
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322389482?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Pinpoint Clustering of Web Pages and Mining Implicit Crossover Concepts 391

Pinpoint Clustering of Web Pages and Mining Implicit Crossover 
Concepts

Makoto HARAGUCHI and Yoshiaki OKUBO

0

Pinpoint Clustering of Web Pages

and Mining Implicit Crossover Concepts

Makoto HARAGUCHI and Yoshiaki OKUBO
IST, Hokkaido University

JAPAN

1. Introduction

In this chapter, we present our Top-N methods for extracting clusters of documents which
have originated from the article (Haraguchi, 2002). We first discuss a method for pinpoint
clustering of Web pages by pseudo-clique search (Haraguchi & Okubo, 2006; Okubo et al.,
2005) and then a method for finding implicit page groups (clusters) represented as formal
concepts (Li et al., 2008).
A huge collection of documents including pages over the Web has been considered as an infor-
mation source of knowledge. One of the core tasks of Information Retrieval (IR) is to effectively
find useful and important documents from such a collection. For this purpose, many retrieval
engines compute ranks of documents and show them in the order of their ranks (Page et al.,
1999; Salton & McGill, 1983). Highly ranked documents are easily checked by users, while
documents ranked lower are rarely examined. Any retrieval system based on document rank-
ing has its own ranking scheme. So, even potentially interesting documents are sometimes
ranked lower and are therefore actually hidden and invisible to users. In this sense, we might
be missing many useful documents. If we can make such hidden significant documents visi-
ble, our chance to obtain valuable information and knowledge can be enhanced.
The standard approach to cope with this problem is to use the techniques of clustering (Gan et
al., 2007) by which we classify various documents into several clusters of similar documents.
We pick up a few clusters that seem to be relevant, and then examine them in details to look
for interesting documents. However, if the number of clusters is small, clusters tend to be
larger ones involving even non-similar documents, and are hard to be examined. Conversely,
if we have many clusters, it is also hard to check every cluster, although each cluster is smaller
and involves only similar documents. Thus, it is not an easy task to have an adequate method
for controlling the number of clusters.
This has motivated us to investigate a new clustering method, Pinpoint Clustering, by which
we can efficiently extract only nice clusters. We have developed some strategy in (Haraguchi &
Okubo, 2006; Okubo et al., 2005) for finding only Top-N number of clusters of similar docu-
ments with respect to their evaluation values reflecting the ranks of documents in them.
In the framework, the document similarity is evaluated with the help of Singular Value
Decomposition(SVD) (Strang, 2003). We first extract semantic correlations among terms by ap-
plying SVD to the term-document matrix generated from a corpus with a specific topic. Then,
given a set of ranked Web pages to be clustered, we evaluate potential similarities among
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them based on the semantic correlations of terms, with the standard cosine measure for doc-
ument vectors. Based on the similarities, we draw edges among similar documents to form a
(weighted) undirected graph of documents. An algorithm has been designed as an extension
of branch-and-bound maximum clique search algorithms (Fahle, 2002; Tomita & Seki, 2007) to
find Top-N pseudo-cliques as clusters of documents. As is shown in Section 3, we verify that
the algorithm can find clusters in which lowly ranked documents appear in them together
with highly ranked documents contributing toward raising the whole evaluation of clusters.
However, it has already been pointed out in the area of conceptual clustering (Hotho et al.,
2003; Hotho & Stumme, 2002) that as long as the similarity of documents is derived from the
cosine measure for vector representation, it is generally difficult to understand the meaning of
clusters (cliques in this case) by means of feature terms. In our case of finding interesting doc-
uments with lower ranks, the detected lower ranked documents together with highly ranked
documents in one cluster are in fact similar vectors. However, it is always difficult to judge
if the former and the latter share the same meaning or not. In other words, the conceptual
classes they belong to may differ. In order to avoid such a conceptually indistinct argument,
a method for finding Top-N clusters based on formal concepts in Formal Concept Analysis (FCA)
(Ganter & Wille, 1999; Ganter et al., 2005) has been investigated (Haraguchi & Okubo, 2007;
Li et al., 2008; Okubo & Haraguchi, 2006). Based on these our studies, we also discuss in this
chapter a problem of mining implicit Web page groups from the data in the form of page-term
relationship. In other words, our target page group is a relatively smaller set X of pages that
has an intentional definition that "X is a set of pages that have every term in a feature term set
A". Then a formal concept is a pair of X, called the extent of concept, and its term set A, called
the intent.
Such an implicit concept will be useful in discovering “Crossover Group of Pages” for instance.
Suppose we have several concepts with their extents of large numbers of pages so that they are
visible by applying standard effective mining engines as (Han et al., 2007; Lakhal & Stumme,
2005; Uno et al., 2004; Wang et al., 2003) for instances. These pages are not necessarily con-
nected by links, as we consider here a page-term relationship only. Suppose furthermore those
groups are extensionally far away. There may be no overlapping. Even for such a case, there
exists a possibility for two minor groups, each from each major group, of sharing common
important feature terms. From a viewpoint of FCA, the union of the minor groups appears
as a part of the concept defined from the common terms (see Figure 1). When the concept is
minor with relatively smaller extent, the concept is worth examining to check if some invisible
interconnection among the parent major groups occurs via the minor one. Those implicit con-
cepts are also hard to be found by clustering (Gan et al., 2007). To detect implicit extents with
smaller size, we are forced to have a large number of smaller clusters. It is actually unpractical
for users to check them all. Without category labels to pages, or almost equivalently without
using prior clustering, we show in Section 5.3 that our algorithm succeeds in finding several
interesting implicit concepts beyond several distinct categories.
As is well known, each intent of concept just corresponds to a closed itemset of an association
rule (Bastide et al., 2000). Many nice algorithms (Han et al., 2007; Lakhal & Stumme, 2005;
Uno et al., 2004; Wang et al., 2003) for finding frequent closed itemsets have been developed
successfully. However, since our targets are non-frequent, we cannot apply them at least
directly.
A similar problem about potentially implicit page groups has been already conceived as “im-
plicitly defined communities” (Zhang et al., 2006). The implicitly defined communities have too
specific interests and are generally difficult to be identified via Web portals or centers in the
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Extents
(Page groups)

Intents
(Term sets shared by extents)

Important terms

www.intechopen.com



Pinpoint Clustering of Web Pages and Mining Implicit Crossover Concepts 393

Major (large) page groups Implicit crossover concept
 (page group sharing important terms)

Extents
(Page groups)

Intents
(Term sets shared by extents)

Important terms
Fig. 1. Crossover Concept

bipartite graph (bigraph). Consequently the number of such communities is large. The sit-
uation will be worse when we consider a bigraph representing page-term relationships with
a higher density. We are, therefore, required to have more effective miner for detecting im-
plicit concepts under some constraints. In this sense, ours is an instance of Constrained Mining
(Boulicaut & Jeudy, 2005).
For this purpose, we present in this chapter a revised version of the Top-N algorithm (Okubo
& Haraguchi, 2006). Both of them try to enlarge extents as long as their intents are longer pat-
terns to some extent. In other words, since too much smaller extents are out of our concerns,
we maximize the extent size under the constraint about the corresponding intent’s size. The
algorithms are basically based on a depth-first and branch-and-bound search method (Tomita
& Seki, 2007) with a pruning rule to cut off candidate concepts whenever their over-estimated
evaluation values are less than the tentative Top-N values already detected.
In this chapter, to cope with large scale data and to reflect user’s interests, we firstly improve
the ability to enumerate possible solution concepts based on a dynamic ordering technique, and
then introduce additional space constraints. A similar ordering strategy is also used in (Ba-
yardo Jr., 1998; Burdick et al., 2001) to find longer itemsets using a set enumeration tree. In that
case, however, no special expansion rule to avoid duplication is needed, while ours needs an
expansion rule to skip duplications. Another important technique to improve the efficiency
of pattern miners is a preprocessing method for concise representation (Wang et al., 2003) of
dataset. However, our Top-N algorithm accesses only a part of whole data by the branch-
and-bound pruning. For this reason, we here do a direct depth-first search without applying
prior data analysis. A miner that searches for longer patterns (called colossal patterns) has
been also proposed in (Zhu et al., 2007). It is based on some bias to avoid hopeless search for
longer patterns, while we introduce some space constraints under which ours keeps the ability
to enumerate every solution satisfying the constraints.
We introduce the constraints of three kinds. The first one defines a starting extent that must
include positive example pages. The second one requires for an extent not to cover any nega-
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tive example pages. The positive and negative examples are also used in (Murata, 2003; 2000)
to discover Web communities, given an Web bigraph consisting of centers and fans, where the
communities are found by enlarging initial page groups guided by best-first search heuristics.
Our Top-N method is also considered as an enlargement process. However, it is complete in
the sense that it finds every solution page group under the constraints.
Although we allow to use negative examples, users seem not to be aware of target pages or
concepts and their counterparts as well. For this reason, we introduce the third constraint
in addition to positive and negative examples. The third one is for realizing searches with
an upper bound concept whose intent is just a set of terms given by user. The constraint
contributes for accelerating the search and for keeping the interestingness of the result to some
extent, as we see in Section 5.3.
In a word, our constrained search can respond within 10 seconds for 10, 000 pages with 1, 200
terms, given an adequate set of constraints. Thus, the algorithm can run in an interactive min-
ing environment for analyzing search results and for realizing implicit page groups connecting
major groups. This will motive us to search Web from a different point of view represented
by implicit concepts.
The remainder of this chapter is organized as follows. In the next section, we introduce some
basic terminologies used throughout this chapter. Section 3 discusses a method for pinpoint
clustering of Web pages by pseudo-clique search. An interesting cluster with higher and lower
ranked pages is also presented. In Section 4, we turn our attention from clique-based clusters
to formal concept-based clusters. In Section 5, we discuss our method for finding implicit
groups of pages. We describe our problem specification and discuss an efficient algorithm
for the problem. We show some concrete examples of interesting page groups including a
crossover concept. Computational performance of our algorithm is also presented. In the
final section, we conclude this chapter with a summary and an important future direction.

2. Preliminaries

We introduce in this section some terminologies used throughout this chapter.
A simple graph is denoted by G = (V, E), where V is a set of vertices and E ⊆ V × V a set
of (undirected) edges. For any vertices v, v′ ∈ V, if (v, v′) ∈ E, v is said to be adjacent to
v′. If any pair of vertices v, v′ ∈ V (v �= v′) are adjacent each other, then G is said to be
complete. For a vertex v ∈ V, the set of vertices adjacent to v is denoted by NG(v), that is,
NG(v) = {v′ | v′ ∈ V ∧ (v, v′) ∈ E}. The size of NG(v), |NG(v)|, is called the degree of v in G.
It is often referred to as degreeG(v). If it is clear from the context, they are simply denoted by
N(v) and degree(v), respectively. If each vertex v ∈ V is assigned a positive weight, the graph
is called a weighted graph. The weight of v is referred to as w(v). For a vertex set V′ ⊆ V, the
weight of V′, denoted by w(V′), is simply defined as the sum of individual weights, that is,
w(V′) = ∑v∈V ′ w(v). In this chapter, we are concerned with a weighted graph unless stated
otherwise.
For a graph G = (V, E), a complete subgraph of G is called a clique in G. We simply refer a
clique as the set of vertices by which it is induced. For cliques C and D in G, if C ⊂ D, then
D is said to be an extension of C. For a clique C in G, if there exists no extension of C, then C
is said to be maximal. A maximal clique with the largest size is especially called a maximum
clique.
Let O be a set of objects (or individuals) and F a set of features (or attributes). For a binary
relation R ⊆ O ×F , a triple < O,F , R > is called a formal context. If (x, f ) ∈ R, we say that
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the object o has the feature f . Then, for an object o ∈ O, the set of features associated with o is
denoted by FR(o), that is, FR(o) = { f ∈ F | (o, f ) ∈ R}.
Given a formal context < O,F , R >, for a set of objects X ⊆ O and a set of features Y ⊆ F ,
we define two mappings ϕ : 2O → 2F and ψ : 2F → 2O as follows:

ϕX = { f ∈ F | ∀o ∈ X, f ∈ FR(o)} =
⋂

o∈X

FR(o) and

ψY = {o ∈ O | Y ⊆ FR(o)}.

That is, the former computes the set of features shared by every object in o. The latter, on the
other hand, returns the set of objects with Y.
Based on these mappings, for a set of objects X ⊆ O and a set of features Y ⊆ F , a pair of
X and Y, (X, Y), is called a formal concept (or simply concept) under the formal context if and
only if ϕX = Y and ψY = X, where X and Y are called the extent and the intent of the concept,
respectively. From the definition, it is easy to see that ψϕX = X and ϕψY = Y. That is, a
formal concept is defined as a pair of closed sets of objects and features under the mappings.
Thus, the compound mappings, ψϕ and ϕψ, define closure operators.
For a set of objects X, we can uniquely obtain a formal concept defined as (ψϕX, ϕX). Dually,
(ψY, ϕψY) is a formal concept uniquely defined for a set of features Y.
Let (X, Y) and (X′, Y′) be formal concepts. If X ⊆ X′ (or Y ⊇ Y′), then we say (X, Y) precedes
(X′, Y′) and denote it by (X, Y) � (X′, Y′). Under the ordering, the set of formal concepts in
a formal context forms a lattice, called a concept lattice.

3. Pinpoint Clustering of Web Pages with Pseudo-Clique Search

In this section, we discuss a method of finding useful clusters of Web pages which are sig-
nificant in the sense that their contents are similar or closely related to ones of higher-ranked
pages (Haraguchi & Okubo, 2006; Okubo et al., 2005). Since we are usually careless of pages
with lower ranks, they are unconditionally discarded even if their contents are similar to some
pages with high ranks. We try to extract such hidden pages together with significant higher-
ranked pages as a cluster.
In order to obtain such clusters, we first extract semantic correlations among terms by apply-
ing Singular Value Decomposition(SVD) to the term-document matrix generated from a corpus
w.r.t. a specific topic. Based on the correlations, we can evaluate potential similarities among
Web pages from which we try to obtain clusters. The set of Web pages is represented as a
weighted graph G based on the similarities and their ranks. Our clusters can be found as
pseudo-cliques in G. We present an algorithm for finding Top-N weighted pseudo-cliques. Our
experimental result shows that quite valuable clusters can be actually extracted according to
our method.

3.1 Semantic Similarity among Web Pages

In order to find clusters of Web pages, we have to measure similarities among Web pages. For
the task, we follow a technique in Information Retrieval(IR) (Salton & McGill, 1983).
Let D be a set of documents and T the set of terms appeared in D. We first remove too
frequent and too infrequent terms based on T . The set of remaining terms, called feature
terms, is denoted by T ∗. Supposing |T ∗| = n, each document di ∈ D can be represented
as an n-dimensional document vector di = (t fi1, . . . , t fin)

T , where t fij is the frequency of
the term tj ∈ T ∗ in the document di. Thus, D can be translated into a term-document matrix
(d1, . . . , d|D|).
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For the term-document matrix, we apply Singular Value Decomposition(SVD) in order to extract
correlations among feature terms (Moens, 2000).
An m × n matrix A can be decomposed by applying SVD as A = UΣVT , where U and V are
m × m and n × n orthogonal matrices, respectively. Each column vector in U (V) is called a
left (right) singular vector. Σ is an m × n matrix of the form

Σ =





















σ1 O
. . . Or×(n−r)

O σr

O(m−r)×r O(m−r)×(n−r)





















,

where rank(A) = r (r ≤ min{m, n}) and σi is called a singular value. First r left singular vectors
u1, . . . , ur correspond to a orthonormal basis and define a new subspace of the original one in
which column vectors of A exist, where the m × r matrix (u1, . . . , ur) is denoted by Ur.
Let us assume the matrix A is a term-document matrix generated from a set of documents.
Intuitively speaking, by applying SVD to A, we can capture potential but not presently evident
correlations among the terms. Highly semantically correlated terms give a base vector ui and
define a dimension corresponding to a compound term. Such new base vectors define a new
subspace based on compound terms. For documents not in A, therefore, if they are projected
on the subspace, we can find similarity among them based on the semantic correlations among
terms captured from the original documents in A.
In order to take such semantic similarities of Web pages into account, we prepare a corpus of
documents written about some specific topic. Then by applying SVD to the term-document
matrix generated from the corpus, we obtain a subspace reflecting semantic correlations
among terms in the corpus. Let Ur be the orthonormal basis defining the subspace. In IR,
we do not always use r left singular vectors. A part of them, that is, Uk = (u1, . . . , uk) (k < r)
is usually used for approximation. Such an approximation with Uk is called Latent Semantic
Indexing (LSI) (Kowalski & Maybury, 2000).
Besides the corpus, with some keywords related to the corpus topic, we retrieve a set of Web
pages P from which we try to obtain clusters. Using the same feature terms for the corpus,
each document pi ∈ P is represented as a vector pi = (t fi1, . . . , t fin)

T , where t fij is the fre-
quency of the feature term tj in pi. Then each Web page pi is projected on the subspace as

pr
i = UT

r pi.

A similarity between Web pages pi and pj, denoted by sim(pi, pj), is defined based on the
standard cosine measure, that is,

sim(pi, pj) =
pr

i ·p
r
j

‖ pr
i ‖ × ‖ pr

j ‖
.

3.2 Finding Clusters of Web Pages by Top-N Pseudo-Clique Search

3.2.1 Graph Representation of Web Pages

Let P be a set of Web pages from which we try to extract clusters. In order to find our clusters,
P is represented as an undirected weighted graph G.
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Assume we computed the semantic similarities among pages in P according to the procedure
just discussed above. Let δ be a similarity threshold. Each page pi ∈ P corresponds to a
vertex in G. For any Web pages pi, pj ∈ P , if sim(pi, pj) ≥ δ, then they are connected by
an edge. Furthermore, we assign a weight to each vertex (page) based on its rank, where a
higher-ranked page is assigned a larger weight. The weight of a page p is referred to as w(p).

3.2.2 Top-N Weighted Pseudo-Clique Problem

Our cluster of similar pages can be obtained as a weighted pseudo-clique in the graph G. In fact,
we obtain only nice clusters by extracting maximal weighted pseudo-cliques whose evalua-
tion values are in the top-N. Before giving the problem description, we first define the notion
of pseudo-cliques.

Definition 1. (Pseudo-Clique)
Let C = {C1, . . . , Cm} be a class of maximal cliques in a graph. pseudo(C) = ∪Ci∈CCi is
called a pseudo-cliques with the overlap degree overlap(C) which is defined as overlap(C) =

minCi∈C

{∣

∣

∣
∩Cj∈CCj

∣

∣

∣
/|Ci|

}

, where
⋂

Cj∈C is called the core. Moreover, its size and weight (eval-

uation value) are given by |pseudo(C)| and w(pseudo(C)) = Σv∈pseudo(C)w(v), respectively.
Note here that the weight of pseudo-clique is not restricted to the sum of vertex weights. Any
monotone weight under the set inclusion can be accepted.

Our problem of finding Top-N weighted pseudo-cliques is defined as follows.

Definition 2. (Top-N Weighted Maximal τ-Valid Pseudo-Clique Problem)
Let G be a graph and τ a threshold for overlap degree. The Top-N Weighted Maximal τ Pseudo-
Clique Problem is to find any maximal pseudo-clique in G such that its overlap degree is greater
than or equal to τ

1 and its weight is in the top N.

3.2.3 Computation of Top-N Weighted Pseudo-Cliques

Let G = (V, E) be an weighted graph we are concerned with. In our search, for a clique Q in
G, we try to find a τ-valid pseudo-clique C̃ whose core is Q.
Let cand(Q) be the set of vertices v adjacent to any vertex in Q, that is, cand(Q) = {v ∈
V | ∀w ∈ Q (v, w) ∈ E}. Then, we can easily observe that for any pair of cliques Q
and Q′ in G such that Q ⊆ Q′, cand(Q) ⊇ cand(Q′) and w(Q) + w(cand(Q)) ≥ w(Q′) +
w(cand(Q′)) hold. Note here that the weight of a pseudo-clique with the core Q is at most
w(Q) + w(cand(Q)). Therefore, a simple theoretical property can be easily observed.

Observation1 : Let Q be a clique. Assume we already have tentative Top-N maximal pseudo-
cliques and the minimum weight of them is wmin. If w(Q) + w(cand(Q)) < wmin holds,
then for any Q′ such that Q′ ⊃ Q, there exists no pseudo-clique with the core Q′ whose
weight is in the top N.

Assume that a τ-valid pseudo-clique C̃ contains a clique Q as its core. C̃ can be obtained as
the union of any maximal clique C such that Q ⊂ C and |Q|/|C| ≥ τ. It should be noted here
that for such a clique C, there exists a maximal clique D in G(cand(Q)) such that Q ∪ D = C,
where G(cand(Q)) is the subgraph induced by cand(G). That is, finding any maximal clique
D in G(cand(Q)) such that |Q|/(|Q| + |D|) ≥ τ is sufficient to obtain the pseudo-clique C̃.
Although one might claim that such a task is quite expensive from the computational point of
view, we can observe some theoretical properties from which pruning rules can be derived.

1 Such a pseudo-clique is said to be τ-valid.
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Observation2 : For a clique Q in G, let us assume that we try to find a τ-valid pseudo-clique
C̃ whose core is Q. For a clique D in G(cand(Q)), if |D| > ( 1

τ − 1) · |Q|, then any

extension (superset) of D is useless for obtaining C̃.

Observation3 : For a clique Q, Q ∪ cand(Q) is a τ-valid maximal pseudo-clique with the
core Q, if

• ( 1
τ − 1) · |Q| ≥ k holds, where k is an upper bound of the maximum clique size in

G(cand(Q)) and

• for any v ∈ cand(Q), its degree in G(cand(Q)) is less than |cand(Q)| − 1.

Upper bounds for the maximum clique size have been widely utilized in efficient depth-first
branch-and-bound algorithms for finding maximum cliques (Fahle, 2002; Tomita & Seki,
2007). The literature (Fahle, 2002) has argued that the (vertex) chromatic number χ can pro-
vide the tightest upper bound. However, since identifying χ is an NP-complete problem,
approximations of χ are usually computed (Fahle, 2002; Tomita & Seki, 2007).
Based on the above observations, Top-N τ-valid weighted pseudo-cliques can be extracted
with a depth-first hybrid search. For each core candidate Q, its surroundings are explored by
finding maximal cliques in G(cand(Q)). In the search for core candidates, we can enjoy a prun-
ing based on Observation1. In the surroundings search, a pruning based on Observation2 can
be applied. Furthermore, for some core candidates, our surroundings search can be skipped
based on Observation3. More precise description of our algorithm is found in (Haraguchi &
Okubo, 2006).

3.3 Experimental Results

In this section, we present our experimental results. The main purpose of this experimentation
is to confirm that we can actually obtain a useful cluster of Web pages consisting of higher-
ranked pages and any other similar (or related) pages with lower ranks. Our system has been
implemented in C language and run on a PC with Xeon-2.40 GHz CPU and 512MB memory.

3.3.1 Datasets and Graph Construction

In order to capture semantic correlations among terms, we have prepared a Japanese corpus
constructed from 100 Web pages written about “Hokkaido”. These pages have been manually
selected and only visible texts on them have been manually gathered. After an application
of Morphological Analysis, we have obtained 2, 224 nouns appeared in the corpus. Nouns with
frequencies more than 1, 000 and less than 2 have been removed from them. The remaining
211 nouns were regarded as feature terms. Applying SVD to the term-document matrix con-
structed from the corpus, we have obtained a new 98-dimensional subspace.
Besides the corpus, we have retrieved 829 (Japanese) Web pages by Google with the keywords
“Hokkaido” and “Sightseeing”. We have tried to extract significant clusters from these pages.
Each Web page has been first represented as a document vector w.r.t. the original feature
terms and then projected on the 98-dimensional subspace in order to capture potential simi-
larities among pages. For any pair of pages, then, we have evaluated the similarity between
them based on the cosine measure. Under the setting of δ = 0.95, we have constructed a
weighted graph G from the pages. That is, if the angle between two pages is less than or
equal to about 18.2 degree, then they are connected by an edge. The numbers of vertices and
edges are 829 and 798, respectively. Each page (vertex) d has been assigned a weight defined
as w(d) = 1/rank(d)2. As has been stated in the previous section, although we can define
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Page Rank Subject

11th Index page for travel information maintained by a local travel agency in
Hokkaido (especially, for travels in Hokkaido)

382th Index page for travel information maintained by a famous newspaper company
(for domestic and overseas travels)

416th An article on a private BBS for travels

797th Information about smorgasbords enjoyable at a hotel in Hokkaido

798th Information about smorgasbords enjoyable at another hotel in Hokkaido

826th Page for hotel awards in a famous travel site

Table 1. The 11th significant cluster

various weights according to ranks of pages, we have currently adopted the reciprocal of the
rank squared. The reason why we prefer this measure is as follows:

• It is sensitive to difference of ranks in higher range of ranks.

• On the other hand, in lower range, page weights are hardly affected by difference of
ranks.

From the characteristics, a clique containing higher-ranked pages is likely to be extracted even
if its size is relatively small. Since we can often expect higher-ranked pages are significant,
such a phenomenon would be desirable. On the other hand, we are usually careless of lower-
ranked pages. In other words, difference of weights among lower-ranked pages would be
unimportant for us. In this sense, a likelihood of extracting pseudo-cliques should not be
sensitively affected by weights of pages with lower ranks. The above measure would be rea-
sonable from this viewpoint as well.

3.3.2 Example of Extracted Interesting Cluster

We have tried to extract Top-15 weighted 0.8-pseudo cliques in the graph constructed above.
Among the extracted clusters (pseudo-cliques), the authors especially consider that the 11th

cluster is quite interesting.
The cluster consists of 6 Web pages. Table 1 shows their ranks assigned by Google and sub-
jects. In the authors’ opinion, their contents are considered to be very similar in the sense that
all of them give us some information about accommodations in Hokkaido, especially informa-
tion about hotels and foods. The 11th and 382th pages are index pages for travel information
and we can make reservations for many hotels via the pages. The 416th page is an article in a
private BBS site for travels. The article reports on a private travel in Hokkaido and provides
an actual and valuable information about a hotel and enjoyable foods in “Furano” 2. The 797th

and 798th personal pages give us the names of two hotels serving smorgasbords in Hokkaido.
The 826th page tells us several hotels which were the most popular or were most frequently
reserved in 2004.
Thus, the pages in the 11th cluster are closely related each other and give us quite valuable
information. When we try to make travel plans for sightseeing in Hokkaido, we would often
care about hotels and foods as important factors. In such a case, the cluster will be surely
helpful for us.
Needless to say, we can find clusters of Web pages by exact clique search. In that case, however,
the above 11th cluster can never be obtained. The cluster as a pseudo-clique consists of two

2 “Furano” is one of the most famous sightseeing areas in Hokkaido.
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exact maximal cliques: {11th, 382nd, 797th, 798th, 826th} and {382nd, 416th, 797th, 798th, 826th}.
In the exact case, the former can be ranked as 11th, whereas the latter cluster as 343rd. It
should be noted that the 416th page will be invisible unless we specify a large N for Top-
N. However, it would be impractical to specify such a large N because many clusters are
undesirably extracted. Although 416th page has valuable contents as mentioned above, we
will lose a chance to browse it.
In case of pseudo-clique search, the 343rd exact cluster can be absorbed into the 11th cluster to
form a pseudo-clique. In other word, the 343rd cluster can be drastically raised its rank. As
the result, 416th page can become visible by just specifying a reasonable N.
Thus, our chance to get significant lower-ranked pages can be enhanced with the help of
pseudo-cliques. This is a remarkable advantage brought by pseudo-cliques.

3.3.3 Computational Performance of Pseudo-Clique Search

Our experimental result also shows that the pruning rules presented in the previous section
are very effective. The number of cores actually examined was 69, 981 and our pruning based
on the tentative minimum weight were invoked at 40, 801 nodes of them. Moreover, the max-
imal clique searches were skipped at 31 nodes. Thus, the pruning rules can be applied very
frequently in our search. As the result, the total computation time was just 0.847 second.
As we have experienced, an IR system often retrieves over hundreds of thousands of Web
pages. Therefore our graph constructed from gathered Web pages would have a large number
of vertices in more practical situation. In general, however, our graph tends to be quite sparse.
Therefore, it is expected that our algorithm can still work well even in such a practical case.
From the experimental result, the authors consider that our pseudo-clique search would be a
promising approach to finding significant clusters of Web pages.

4. From Clique-Based Clusters to Formal Concept-Based Clusters

As has been shown just above, we can extract an interesting cluster of Web pages with pseudo-
clique search. In the area of conceptual clustering (Hotho et al., 2003; Hotho & Stumme, 2002),
however, it has been pointed out that as long as the similarity of documents is based on the
cosine measure for vector representation, it is generally difficult to understand the meaning of
clusters (cliques in this case) by means of feature terms. In our case of finding interesting doc-
uments with lower ranks, the detected lower ranked documents together with highly ranked
documents in one cluster are in fact similar vectors. However, it is always difficult to judge
if the former and the latter share the same meaning or not. In other words, the conceptual
classes they belong to may differ. In order to avoid such a conceptually indistinct argument,
we have made an informal constraint on the clusters to be obtained as follows:

The notion of relevance or interestingness depends only on a conceptual class of docu-
ments, not dependent on particular instance documents. Then the clusters we have to
find must be concepts of documents that can be definable by means of feature terms.

As the primary data for a document set is a document-term relationship, we have adopted the
notion of Formal Concept Analysis (FCA) (Ganter & Wille, 1999; Ganter et al., 2005). Thus, if
some higher-ranked documents and lower-ranked ones share a set of terms, they could form
the extent of a formal concept, that is, a conceptual cluster of documents.
It is well known that formal concepts can be computed by finding maximal bipartite cliques of a
bipartite graph or equivalently by finding closures of documents or terms. Therefore, keeping
the evaluation scheme for extents as clusters of documents, it can be a strategy to find only
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Top-N extents by using some very fast enumeration algorithm, LCM (Uno et al., 2004) for
instance, for finding all the closures.
The problem for such an approach is however that the number of possible extents is still
large. Particularly, there exist a numerous number of extents of concepts whose corresponding
intents are very smaller set of terms. For smaller intents we have, the extents tend to be larger
sets of documents and to involve documents with less similarity. In other words, the quality
of those extents becomes worse. For the reason, we have tried to find only Top-N extents w.r.t.
the same evaluation schema for clusters, keeping the quality of their intents (Haraguchi &
Okubo, 2007; Okubo & Haraguchi, 2006). The method is summarized as follows:

Evaluation on Extents
Extents of formal concepts are evaluated by some monotone function. The evaluation
becomes higher, as the extents grow as sets of documents, and as each document in
them shows higher rank.

Graph Formation under Static Quality Control on Intents
Two documents are judged similar if they share at least a given number of common
terms. We draw an edge between any similar two documents, and form a weighted
undirected graph of documents, where each document is assigned a weight based on
its rank. It should be noted here that any extent with enough quality of intent is always
a clique in the graph.

Extent Search under Dynamic Quality Control
To enumerate only Top-N extents (that is, closures of documents), our algorithm adopts
again a branch-and-bound method, where

Candidate Closures of Documents: a list of candidate top-N closures is always kept,

Branch-and-Bound Pruning due to Monotone Evaluation: for any search node, a
closure of documents, whose evaluation value can never become larger than the
minimum of those candidates, we cut off the nodes below, and

Dynamic Quality Control: for any search node whose corresponding intent has less
number of feature terms than a given lower bound, we also cut off the nodes
below.

Clearly the two pruning rules are safe in the sense that we never miss any of Top-N extents
satisfying the requirements.
In the graph formation process, we can exclude document pairs in advance which are never
included in any extent with enough quality of intent. Furthermore, a theoretical property of
cliques can provide us several upper-bounds of evaluation values for extents. For example,
we can obtain a tight upper-bound with a sequential approximate coloring (Fahle, 2002; Tomita
& Seki, 2007). Based on the bounds, we can prune many useless extents which are never in
Top-N. Thus, the clique search-based approach enables us to efficiently find Top-N extents.

5. Finding Implicit Groups of Web Pages as Constrained Top-N Formal Concepts

In this section, we present a method for finding relatively smaller therefore more implicit
groups of Web pages as formal concepts and discuss an effective depth-first mining algorithm
for them (Li et al., 2008). The algorithm is based on a dynamic ordering method depending on
each search node and some search tree expansion rules. Moreover it is designed so as to find
Top-N implicit concepts subject to the size restriction and some space constraints reflecting
user’s interests.
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5.1 Problem Specification

For a given formal context < O,F , R >, we suppose O and F represent the set of pages
(documents) and a set of their feature terms, respectively. Then, the set of terms possessed by
every page in X ⊆ O is denoted as ϕX. Conversely, ψA is a set of pages with every term in
A ⊆ F . The actual construction of ϕ and ψ from Web pages is described in Section 5.3.
The only fact remarked here is that ϕX and ψA are an intent and an extent for any set X ⊆ O
and A ⊆ F , respectively. Since a formal concept is defined as a pair of extent X and its
corresponding intent ϕX, we identify the concept with its extent (or its intent).
We suppose in addition a pair of monotone evaluation functions evalO and evalF such that
evalO(X1) ≤ evalO(X2) whenever X1 ⊆ X2 and evalF (A1) ≤ evalF (A2) if A1 ⊆ A2. Their
most simple forms are set sizes which we assume simply in this chapter. Another forms of
eval can be found in (Haraguchi & Okubo, 2006) including rank information of Web pages.
Now, our problem of finding implicit concepts is described as follows:

Definition 3. (Top-N Implicit Concept Problem)
For a formal context < O,F , R >,

Objective: Enumerate every solution extent X with top N evaluation value
evalO(X), where they must be subject to the followings:

Length Constraint (required): Given δ > 0, evalF (ϕX) ≥ δ for excluding larger
X .

Space Constraints (option): X must satisfy

(POS) S+ ⊆ X for an example page set S+,

(NEG) S− ∩ X = φ for a negative page set S−, and

(SUB) X ⊆ ψK for a relevant term set K.

5.2 Efficient Computation of Implicit Concepts

5.2.1 Basic Search Strategy

Given a formal context C =< O,F ,R >, for each formal concept under C, there always exists
a set of objects X ⊆ O such that ψϕX and ϕX correspond to the extent and the intent of the
concept, respectively. Therefore, by applying the mappings ϕ and ψ to each set of objects
X ⊆ O, we can completely obtain all of the concepts under C.
From the monotonicity of the evaluation function evalF , a simple theoretical property can
be observed. Let Xi and Xj be sets of objects in O such that Xi ⊆ Xj. Then, evalF (ϕXi) ≥
evalF (ϕXj). As a direct consequence, a pruning rule is available in our search. That is, for a
set of objects X ⊆ O, if evalF (ϕX) < δ, then there is no need to examine any superset of X.
Therefore, our search for finding target concepts can be performed in depth-first manner with
the simple pruning.
During our search, we maintain a list which stores Top-N concepts already found. That is, the
list keeps tentative Top-N concepts. For a set of objects X ⊆ O, we check whether evalF (ϕX) ≥
δ holds or not. If it holds, then (ψϕX, ϕX) becomes a concept satisfying the length constraint
under δ and the tentative Top-N list is adequately updated for the concept. Then a child of the
extent ϕX, ϕX ∪ {x}, is generated by expanding the extent with an object x ∈ O\ϕX and the
same procedure is recursibly performed for the child. If evalF (ϕX) < δ, we can immediately
backtrack to examine another search branches. Starting with the initial X of the empty set, the
procedure is iterated in depth-first manner until no X remains to be examined.
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When common terms of Z appear as terms shared by W (that is, ϕZ ⊆ ϕW), we here say
that Z implies W and write as Z → W. Then, the extent of a concept is defined as a set X
such that X = {x | X → {x}}. That is, the extent is closed under (object) implication, and is
called a closure (or closed set). Similarly, intent A of terms is similarly defined using (attribute)
implication (Ganter & Wille, 1999).
The constraint (POS) is requiring I = {z | S+ → {z}} ⊆ X. Hence S+ defines the starting
extent I in our depth-first search. The constraint (SUB) assigns an upper bound closure ψK,
and is equivalent to K ⊆ ϕX meaning that X must have every term in K which users show
their interests. By (POS) and (SUB), a sublattice with I and ψK as the least and the greatest
closures, respectively, is formed. When (POS) is not presented, S+ is just the bottom extent
of whole concept lattice. Similarly, we treat other constraint types in the same manner when
they are not explicitly presented.

5.2.2 Dynamic Ordering in Expansion Process

Although we are allowed to restrict the search space by the constraints, it is a key to have
an effective enumeration method of concepts when the optional constraints are not presented
explicitly or when the data in the form of page-term relationship scales up. For this reason,
we introduce a dynamic ordering of candidates and a search tree expansion rule customized to it.

Definition 4. (Candidate Page)
Let X be a present extent consistent with the given constraints. Then, a page x /∈ X is called
a candidate at X if the enlarged extent, ψϕ(X ∪ {x}) = {z | X ∪ {x} → {z}}, still satisfies the
constraints.

Some candidate z at X cannot be a candidate at ψϕ(X∪{x}) if {w | X∪{x, z} → {w}} violates
the constraints. Thus the sequence of candidate sets is monotonically decreasing as we add
new candidates to the closure extents.

Dynamic Candidate Ordering: For a present extent X and its candidate x, x is a branch to
form the next extent. We arrange candidates x in the increasing order of the sizes of
term sets ϕ(X ∪ {x}). The ordering is locally fixed at each X. So we denote it as ≺X .

When the candidate x is actually chosen at X, another y s.t. X, x → y is included together
with x into the next closure. As x has smaller term set at X, it has more chances to imply such
additional y. This helps us to form larger next closures earlier.

5.2.3 Prunings with Right and Left Candidates

Now, based on the dynamic ordering strategy, we expand our search tree. The root node is
{z | S+ → {z}}. The procedure expands tree nodes in the depth-first manner by selecting
a candidate at each node according to the dynamic ordering. The sequence of chosen can-
didates c1, ..., ck represents the path from the root to the extent {z | S+ ∪ {c1, ..., ck} → {z}}.
Thus a path with S+ is just a generator (Lakhal & Stumme, 2005) of the extent. Unlike a
set enumeration tree, some control to avoid duplicated generations of the same extents is
needed, as there exist several generators for the same extents. For this reason, we classify
candidates into two types. One is called a right candidate used for expansion. The other is
called a left candidate used for checking the duplication. Suppose we have a series of extents
Xk = {z | S+ ∪ {c1, ..., ck} → {z}}, where ck is a chosen candidate at Xk−1 to form Xk. That is,
Xk = {z | S+ ∪ Xk−1 ∪ {ck} → {z}}. Then a candidate r at Xk is called a left candidate, given
a chosen candidate ck+1 at Xk to form Xk+1, if r ∈ {c1, · · · , ck} or r ≺Xk+1

ck+1.
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With the help of right and left candidates, we can enjoy the following prunings in our search
process.

Inverse Implication Pruning: For a present extent X and its right candidate r, if X ∪ {r} → ℓ

holds for some left candidate ℓ at X, we need not take the branch by r.

Branch-and-Bound Pruning: For a present X and a right candidate r, we skip the branch
by r whenever the evaluation value of (Xr = {w | X ∪ {r} → {w}}) ∪
{right candidate at Xr} by evalO is less than the minimum of the current top N values.
When the number of values stored is less than N, this rule is void.

The algorithm repeats the tree expansion on a path in a depth-first manner, using the above
pruning rules, and goes back to its parent node to try another right candidate at the parent
node, whenever the remaining right candidate set becomes empty.

5.3 Experimental Results

We present here our experimental results. Our system has been implemented in JAVA and
run on a PC with Dual-Core AMD Opteron processor 2222 SE and 16GB main memory.

5.3.1 Dataset

In our experimentation, we have tried to extract Top-N clusters from a dataset called
BankSearch.
The dataset BankSearch has been released as a benchmark for Web document clustering (Sinka
& Corne, 2002). It consists of Web documents (HTML sources) in 11 categories, “Commer-
cial Banks”, “Building Societies”, “Insurance Agencies”, “Java”, “C/C++”, “Visual Basic”, “Astron-
omy”,“Biology”, “Soccer”, “Motor Sport” and “Sport”. The total number of documents is 11, 000
(1, 000 documents for each category).
As a preprocess, we have first converted each HTML source into a plane text by removing
HTML tags. From the text documents, adjectives and adverbs in WordNet (Fellbaum, 1998)
have been eliminated. Furthermore, we have removed a set of stopwords as well. After Stem-
ming Process with Porter stemmer (Porter, 1980), we have selected 1, 223 words as feature terms
by removing too frequent and too infrequent ones. That is, each document can be represented
as a 1223-dimensional vector. It should be emphasized here that the category informations
never appears in the documents as features explicitly.

5.3.2 Extracted Clusters

We present here some clusters we have actually extracted based on our method.
Given a Web page,

http://www.vbsquare.com/files/association/,

as a positive example, we have tried to find Top-3 concepts under δ = 50. As an example, a
concept

( { http://www.vbsquare.com/files/association/,
http://www.vbsquare.com/registry/tip471.html,
http://www.vb-helper.com/links.htm,

...
http://www.vbsquare.com/databases/dbclass/,
http://www.vbsquare.com/databases/learndb/,
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http://www.vbsquare.com/mouse/context/ },
{ API, component, resource, . . .tips, VB, graphic } )

consisting of 35-pages has been extracted. All of the pages are related to resource links, tu-
torials and stories on Visual Basic. They belong to the same category assigned in (Sinka &
Corne, 2002). It should be noted here that our method never uses the information about the
categories explicitly. Our clusters are extracted based on only terms appearing in Web pages.
Thus, without the category information, our method can extract clusters which are consistent
with the known categories.
Given two Web pages,

http://www.citibank.com/uk/portal/consumer/helpdesk/tc/tc1.htm and
http://vbtechniques.com/useragreement.asp,

and two terms, claim and Internet, as positive examples and relevant terms, respectively,
we have tried to find Top-1 concepts under δ = 50, then obtained a concept

( { http://www.citibank.com/uk/portal/
consumer/helpdesk/tc/tc1.htm,

http://vbtechniques.com/useragreement.asp,
http://www.hrbs.co.uk/cashisatandcapply.htm,

...
http://www.hrbs.co.uk/panthertandconline.htm,
http://www.hrbs.co.uk/rewardsixtandcapply.htm,
http://www.lloyds.com/un/en/

termsandconditions/category/article/ },
{ claim, Internet, accept, . . .

law, condition, reason, right, term, transfer } )

consisting of 22-pages. These pages are concerned with contracts and terms of agreement. Fur-
thermore, since they belong to different categories, “Commercial Banks”, “Visual Basic”, “Build-
ing Society” and “Insurance Agency”, we consider that it is a concrete example of crossover
concepts actually obtained with our method.
Thus, our Top-N method has an ability to flexibly extract various concepts reflecting our in-
terests represented as positive example and relevant terms.

5.3.3 Computational Performance

Finding Formal Concepts by Closed Itemset Miners:

As has been mentioned previously, formal concepts can be obtained by any closed itemset
miner, e.g. LCM (Uno et al., 2004). Such a system is, however, not always helpful for finding
our Top-N formal concepts satisfying some constraints. More concretely speaking, in order to
find our Top-N formal concepts, a closed itemset miner must first enumerate frequent closed
itemsets including our targets and then choose the targets from them. However, the miner
often enumerates a huge number of frequent closed itemsets, taking long computation time.
Figure 2 shows the computation time by LCM and the number of frequent closed itemsets
under various minimum support thresholds (minsup) for the BankSearch dataset, regarding
each feature term as an item. The figure tells us that for lower minsup values, extracting
Top-N concepts with LCM would be impractical from the viewpoint of its computation time
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Fig. 2. Computation Time by LCM and Number of Frequent Closed Itemsets

and output size. For example, the setting of minsup = 0.015 forces us to extract all concepts
consisting of at least 165 documents. Therefore, any smaller concepts (say, below a hundred)
can never be obtained with the help of closed itemset miners in practice. More concretely
speaking, the extent of each concept just presented above consists of 35-pages and 22-pages,
respectively. In order to obtain the former concept with a minsup-based closed itemset miner
like LCM, therefore, we have to set minsup = 35

11000 = 0.003. For the latter, minsup = 35
11000 =

0.002. Needless to say, our targets are out of range for which such a miner can compute. Thus,
our Top-N method can extract targets actually intractable for minsup-based itemset miners.
This is a remarkable advantage of our Top-N method.

Effectiveness of Positive Examples, Relevant Terms and Dynamic Ordering:

Since positive examples and relevant terms restrict the search space, our computational cost
can be reduced. In addition, our dynamic ordering on candidate expansions also achieves
improvement in computation time. For the same positive examples and relevant terms, their
effectiveness is verified in Figure 3. In the figure, we can easily observe that they are quite
effective in improving our computational efficiency. We can enjoy significant improvement
with them. Although the positive examples can solely provide a great reduction of compu-
tation time, the relevant terms bring us further drastic improvement. Particularly, for lower
δ-values, the ratio of computation time with only examples to those with both examples and
relevant terms is above 100. It is highly expected that the larger our dataset becomes, the
greater difference we will observe. Thus, our method would be promising even for large-
scale datasets.
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6. Conclusion

In this chapter, we presented our Top-N methods for extracting clusters of Web pages, espe-
cially, a method for pinpoint clustering of Web pages by pseudo-clique search and a method
for finding implicit page groups represented as formal concepts.
In our pinpoint clustering, we first extract semantic correlations among terms by applying
SVD to the term-document matrix generated from a corpus w.r.t. a specific topic. Based on
the correlations, we can evaluate potential similarities among Web pages from which we try
to obtain clusters. The set of Web pages is represented as a weighted graph G based on the
similarities and their ranks. Then our clusters are extracted as pseudo-cliques in G. Our ex-
perimental results showed that a valuable cluster can be actually extracted according to our
method.
Turning our attention from clique-based clusters to formal concept-based clusters in order to
make our clusters more meaningful, we discussed an effective depth-first mining algorithm
for finding relatively smaller therefore more implicit groups of Web pages as formal concepts.
The algorithm is based on a dynamic ordering method depending on each search node and
some search tree expansion rules. Moreover it was designed so as to find Top-N implicit
concepts subject to the size restriction and some space constraints reflecting user’s interests.
Our experimental results showed that our Top-N algorithm succeeds in finding less frequent
(crossover) concepts under some space constraints.
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In order to have more effective method under more vague constraints, we are planning to
define the notion of crossover concepts more directly and to design more efficient and accurate
procedure under the help of clustering of pages allowing outliers (Gan et al., 2007).
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