compared to Caches
	3.6.3 Choice of SPM Stack Size
	3.6.4 Integrated Management

	3.7 Conclusion

	4
	4.1 Introduction
	4.2 Related Work
	4.3 Limitation of the State of The Art
	4.4 Key Ideas of Our Approach
	4.5 Details of Our Approach
	4.5.1 Statically detect heap accesses
	4.5.2 Simplify management framework
	4.5.3 Inline and combine management calls

	4.6 Experiments
	4.6.1 Experimental setup
	4.6.2 Significantly reduces execution time
	4.6.3 Scales well with SPM size

	4.7 Conclusion

	5
	5.1 Introduction
	5.1.1 Related Work
	5.1.2 Previous Approach
	5.1.3 Our Approach
	5.1.4 Experimental Results

	6
	7

	REFERENCES

