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ABSTRACT OF THESIS

Power-Efficient and Low-Latency Memory Access for CMP Systems with Heterogeneous
Scratchpad On-Chip Memory

The gradually widening speed disparity between CPU and memory has become an
overwhelming bottleneck for the development ofChip Multiprocessor(CMP) systems. In
addition, increasing penalties caused by frequent on-chipmemory accesses have raised
critical challenges in delivering high memory access performance with tight power and la-
tency budgets. To overcome the daunting memory wall and energy wall issues, this thesis
focuses on proposing a new heterogeneous scratchpad memoryarchitecture which is con-
figured from SRAM, MRAM, and Z-RAM. Based on this architecture, we propose two
algorithms, a dynamic programming and a genetic algorithm,to perform data allocation
to different memory units, therefore reducing memory access cost in terms of power con-
sumption and latency. Extensive and intensive experimentsare performed to show the mer-
its of the heterogeneous scratchpad architecture over the traditional pure memory system
and the effectiveness of the proposed algorithms.

KEYWORDS: Heterogeneous memory, magnetic random access memory (MRAM), Zero-
capacitor random access memory (Z-RAM), scratchpad memory, scheduling
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Chapter 1

Introduction

Over the past decades, performance of computing systems in terms of speed, power con-

sumption, and reliability has been dramatically improved with the continuous development

of silicon technology. Moore’s Law tells us that the number of transistors on a single chip

is roughly doubled by every 18 months due to the enhancement of silicon technology. As a

result, performance of processors has almost doubled roughly every 18 months by adding

more transistors and bumping up frequencies of processors.

However, the continuous doubling integration of transistors doesn’t mean the same

magnitude of CPU performance improvement. It is observed that the doubling transistor

density in every technology generation can only contributeto 40% faster circuit and power

consumption (with twice as many transistors) stays the same[1]. Furthermore, not all

components of computer systems are able to cope with the advancements in the number of

transistors and the speed of processors. For example, although CPU speed increased at an

annual rate of 55% during the past decade, memory speed has been improved at most 10%

annually at the same time. Dominated by this speed gap between powerful CPU and inade-

quate memory access, performance of many applications still has not been fully exploited.

It is also measured that the frequent memory access will consume 41% of the total energy

of a processor [2]. These technology barriers are termed as “Memory Wall” and “Power

Wall” [3, 4, 5], which are significant deterrents to make computer system keep up with

ever-increasing computational demands of applications. Given these technology trends (as

shown in 1.1), the low memory access speed severely overwhelms modern software sys-

tems. Therefore, it is of importance to design energy-awareand high performance memory

architecture to sustain computation needs of different applications.
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Figure 1.1: Performance gap between processor and memory [12].

Multicore devices, a ubiquitous technology in wide computing domains including em-

bedded systems [6, 7], have emerged as a promising solution towards the heat dissipation

and data synchronization limitations faced by current uniprocessor systems. Chip Mul-

tiprocessor (CMP) systems are also one type of multicore technologies, by combining a

number of homogeneous and heterogeneous processors on a single chip to deal with spe-

cific real-time, low-power, and multitasking applications[8, 9, 10, 11]. Although multicore

systems contribute to the obvious benefits, they also complicate memory managements

since the memory hierarchy becomes more heterogeneous in this case.

1.1 Cache VS. Scratchpad Memory

Low-power and short-latency memory access are critical to the performance of CMP de-

vices. However, the continuous development of the current CMP systems is substantially

hindered by the ever-widening processor-memory speed gap.To address this problem,

2



most of the mainstream processor vendors, such as IBM, Intel, and AMD, have exploited

a number of techniques, including latency hiding [13, 14, 15] and SRAM-based hardware

caches, to shrink the memory access latency. However, latency hiding often leads to a linear

increase in power consumption, while yielding only a limited increase in the performance

of memory systems.

Cache, storing a subset of the frequently accessed variables, has already facilitated the

layered memory hierarchy for desktop systems and servers. It is predicted that the domi-

nance of caches in desktops and servers will likely continuein the near future. The most

important reason for the achievements of caches is their excellent portability since the

compiled code can be fitting to different cache sizes withoutrecompilation. In addition,

caches are hardware controlled and explicitly addressed. As a result, the on-chip space is

managed transparently and invisible to software which enables computing systems to ex-

ploit temporal and spatial locality and automatically handle intra-memory communications

[16, 17], even under the circumstance when sharing patternsare hard to capture [18]. To

make more successes in using caches,Non-Uniform Cache Architecture(NUCA) is also

proposed to shrink the gap between powerful CPU and inadequate memory access speed

[19, 20, 21, 22].

However, in the embedded system realms, although the binaryportability of caches are

still helpful, their functionality is usually overshadowed because software is co-designed

with the systems and we rarely need to recompile it. Furthermore, caches impose many

notorious problems to CMP systems, such as hard guarantee ofpredictability and high

penalties in cache misses, area cost, and energy consumption. For example, caches con-

sume up to 43% of the overall power in the ARM920T processor [23]. Unfortunately, these

metrics are critical to an embedded system, thus motivatingthe efforts to find an alternative

technology to replace hardware managed caches in embedded CMP system.

Scratch Pad Memory(SPM), a software-controlled on-chip memory, has been widely

employed by key manufacturers due to two major advantages over their cache memory
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counterparts. First, SPM does not have the comparator and tag SRAM, since it is accessed

by direct addressing. Therefore, they don’t perform the complex decode operations to

support the runtime address mapping for references. This property of SPM can save a large

amount of energy. It is studied that a SPM consumes 34% smaller chip area and 40% lower

energy consumption than a cache memory does [24]. Second, SPM generally guarantees

single-cycle access latency, whereas accesses to cache maysuffer capacity, compulsory,

and conflict misses that incur very long latency [25]. Given the advantages in size, power

consumption, and predictability, SPM is widely used in CMP systems, such as Motorola

M-core MMC221, IBM CELL [26], TI TMS370CX7X, and NVIDIA G80.In addition,

SPM is efficient in providing software with full flexibility on locality and communication

management regarding addressing, granularity, and replacement policy [18].

However, scratchpad memories are not suitable for desktop processors where software

may run from one version to another, rendering the on-chip memory size variable. Another

shortcoming of SPM is that they cause higher software complexity due to the explicit man-

agement of on-chip address space, hence resulting in more challenges for programmers or

compilers since they need to explicitly manage the address mapping of references. These

problems must be carefully investigated and efficiently resolved before applying on CMP

systems with hundreds or even thousands of on-chip SPM memories [27, 28, 29, 17]

Motivated by the above problems, this thesis is dedicated toinvestigation and devel-

opment of new memory management techniques from the architecture perspective to the

efficient algorithm aspect. The goal is to efficiently manageon-chip SPM resources and

effectively reduce the memory access cost in terms of latency and power consumption, as

well as extend their lifetimes.

1.2 Algorithms for Data Allocation in CMP Systems with SPM

Traditionally, numerous previously employed approaches for data allocation problems in-

volve ILP [30, 31, 32, 33], dynamic programming, and heuristic approaches. ILP methods
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have garnered wide interests in recent years, since it can achieve optimal solutions for the

problems in consideration. However, in the data allocationcontext for multicore architec-

tures, both time complexity and space complexity are critical factors. This seriously limits

the applicability of ILP-based algorithms to the data allocation problem for heterogeneous

SPM architectures due to the ILP formulations are always known to be nondeterministic

and their solutions are NP hard in the worst case, therefore,the incurring excessive com-

putational overhead. In addition, the intellectual property of source code is another big

obstacle for the wide utilization of IPL methods. Therefore, ILP methods require high

maintenance cost to combine large code which significantly constrains their extensive ap-

plications in commercial compilers.

Heuristic methods are fast and require less memory, but usually perform poorly in guar-

anteeing good solutions. Besides, it is possible that heuristic methods don’t converge for

complicated cases when the program is very large and resultsin a considerably large num-

ber of blocks. Needlessly to mention the even more complex case that the are intricate

dependencies between these blocks. To work under the tight power budget for embedded

CMP systems, we need to consider more sophisticated algorithms. This thesis explores

alternative strategies for heterogeneous SPM architectures to reduce energy consumption

and latency incurred by frequent memory accesses.

Generally, dynamic programming algorithm can derive optimal solutions for problems

at the acceptable time overhead. It is an important technique aimed at addressing opti-

mization problems through breaking them into some subproblems which are able to be

solved optimally within polynomial complexity [34]. We will design aMulti-dimensional

Dynamic Programming Data Allocation(MDPDA) strategy to allocate data on different

memory modules in polynomial time. Then, we make an attempt to design an adaptive

genetic algorithm to further improve the space complexity of the proposed algorithm. To

the best of our knowledge, this is the first paper to address the data allocation issue for

CMP systems with hybrid SPMs comprising three types of memory modules. The goal
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of our proposed algorithm is to minimize the overall cost (energy and latency) incurred

by memory accesses. Experimental results show that our proposed algorithms can signifi-

cantly reduce the number of write activities to MRAM, dynamic energy consumption, and

memory access latency.

1.3 Contributions

The major contribution of this thesis are the following:

1. Investigation of the combinations of different memory techniques: Since different

memory technologies have different properties in terms of density, duration, power

consumption, access speeds, etc, it is a challenging but worth work to investigate

which combination of memories is most efficient in reducing memory access la-

tency for heterogeneous architectures. We propose a hybridSPM architecture that

consists of SRAM, MRAM, and Z-RAM. This architecture produces high access

performance with low power consumption.

2. Optimal data allocation strategies:Static data allocation is able to achieve optimal

data allocation in embedded systems [35]. There are a numberof algorithms can be

used to find an optimal data allocation, but most of existing data allocation techniques

rely on the integer linear programming (ILP), which incurs high computation over-

head. Therefore, it is critical to explore what alternativealgorithms are suitable for

the proposed architecture. We propose a multi-dimensionaldynamic programming

data allocation strategy to reduce memory access latency and power consumption,

along with cutting the number of write activities on MRAM. The reduction of writes

on MRAM will efficiently prolong their lifetime.

3. Space limitation of embedded systems:The on-chip memory capacity for embedded

system is tightly constrained. How to design efficient algorithms to allocate data

in applications to on-chip memories while satisfying the limited space requirement

6



of the embedded system is another challenge. Considering the high space demands

of the multidimensional dynamic programming algorithm, wefurther propose an

adaptive genetic algorithm with very limited sacrifice in the accuracy of solutions.

1.4 Organization

The remainder of this thesis is organized as follows. Chapter 2 presents the background

materials of this thesis and overviews the related work on data allocation for CMP systems

SPM. Chapter 3 introduces the multidimensional dynamic programming algorithm. In this

chapter, we also present some motivational examples to illustrate our basic ideas. Chapter

4 describes the adaptive algorithms employed in the thesis,including crossover and muta-

tion processes. Chapter 5 discusses the development and simulation methodology used to

evaluate our proposed algorithms. The simulation results from different methods are also

presented in this chapter. Chapter 6 concludes the thesis based on our findings.
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Chapter 2

Background and Related Work

This chapter provides the background and related work to help understand this thesis. More

specifically, Section 2.1 presents the basis and terminologies for CMP systems and scratch-

pad memories. This information is helpful to understand ourmotivation and basic idea of

this thesis. Section 2.2 provides the related work regarding the architecture design of SPM.

Based on the investigation and analysis, we will make a proposal to describe the major

idea of our heterogeneous SPM architecture. Section 2.3 introduces the related work in

data allocation for computing systems with SPM.

2.1 SPM: Background and Problem Statement

Scratchpad Memory (SPM) is a software controlled on-chip memory that has been envi-

sioned as a promising alternative to hardware caches in bothuniprocessor and multipro-

cessor embedded systems with tight energy and timing budgets, due to its superiority in

timing predictability, area and power consumption, and guarantee of single cycle access

latency. Figure 2.1 shows a typical processor with a scratchpad memory, in which the SPM

is implemented by direct address mapping. Particularly, the access address is always in a

predetermined memory space range [36]. To efficiently use the SPM, scratchpad memory

management unit (SMMU) is regularly introduced so that the programmers or compilers

can explicitly manage the data allocation on it [37, 38].

Since this benefit is achieved at the cost of interference from programmer or compiler,

the development of sophisticated mechanisms is a must to SPMmanagement therefore im-

proving the overall system performance. This thesis aims toaddress the data allocation
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Figure 2.1: A typical scratchpad memory

problem for the CMP embedded systems (but not just limited toCMP systems, it can be

also easily applied to uniprocessor embedded system) basedon the proposal of a heteroge-

neous architecture associated with an array of novel scheduling algorithms. The goal is to

reduce the memory access cost and extend the wear-out leveling of the on-chip systems.

2.2 Related Work in SPM Architecture

Conventionally, SPMs are configured by small and fast SRAMs.SRAM, usually built

by using CMOS process, is superior in providing fast memory access, making them the

most widely employed on-chip memory technology. However, aSRAM cell consists of by

6 transistors, consuming large chip area therefore yielding low density. Moreover, SRAM

technologies produce high standby/leakage power because the cell structure incurs complex

subthreshold and gate leakage paths.

Magnetic RAM(MRAM) has been gathering wide interests for various appealing char-

acteristics, such as high density, fast access speed, and excellent non-volatility [39, 40, 41,

42]. Unlike traditional RAM technologies where information is carried as electric charges,

data carrier of MRAM isMagnetic Tunnel Junctions(MTJs). For SRAMs, in order to re-

tain data when the power is off, a battery is required, but batteries introduce an array of
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Figure 2.2: Elementary MRAM cell.

problems including replacement and frequent failures. Therefore, MRAM depends on the

superposition of two orthogonal magnetic fields to perform selectivity. The most widely

used structure of MRAM cell consists of one NMOS transistor as the access device and

one MTJ as the storage cell [41], which is often referred to as“1T1J” structure, as shown

in Figure 2.2. Although this structure makes the technologyexpensive, it enables MRAM

have very high density and read performance. We can see in Figure 2.2 that the MTJ is

connected with a NMOS transistor which is controlled by the word line (WL). Whenever

a write is signaled, a high positive/negative voltage difference is introduced between the

source line and the bit line for writing a “0”/“1”. This process will incur long latency and

high current amplitude to reverse and retain the direction of the free layer. In sum, long

write latency, high write power, as well as prohibitively expensive cost of MRAM have

overwhelmed their extensive usage.

There is a new memory technology developed by Innovative Silicon, Zero-capacitor

RAM (Z-RAM), to overcome the high cost of SRAM and MRAM with virtually very few

performance degradation. In the past few years, AMD has licensed the second generation

Z-RAM for high potential to be used in future multiprocessors. Z-RAM is manufactured

with only one transistor instead of six transistors used in SRAM. Therefore, they can afford
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much higher density (usually 5x) than SRAM. Figure 2.3 presents the an elementary Z-

RAM cell. We can see from this figure that the charge is stored in the floating body of the

transistor instead of the separate capacitor structure of DRAM. Elimination of the capacitor

used in a conventional DRAM cell benefits Z-RAM in several aspects. First, Z-RAM is able

to scale to even much smaller fabrication processes than that of DRAM since the capacitor

has to grow larger to retain keep sufficient charge storage. Second, it enables Z-RAM

yield twice density of the conventional DRAM and even 5 timesdensity of SRAM. Third,

without the need to recharge the capacitor, read and write performance of Z-RAM is much

faster than DRAM. As a result, dynamic power consumption of Z-RAM is much less than

that of DRAM. Fourth, the simpler structure makes it much cheaper to manufacture than

SRAM and MRAM do and consume much less die area of a chip. However, the biggest

disadvantage of Z-RAM is their non-volatility as SRAM and DRAM, and their relatively

long read/write latency.

In term of these concerns, we propose a hybrid SPM architecture, which incorporates

SRAM, MRAM and Z-RAM as the on chip memory, to enhance the overall performance of

memory systems. Prior works have investigated hybrid cacheby using SRAM and MRAM

and proved that the hybrid architecture can save significantamounts of energy [43, 44].

However, this is the first research to configure the hybrid SPMby using SRAM, MRAM,

11



and Z-RAM technologies.

Stacked 3D integration technology has been emerged as a response to the limitations of

traditional ICs by vertically stacking and integrating various technologies and functional

components on a die [45, 46, 47]. 3D integration is more advantageous than traditional 2D

design techniques in the following aspects [48]. First, thevertical distance between two

layers is usually between10µm to 100µm, resulting short interconnects therefore offering

higher performance. Second, the reduction in the wire length contributes to lower inter-

connect power consumption. Third, 3D integration has smaller footprint. Fourth, they are

able to support heterogenous technologies. This techniquehas facilitated the implementa-

tion of the 3D Stacked hybrid cache architecture in [43, 44, 49, 50]. These studies offer

solid foundation for the feasibility of integrating SRAM, MRAM, and Z-RAM into on-chip

SPM.

Hybrid architectures for processor cores and cache system design have been gathered

much attention recently. In [51], [43],Sun and Xie et al. explored the performance of

MRAM and confirmed their potential to be employed as a cache, due to their advantages

in access latency and power consumption. In [52], Saripalliet al. investigated the advan-

tages of heterogeneous technologies for processor cores. They discussed the integration of

Tunnel-FEL and a MRAM in a cache together with a SRAM. In [44],Wu et al. studied the

inter and intra cache level hybrid cache architectures. They also explored the potential of

hardware support for the intra cache data movement and powerconsumption management.

In addition, they summarized the benefits of the hybrid cachearchitecture, including the

increase in cache size, the decrease in power consumption, and the check of cache lines

in parallel. However, these mechanisms are only proposed for hardware-controlled caches,

while unsuitable for the software managed SPM. There are also other works proposed hy-

brid cache architectures, such as[53, 54, 55], by fabricating the cache and SPM on the

same processor to either dynamically or statically capturethe behaviors of caches. Unlike

the previous work, we propose a hybrid SPM consisting of different memory technologies
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including SRAM, MRAM, and Z-RAM.

Although a hybrid SPM can take advantages of different kindsmemory technologies, a

challenging problem must be addressed before utilizing them effectively, which is how to

reduce energy consumption, memory access latency, and the number of write to MRAM.

Targeting the benefits of each type of the involved memories,we must strategically allo-

cate data on each memory module so that the total memory access cost can be minimized.

Recall that the SPM is software-controllable, which means the datum on it can be managed

by programmers or compilers. The traditional hybrid memorydata management strategies,

such as data placement and migration [35, 56, 57, 43], are unsuitable for hybrid SPMs,

since they are mainly designed for hardware cache and unaware of write activities. Fortu-

nately, embedded system applications can fully take the advantage of compiler-analyzable

data access pattern that can offer efficient data allocationmechanisms for the hybrid SPM

architecture [58].

2.3 Related Work in SPM Data Allocation

There are ample previous research on the data allocation problem for embedded systems

with SPMs. Depending on different criteria, these work can be roughly classified as shown

in Figure 2.4 [36].

2.3.1 Allocation Objects

Generally, the allocation objects can be program code, program data, or the mix of them

with different concerns. For example, we need to manage program flow for the program

code based allocation [59], and we need to consider the characteristics of different program

data, such as stack, heap, and global variables, for the program data based allocation. In

order to effectively exploit the memory access pattern for data allocation, data partitioning

and loop scheduling mechanisms are often considered jointly [60, 61].
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Most of previously proposed techniques focus on the management of program code

[62, 63, 64, 65, 59, 66, 67], global variables [35, 68, 57, 69,59], and stack data [35, 69, 65,

70], and heap data [71, 72, 70, 73, 74] for systems with SPM. Among all these program

objects, heap data is the most difficult one to deal with due totwo major reasons. First,

heap objects are allocated by dynamic memory allocation mechanisms, such as the key

wordsmallocandnew, to store dynamic data structures such as trees, graphs, andlinked

listed. The size of these variables is generally unknown at the compile stage, thus making

the determination of a suitable data to SPM mapping intractable at compile-time.

Second, heap variables are allocated with dynamic methods (which will be introduced

later) to move data back and forth between on-chip SPM and DRAM at runtime. This

process will inevitably cause a notorious problem–invalid pointers. The reason is that heap

data often is often linked to other heap data by pointers, such as thenext pointers in a

linked list element and the children pointers in a tree node.Whenever a heap data is moved

from SPM to DRAM, all the incoming pointers become invalid. It is usually prohibitively

expensive to maintain these pointers because the pointers are so frequently moved in an

application. Although some techniques are developed to attack the data allocation for heap

data, such assoftware caching[75], they incur significant cost code size, additional run-

time, tag cost, and even power consumption, and these overheads can even make the gains

from locality in pale [71]. Therefore, we mainly focus on theprogram code while keeping

the heap data allocation as a future work. More specifically,the basic granularity of our

allocation algorithms is basic code block because it has been proved to be almost the best

candidate for SPM mapping [62].

2.3.2 Static Allocation and Dynamic Allocation

Depending on the time when the data allocation decision is made, existing work can be

categorized into static data allocation and dynamic data allocation. In static data alloca-

tion scenarios, the analysis of application program and data allocation decision is made at
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Figure 2.4: A typical scratchpad memory

compile-time (offline). The required memory blocks are loaded into SPM at the system

initialization stage and remain the same during the execution. The most prominent of static

allocation approach is easy to implement and doesn’t need tomuch runtime resources.

According to the detailed comparison of on-chip to off-chipmemory, while targeting

scalar and array variables, Avissar et al. [35] proposed a static method for data allocation

on SPMs. Padan et al. [76, 25] proposed static data partitionstrategies to exploit on-chip

SPMs. Their major goals are to minimize total execution times for different embedded ap-

plications. To balance the workloads of the parallel processors, Ozturk et al. [77] explored

loop scheduling techniques for multicore systems with SPMs. Verma et al. proposed an

ILP-based approaches to allocate data for on-chip SPMs [67,78]. Although their method

can obtain optimal solution for some applications, the computation is prohibitively expen-

sive to apply on some other applications. Differing from previous research, we mainly

focus on using aMulti-dimensional Dynamic Programming Data Allocation(MDPDA)

strategy to reasonably allocate data into different memorymodules of the proposed hybrid

SPM, and our objective is to reduce energy consumption, latency of memory access, and

the number of write operations to MRAMs.

Angiolini and Menichelli, et al. [62] proposed a dynamic programming algorithm to

optimally schedule a set of instruction blocks into a dedicated SPM based on their access
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frequency. The goal of their work is to minimize energy consumption or program exe-

cution time. However, their work focuses on the homogeneousSPM which is configured

from SRAM. In addition, although there is no need for application sources in hardware

customization approach, the usage of this method is usuallyrestricted to the architectures

with the required special hardware. Unlike they work which is based on the hardware

customization, we will mainly focus on using software methods.

Compared to the static allocation counterpart, program data/code to memory mapping

is determined when the application is running in dynamic allocation approaches. Fur-

thermore, data can be reloaded into SPM at some designated program points to guarantee

the execution of the application. Therefore, dynamic allocation needs to be aware of the

contents in SPM over time. Most of dynamic allocation approaches used in the literature

commonly perform a compile-time analysis to determine the memory blocks and reload-

ing points therefore amortizing runtime delay. In addition, good analysis of the profiled

trace file or historical information of program execution iseffectively beneficial to making

better mapping decision. However, the most obvious shortcoming of dynamic allocation

is the inexorable high cost of data mapping at runtime. To reduce this overhead, previous

work depends on either pre-extracting part of program that doesn’t need runtime informa-

tion [65, 71] or performing a compile-time analysis to find out the potential allocation sites

[79, 80].

Udayakumaran et al. [56] proposed a heuristic algorithm to allocate data for a SPM,

with major consideration of stack and global variables. Dominguez et al. [66] applied a

dynamic data allocation method on heap data for embedded systems with SPMs. Three

types of the program object are considered in their allocation method: global variables,

stack variables, and program code. They divided a program into multiple regions, where

each program region is associated with a time stamp. According to the order of time

stamps, they then utilized a heuristic algorithm to determine the data allocation for each

program region. Chen and Ozturk et al. presented a dynamic management method for
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irregular array accesses in [81]. While they can deal with the case of an indirect indexed

array, the array has to be accesses by an affine function.

[72] Kandemir et al. [57] proposed a compiler-controlled framework to manage the

dynamic data for the on-chip SPM. Their algorithm is primarily oriented to array-intensive

nested loops with regular data accesses. Takase et al. [82] proposed spatial, temporal,

and hybrid methods for SPM partitioning and code allocationin priority-based preemptive

multitask systems. Steinke et al. [59] model the data allocation problem with ILP for-

mulations by considering the cost of placing selected program and data into SPM. Based

on IBM CELL, Bai and Shrivastava proposed a method to manage heap data in the local

memory by hide the programming complexity [74]. Baker and Panda et al. [83] proposed

instruction mapping scheme for SPM via partitioning it intomultiple regions. All these

attempts are implemented with pure SPM which is configured bySRAM, without taking

into account the hybrid SPM architecture.

In order to make full use of the throughput of stream applications in many-core systems,

Che et al. [30] proposed two algorithms, anInteger Linear Programming(ILP) algorithm

and a heuristic approach. However, the time overhead of ILP algorithm will increase ex-

ponentially with the linear increase of the number of data. The heuristic approach is not

sufficient to guarantee the accuracy for solutions.

In [58], Sha et al. proposed a multi-dimensional dynamic programming strategy for

the hybrid SPM architecture. Their method is able to achieveoptimal allocation for each

program region. Considering the efficiency of this algorithm proved in their paper, we

propose a dynamic algorithm to tackle the static allocationproblem for hybrid memory

system. Four major differences distinguish their approachand the one proposed in this

thesis.

First, while their target hybrid architecture only consists of a NVM and SRAM, this the-

sis investigates the features of MRAM and Z-RAM, and we proposed a more complicated

architecture to attack the on-chip memory access problem.
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Second, [58] targets in single processor platforms with hybrid SPM. However, we step

further to focus on multicore embedded systems where each ofcore is attached with a

hybrid on-chip memory.

Third, while their dynamic algorithm is bottom-up oriented, our method is in a top-

down style. Therefore, their algorithm is always from the maximum allocation cost at

hand, but our approach examines the program code/data blocks in order. Usually the blocks

can be obtained by inserting special instructions at the beginning of each program block.

Each step of approach is able to achieve an optimal allocation for all the data blocks in

consideration.

Finally, they partitioned a program into multiple regions and aimed to manage the ac-

cess to each region, our approach is more static, which concentrates on the optimal global

allocation of program blocks. Hence, they focus on data allocation of each programming

region while we focus on the whole on-chip memory area.

Donaldson et al. [84] presented a tool, SCRATCH, to automatically analyze SPM code

for heterogeneous multicore processors. This tool can be applied on a large number of

programs with the aid of the IBM Cell SDK. However, differingfrom their heterogeneous

architecture, our platform is designed with different memory technologies. However, this

method will consume a significant amount of time and space. Based on this observation,

we use a genetic algorithm to allocate data on different memory units for CPMs with our

novel hybrid SPM comprising SRAM and MRAM.
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Chapter 3

Utilization of Multidimensional Dynamic

Programming for Data Allocation

This chapter introduces the details of our multidimensional dynamic programming algo-

rithm. We first present the system model in Section 3.1. Then we give an example, in

Section 3.2 to illustrate the basic idea of the motivation. Finally, detailed descriptions of

the dynamic programming algorithm is presented in Section 3.3.

3.1 Definitions and Models

3.1.1 System Model

Figure 3.1 exhibits the architecture of a target CMP system with hybrid SPMs. Each core

is tightly coupled with an on-chip SPM which is composed of a SRAM, a MRAM, and a

Z-RAM. We call a core accesses the SPM owned by itself aslocal access, while accessing

a SPM held by another core is referred to asremote access. Generally, the remote access is

supported by an on-chip interconnect. All cores access the off-chip main memory (usually

a DRAM device) through a shared bus. CELL processor [85] is anexample that adopts this

architecture. In a CELL processor, there is a multi-channelring structure to allow the com-

munication between any two cores without intervention fromother cores. Consequently,

we can safely assume that the data transfer cost between cores is constant. Generally, ac-

cessing the local SPM is faster and dissipates less energy than fetching data from a remote

SPM, while accessing the off-chip main memory incurs the longest latency and consumes

most energy.
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Figure 3.1: System architecture. An-core with hybrid on-chip SPMs and an off-chip
DRAM main memory. Core1 accesses data in SPM1 is referred to as local access,while
accessing data in other cores is regarded to asremote access. All accesses to shared main
memory utilize the on-chip interconnect.

In order to make sure a hit for an access to the memory modules on the heterogeneous

memory, we need to move the data from the memory unit holding this data preliminarily.

However, this movement will inevitably incur much higher overhead, since it needs to

access a remote SPM or the main memory. In this case, the data transfer overhead is

composed of two major parts: reading the memory module of a remote SPM or main

memory owning the data and writing the data to the target memory module.

Therefore, the memory access cost (either latency or energy) of a specific data block

Bi consists of the local access cost, the remote access cost, and the data move cost. It can

be calculated as Equation (3.1).

CMem(Bi) = NL(Bi)× CL(Bi) +NR(Bi)× CR(Bi) + CM(Bi) (3.1)

whereNL(Bi) andNR(Bi) represent the number of local access and remote access to

blockBi, respectively.CL(Bi) andCR(Bi) represent the cost of local access and remote

access to blockBi, respectively.CM(Bi) represents the data move cost for blockBi.

According to different memory technologies, we have the following lemma.

Lemma 3.1. Power consumption of different kinds of memory is proportional to time la-
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tency. By minimizing memory access latency, energy consumption can be reduced at the

same time. Therefore, the memory access cost in this thesis can be referred to as either

latency or energy consumption.

The cost of processing a data blockBi, C(Bi), generally involves two parts: computa-

tion cost and memory access cost.

C(Bi) = CCompu(Bi) + CMem(Bi) (3.2)

whereCCompu(Bi) is the computation cost andCMem(Bi) is the memory access cost. How-

ever, we only consider the memory part in this work for two reasons. First, the memory

part is the bottleneck of the whole processing, since it accounts for the most time and en-

ergy overheads. Second, the computation cost of specific data block is usually constant or

changes very little.

Therefore, the total allocation costCtotal of a set ofN data blocks can be computed as

following:

Ctotal =

N
∑

i=1

C(Bi) ≈
N
∑

i=1

CMem(Bi) (3.3)

3.1.2 Allocation Granularity

The granularity of a data is critical to the SPM allocation problem. Usually, there are three

types of basic granularity for a data: a variable, a block (a series of program code without

instructions to jump into it except the entry or jump out of itexcept the exit), and a page.

The advantages of different granularity vary with different programs. Generally, the finer

the granularity of the data/code objects, the higher benefits can be probably achieved by

SPM allocation. Most of work in the literature focused on thevariables and blocks, since

these two kinds of granularity are easier to partition and handle by inserting programming

points. However, the biggest issue of variable-based and block-based allocation is the

memory fragmentation incurred by their nonuniform sizes [86].
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Moreover, the too fine granularity might introduce a large number of branch instruc-

tions which complicate code generation and make the implementation by the direct use of

existing linker technology very hard. In addition, the finerthe granularity, the harder pro-

filing will be. Since almost virtually all of the current dataallocation techniques for SPM

inherently depends on profiling, specified by compiler or programmers. This is mainly

because profiling can effectively help determine the usage frequency of each data which

is critical to data allocation. Another reason for the popularity of profiling is that it only

requires the re-use trends of variables profiled from programs to be similar with actual data,

but they don’t have to be exactly the same.

While the page oriented data allocation can overcome the fragmentation problem due

to the effectiveness ofmemory management unit(MMU), it suffers the locality problem.

Our hybrid SPM architecture can enlarge the on-chip memory space with the benefits of

high density of MRAM and Z-RAM. Therefore, the locality problem outweighs the frag-

mentation problem, and we use the data block as the basic allocation granularity. Here, we

assume the data blocks of a program are partitioned from profile tools before execution and

they can be mapped to every memory block with different latency and energy consumption.

3.2 Motivational Example

The objective of our algorithm is to minimize memory access latency, energy consumption,

as well as the number of write operations to MRAM for CMP systems with the hybrid

SPM consisting of SRAM, MRAM, and Z-RAM. In this section, we present an example to

illustrate the rationale behind the proposed algorithm.

For demonstration purpose, we normalize latency and energyconsumption of memory

access to MRAM, SRAM, Z-RAM, and off-chip main memory as Table 3.1. In this table,

the columns of “LS”, “RS”, “LM”, “RM”, “LZ”, “RZ”, and “MM” re present the memory

access cost to local SRAM, remote SRAM, local MRAM, remote MRAM, local Z-RAM,

remote Z-RAM, and off-chip DRAM, respectively. “La” and “En” represent latency and
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Table 3.1: Latency and energy consumption for access to different memory modules. “LS”,
“RS”, “LM”, “RM”, “LZ”, “RZ”, and “MM” represent local SRAM, remote SRAM, local
MRAM, remote MRAM, local Z-RAM, remote Z-RAM, and off-chip DRAM, respectively.
“La”” and “En” represent latency and energy consumption, respectively.

Op
LS RS LM RM LZ RZ MM

La En La En La En La En La En La En La En
Read 1 0.1 2 0.18 5 0.36 10 0.85 3 0.34 8 0.76 60 6.2
Write 1 0.1 3 0.25 10 0.98 20 2.1 5 0.44 12 1.08 60 6.2

Table 3.2: Latency of moving data between different memory modules.

Type SRAM MRAM ZRAM Main

SRAM 3 12 7 62

MRAM 11 20 15 70

ZRAM 9 18 13 68

Main 61 70 65 0

energy consumption, respectively. During the execution ofan application, a data can be

allocated to any memory module and moved back and forth amongall memory modules in

SPMs.

Similar to the mechanism used in [80], we assume data moving latency and energy

consumption between different memory modules are given in Table 3.2 and Table 3.3, re-

spectively. In these two tables, the column of ”Type” indicates different types of memory,

and the other columns represent latency and energy consumption of data movement be-

tween different memory modules. For example, the column of “SRAM” represents the

cost of moving data from other kinds of memory modules to SRAM.

We assume the target system has 2 cores, and each of them equips with hybrid SPM

consisting of SRAM, MRAM, and Z-RAM. The off-chip shared memory is a DRAM.

In order to demonstrate the viability of our data allocationstrategy, we assume a simple

program which has 18 data blocks obtained from a program, namely B1, B2, . . . , andB18.

Initially, only data blockB18 is stored in the core2’s SRAM, and all others blocks are stored
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Table 3.3: Energy consumption of moving data between different memory modules.

Type SRAM MRAM ZRAM Main

SRAM 0.28 1.16 0.62 6.38

MRAM 0.95 1.83 1.29 7.05

ZRAM 0.86 1.74 1.20 6.96

Main 6.30 7.18 6.64 0

Table 3.4: The number of data accesses for each core. The column of “Data” refers to the
15 data blocks, the columns of “R” and “W” represent the number of reads and writes to
the corresponding data block, respectively.

Data B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18

C1
R 18 17 14 10 14 10 12 10 10 12 14 7 6 5 8 3 17 1

W 1 2 0 4 5 6 4 8 7 8 11 12 13 14 15 16 0 18

C2
R 0 0 2 5 0 3 0 0 0 10 8 12 13 1 15 16 17 1

W 0 0 3 0 0 0 3 0 2 9 5 7 6 18 0 3 4 18

in off-chip DRAM. In order to illustrate the example, we assume the number of accesses

for each data by each core is given in Table 3.4. In this table,the column of “DATA”

indicates the data blocks used in this example. The rows of “Read” and “Write” represent

the number of reads and writes to each data block incurred by each core.

To illustrate the efficiency of our approach, we compare it with a greedy algorithm

proposed in [56]. The basic idea of this algorithm is as follows: it greedily selects the most

frequently accessed data and allocates it to a memory unit ofthe core that most frequently

accesses the data. If all memory modules of this core cannot provide a room for the data,

the data will be allocated to the SPM of the core that accessesit with the second most times.

Due to the very high overhead of main memory access, this algorithm does not allocation

any data to the off-chip DRAM, unless all on-chip SPMs are occupied. Although their

target system has SPM, the SPM is configured by a pure SRAM.

The total memory access cost of a specific data involves localreads, local writes, remote
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Table 3.5: The comparison of data allocation results for thegreedy algorithm and the im-
proved algorithm, when the size of each SRAM, MRAM, and Z-RAMis 200B, 400B, and
200B, respectively.

Methods
Core1 Core2

Main LatencyEnergyWrites
SRAM MRAM ZRAM SRAM MRAM ZRAM

Greedy B10, B11B12, B13, B14, B15B16, B18 B1, B17 B2, B3, B4, B5 B6, B7 B8, B9 6928 677.99 99

Improved B11, B12 B1, B2, B5, B13 B8, B15 B14, B16B3, B4, B7, B17B10, B18B6, B9 6071 588.4 45

Improvement – – – – – – – 12.37%13.21%54.54%

reads, remote writes, and data movement between different memory units. Based on the

initialization of data blocks, we can use Equation (3.1) to calculate the latency and energy

consumption of each data block when it is allocated to the different memory modules of

different cores. For example, if we allocate dataB1 to core1’s SRAM, according to Table

3.1, the memory access latency of it can be calculated as:18×1+1×1+0×2+0×3+61 =

80. The memory access latency of allocating blockB18 to core2’s SRAM can be computed

as:1× 1 + 18× 1 + 1× 2 + 18× 3 + 0 = 75.

In this example, for simplicity, we first assume that each core has 800B on-chip SPM

space, including a 200B SRAM, a 400B MRAM, and a 200B Z-RAM. Wealso assume that

each data block is 100B, which means a MRAM can accommodate 4 data blocks, while

each SRAM and each Z-RAM can only provide rooms for 2 data blocks. By using the

greedy algorithm, one possible solution allocates data blocks as shown in Table 3.5. The

total latency and energy consumption are 6928 and 677.99, respectively. Meanwhile, this

allocation needs 99 writes to MRAMs.

However, an improved algorithm can reduce the number of writes to MRAMs signifi-

cantly, along with the reduction in latency and energy consumption. The allocation result

of the improved algorithm is shown in the ”Improved” row of Table 3.5. By applying this

algorithm, the total latency, energy consumption, and the number of writes to MRAMs

are 6071, 588.4, and 45, respectively. Compared to the greedy algorithm, the improved

strategy can reduce the total latency by 12.37%, energy consumption by 13.21%, and the
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Table 3.6: The comparison of data allocation results for thegreedy algorithm and the im-
proved algorithm, when the size of each SRAM, MRAM, and Z-RAMis 200B, 400B, and
400B, respectively.

Methods
Core1 Core2

MainLatencyEnergyWrites
SRAM MRAM ZRAM SRAM MRAM ZRAM

Greedy B10, B11

B12, B13, B1, B2,
B3, B17

B4, B5,
B8, B9 – 5005 481.11 107

B14, B15 B16, B18 B6, B7

Improved B6, B7 B1, B2, B8

B5, B9,
B12, B14 B3, B4, B15

B10, B16,
– 4199 398.79 33

B11, B13 B17, B18

Improvement – – – – – – – 16.10%17.11%69.16%

number of write operations to MRAMs by 54.54%, respectively.

With the consideration of the high density property of Z-RAM, we can easily use an

even larger one to enlarge the size of an on-chip SPM. For example, if we use a 1000B

SPM which is composed of a 200B SRAM, a 400B MRAM, and a 400B Z-RAM. One

possible allocation for the greedy algorithm and an improved algorithm are shown in Table

3.6. In this table, we can see that the total memory access latency is reduced by 16.10%,

energy consumption is reduce by 17.11%, and the number of writes to MRAMs is reduced

by 69.16%.

From the above example, we can see that the data allocation scheme is of significance

to the whole memory access performance and durability of a memory hierarchy. The ”im-

proved” algorithm illustrated in the example is intrinsically the MDPDA algorithm that we

will discuss in the next section.

3.3 Algorithms

In this section, we present our MDPDA algorithm in detail. Wewill first build anallocation

costtable. Then, with the help of this table, we give the procedures of MDPDA algorithm.

In order to illustrate the employed dynamic programming algorithm, we will exhibit a

simple example.
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3.3.1 Allocation Cost Table

Assume there areN data blocks need to be allocated to a system withP cores. Each

core has a proposed hybrid SPM configured from a SRAM, a MARM, and a Z-RAM. In

order to calculate latency and energy consumption for each data conveniently, we build an

allocation cost table to represent the cost of allocating each data block to different memory

modules, as shown in Table 3.7. In this table, we compute the 18 data blocks given in

Section 3.2, with the assumption that the target CMP system is a dual-core platform with

the proposed hybrid SPM memory. The column of ”Data”” represent the involved data

introduced in the motivational example. The columns of ”Core1” and ”Core2” represent

the 2 cores. ”SRAM”, ”MRAM”, and ”ZRAM” indicate the SRAM, MRAM, and ZRAM

of the corresponding SPM. The columns ”La” and ”En” indicatethe latency and energy

consumption of allocating each data to each memory module.

We use a functionMap(bi, x) to represent the cost (either latency or energy consump-

tion) of mapping data blockbi to memory modulex, and the value of the function can be

read from the allocation cost table directly. LetCij represent the memoryj of the SPM

in corei, where∀i, j, {i, j|i < P, j ∈ {MM,S,M,Z}}, P is the nubmer of cores,MM ,

S, M , Z are short for the main memory, SRAM, MRAM, and Z-RAM, respectively. For

example,Map(B1, C1S) = 80 indicates the latency of mapping data blockB1 to Core1’s

SRAM is 80 units.Map(B18, C2M) = 75 indicates the latency of allocating blockB18 to

Core2’s MRAM is 75 units. It is much lower that the latency of allocating other blocks to

Core2’s MRAM, because it is originally stored in there. Therefore, there is no data mov-

ing latency and energy consumption to allocate blockB18 to Core2’s MRAM. Since the

latency cost is proportional to energy consumption, the reduction of latency will also con-

tribute to reduction in energy consumption. Therefore, forsimplicity, we just use latency

for demonstration.

27



Table 3.7: Allocation cost table. Assume the target CMP system is a dual-core device, where each
core is coupled with a proposed hybrid on-chip SPM. The columns of “La” and “En” represent
latency and energy consumption for allocating a data to a corresponding memory module.

Data
Core1 Core2

MainSRAM MRAM ZRAM SRAM MRAM ZRAM

La En La En La En La En La En La En La En

B1 80 8.2 170 14.64 124 13.2 100 9.79 270 24.58 221 21.4 1140 117.8

B2 80 8.2 175 15.26 126 13.3 101 9.86 280 25.83 225 21.72 1140 117.8

B3 88 8.81 220 20.22 159 16.16 94 9.32 250 22.74 198 19.28 1140 117.8

B4 85 8.6 210 18.95 155 15.6 98 9.6 275 25.88 208 20.26 1140 117.8

B5 80 8.2 190 17.12 132 13.6 104 10.07 310 29.58 237 22.68 1140 117.8

B6 83 8.44 210 19.21 149 14.96 102 9.9 305 29.36 226 21.74 1140 117.8

B7 86 8.65 230 21.72 157 15.72 100 9.76 300 28.72 224 21.4 1140 117.8

B8 80 8.2 205 18.98 138 13.9 107 10.28 340 33.33 249 23.64 1140 117.8

B9 84 8.5 230 21.84 154 15.28 104 10.05 330 32.34 239 22.68 1140 117.8

B10 128 12.35 490 46.74 329 31.56 128 12.36 490 46.6 332 31.76 2340 241.8

B11 117 11.49 430 40.3 286 27.72 135 12.87 520 49.96 358 34.08 2280 235.6

B12 125 12.11 485 46.36 326 30.98 130 12.46 510 49.51 336 32.08 2280 235.6

B13 124 12.04 480 45.73 324 30.76 131 12.53 515 50.14 338 32.3 2280 235.6

B14 136 12.88 605 61.35 374 34.7 132 12.6 585 58.83 366 33.82 2280 235.6

B15 114 11.3 410 37.51 284 27.36 137 12.99 525 50.88 354 34.02 2280 235.6

B16 121 11.83 465 43.84 318 30.1 134 12.74 530 52.03 344 32.96 2280 235.6

B17 124 12.06 405 36.15 300 29.66 116 11.46 365 31.67 272 27.1 2280 235.6

B18 78 6.86 567 57.81 324 29.08 75 6.58 567 57.81 324 29.08 2342 241.98

3.3.2 Recursive Formulation

The most critical part of a dynamic programming algorithm isthe construction of the re-

cursive formulation which breaks down the target problems.First, we define a memory

allocation functionAllocMem(n, x), which represents the total cost of the firstn − 1

blocks when thenth block is allocated to memoryx. Then, we define a total cost func-

tion f(n, x) to represent the total allocation cost of the firstn data blocks when thenth

block is allocated to memoryx. For example,f(4, C1S) indicates the total allocation

cost of the first 4 data blocks when block 4 is allocated to Core1’s SRAM. We define a

multi-dimensional matrix, ~AllC, to store the total cost for data allocation. The dimen-

sion of ~AllC isN × size(C1S)× size(C1M)× size(C1Z)× · · · × size(CPZ), whereP

28



is the number of input data blocks andsize(x) is the size of the memoryx. For example,

AllC[4, 1, 2, 1, . . . , 1] indicates the total cost for allocating the first 4 data blocks to on-chip

hybrid SPMs, when the available space of the Core1’s SRAM, Core1’s MRAM, Core1’s

Z-RAM, . . . , and Core P’s Z-RAM is 1, 2, 1, . . . , 1, respectively. Then, we can compute the

total allocation cost by allocating blocki to different memory modules as Equation (3.5).














































































AllocMem(bi,MM) = AllC[bi − 1, s1, m1, z1, . . . , zn]

AllocMem(bi, C1S) = AllC[bi − 1, s1 − 1, m1, z1, . . . , zn]

AllocMem(bi, C1M) = AllC[bi − 1, s1, m1 − 1, z1, . . . , zn]

AllocMem(bi, C1Z) = AllC[bi − 1, s1, m1, z1 − 1, . . . , zn]

. . .

AllocMem(bi, CPZ) = AllC[bi − 1, s1, m1, z1, . . . , zn − 1]

(3.4)















































































f(bi,MM) = AllocMem(bi,MM) +Map(bi,MM)

f(bi, C1S) = AllocMemf(bi, C1S) +Map(bi, C1S)

f(bi, C1M) = AllocMemf(bi, C1S) +Map(bi, C1M)

f(bi, C1Z) = AllocMemf(bi, C1S) +Map(bi, C1Z)

. . .

f(bi, CPZ) = AllocMemf(bi, C1S) +Map(bi, CPZ)

(3.5)

AllC[bi, s1, m1, z1, . . . , zn] = min(f(bi,MM), f(bi, C1S), f(bi, C1M), . . . , f(bi, CPZ))

(3.6)

Equation (3.5) shows that the minimum allocation cost is always preserved, since the

total allocation cost by adding the current data block is always selected from the best al-

location scheme of the previous blocks and the current one. Equation (3.4) to Equation

(3.6) jointly exhibit the recursive formulation to derive the minimum total allocation cost
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for the target problem. In this equation,AllC[bi, s1, m1, . . . , zn] records the minimum al-

location cost when the available memory block for each of on-chip memory module are

s1, m1, . . . , zn, respectively. Initially, if all memory blocks in SPMs (including SRAM,

MRAM, and Z-RAM) are unavailable (which meanss1 = m1 = · · · = zn = 0), then all

the blocks will be assigned to the shared off-chip main memory. The allocation of a specific

block is always determined by the optimal allocation of the previous data block. For ex-

ample, the latency for assigning blockB1 to the main memory isMap(B1,MM) = 1140.

If there are no available on-chip memory to accommodate block B2, the total allocation la-

tency for blocksB1 andB2 isMap(B1,MM) +Map(B2,MM) = 1140 + 1140 = 2280.

For any other item in the matrix, the total cost is determinedby both the allocation

of the previous blocks and the cost of allocating this block to different memory modules.

There are totally3 × P + 1 choices to assign a data block, whereP is the number of

cores in the target CMP system. The dynamic programming algorithm always selects the

combination that can achieve the minimum total cost for all present data blocks.

Theorem 3.1. Every element in the total cost matrixAllC[bi, s1, m1, z1, . . . , zn] obtained

by the recursive function is the minimum total allocation cost for data blockb1 to data block

bi, when the available space of Core1’s SRAM, Core1’s MRAM, Core1’s Z-RAM, . . . , and

Core P’s Z-RAM iss1, m1, z1, . . . , andzn, respectively.

Proof. It can be proved by induction as follows.

Basis: Whenbi = 1, there is only one data block. Ifs1 = m1 = z1 = · · · = zn = 0,

since there is no on-chip memory space available, the block will be assigned to the main

memory. The total allocation cost isMap(b1,MM) in this case. Otherwise, the total al-

location cost ismin(Map(b1,MM),Map(b1, x1), . . . ,Map(b1, xk)), wherex1, . . . , and

xk represent the memory modules that have memory space to storedata blockb1. Then,

we can always get the minimum allocation cost for data blockb1. Therefore, Theorem 3.1

holds forbi = 1.

Inductive step: we show that for∀i > 1, if AllC[bi, s1, m1, z1, . . . , zn] is the minimum total
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allocation cost for blockb1 to block bi, thenAllC[bi + 1, s1, m1, z1, . . . , zn] is the mini-

mum total allocation cost by adding data blockbi+1, when the available on-chip memory

resources of Core1’s SRAM, Core1’s MRAM, Core1’s Z-RAM, . . ., and Core P’s Z-RAM

ares1, m1, z1, . . . , andzn, respectively.

In Equation (3.5), all the allocation schemes of data blockbi+1 are searched and their re-

sults are preserved in the total allocation cost functionf(n, x). Since the minimum total

allocation cost for blockb1 to blockbi are obtained from previous step, Equation (3.6) get

the minimum cost by adding blockbi+1 from all possible allocation schemes. It has now

been proved by mathematical induction that Theorem 3.1 holds for all data blocks.

3.3.3 MDPDA Algorithm

According to the built recursive formulations, we describetheMulti-dimensional Dynamic

Programming Data Allocation(MPPDA) algorithm in Algorithm 3.1. The input of the

MDPDA algorithm isN data blocks obtained by profiling tools, the constructed allocation

cost table, and the total cost table. The output of the algorithm is the minimum total cost

(latency or energy consumption) for theN data blocks.

We initialize the algorithm in Line 1 to Line 3. When there is no on-chip memory

space available, we have to assign all the data blocks to the shared off-chip main memory,

which is the worst case of the algorithm. In this case, the total cost of the firstbi tasks is

the summation of the cost of allocating them to the main memory. In order to compute

the total cost validly, we add a boundary for the matrix from Line 4 to Line 14. Line 15

to Line 26 are used to recursively compute the total cost fromthe first data block to the

last one, according to the formulations in Equation (3.5) and Equation (3.6). For the target

system withP cores, there are3 × P + 1 layers of loops. The first loop specifies a data

block in consideration, the second loop to the(3P + 1)th loop are employed to determine

the best allocation for the first data block to the current data block. We only give several

loops because of space limitations. In Algorithm 3.2, we backtrack the path that is able to
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Algorithm 3.1 Multi-dimensional Dynamic Programming for Data Allocation (MDPDA).

Require: Allocation cost tableC, total cost tableAllC[d, s1, . . . , mn, zn].
Ensure: The minimum total allocation cost.

1: for i← 1 to N do
2: AllC[i, 0, . . . , 0, 0] =

∑i

j=1
Map(dj ,MM); /*When there is no on-chip memory

available, all data blocks are allocated to shared main memory*/
3: end for
4: for s1 ← 0 to size(C1S) do
5: /*Size(C1S) represents the size of core1’s SRAM*/
6: for m1 ← 0 to Size(C1M) do
7: /*Size(C1M ) represents the size of core1’s MRAM*/
8: . . .

9: for zn ← 0 to size(CPZ) do
10: /*Size(CPZ) represents the size of core P’s Z-RAM*/
11: AllC[0, s1, m1, . . . , zn] = 0; /*Add boundaries for the matrix*/
12: end for
13: end for
14: end for
15: for bi← 1 to N do
16: for s1 ← 0 to size(C1S) do
17: for m1 ← 0 to Size(C1M ) do
18: . . .

19: for zn ← 0 to size(CPZ) do
20: Apply Equation (3.4) to get minimum memory allocation cost for the first

bi − 1 data blocks whenbi is allocated to different memory modules.
21: Apply Equation (3.5) to calculate the cost of allocating block bi to different

modules.
22: Apply Equation (3.6) to get the minimum total allocation cost for blockb1 to

block bi.
23: end for
24: end for
25: end for
26: end for
27: /*Backtrack to get the data allocation*/
28: Backtrack(AllC);
29: return AllC[N, size(C1S), Size(C1M), . . . , size(CPZ)];
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derive the minimum total cost. Since there areN data blocks, we need to performN traces

to determine the allocation for all blocks.

Algorithm 3.2 Backtrack the allocation total cost table and find out the data to memory
module mapping.

Require: total cost tableAllC[d, s1, . . . , mn, zn], total cost function.
Ensure: Data to memory mapping results.

1: bi← N ;
2: while bi > 0 do
3: min← AllC[bi, s1, m1, . . . , zn];
4: if min = f(bi,MM) then
5: bi→MM ; /*Allocate blockbi to main memory*/
6: end if
7: if min = f(bi, C1S) then
8: bi→ C1S; /*Allocate blockbi to core1’s SRAM*/
9: s1 ← s1 − 1;

10: end if
11: if min = f(bi, C1M) then
12: bi→ C1M ; /*Allocate blockbi to core1’s MRAM*/
13: m1 ← m1 − 1;
14: end if
15: . . .

16: if min = f(bi, CPZ) then
17: bi→ CPZ ; /*Allocate blockbi to core P’s Z-RAM*/
18: zn ← zn − 1;
19: end if
20: bi← bi− 1;
21: end while

We employ a simple example to demonstrate the whole executing processes of the

MDPDA algorithm. For simplicity, we only consider the blocksB1, B2, B3, B4, B5, and

B6 introduced the motivational example. We assume the target CMP system is a single

core system with a hybrid on-chip SPM consisting of a 100B SRAM, a 200B MRAM,

and a 200B Z-RAM. We also assume the size of each data block is 100B. The allocation

cost table is presented as Table 3.8. In this case, the dimension of the total allocation cost

matrix,AllC, is 6× 1 × 2 × 2. Figure 3.2 illustrates the data allocation procedure for the

targeted problem with 6 blocks and 3 memory modules. In this figure,s,m,, andz represent

the available number of memory blocks in SRAM, MRAM, and Z-RAM, respectively.b
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Table 3.8: Latency and energy consumption of allocating thefirst 6 of the 18 datum to
corresponding memory modules when only core 1 is used.

Data
SRAM MRAM ZRAM MM
La En La En La En La En

B1 80 8.2 170 14.64 124 13.2 1140 117.8
B2 80 8.2 175 15.26 126 13.3 1140 117.8
B3 75 7.7 140 12.22 107 11.4 840 86.8
B4 75 7.7 160 14.7 115 11.8 840 86.8
B5 80 8.2 190 17.12 131 13.6 1140 117.8
B6 77 7.9 180 16.66 125 12.68 960 99.2

represents the considering data block (Note the data beforeit has already been assigned).

“m = x” means the available remaining on-chip MRAM space isx. Similarly, “s = y”

indicates that the available remaining on-chip SRAM space is “y”. For example, the value

296 in the cell whereb = B2, s = 0, m = 1, z = 1 indicates that the energy consumption

of allocating data blocksB1andB2 is 296 when the available memory space for SRAM,

MRAM, and ZRAM is 0, 1, and 1, respectively. The allocation result is by assigningB1 to

MRAM andB2 to ZRAM.

According to the recursive formulation and the MDPDA algorithm, we can determine

that the minimum allocation cost (latency) for these 6 data blocks is 1481. The solution for

the allocation is to assignB1 andB3 to MRAM, B4 to main memory,B5 to SRAM, andB2

andB6 to Z-RAM. With this allocation scheme, the total energy consumption is 147.84. As

shown in Figure 3.2, the solid lines represent the data to memory module mapping, while

the dash lines represent the unselected candidates. It can be verified that both latency and

energy consumption are optimal for this set of data blocks with the assumed parameters.

Time complexity:We can see that the time complexity of this algorithm is determined

by the recursive part, which isO(N × size(C1S) × size(C1M ) × size(C1Z) × · · · ×

size(CNZ)). Due to the limited on-chip memory space of the CMP system, the size of

each hybrid memory is generally small. Assuming the size foreach memory isK, for the
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Figure 3.2: An example to illustrate the whole procedures ofour MDPDA algorithm.

system withP cores, the time complexity approximatesO(N ×K3P ). SinceK andP are

constant for the given architecture, the algorithm can be solved in polynomial time.
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Chapter 4

Genetic Solution to the Data Allocation Problem

In this chapter, we will focus on the design of an adaptive genetic algorithm for the data

allocation problem. The organization of this chapter is as follows: Section 4.1 gives the

fundamental motivation for the development of this algorithm. Section 4.2 presents the

basic system model and chromosome model used to describe thegenetic algorithm. Section

4.3 introduces the adaptive genetic algorithm in detail.

4.1 Motivation

From the multi-dimensional dynamic programming algorithmin the last chapter, we can

see that it needs to maintain a multi-dimensional “total allocation cost” matrix. For N

core systems, the dimensional of the matrix will be3 ∗ N + 1 because these are three

different memory technologies. In this case, while this algorithm is still very efficient both

in time and space for small applications, the space overheadwill be a critical problem

for the memory limited embedded systems when the data block increase quickly in large

applications. Therefore, how to design an efficient data allocation algorithm to reasonably

utilize the memory space of embedded systems is rising as an important problem.

Awareness of this issue, we will design a genetic algorithm in this chapter for the data

allocation problem in consideration, since it is able to yield near-optimal solutions with

moderate time and space overhead. Genetic Algorithms (GAs), stemmed from the evolu-

tionary theory, are a class of computational models which isable to achieve sub-optimal

solutions for problems. These algorithms organize a solution candidate of a problem in

a specific data structures (often referred to as chromosome), such as linear binary, tree,
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linked list, and even matrix, and apply some operations on these structure to produce new

candidates by preserving good features [87]. To achieve it,our well-developed genetic al-

gorithm will inherit the prominent merits of traditional ones, such as accurate solutions and

fast convergence. In general, a genetic algorithm always involves the following basic ele-

ments: chromosome, initialization, selection, reproduction, and termination. Targeting the

data allocation problem for the heterogeneous on-chip SPM memory with SRAM, MRAM,

and Z-RAM, we develop corresponding algorithms for these 4 stages.

4.2 System Model

4.2.1 Hardware model

The hardware model used for our genetic algorithm is the sameas the one used for the

multidimensional programming algorithm, as shown in Figure 3.1. Therefore, the memory

access energy requirement and latency will be also the same.

4.2.2 Chromosome Model

A chromosome for the data allocation problem is a set of defined parameters which is

able to represent a solution. The parameters here are the data blocks and the size of each

memory module including all on-chip memory modules and the off-chip main memory.

Therefore, we define a gene in a chromosome as a pair of these two parameters. That is,

a chromosome represents an allocation scheme. There are numerous ways to represent

a chromosome. Intuitively, we can use a matrix to represent achromosome, where the

rows indicate the main memory and all on-chip memory units ofa SPM in each processor

core. The columns indicate data allocation on the corresponding memories. For example,

Figure 4.1 shows two randomly generated chromosomes, A and B. These two chromo-

somes are constructed in matrix structure according to the size of each memory unit, where

C1S, C1M , C1Z, C2S, C2M , C2Z, andMM represent SPM1’s SRAM, SPM1’s MRAM,

SPM1’s ZRAM, SPM2’s SRAM, SPM2’s MRAM, SPM2’s ZRAM, and the main memory,
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respectively. Each row of data given in the chromosome matrix is a gene sequence, which

represents the data allocation on the corresponding memorymodule.

However, this form of chromosome is inconvenient to performgenetic operations, par-

ticularly for crossover, because it is hard to maintain the space constraint of each memory

module. Hence, we modify the chromosome and organize it as a list structure where each

gene in the list is defined to be a data item and a memory unit pair: (d,MT ). Each gene cell

shows that the data itemd is allocated to the memory unitMT . In this method, all the mem-

ory units are numbered uniquely. Suppose that the target CMPsystem hasN cores, where

each core has an on-chip heterogeneous memory configured from MRAM and SRAM, we

need at most2 ∗N +1 numbers to label these memory units. For the purpose of simplicity,

we use number3 ∗ i− 2, 3 ∗ i− 1, and3 ∗ i (1 ≤ i ≤ N) to represent the SRAM, MRAM,

and ZRAM of the SPM associated with corei, respectively. Number3 ∗N + 1 represents

the main memory. Two chromosomes in this structure are shownin Figure 4.2, and they are

transformed from the chromosomes A and B in Figure 4.1, respectively. In Figure 4.2, we

use 1, 2, 3, 4, 5, 6, and 7 to correspondingly represent SPM1’sSRAM, SPM1’s MRAM,

SPM1’s ZRAM, SPM2’s SRAM, SPM2’s MRAM, SPM2’s ZRAM, and the main memory.

For example, the gene (B1, 4) represents dataB1 is allocated to SPM2’s SRAM.

4.3 Description of the Adaptive Genetic Algorithm

In this section, we will discuss the details of the adaptive genetic algorithm. Typically, a

genetic algorithm involves three major steps: initialization, evaluation of fitness function,

and genetic operations. First, we formally define the problem of data allocation in a CMP

system.

4.3.1 Problem Statement

Thecost optimization problem of memory accessincurred by data allocation in a CMP with

P processors (each of these processors is integrated with a SPM which consists of a SRAM
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B10 B11C1S

B12 B13 B14C1M B15

B16 B18C1Z

B1 B7C2S

B2 B3 B4C2M B5

B6C2Z B7

B8MM B9

(a) Chromosome C1

B11 B12C1S

B1 B2 B5C1M B13

B8 B15C1Z

B14 B16C2S

B3 B4 B7C2M B17

B10C2Z B18

B6MM B9

(b) Chromosome C2

Figure 4.1: Two chromosomes in matrix structure.

(B4, 2) (B5, 5) (B6, 6) (B7, 6) (B8, 7) (B9, 7)(B1, 4) (B2, 5) (B3, 5)

(B13, 2) (B14, 2) (B15, 2) (B16, 3) (B17, 4) (B18, 3)(B10, 1) (B11, 1) (B12, 2)

(a) Chromosome C3

(B4, 5) (B5, 2) (B6, 7) (B7, 5) (B8,3) (B9, 7)(B1, 2) (B2, 2) (B3, 5)

(B13, 2) (B14, 4) (B15, 3) (B16, 4) (B17, 5) (B18, 6)(B10, 6) (B11, 1) (B12, 1)

(b) Chromosome C4

Figure 4.2: Change the chromosomes in Figure 4.1 into list structure, C1→ C3, C2→ C4.

and a MRAM) can be defined as: Given the number of dataN , the initial data allocation

on the on-chip memory units of all processor cores and the off-chip main memory, the

capacity of each core’s SRAM and MRAM, the number of coresP , the number of reading

and writing references to each data of each core, the cost of each memory unit access, and

the cost of moving data between different memory units, how to allocate each data to the

hybrid memory units of each core so that the total memory access cost can be minimized

and the write activities on MRAMs can be reduced? In this problem, we assume each core

can access the off-chip main memory, the SRAM and MRAM in its local SPM, and every
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remote SPM with different cost. The cost of access to each memory unit is given in Table

3.1.

Theobjective functionof the target problem is described as: given the number of local

readsNLR, local writesNLW , remote readsNRR, remote writesNRW , the cost of local read

CLR, local writeCLW , remote readCRR, remote writeCRW , and the cost of data movement

CMove exhibited in Table 3.2 and Table 3.3, the cost of memory access (CM) for a specific

data can be formulated as Equation (4.1).

CM = NLR × CLR +NLW × CLW +NRR

× CRR +NRW × CRW + CMove

(4.1)

4.3.2 Initialization

The population sizePopSize(PS) usually depends on the proposed problem and is de-

termined experimentally [88]. To accelerate the process ofdata allocation and the imple-

mentation of genetic operations, we will use the greedy algorithm in [56] to generate the

initial population. A whole population will be generated from these initial individuals by

randomly swapping the memory positions of genes.

4.3.3 Fitness Function

In general genetic algorithms, the fitness function is typically obtained from the objective

function that needs to be optimized. The fitness of an individualu is regarded to be better

than the fitness of another individualv if the solution corresponding tou is closer to an

optimal solution thanv. According to Darwin’s principle of survival of the fittest,the

individual with a greater fitness value will have higher likelihood to survive in the next

generation than the counterpart with a lower fitness value. We define the fitness function

as Equation (4.2).

FT (i) = M − Total Cost(i); (4.2)
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whereM represents maximum total cost have observed by this generation andFT (i) rep-

resents the fitness value of chromosomei. Total Cost(i) is the total cost of memory access

to the chromosomei. Essentially, it equals to the total memory access cost of each gene

(data) in this chromosome. We calculate the total cost by using Equation (4.3).

Total Cost(i) =

N
∑

j=1

CM(j), for chromosomei; (4.3)

whereN is the number of data items andCM(j) is the memory access cost of dataj that

is defined as Equation (4.1).

4.3.4 GA Operations

Generally, the genetic operations include selection, crossover, and mutation. We describe

each of them as follows.

1) Selection.

The selection process is carried out to form a new population, through strategically choos-

ing some chromosomes from the old population with respect tothe fitness value of each

individual. It is utilized to enhance the overall quality ofthe population. Based on the nat-

ural selection rule, many methods are exploited to select the fittest chromosomes, such as

roulette wheel selection, Boltzman selection, rank selection, and elitism, etc. In our genetic

algorithm, we will use arank based roulette wheel selection schemewith elitism to select

chromosomes. In this method, an imaginary wheel with total 360 degrees is applied, on

which all chromosomes in the population are placed, and eachof them occupied a slot size

according to the value of the corresponding fitness function.

Let PS denote the population size andAi represent the angle of the sector occupied

by the ith ranked chromosome. The chromosome-to-sector mapping is consistent to the

fitness of each chromosome, and the1st ranked chromosome has the highest fitness value,

therefore allocating to the sector 1 with the largest angleA1. The(PS)th ranked chromo-

some has the lowest fitness value and is allocated to the sector PS − 1 with smallest angle
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APS. Equation 4.4 to Equation 4.6 hold for the angles. Therefore, the fitter an individual

is, the more area of it will be assigned on the wheel, and thus the more possible that it will

be selected when the biased roulette wheel is spun. The algorithm to implement it is shown

as Algorithm 4.3.

ρ =
Ai

Ai+1

(4.4)

A1 =
1− ρ

1− ρPS
(4.5)

Ai =
(1− ρ)

1− ρPS
× ρi−1 (4.6)

whereAi < 1, ρ < 1, and0 ≤ i < PS.

Algorithm 4.3 Algorithm for Genetic Selection

Require: An old populationOldPop and the size of the populationPS.
Ensure: A selected chromosomek.

1: Define the total fitnessSumFit as the sum of fitness values of all individuals in the
current population;

2: for i = 1→ PS do
3: SumFit = SumFit+OldPop(i).FT ;
4: end for
5: Generate a random numberRanN between 1 toSumFit;
6: for k = 1→ PS do
7: if

∑k

i=1
OldPop(i).FT ≥ RanN then

8: break;
9: end if

10: end for
11: return chromosomek;

2) Crossover.

Crossover is a crucial step after selection. Generally, it is employed to more broadly explore

the search space. We can find the individual with higher fitness function with this operation.

Conventionally, crossover operation includes signal point crossover, two point crossover,

and uniform crossover. The rationale is that the “good” characteristics of the parents should
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be well preserved and passed down to children. However, the rational selection may lead

to the local optimal problem. To avoid this problem, the crossover operations are carried

out with a specific probability, which is often referred to ascrossover rate, denoted byPC.

We randomly select pairs of chromosomes as parents to generate new individuals. In this

section, we will use anadaptive cycle crossover strategyto perform the crossover operation

with a tunable crossover rate which is proposed in [89], which is calculated as Equation

(4.7). This method is modified from thecycle crossoverproposed in [90]. The basic idea

of cycle crossover works as follows.

PC =
̺c(FTmax − FTbestC)

(FTmax − FTavg)
(4.7)

whereFTmax is the maximal fitness value in the current population,FTbestC is the fitness

value of the parent with higher fitness value between the two crossover parents,FTavg is

the average fitness value of the current population, and̺c is a positive constant less than 1.

We start at the first allele of parent 1 and copy the gene to the first position of the child.

Then, we look at the allele at the same position in parent 2. Wecannot copy this gene

to the first position of the child because it has been occupied. We will go to the position

with the same gene in the parent 1 and suppose it is at the position i. We copy the gene

in parent 2 to the positioni of the child. We then apply the same operation on the gene in

positioni of parent 2. The cycle is repeated until we arrive at a gene in parent 2 which has

already been in the child. The cycle started from parent 1 is complete. The next cycle will

be taken from parent 2. This crossover mechanism enables thechild to efficiently inherit

the characteristics from both parents.

However, this approach is possible to generate invalid alleles for our data allocation

problem, due to the size constraint of each memory unit. An example of such scenario is

exhibited in Figure 4.3, where “Parent 1” and “Parent 2” indicate the parents chromosomes,

and “Child” is generated by this two chromosomes. In this example, because of the space

limitation, we assume that there are 11 data blocks,A,B,C,D,E, F,G,H, I, J , andK,
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Figure 4.3: An example of cycle crossover. The solid line, dashed line, and dotted line
represent the first, second, and third iteration, respectively. The gene (B, 1) is invalid, since
the core1’s SRAM has already been full before the allocationof data B.

Figure 4.4: An example of adaptive cycle crossover. The solid line, dashed line, and dot-
ted line represent the first, second, and third iteration, respectively. The circled numbers
indicate the adaptive allocation for genes.

needs to be allocated to a dual-core system with hybrid on-chip SPMs configured from

SRAM and MRAM. We also assume that the size of SRAM and MRAM are4KB and

6KB respectively, while the size of each data block is 2KB. Therefore, each SRAM is able

to accommodate 2 data blocks and each MRAM can store 3 data blocks. As we can see

from the child chromosome, allocating data B to core1’s SRAMwill exceed the maximum

capacity of the SRAM. This is because the SRAM can only hold 2 data items, but it is

assigned 3 data.

Because of the limitation of directly applying the cycle crossover method to our data

allocation problem, we propose anadaptive cycle crossover strategyto guarantee valid data

allocation. The critical idea of our approach is that we use avariables to keep the currently

available space of each memory unit. For each genetic operation of data allocation, we will

check if there is enough room for assigning the gene to the specific memory unit. If it is

true, the data will be directly allocated. Otherwise, we will adaptive check the memory
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units of the neighboring processor cores and find a space for it. However, if all on-chip

memory units, including SRAMs and MRAMs, are full, the data will be assigned to the

off-chip main memory. An example of the adaptive cycle crossover operation is shown in

Figure 4.4. In these figure, the circled numbers indicate theadaptive adjustments of data

allocation to memory units at corresponding steps. The detailed algorithm is shown as

Algorithm 4.4.

Algorithm 4.4 Adaptive cycle crossover algorithm

Require: Two parent chromosomesP1 andP2.
Ensure: A new chromosome.

1: Assume the length of each chromosome isL.
2: while Child chromosome has empty positiondo
3: for i = 1→ L do
4: if Genei in P1has not been copied to the child chromosomethen
5: Keep the gene and break;
6: end if
7: end for
8: if The memory unit associated with genei is full then
9: Adaptively search an available position from neighboring memory units;

10: else
11: Copy genei to the same position of the child;
12: end if
13: Get a geneGe at positioni in P2;
14: while Ge has already existed in the childdo
15: Locate the geneGe in P1, suppose its position isj;
16: Copy the geneGe to the positionj of the child;
17: Get a new geneGe at positionj in P2;
18: end while
19: Apply the same process onP2 to copy genes to the child chromosome;
20: end while
21: return The child chromosome;

The cycle crossover is able to travel through both two parents. Therefore, it is able

to examine the good features of both of them. But the downsideof it is the relative long

cost of checking each position of parent chromosomes. Hence, we propose another sim-

pler crossover operation, which is a modified version of thePartially Mapped Crossover

(PMX). The main idea of the modified PMX algorithm works as given in Algorithm 4.5.
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Algorithm 4.5 Modified PMX algorithm

Require: Two parent chromosomesP1 andP2.
Ensure: A new chromosomeC.

1: Assume the length of each chromosome isL;
2: Randomly generate a crossover point0 ≤ cp ≤ L;
3: for all Genes in the segment starting from the crossover point inP1 do
4: Examine the gene at the same position ofP2;
5: if The two genes have not been copied toC then
6: Fill the positions of the childC by swapping the two genes inP1;
7: /*Note that here we only swap the data of two genes while keeping the memory

position unchanged*/
8: end if
9: end for

10: Map the remaining genes inP1 toC

11: return The child chromosomeC;

(E, 2) (G, 2) (D, 3) (F, 3) (H, 4) (I, 4) (J, 4) (K, 5)(A, 1) (B, 1) (C, 2)

(J, 3) (B, 2) (H, 5) (E, 2) (F, 4) (G, 1) (K, 4) (A, 3)(D, 1) (I, 4) (C, 2)

(E, 2) (I, 2) (D, 3) (H, 3) (F, 5) (G, 4) (K, 4) (J, 5)(A, 1) (B, 1) (C, 2)

Parent 1

Parent 2

Child

Crossover point

Figure 4.5: An example of the modified PMX algorithm.

An example, shown in Figure 4.5, is employed to illustrate the modified PMX algo-

rithm. As shown in this figure, the gene pairs after the crossover point are swapped and

copied to the child.

3) Mutation

After the crossover operation, a genetic mutation will be performed to recover some good

features eliminated by the crossover and prevent the premature convergence to a local op-

tima. It is archived by randomly flipping bits of a chromosome. Similar to the crossover,

it is happened in a certain specific probability that is called mutation rate. We define it to

be a tunable parameter given in Equation (4.8) and donate it asPM . The probability of a
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Figure 4.6: An example of mutation between gene (C, 2) and (H,5).

mutation is much lower than that of a crossover. For every newchromosome generated by

the crossover operation, we perform the genetic mutation onit with a probability ofPM ,

as shown in Algorithm 4.6. Since the gene in this research is defined as a data item and a

memory unit pair, the mutation operation can be performed byswapping either the data or

the memory units of the selected genes. However, since the datum are independent of each

other, these two mutation methods are equal. We will thus swap the number of memory

units of two genes to achieve the mutation. For example, Figure 4.6 illustrate the result of

our genetic mutation for a chromosome.

PM =
̺m(FTmax − FTbestM)

(FTmax − FTavg)
(4.8)

whereFTbestM is the fitness value of the chromosome to be mutated and̺m is a positive

constant less than 1.

Algorithm 4.6 Algorithm for Genetic Mutation

Require: A Chromosome in population and mutation ratePM.
Ensure: A new chromosome.

1: Randomly select two genesi andj in the input chromosome;
2: Generate a random numberRanN between 0 and 1;
3: if RanN ≤ PM then
4: Form a new chromosome by swapping the memory units of genei and genej;
5: end if
6: return The new generated chromosome;

The whole procedure of our AGADA algorithm is described by Algorithm 4.7. First, we

need to generate the initial population. In this procedure,a number of chromosomes will

be generated randomly. These chromosomes are random permutations of pairs of data and
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all memory units of a CMP system (line 1). After the initialization, the fitness value of each

individual will be calculated according to Equation (4.3) (line 2). Then, a search process

will be iteratively applied to determine the best solution for the data allocation problem

until a termination condition is reached. The termination criterion includes two conditions:

1) the number of new generations exceeds a predefined maximumnumber of iterations,

2) after a certain number of search (typically 500 or even more), a better solution is still

unreachable. In each generation, the crossover and mutation operation will be carried out

in terms of the predefined crossover ratePC and mutation ratePM (line 6-8). Finally,

based on the new population, the fitness value of each individual will be calculated and the

selection operation will be employed to generate a new population (line 10).

Algorithm 4.7 Adaptive Genetic Algorithm for Data Allocation (AGADA)

Require: A set of data items, a CMP system withP processor cores, each core has a
hybrid SPM. Any SPMi has a SRAM with size ofSSi and a MRAM with size ofSMi.

Ensure: A data allocation.
1: Generate initial population;
2: NewPoP ← ∅;
3: Determine the fitness of each individual;
4: while Termination criterion is not metdo
5: for i = 0→ PS do
6: Randomly select two chromosomesi andj from current population;
7: Optionally apply the crossover operation on chromosomesi andj with probability

PC;
8: Optionally apply the mutation operation on the new chromosome with probability

PM ;
9: end for

10: Evaluate all individuals and perform selection;
11: end while
12: return The best allocation has obtained;
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Chapter 5

Simulation and Experimental Results

This chapter describes some of the evaluation results for the heterogeneous SPM and the

associated algorithms. Before presenting the results, thesetups and evaluation framework

are described.

5.1 Setup

We evaluate our algorithm across a host of benchmarks selected from PARSEC [91]. We

run these workloads on M5 simulator [92] and obtain the memory traces for them. We im-

plemented both of the MDPDA algorithm, the adaptive geneticalgorithm, and the greedy

algorithm as stand-alone programs. These programs take thememory traces we have col-

lected as inputs. We also use a modified version of CACTI [93] to get the memory param-

eters, including memory read/write latency, energy consumption, and leakage power, for

the simulations by using 65nm technology.

There are two configurations for the target systems. The one is a dual-core in-order

CMP system where each core has a hybrid SPM with 4KB SRAM, 16B MRAM, and 8KB

Z-RAM. The other one is quad-core CMP where each core has a hybrid SPM with 4KB

SRAM, 8KB MRAM, and 4KB Z-RAM. The baseline configuration is adual-core CMP

system with a pure SPM configured from an 8KB SRAM. The specifications of the hybrid

memory modules and the baseline are given in Table 5.1. Then,we integrate all these pa-

rameters into our custom simulator. To verify the effectiveness of our proposed MDPDA

algorithm, 10 applications are selected form PARSEC for simulations: blackscholes, body-

track, canneal, dedup, streamcluster, facesim, fluidanimate, x264, swaptions, and ferret.
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Table 5.1: Performance parameters for the target systems and memory modules.

Device Parameter
CPU Number of cores: 2, frequency: 2GHz
SRAM Baseline Size: 8KB, read energy: 0.319nJ, write energy: 0.319nJ,

leakage power: 2.001mW, read latency: 0.626ns, write la-
tency: 0.626ns

SRAM Size: 4KB, read energy: 0.226nJ, write energy: 0.226nJ,
leakage power: 1.047mW, read latency: 0.565ns, write la-
tency: 0.565ns

MRAM Size: 16KB, read energy: 0.269nJ, write energy: 1.735nJ,
leakage power: 0.125mW, read latency: 0.694ns, write la-
tency: 4.386ns

Z-RAM Size: 8KB, read energy: 0.293nJ, write energy: 0.401nJ,
leakage power: 0.095mW, read latency: 0.831ns, write la-
tency: 1.290ns

Main memory Size: 512MB, access energy: 18.046nJ, access latency:
20.35ns, leakage power: 102.560mW

1) Performance analysis of hybrid SPM:We compare data allocation performance of

our proposed SRAM, MRAM, and Z-RAM hybrid memory to that of the 4K pure SRAM

SPM, in terms of memory access latency and power consumption. To compare the per-

formance of these kinds of platforms, we both use MDPDA algorithm on them. Fig. 5.1

shows the effectiveness of the hybrid SPM with the help of theMDPDA algorithm. We can

observe that the hybrid SPM consumes much less power and incurs much shorter mem-

ory access latency than the pure SRAM based SPM does. On average, the power saving

and memory access latency shrinking across the set of selected benchmarks are around

78.11% and 70.79%, respectively. Two major reasons contribute to the reduction in these

two aspects. First, the hybrid SPM architecture benefits from the high density of MRAM

and Z-RAM. As a result, it offers much more space for data allocation than that of the

pure SRAM based SPM. Thus, the expensive main memory accesses can be significantly

reduced in hybrid SPM systems. Second, the MDPDA algorithm is able to appropriately

allocate data to different memory modules for the hybrid SPM, which further reduces the

50



long latency and high energy of writes on MRAM.

2) Comparison results:we compare the performance of the MDPDA algorithm to that

of the greedy algorithm. Fig. 5.2 illustrate the comparisons of the number of writes to

MRAM for the MDPDA algorithm and the greedy algorithm acrossthe set of workloads,

when the target platform is a dual-core system (see Fig. 5.2(a)) and a quad-core system

(see Fig. 5.2(b)), respectively. It can be observed that compared to the greedy algorith,

the MDPDA algorithm can reduce the number of writes to MRAM by35.25% and 39.67%

on average for the dual-core system and quad-core system, respectively. The major rea-

son for the reduction is that the greedy algorithm only greedily select the most frequently

referenced data blocks to the the core which accesses it mostly, while it does not fully

take advantages of different kinds of memory modules. Instead, the MDPDA algorithm is

write-aware, and it can sophisticatedly allocate each datablock to different on-chip mem-

ory units. For example, with the aid of the MDPDA algorithm, most of write activities will

be assigned to SRAM and Z-RAM, while most frequently read data will be allocated to

MRAM and Z-RAM.

From Fig. 5.2(a) and (b), we can also see that the reduction ofthe number of writes on

quad-core system is more prominent than that of on dual-coresystem. This is mainly the

more the cores, the larger the on-chip memory is available. Through the optimal alloca-

tion, the MDPDA algorithm, therefore, can more significantly reduce the number of writes

to MRAM. The reduction of write activities on MRAM will efficiently contribute to the

extension of their lifetime.

Fig. 5.3 and Fig. 5.4 exhibit the effectiveness of the MDPDA algorithm over that of

the greedy algorithm, with respect to memory access latencyand total energy consumption

through the 10 workloads. We also investigate the performance for dual-core system and

quad-core system for each case. Fig. 5.3 (a) and (b) show thatcompared to the greedy al-

gorithm, the MDPDA algorithm can reduce the total memory access latency by 16.23% on

average for dual-core system and 23.43% on average for quad-core systems, respectively.
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(a) Latency comparison

(b) Energy comparison

Figure 5.1: The comparison of performance of hybrid SPM and pure SPM with respect to
latency and energy consumption. (a) The comparison of latency, (b) The comparison of
energy consumption.
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(a) Dual-core system

(b) Quad-core system

Figure 5.2: The comparison of the number of writes to MRAM forthe greedy algorithm
and the MDPDA algorithm, when the target system is a: (a) dual-core platform, (b) quad-
core platform.
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Similarly, Fig. 5.4 (a) and (b) demonstrate that the MDPDA algorithm outstrips the greedy

algorithm in terms of energy efficiency. On average, the MDPDA algorithm can reduce the

dynamic power consumption for dual-core system and quad-core system by 17.74% and

24.18%, respectively, compared to the greedy algorithm. Inlight of the results, we can see

that the reduction in energy consumption is proportional tothe reduction in memory access

latency. The reduction is mainly because of the optimal allocation of the MDPDA for each

data block at each step.

5.2 Setup for Genetic Algorithm

The following parameter specifications are used in our simulations for the AGADA algo-

rithm. 1) Population size: 300; 2) Crossover rate:̺c = 0.8; 3) Mutation rate̺ m = 0.02;

4) Selection method: rank based roulette wheel; 4) maximum generation: 1000.

We compare the performance of the AGADA algorithm to that of the greedy algorithm.

Fig. 5.5, Fig. 5.6, and Fig. 5.7 illustrate comparisons between the greedy algorithm and

the AGADA algorithm, with respect to the number of writes to MRAMs, dynamic energy

consumption, and memory access latencies. Compared to the greedy algorithm, the average

performance improvements of our AGADA algorithm are 32.96%, 15.98%, and 14.42%,

respectively. By reducing the number of writes to MRAMs, theAGADA algorithm can

efficiently extend the usage of MRAMs.

Performance analysis and comparison for the AGADA algorithm: First, we verify the

precision of the AGADA strategy for data allocation in hybrid SPM architectures, by com-

paring to the optimal allocation results of the multi-dimension dynamic programming al-

gorithm. Fig. 5.8 shows that dynamic energy consumption of the AGADA algorithm is

approximate to that of the optimal dynamic programming algorithm, with respect to the

7 applications selected from PARSEC. On average, the AGADA consumes 2.21% more

dynamic power than that of the multi-dimensional dynamic programming algorithm coun-

terpart. However, considering the high time and space complexity of the multi-dimensional
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(a) Dual-core system

(b) Quad-core system

Figure 5.3: The comparison of memory access latency for the greedy algorithm and the
MDPDA algorithm, when the target system is a: (a) dual-core platform, (b) quad-core
platform.
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(a) Dual-core system

(b) Quad-core system

Figure 5.4: The comparison of memory access power for the greedy algorithm and the
MDPDA algorithm, when the target system is a: (a) dual-core platform, (b) quad-core
platform.

56



Figure 5.5: The comparison of the number of writes operations to MRAM caused by data
allocation strategies of the greedy algorithm and our proposed adaptive genetic algorithm
(AGADA). The AGADA algorithm reduces the number of writes 32.96% on average.

Figure 5.6: The comparison of energy consumption caused by the greedy algorithm and the
adaptive genetic algorithm (AGADA) for data allocation. The AGADA algorithm reduces
dynamic energy consumption by 15.98% on average.
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Figure 5.7: The comparison of memory access latencies caused by the greedy algorithm
and the adaptive genetic algorithm (AGADA) for data allocation. The AGADA algorithm
reduces memory access latencies by 14.42% on average.

dynamic algorithm, the AGADA algorithm is more competitivein overall performance.

For example, for an-core CMP with hybrid SPMs, the multi-dimensional dynamic

algorithm needsO(N ×
∏M

i=1
(SizeSi

× SizeMi
)) times and spaces to get the solution and

maintain the cost matrix used the algorithm, whereN andM are the number of input data

and SPMs, respectively;SizeSi
andSizeMi

are the size of SRAM and MRAM of SPMi,

respectively. Instead, the AGADA algorithm organizes a chromosome in the form of the

list structure, which only requiresO(G×P×N) space to maintain the entire chromosomes,

whereG andP represent the maximum number of iterations and the population size of the

genetic algorithm, respectively. Moreover,G andP are constants, andG× P is much less

than
∏M

i=1
(SizeSi

× SizeMi
).
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Figure 5.8: The comparison of dynamic energy consumption caused by the multi-
dimensional programming algorithm and the adaptive genetic algorithm (AGADA) for data
allocation. On average, the AGADA algorithm consumes 2.21%more dynamic energy
consumption than the multi-dimensional programming algorithm.
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Chapter 6

Conclusion and Future Work

6.1 Summary and Contributions

In the last few years, there has been a significant increase inthe number and variety of re-

search and applications inChip Multiprocessor(CMP) systems. However, the continuously

wide deployment of these systems are seriously hindered by anumber of challenges includ-

ing power consumption, real-time guarantee, and memory wall, etc. Given this trend, the

prohibitively expensive memory access cost in terms of either energy or latency is a major

limiting-factor for the advancement of CMP systems.

While cache was an effective technique to bridge the processor-memory speed gap

and achieved grate success in traditional desktops, they are imposing significant perfor-

mance and energy overhead for embedded CMP systems.Scratch Pad Memory(SPM), a

software-controlled on-chip memory, has been gathered wide interests from both academic

and industrial communities due to they superiority in area,energy consumption, and pre-

dictability of program execution over caches. While prior research investigated numerous

techniques to allocate program code/data on SPMs, most of these efforts mainly focus on

the pure SPM configured from a small SRAM. Few previous work proposed data allocation

approaches such as dynamic programming and ILP technique for CMP systems heteroge-

neous SPMs. However, they either didn’t consider ZRAM and MRAM or incur large space

complexity.

This thesis addressed the high energy and long latency problem in embedded CMP

systems through making the following contributions1:

1This thesis is partially supported by CNS-1249223.
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• This thesis uses and experimentally evaluates a heterogeneous SPM architecture

which is configured from SRAM, MRAM, and ZRAM for embedded CMPsystems.

The basic idea of this heterogenous SPM is to sufficiently take advantages of differ-

ent memory technologies, therefore providing a promising solution to memory wall

of CMP systems.

• This thesis proposes a multi-dimensional dynamic programming algorithm to obtain

the optimal data allocation. There are3 ∗ N + 1 layers of loops in the algorithm,

whereN is the number of cores. We will use a trace function to keep track of the

previous position from which we obtain the best solution anda movement-recording

function to record the data movement action for the current data. When we find the

minimum cost, we can trace the path of the trace function and find the allocation of

each data with the help of the movement-recording function.

• Taking the high space complexity of the multidimensional programming algorithm,

this thesis proposes an adaptive genetic algorithm,Adaptive Genetic Algorithm for

Data Allocation(AGADA), to efficiently allocate data on each memory unit of the

heterogenous SPMs. The basic idea of this algorithm is to reduce energy consump-

tion for the proposed hybrid SPM architecture through effectively searching reason-

able solutions.

6.2 Future Work

There are still multiple research problems aligned with this thesis that are worthy to explore

in the future. We list them as follows.

1. This mainly focuses on the data allocation through staticmethods for embedded

CMP systems with heterogeneous SPM. However, dynamic allocation mechanisms

are also widely used in data allocation for pure SPMs. Most ofthe prior dynamic

allocation methods are oblivious to the heterogeneous SPM architecture. Therefore,
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in the future work, we plan to investigate a sophisticated dynamic allocation method

that is able to effectively allocate heap data, stack data, and global data on heteroge-

neous memory.

2. How to extend wear-leveling for heterogeneous memories is of significance to em-

bedded CMP systems because wear-leveling varies with different memory technolo-

gies. In order to enable the longer usage of on-chip heterogeneous SPM, more tech-

niques can be exploited in the near future including data recomputation, migration,

and replication.

3. We can move the heterogeneous on-chip software controlled memory to even more

platforms such as many-core systems or clusters with well design. To cope with

the high parallelism of these platforms, we can concentrateon a number of research

spots such as how to improve the task-level parallelism and how to partition program

code/data to exploit their parallelism.

4. Reliable heterogeneous on-chip and off-chip memory co-design will be also a part of

our future work. Previous research mainly focuses on cache-based hierarchies, while

there is virtually no work to guarantee the reliability of heterogeneous SPM. We will

study the traditional mechanisms such as ECC [94] and multi-bit error protection

[95]. Meanwhile, special focus on the hardware variabilitywill be associated with

the reliability ensuring methods.
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