49 research outputs found

    Research on high performance LDPC decoder

    Get PDF
    制度:新 ; 報告番号:甲3272号 ; 学位の種類:博士(工学) ; 授与年月日:2011/3/15 ; 早大学位記番号:新557

    Decoding of Decode and Forward (DF) Relay Protocol using Min-Sum Based Low Density Parity Check (LDPC) System

    Get PDF
    Decoding high complexity is a major issue to design a decode and forward (DF) relay protocol. Thus, the establishment of low complexity decoding system would beneficial to assist decode and forward relay protocol. This paper reviews existing methods for the min-sum based LDPC decoding system as the low complexity decoding system. Reference lists of chosen articles were further reviewed for associated publications. This paper introduces comprehensive system model representing and describing the methods developed for LDPC based for DF relay protocol. It is consists of a number of components: (1) encoder and modulation at the source node, (2) demodulation, decoding, encoding and modulation at relay node, and (3) demodulation and decoding at the destination node. This paper also proposes a new taxonomy for min-sum based LDPC decoding techniques, highlights some of the most important components such as data used, result performances and profiles the Variable and Check Node (VCN) operation methods that have the potential to be used in DF relay protocol. Min-sum based LDPC decoding methods have the potential to provide an objective measure the best tradeoff between low complexities decoding process and the decoding error performance, and emerge as a cost-effective solution for practical application

    Turbo codes and turbo algorithms

    Get PDF
    In the first part of this paper, several basic ideas that prompted the coming of turbo codes are commented on. We then present some personal points of view on the main advances obtained in past years on turbo coding and decoding such as the circular trellis termination of recursive systematic convolutional codes and double-binary turbo codes associated with Max-Log-MAP decoding. A novel evaluation method, called genieinitialised iterative processing (GIIP), is introduced to assess the error performance of iterative processing. We show that using GIIP produces a result that can be viewed as a lower bound of the maximum likelihood iterative decoding and detection performance. Finally, two wireless communication systems are presented to illustrate recent applications of the turbo principle, the first one being multiple-input/multiple-output channel iterative detection and the second one multi-carrier modulation with linear precoding

    New Identification and Decoding Techniques for Low-Density Parity-Check Codes

    Get PDF
    Error-correction coding schemes are indispensable for high-capacity high data-rate communication systems nowadays. Among various channel coding schemes, low-density parity-check (LDPC) codes introduced by pioneer Robert G. Gallager are prominent due to the capacity-approaching and superior error-correcting properties. There is no hard constraint on the code rate of LDPC codes. Consequently, it is ideal to incorporate LDPC codes with various code rate and codeword length in the adaptive modulation and coding (AMC) systems which change the encoder and the modulator adaptively to improve the system throughput. In conventional AMC systems, a dedicated control channel is assigned to coordinate the encoder/decoder changes. A questions then rises: if the AMC system still works when such a control channel is absent. This work gives positive answer to this question by investigating various scenarios consisting of different modulation schemes, such as quadrature-amplitude modulation (QAM), frequency-shift keying (FSK), and different channels, such as additive white Gaussian noise (AWGN) channels and fading channels. On the other hand, LDPC decoding is usually carried out by iterative belief-propagation (BP) algorithms. As LDPC codes become prevalent in advanced communication and storage systems, low-complexity LDPC decoding algorithms are favored in practical applications. In the conventional BP decoding algorithm, the stopping criterion is to check if all the parities are satisfied. This single rule may not be able to identify the undecodable blocks, as a result, the decoding time and power consumption are wasted for executing unnecessary iterations. In this work, we propose a new stopping criterion to identify the undecodable blocks in the early stage of the iterative decoding process. Furthermore, in the conventional BP decoding algorithm, the variable (check) nodes are updated in parallel. It is known that the number of iterations can be reduced by the serial scheduling algorithm. The informed dynamic scheduling (IDS) algorithms were proposed in the existing literatures to further reduce the number of iterations. However, the computational complexity involved in finding the update node in the existing IDS algorithms would not be neglected. In this work, we propose a new efficient IDS scheme which can provide better performance-complexity trade-off compared to the existing IDS ones. In addition, the iterative decoding threshold, which is used for differentiating which LDPC code is better, is investigated in this work. A family of LDPC codes, called LDPC convolutional codes, has drawn a lot of attentions from researchers in recent years due to the threshold saturation phenomenon. The IDT for an LDPC convolutional code may be computationally demanding when the termination length goes to thousand or even approaches infinity, especially for AWGN channels. In this work, we propose a fast IDT estimation algorithm which can greatly reduce the complexity of the IDT calculation for LDPC convolutional codes with arbitrary large termination length (including infinity). By utilizing our new IDT estimation algorithm, the IDTs for LDPC convolutional codes with arbitrary large termination length (including infinity) can be quickly obtained

    Low-Power Embedded Design Solutions and Low-Latency On-Chip Interconnect Architecture for System-On-Chip Design

    Get PDF
    This dissertation presents three design solutions to support several key system-on-chip (SoC) issues to achieve low-power and high performance. These are: 1) joint source and channel decoding (JSCD) schemes for low-power SoCs used in portable multimedia systems, 2) efficient on-chip interconnect architecture for massive multimedia data streaming on multiprocessor SoCs (MPSoCs), and 3) data processing architecture for low-power SoCs in distributed sensor network (DSS) systems and its implementation. The first part includes a low-power embedded low density parity check code (LDPC) - H.264 joint decoding architecture to lower the baseband energy consumption of a channel decoder using joint source decoding and dynamic voltage and frequency scaling (DVFS). A low-power multiple-input multiple-output (MIMO) and H.264 video joint detector/decoder design that minimizes energy for portable, wireless embedded systems is also designed. In the second part, a link-level quality of service (QoS) scheme using unequal error protection (UEP) for low-power network-on-chip (NoC) and low latency on-chip network designs for MPSoCs is proposed. This part contains WaveSync, a low-latency focused network-on-chip architecture for globally-asynchronous locally-synchronous (GALS) designs and a simultaneous dual-path routing (SDPR) scheme utilizing path diversity present in typical mesh topology network-on-chips. SDPR is akin to having a higher link width but without the significant hardware overhead associated with simple bus width scaling. The last part shows data processing unit designs for embedded SoCs. We propose a data processing and control logic design for a new radiation detection sensor system generating data at or above Peta-bits-per-second level. Implementation results show that the intended clock rate is achieved within the power target of less than 200mW. We also present a digital signal processing (DSP) accelerator supporting configurable MAC, FFT, FIR, and 3-D cross product operations for embedded SoCs. It consumes 12.35mW along with 0.167mm2 area at 333MHz

    Hardware implementation aspects of polar decoders and ultra high-speed LDPC decoders

    Get PDF
    The goal of channel coding is to detect and correct errors that appear during the transmission of information. In the past few decades, channel coding has become an integral part of most communications standards as it improves the energy-efficiency of transceivers manyfold while only requiring a modest investment in terms of the required digital signal processing capabilities. The most commonly used channel codes in modern standards are low-density parity-check (LDPC) codes and Turbo codes, which were the first two types of codes to approach the capacity of several channels while still being practically implementable in hardware. The decoding algorithms for LDPC codes, in particular, are highly parallelizable and suitable for high-throughput applications. A new class of channel codes, called polar codes, was introduced recently. Polar codes have an explicit construction and low-complexity encoding and successive cancellation (SC) decoding algorithms. Moreover, polar codes are provably capacity achieving over a wide range of channels, making them very attractive from a theoretical perspective. Unfortunately, polar codes under standard SC decoding cannot compete with the LDPC and Turbo codes that are used in current standards in terms of their error-correcting performance. For this reason, several improved SC-based decoding algorithms have been introduced. The most prominent SC-based decoding algorithm is the successive cancellation list (SCL) decoding algorithm, which is powerful enough to approach the error-correcting performance of LDPC codes. The original SCL decoding algorithm was described in an arithmetic domain that is not well-suited for hardware implementations and is not clear how an efficient SCL decoder architecture can be implemented. To this end, in this thesis, we re-formulate the SCL decoding algorithm in two distinct arithmetic domains, we describe efficient hardware architectures to implement the resulting SCL decoders, and we compare the decoders with existing LDPC and Turbo decoders in terms of their error-correcting performance and their implementation efficiency. Due to the ongoing technology scaling, the feature sizes of integrated circuits keep shrinking at a remarkable pace. As transistors and memory cells keep shrinking, it becomes increasingly difficult and costly (in terms of both area and power) to ensure that the implemented digital circuits always operate correctly. Thus, manufactured digital signal processing circuits, including channel decoder circuits, may not always operate correctly. Instead of discarding these faulty dies or using costly circuit-level fault mitigation mechanisms, an alternative approach is to try to live with certain malfunctions, provided that the algorithm implemented by the circuit is sufficiently fault-tolerant. In this spirit, in this thesis we examine decoding of polar codes and LDPC codes under the assumption that the memories that are used within the decoders are not fully reliable. We show that, in both cases, there is inherent fault-tolerance and we also propose some methods to reduce the effect of memory faults on the error-correcting performance of the considered decoders

    A hardware spinal decoder

    Get PDF
    Spinal codes are a recently proposed capacity-achieving rateless code. While hardware encoding of spinal codes is straightforward, the design of an efficient, high-speed hardware decoder poses significant challenges. We present the first such decoder. By relaxing data dependencies inherent in the classic M-algorithm decoder, we obtain area and throughput competitive with 3GPP turbo codes as well as greatly reduced latency and complexity. The enabling architectural feature is a novel alpha-beta incremental approximate selection algorithm. We also present a method for obtaining hints which anticipate successful or failed decoding, permitting early termination and/or feedback-driven adaptation of the decoding parameters. We have validated our implementation in FPGA with on-air testing. Provisional hardware synthesis suggests that a near-capacity implementation of spinal codes can achieve a throughput of 12.5 Mbps in a 65 nm technology while using substantially less area than competitive 3GPP turbo code implementations.Irwin Mark Jacobs and Joan Klein Jacobs Presidential FellowshipIntel Corporation (Fellowship)Claude E. Shannon Research Assistantshi

    Short-length Low-density Parity-check Codes: Construction and Decoding Algorithms

    Get PDF
    Error control coding is an essential part of modern communications systems. LDPC codes have been demonstrated to offer performance near the fundamental limits of channels corrupted by random noise. Optimal maximum likelihood decoding of LDPC codes is too complex to be practically useful even at short block lengths and so a graph-based message passing decoder known as the belief propagation algorithm is used instead. In fact, on graphs without closed paths known as cycles the iterative message passing decoding is known to be optimal and may converge in a single iteration, although identifying the message update schedule which allows single-iteration convergence is not trivial. At finite block lengths graphs without cycles have poor minimum distance properties and perform poorly even under optimal decoding. LDPC codes with large block length have been demonstrated to offer performance close to that predicted for codes of infinite length, as the cycles present in the graph are quite long. In this thesis, LDPC codes of shorter length are considered as they offer advantages in terms of latency and complexity, at the cost of performance degradation from the increased number of short cycles in the graph. For these shorter LDPC codes, the problems considered are: First, improved construction of structured and unstructured LDPC code graphs of short length with a view to reducing the harmful effects of the cycles on error rate performance, based on knowledge of the decoding process. Structured code graphs are particularly interesting as they allow benefits in encoding and decoding complexity and speed. Secondly, the design and construction of LDPC codes for the block fading channel, a particularly challenging scenario from the point of view of error control code design. Both established and novel classes of codes for the channel are considered. Finally the decoding of LDPC codes by the belief propagation algorithm is considered, in particular the scheduling of messages passed in the iterative decoder. A knowledge-aided approach is developed based on message reliabilities and residuals to allow fast convergence and significant improvements in error rate performance
    corecore