371 research outputs found

    A Unified Framework for Multimodal Submodular Integrated Circuits Trojan Detection

    Full text link

    Smart techniques and tools to detect Steganography - a viable practice to Security Office Department

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Information Systems and Technologies ManagementInternet is today a commodity and a way for being connect to the world. It is through Internet is where most of the information is shared and where people run their businesses. However, there are some people that make a malicious use of it. Cyberattacks have been increasing all over the recent years, targeting people and organizations, looking to perform illegal actions. Cyber criminals are always looking for new ways to deliver malware to victims to launch an attack. Millions of users share images and photos on their social networks and generally users find them safe to use. Contrary to what most people think, images can contain a malicious payload and perform harmful actions. Steganography is the technique of hiding data, which, combined with media files, can be used to place malicious code. This problem, leveraged by the continuous media file sharing through massive use of digital platforms, may become a worldwide threat in malicious content sharing. Like phishing, people and organizations must be trained to suspect about inappropriate content and implement the proper set of actions to reduce probability of infections when accessing files supposed to be inoffensive. The aim of this study will try to help people and organizations by trying to set a toolbox where it can be possible to get some tools and techniques to assist in dealing with this kind of situations. A theoretical overview will be performed over other concepts such as Steganalysis, touching also Deep Learning and in Machine Learning to assess which is the range of its applicability in find solutions in detection and facing these situations. In addition, understanding the current main technologies, architectures and users’ hurdles will play an important role in designing and developing the proposed toolbox artifact

    Automated License Plate Recognition Systems

    Get PDF
    Automated license plate recognition systems make use of machines learning coupled with traditional algorithmic programming to create software capable of identifying and transcribing vehicles’ license plates. From this point, automated license plate recognition systems can be capable of performing a variety of functions, including billing an account or querying the plate number against a database to identify vehicles of concern. These capabilities allow for an efficient method of autonomous vehicle identification, although the unmanned nature of these systems raises concerns over the possibility of their use for surveillance, be it against an individual or group. This thesis will explore the fundamentals behind automated license plate recognition systems, the state of their current employment, currently existing limitations, and concerns raised over the use of such systems and relevant legal examples. Furthermore, this thesis will demonstrate the training of a machine learning model capable of identifying license plates, followed by a brief examination of performance limitations encountered

    Improving internal vulnerability scanning and optimal positioning of the vulnerability scanner in the internal network

    Get PDF
    The art of vulnerability scanning is an integral part of any organization's internal network security, and it cannot be underestimated. It is vital to use a dependable vulnerability scanner and carefully select the most appropriate one for the task. This thesis seeks to gain a profound understanding of Sanoma Media's internal network and subsequently enhance its vulnerability scanning capabilities by first comprehending the different Tenable products. After acquiring a firm understanding of the various products, the Nessus Scanner was chosen based on Sanoma's business requirements. With the scanner in hand, the optimal location for it had to be carefully determined. To achieve this, several scenarios were developed, and a combination of factors from the business, technical, and financial perspectives were used to select the most effective scenario for implementation within the internal network. The implementation of the selected scenario involved meticulous setup of the scanner, from both a hardware and software perspective. This thesis also presents an analysis of the Host Discovery Scan and Basic Network Scan results, alongside a security analysis of the Basic Network Scan. Furthermore, it offers a detailed explanation of the selected scenario, including the parameters that were carefully determined before the implementation process commenced. Finally, the thesis outlines future work that needs to be undertaken, including the challenges that were encountered during the practical portion of the study

    A Praise for Defensive Programming: Leveraging Uncertainty for Effective Malware Mitigation

    Full text link
    A promising avenue for improving the effectiveness of behavioral-based malware detectors would be to combine fast traditional machine learning detectors with high-accuracy, but time-consuming deep learning models. The main idea would be to place software receiving borderline classifications by traditional machine learning methods in an environment where uncertainty is added, while software is analyzed by more time-consuming deep learning models. The goal of uncertainty would be to rate-limit actions of potential malware during the time consuming deep analysis. In this paper, we present a detailed description of the analysis and implementation of CHAMELEON, a framework for realizing this uncertain environment for Linux. CHAMELEON offers two environments for software: (i) standard - for any software identified as benign by conventional machine learning methods and (ii) uncertain - for software receiving borderline classifications when analyzed by these conventional machine learning methods. The uncertain environment adds obstacles to software execution through random perturbations applied probabilistically on selected system calls. We evaluated CHAMELEON with 113 applications and 100 malware samples for Linux. Our results showed that at threshold 10%, intrusive and non-intrusive strategies caused approximately 65% of malware to fail accomplishing their tasks, while approximately 30% of the analyzed benign software to meet with various levels of disruption. With a dynamic, per-system call threshold, CHAMELEON caused 92% of the malware to fail, and only 10% of the benign software to be disrupted. We also found that I/O-bound software was three times more affected by uncertainty than CPU-bound software. Further, we analyzed the logs of software crashed with non-intrusive strategies, and found that some crashes are due to the software bugs

    Investigation into Detection of Hardware Trojans on Printed Circuit Boards

    Get PDF
    The modern semiconductor device manufacturing flow is becoming increasingly vulnerable to malicious implants called Hardware Trojans (HT). With HTs becoming stealthier, a need for more accurate and efficient detection methods is becoming increasingly crucial at both Integrated Circuit (IC) and Printed Circuit Board (PCB) levels. While HT detection at an IC level has been widely studied, there is still very limited research on detecting and preventing HTs implanted on PCBs. In recent years the rise of outsourcing design and fabrication of electronics, including PCBs, to third parties has dramatically increased the possibility of malicious alteration and consequently the security risk for systems incorporating PCBs. Providing mechanical support for the electrical interconnections between different components, PCBs are an important part of electronic systems. Modern, complex and highly integrated designs may contain up to thirty layers, with concealed micro-vias and embedded passive components. An adversary can aim to modify the PCB design by tampering the copper interconnections or inserting extra components in an internal layer of a multi-layer board. Similar to its IC counterpart, a PCB HT can, among other things, cause system failure or leakage of private information. The disruptive actions of a carefully designed HT attack can have catastrophic implications and should therefore be taken seriously by industry, academia and the government. This thesis gives an account of work carried out in three projects concerned with HT detection on a PCB. In the first contribution a power analysis method is proposed for detecting HT components, implanted on the surface or otherwise, consuming power from the power distribution network. The assumption is that any HT device actively tampering or eavesdropping on the signals in the PCB circuit will consume electrical power. Harvesting this side-channel effect and observing the fluctuations of power consumption on the PCB power distribution network enables evincing the HT. Using a purpose-built PCB prototype, an experimental setup is developed for verification of the methodology. The results confirm the ability to detect alien components on a PCB without interference with its main functionality. In the second contribution the monitoring methodology is further developed by applying machine learning (ML) techniques to detect stealthier HTs, consuming power from I/O ports of legitimate ICs on the PCB. Two algorithms, One-Class Support Vector Machine (SVM) and Local Outlier Factor (LOF), are implemented on the legitimate power consumption data harvested experimentally from the PCB prototype. Simulation results are validated through real-life measurements and experiments are carried out on the prototype PCB. For validation of the ML classification models, one hundred categories of HTs are modelled and inserted into the datasets. Simulation results show that using the proposed methodology an HT can be detected with high prediction accuracy (F1-score at 99% for a 15 mW HT). Further, the developed ML model is uploaded to the prototype PCB for experimental validation. The results show consistency between simulations and experiments, with an average discrepancy of ±5.9% observed between One-Class SVM simulations and real-life experiments. The machine learning models developed for HT detection are low-cost in terms of memory (around 27 KB). In the third contribution an automated visual inspection methodology is proposed for detecting HTs on the surface of a PCB. It is based on a combination of conventional computer vision techniques and a dual tower Siamese Neural Network (SNN), modelled in a three stage pipeline. In the interest of making the proposed methodology broadly applicable a particular emphasis is made on the imaging modality of choice, whereby a regular digital optical camera is chosen. The dataset of PCB images is developed in a controlled environment of a photographic tent. The novelty in this work is that, instead of a generic production fault detection, the algorithm is optimised and trained specifically for implanted HT component detection on a PCB, be it active or passive. The proposed HT detection methodology is trained and tested with three groups of HTs, categorised based on their surface area, ranging from 4 mm² to 280 mm² and above. The results show that it is possible to reach effective detection accuracy of 95.1% for HTs as small as 4 mm². In case of HTs with surface area larger than 280 mm² the detection accuracy is around 96.1%, while the average performance across all HT groups is 95.6%

    Novel Computational Methods for Integrated Circuit Reverse Engineering

    Get PDF
    Production of Integrated Circuits (ICs) has been largely strengthened by globalization. System-on-chip providers are capable of utilizing many different providers which can be responsible for a single task. This horizontal structure drastically improves to time-to-market and reduces manufacturing cost. However, untrust of oversea foundries threatens to dismantle the complex economic model currently in place. Many Intellectual Property (IP) consumers become concerned over what potentially malicious or unspecified logic might reside within their application. This logic which is inserted with the intention of causing harm to a consumer has been referred to as a Hardware Trojan (HT). To help IP consumers, researchers have looked into methods for finding HTs. Such methods tend to rely on high-level information relating to the circuit, which might not be accessible. There is a high possibility that IP is delivered in the gate or layout level. Some services and image processing methods can be leveraged to convert layout level information to gate-level, but such formats are incompatible with detection schemes that require hardware description language. By leveraging standard graph and dynamic programming algorithms a set of tools is developed that can help bridge the gap between gate-level netlist access and HT detection. To help in this endeavor this dissertation focuses on several problems associated with reverse engineering ICs. Logic signal identification is used to find malicious signals, and logic desynthesis is used to extract high level details. Each of the proposed method have their results analyzed for accuracy and runtime. It is found that method for finding logic tends to be the most difficult task, in part due to the degree of heuristic\u27s inaccuracy. With minor improvements moderate sized ICs could have their high-level function recovered within minutes, which would allow for a trained eye or automated methods to more easily detect discrepancies within a circuit\u27s design
    • …
    corecore