114 research outputs found

    Virtual image out-the-window display system study. Volume 2 - Appendix

    Get PDF
    Virtual image out-the-window display system imaging techniques and simulation devices - appendices containing background materia

    Proposed plan for the organization and administration of a department of audio-visual education in the town of Cumberland, Rhode Island

    Full text link
    Thesis (M.A.)--Boston University, 1946. This item was digitized by the Internet Archive

    An Audiovisual Program: The Selection, Utilization and Evaluation of Audiovisual Materials for the Morgan Junior High School Seventh Grade Physical Science Program

    Get PDF
    Through this study the writer will attempt to: (1) identify and investigate the current standards of an effective audiovisual program; (2) identify and evaluate the rationale which can be used in determining the basis for the utilization of audiovisual materials in the field of science education; (3) use this rationale as a basis for selecting appropriate audiovisual materials for the seventh grade physical science curriculum in Morgan Junior High School; and (4) develop recommendations concerning the utilization of audiovisual materials in the science curriculum at Morgan Junior High School in Ellensburg, Washington

    Focus-plus-context techniques for picoprojection-based interaction

    Get PDF
    In this paper, we report on novel zooming interface methods that deploy a small handheld projector. Using mobile projections to visualize object/environment-related information on real objects introduces new aspects for zooming interfaces. Different approaches are investigated that focus on maintaining a level of context while exploring detailed information. Doing so, we propose methods that provide alternative contextual cues within a single projector and deploy the potential of zoom lenses to support a multilevel zooming approach. Furthermore, we look into the correlation between pixel density, distance to the target, and projection size. Alongside these techniques, we report on multiple user studies, in which we quantified the projection limitations and validated various interactive visualization approaches. Thereby, we focused on solving issues related to pixel density, brightness, and contrast that affect the design of more effective legible zooming interfaces for handheld projectors

    Design, Control, and Evaluation of a Human-Inspired Robotic Eye

    Get PDF
    Schulz S. Design, Control, and Evaluation of a Human-Inspired Robotic Eye. Bielefeld: Universität Bielefeld; 2020.The field of human-robot interaction deals with robotic systems that involve humans and robots closely interacting with each other. With these systems getting more complex, users can be easily overburdened by the operation and can fail to infer the internal state of the system or its ”intentions”. A social robot, replicating the human eye region with its familiar features and movement patterns, that are the result of years of evolution, can counter this. However, the replication of these patterns requires hard- and software that is able to compete with the human characteristics and performance. Comparing previous systems found in literature with the human capabili- ties reveal a mismatch in this regard. Even though individual systems solve single aspects, the successful combination into a complete system remains an open challenge. In contrast to previous work, this thesis targets to close this gap by viewing the system as a whole — optimizing the hard- and software, while focusing on the replication of the human model right from the beginning. This work ultimately provides a set of interlocking building blocks that, taken together, form a complete end-to-end solution for the de- sign, control, and evaluation of a human-inspired robotic eye. Based on the study of the human eye, the key driving factors are identified as the success- ful combination of aesthetic appeal, sensory capabilities, performance, and functionality. Two hardware prototypes, each based on a different actua- tion scheme, have been developed in this context. Furthermore, both hard- ware prototypes are evaluated against each other, a previous prototype, and the human by comparing objective numbers obtained by real-world mea- surements of the real hardware. In addition, a human-inspired and model- driven control framework is developed out, again, following the predefined criteria and requirements. The quality and human-likeness of the motion, generated by this model, is evaluated by means of a user study. This frame- work not only allows the replication of human-like motion on the specific eye prototype presented in this thesis, but also promotes the porting and adaption to less equipped humanoid robotic heads. Unlike previous systems found in literature, the presented approach provides a scaling and limiting function that allows intuitive adjustments of the control model, which can be used to reduce the requirements set on the target platform. Even though a reduction of the overall velocities and accelerations will result in a slower motion execution, the human characteristics and the overall composition of the interlocked motion patterns remain unchanged

    Perceived Depth Control in Stereoscopic Cinematography

    Get PDF
    Despite the recent explosion of interest in the stereoscopic 3D (S3D) technology, the ultimate prevailing of the S3D medium is still significantly hindered by adverse effects regarding the S3D viewing discomfort. This thesis attempts to improve the S3D viewing experience by investigating perceived depth control methods in stereoscopic cinematography on desktop 3D displays. The main contributions of this work are: (1) A new method was developed to carry out human factors studies on identifying the practical limits of the 3D Comfort Zone on a given 3D display. Our results suggest that it is necessary for cinematographers to identify the specific limits of 3D Comfort Zone on the target 3D display as different 3D systems have different ranges for the 3D Comfort Zone. (2) A new dynamic depth mapping approach was proposed to improve the depth perception in stereoscopic cinematography. The results of a human-based experiment confirmed its advantages in controlling the perceived depth in viewing 3D motion pictures over the existing depth mapping methods. (3) The practicability of employing the Depth of Field (DoF) blur technique in S3D was also investigated. Our results indicate that applying the DoF blur simulation on stereoscopic content may not improve the S3D viewing experience without the real time information about what the viewer is looking at. Finally, a basic guideline for stereoscopic cinematography was introduced to summarise the new findings of this thesis alongside several well-known key factors in 3D cinematography. It is our assumption that this guideline will be of particular interest not only to 3D filmmaking but also to 3D gaming, sports broadcasting, and TV production

    A Large Area Micromegas TPC for Tracking at the ILC

    Get PDF
    Une grande Chambre à Projection Temporelle (TPC) est un candidat pour la détection et la mesure des traces chargées auprès de l ILC, collisionneur linéaire d électrons et de positons de 31 km permettant d atteindre des énergies dans le centre de masse de 250 GeV à 1 TeV. Le travail de R&D décrit dans cette thèse porte sur un type nouveau de TPC, dont la lecture est assurée par des Micromégas à anode résistive. Ce dispositif permet de répartir le signal électrique sur plusieurs carreaux, même lorsque la charge est déposée sur un seul carreau. Il permet aussi de protéger l électronique, ce qui est utilisé dans notre prototype pour miniaturiser les cartes de lecture. Dans ce travail, des modules Micromégas ont été testés et caractérisés, dans un premier temps, en faisceau, un par un au centre de la chambre, puis 7 modules montés en même temps de façon à couvrir la surface. Egalement, des tests sur un banc équipé d une source de Fe ont permis de caractériser les 7 modules utilisés. Une résolution en position de 60 microns par ligne de carreaux est obtenue à petite distance de dérive. L uniformité est aussi évaluée, et des distorsions pouvant atteindre environ 500 microns sont observées. L ensemble des résultats démontre l adéquation de ce type de lecture à la TPC pour l ILC. La fraction de retour des ions est également mesurée à l aide d un détecteur de même géométrie et avec le même gaz que ceux utilisés dans ces tests, et la loi en rapport inverse des champs est validée à nouveau dans ces conditions. La même technique est appliquée à la réalisation d un imageur neutron, consistant en une TPC Micromégas plate précédée d un film convertisseur de 1mm d épaisseur. Les protons éjectés par les neutrons sont suivis à la trace dans le volume gazeux, ce qui permet de reconstruire avec une précision meilleure que le millimètre le point d origine du neutron.The study of the fundamental building blocks of matter necessitates always more powerful accelerators. New particles are produced in high energy collisions of protons or electrons. The by-products of these collisions are detected in large apparatus surrounding the interaction point. The 125 GeV Higgs particle discovered at LHC will be studied in detail in the next e e collider. The leading project for this is called ILC. The team that I joined is working on the R&D for a Time Projection Chamber (TPC) to detect the charged tracks by the ionization they leave in a gas volume, optimised for use at ILC. This primary ionization is amplified by the so-called Micromegas device, with a charge-sharing anode made of a resistive-capacitive coating. After a presentation of the physics motivation for the ILC and ILD detector, I will review the principle of operation of a TPC (Chapter 2) and underline the advantages of the Micromegas readout with charge sharing. The main part of this PhD work concerns the detailed study of up to 12 prototypes of various kinds. The modules and their readout electronics are described in Chapter 3. A test-bench setup has been assembled at CERN (Chapter 4) to study the response to a Fe source, allowing an energy calibration and a uniformity study. In Chapter 5, the ion backflow is studied using a bulk Micromegas and the gas gain is measured using a calibrated electronics chain. With the same setup, the electron transparency is measured as a function of the field ratio (drift/amplification). Also, several beam tests have been carried out at DESY with a 5 GeV electron beam in a 1 T superconducting magnet. These beam tests allowed the detailed study of the spatial resolution. In the final test, the endplate was equipped with seven modules, bringing sensitivity to misalignment and distortions. Such a study required software developments (Chapter 6) to make optimal use of the charge sharing and to reconstruct multiple tracks through several modules with a Kalman filter algorithm. The results of these studies are given in Chapter 7. The TPC technique has been applied to neutron imaging in collaboration with the University of Lanzhou. A test using a neutron source has been carried out in China. The results are reported in Chapter 8.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF

    Investigating Spatial Augmented Reality for Collaborative Design

    Get PDF
    corecore