685 research outputs found

    Combinatorial chromatin modification patterns in the human genome revealed by subspace clustering

    Get PDF
    Chromatin modifications, such as post-translational modification of histone proteins and incorporation of histone variants, play an important role in regulating gene expression. Joint analyses of multiple histone modification maps are starting to reveal combinatorial patterns of modifications that are associated with functional DNA elements, providing support to the ā€˜histone codeā€™ hypothesis. However, due to the lack of analytical methods, only a small number of chromatin modification patterns have been discovered so far. Here, we introduce a scalable subspace clustering algorithm, coherent and shifted bicluster identification (CoSBI), to exhaustively identify the set of combinatorial modification patterns across a given epigenome. Performance comparisons demonstrate that CoSBI can generate biclusters with higher intra-cluster coherency and biological relevance. We apply our algorithm to a compendium of 39 genome-wide chromatin modification maps in human CD4+ T cells. We identify 843 combinatorial patterns that recur at >0.1% of the genome. A total of 19 chromatin modifications are observed in the combinatorial patterns, 10 of which occur in more than half of the patterns. We also identify combinatorial modification signatures for eight classes of functional DNA elements. Application of CoSBI to epigenome maps of different cells and developmental stages will aid in understanding how chromatin structure helps regulate gene expression

    PADS: A simple yet effective pattern-aware dynamic search method for fast maximal frequent pattern mining

    Full text link
    While frequent pattern mining is fundamental for many data mining tasks, mining maximal frequent patterns efficiently is important in both theory and applications of frequent pattern mining. The fundamental challenge is how to search a large space of item combinations. Most of the existing methods search an enumeration tree of item combinations in a depth-first manner. In this paper, we develop a new technique for more efficient max-pattern mining. Our method is pattern-aware: it uses the patterns already found to schedule its future search so that many search subspaces can be pruned. We present efficient techniques to implement the new approach. As indicated by a systematic empirical study using the benchmark data sets, our new approach outperforms the currently fastest max-pattern mining algorithms FPMax* and LCM2 clearly. The source code and the executable code (on both Windows and Linux platforms) are publicly available at http://www.cs.sfu.ca/~jpei/Software/PADS.zip. Ā© Springer-Verlag London Limited 2008

    Graph set data mining

    Get PDF
    Graphs are among the most versatile abstract data types in computer science. With the variety comes great adoption in various application fields, such as chemistry, biology, social analysis, logistics, and computer science itself. With the growing capacities of digital storage, the collection of large amounts of data has become the norm in many application fields. Data mining, i.e., the automated extraction of non-trivial patterns from data, is a key step to extract knowledge from these datasets and generate value. This thesis is dedicated to concurrent scalable data mining algorithms beyond traditional notions of efficiency for large-scale datasets of small labeled graphs; more precisely, structural clustering and representative subgraph pattern mining. It is motivated by, but not limited to, the need to analyze molecular libraries of ever-increasing size in the drug discovery process. Structural clustering makes use of graph theoretical concepts, such as (common) subgraph isomorphisms and frequent subgraphs, to model cluster commonalities directly in the application domain. It is considered computationally demanding for non-restricted graph classes and with very few exceptions prior algorithms are only suitable for very small datasets. This thesis discusses the first truly scalable structural clustering algorithm StruClus with linear worst-case complexity. At the same time, StruClus embraces the inherent values of structural clustering algorithms, i.e., interpretable, consistent, and high-quality results. A novel two-fold sampling strategy with stochastic error bounds for frequent subgraph mining is presented. It enables fast extraction of cluster commonalities in the form of common subgraph representative sets. StruClus is the first structural clustering algorithm with a directed selection of structural cluster-representative patterns regarding homogeneity and separation aspects in the high-dimensional subgraph pattern space. Furthermore, a novel concept of cluster homogeneity balancing using dynamically-sized representatives is discussed. The second part of this thesis discusses the representative subgraph pattern mining problem in more general terms. A novel objective function maximizes the number of represented graphs for a cardinality-constrained representative set. It is shown that the problem is a special case of the maximum coverage problem and is NP-hard. Based on the greedy approximation of Nemhauser, Wolsey, and Fisher for submodular set function maximization a novel sampling approach is presented. It mines candidate sets that contain an optimal greedy solution with a probabilistic maximum error. This leads to a constant-time algorithm to generate the candidate sets given a fixed-size sample of the dataset. In combination with a cheap single-pass streaming evaluation of the candidate sets, this enables scalability to datasets with billions of molecules on a single machine. Ultimately, the sampling approach leads to the first distributed subgraph pattern mining algorithm that distributes the pattern space and the dataset graphs at the same time

    Clustering in Hilbert space of a quantum optimization problem

    Full text link
    The solution space of many classical optimization problems breaks up into clusters which are extensively distant from one another in the Hamming metric. Here, we show that an analogous quantum clustering phenomenon takes place in the ground state subspace of a certain quantum optimization problem. This involves extending the notion of clustering to Hilbert space, where the classical Hamming distance is not immediately useful. Quantum clusters correspond to macroscopically distinct subspaces of the full quantum ground state space which grow with the system size. We explicitly demonstrate that such clusters arise in the solution space of random quantum satisfiability (3-QSAT) at its satisfiability transition. We estimate both the number of these clusters and their internal entropy. The former are given by the number of hardcore dimer coverings of the core of the interaction graph, while the latter is related to the underconstrained degrees of freedom not touched by the dimers. We additionally provide new numerical evidence suggesting that the 3-QSAT satisfiability transition may coincide with the product satisfiability transition, which would imply the absence of an intermediate entangled satisfiable phase.Comment: 11 pages, 6 figure

    Multipartite Graph Algorithms for the Analysis of Heterogeneous Data

    Get PDF
    The explosive growth in the rate of data generation in recent years threatens to outpace the growth in computer power, motivating the need for new, scalable algorithms and big data analytic techniques. No field may be more emblematic of this data deluge than the life sciences, where technologies such as high-throughput mRNA arrays and next generation genome sequencing are routinely used to generate datasets of extreme scale. Data from experiments in genomics, transcriptomics, metabolomics and proteomics are continuously being added to existing repositories. A goal of exploratory analysis of such omics data is to illuminate the functions and relationships of biomolecules within an organism. This dissertation describes the design, implementation and application of graph algorithms, with the goal of seeking dense structure in data derived from omics experiments in order to detect latent associations between often heterogeneous entities, such as genes, diseases and phenotypes. Exact combinatorial solutions are developed and implemented, rather than relying on approximations or heuristics, even when problems are exceedingly large and/or difficult. Datasets on which the algorithms are applied include time series transcriptomic data from an experiment on the developing mouse cerebellum, gene expression data measuring acute ethanol response in the prefrontal cortex, and the analysis of a predicted protein-protein interaction network. A bipartite graph model is used to integrate heterogeneous data types, such as genes with phenotypes and microbes with mouse strains. The techniques are then extended to a multipartite algorithm to enumerate dense substructure in multipartite graphs, constructed using data from three or more heterogeneous sources, with applications to functional genomics. Several new theoretical results are given regarding multipartite graphs and the multipartite enumeration algorithm. In all cases, practical implementations are demonstrated to expand the frontier of computational feasibility
    • ā€¦
    corecore