

Waseda University Doctoral Dissertation

Research on High Performance

LDPC Decoder

JI, Wen

Graduate School of Information, Production and Systems

Waseda University

February 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Waseda University Repository

https://core.ac.uk/display/286936704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

ABSTRACT

Low-Density Parity-Check (LDPC) code is an error correcting code first

discovered in the early 1960’s, and rediscovered in 1999. The decoding algorithm of

LDPC is inherently parallel and can achieve performance close to the Shannon Limit,

thus making LDPC code widely adopted in communication standards, such as WLAN

(IEEE 802.11n), WiMAX (IEEE 802.16e) and DVB-S2.

However, it is still a great challenge for the researchers to design LDPC decoders

with high performance. As LDPC decoders are mainly used to detect and correct

errors in wireless communication devices, there are many aspects which should be

concerned in the design, such as Bit Error Rate (BER) performance, hardware cost,

throughput etc. As an error correcting technique, the BER performance is always an

important metric for the design. The higher the BER performance is, the higher the

reliability of the transmission is. In terms of LSI design, the hardware cost of LDPC

decoder is considered to be a critical metric for the manufacture process. Also, in

communication systems, throughput is an essential metric for LDPC decoders to

ensure the real-time transmission.

In this dissertation, we mainly focus on the LDPC decoder design for IEEE 802.11n

application and Integrated Services Digital Broadcasting via Satellite - Second

Generation (ISDB-S2) application.

In the previous design of IEEE 802.11n LDPC decoder, fully-parallel decoder

structures have been implemented aiming at high throughput but with relatively large

area. A previous work implementing partially-parallel structure can achieve relatively

low hardware cost, but has a low throughput, which is only 54Mbps. However, high

throughput as well as low hardware cost is demanded for IEEE 802.11n application.

ii

On the other hand, for ISDB-S2 LDPC decoder, previous decoding algorithms for

LDPC decoders can either achieve very high BER performance by implementing very

complicated hardware (Belief-Propagation –based algorithms), or achieve small area

cost in the sacrifice of degrading BER performance (Min-sum –based algorithms).

However, as long as the stable transmission is necessary for satellite broadcasting,

very high BER performance is a key request for the design. But as for the

manufacture demand, Belief-Propagation –based algorithms with large area cost is

not a good option for LDPC decoder design for ISDB-S2.

Based on the above discussion, this dissertation is mainly composed of two issues:

the LDPC decoder design for IEEE 802.11n targeting high throughput and low

hardware cost; and the LDPC decoder algorithm design for ISDB-S2 targeting high

BER performance and low hardware cost.

This dissertation consists of six chapters which are as follows:

Chapter 1 [Introduction] gives a brief introduction of this dissertation. It

introduces the basic knowledge of LDPC codes and LDPC decoders. The LDPC

decoding algorithms are discussed, followed by the motivation and contribution of

this work.

Chapter 2 [A partially-parallel LDPC decoder targeting high throughput]

proposed a partially-parallel irregular LDPC decoder for IEEE 802.11n standard

targeting high throughput applications.

The proposed decoder has several merits:

(i) The decoder is designed based on a novel delta-value based message passing

(DVMP) schedule which facilitates the decoding throughput by redundant

computation removal.

(ii) Techniques such as binary sorting, parallel column operation, high performance

pipelining are used to further speed up the message-passing procedure.

iii

The implementation is done by using TSMC 0.18μm technology and the synthesis

result shows that for (648,324) irregular LDPC code, this decoder can achieve 8 times

increase in throughput compared to the previous work targeting the same code,

reaching 418 Mbps at the frequency of 200MHz.

Chapter 3 [A partially-parallel LDPC decoder targeting high throughput and

low hardware cost] proposed a sum-delta message passing (SDMP) schedule based

on the DVMP schedule which can keep the advantages of the DVMP schedule while

decrease the area of the decoder.

Registers and memory are optimized to store only the frequently used messages to

decrease the hardware cost. An efficient pipeline structure is utilized to boost the total

throughput. The synthesis is done by TSMC 0.18μm technology which demonstrates

that for (648,324) irregular LDPC code, this decoder achieves 7.5X improvement in

throughput compared to the previous work targeting the same code, which reaches

404 Mbps at the frequency of 200MHz. The decoder can also achieve a 11% area

reduction compared to the previous work. The backend design of this decoder is also

done by Synopsys Astro with ARM’s Artisan SAGE-X 0.18μm 1P6M stand-cell

library for TSMC, the layout area of this decoder is 13.69mm2.

Chapter 4 [Self-adjustable offset min-sum algorithm targeting high BER

performance and low hardware cost] proposed a novel self-adjustable offset

min-sum LDPC decoding algorithm for ISDB-S2 application.

The existing LDPC decoding algorithms can either be categorized into

Belief-Propagation (BP) –based algorithms which can achieve good BER

performance but with large hardware cost, or Min-sum (MS) –based algorithms

which consumes small hardware cost but degrades the BER performance.

In this chapter, a uniform approximation of the check node operation through

mathematical induction on Jacobian logarithm is presented for the first time, and

theoretically shows that the offset value is mainly dependent on the difference

between the two most unreliable inputs from the bit nodes. The algorithm proposed

iv

can adjust the offset value according to the inputs during the iterative decoding

procedure. Simulation results for all 11 code rates of ISDB-S2 demonstrate that the

proposed method can achieve an average of 0.12dB gain under the same BER

performance, compared to the MS based algorithms, and consumes only 1.21%

computation complexity compared to BP-based algorithms in the best case.

Chapter 5 [Data conflict resolution for layered schedule targeting high BER

performance] proposed a novel selective recalculation method to solve the data

conflict problem for applying layered schedule to ISDB-S2 LDPC codes.

The data conflict happens when layered algorithm is directly applied to ISDB-S2

codes. This problem arises as the layered algorithm adopts a parallel computation

among a layer of several rows, which ignores the data dependencies of A Posterior

Probability (APP). The selective recalculation method proposed in this chapter can

determine the inaccurately calculated values based on a recalculation decision rule,

and correct them accordingly. By applying this selective recalculation method, the

layered algorithm can achieve conflict free BER performance.

Chapter 6 [Conclusion] summarizes the results of this work and discuss the

future work.

v

ACKNOLEDGEMENTS

First of all, I would like to express my sincere gratitude to my advisor, Professor

Satoshi Goto at Waseda University, who has constantly guided and supported me

during my master and doctor period. I got advices from him in each research meeting

and for every work I have done. He inspired my interest in research and also helped

me a lot in my life.

I would also like to express my appreciation to Professor Takeshi Yoshimura,

Professor Shinji Kimura, at Waseda University for the help and guidance to my

research. I learned the basic knowledge of the VLSI design in their courses which are

very important in the research. I express my cordial appreciation to thank Dr. Atsuki

Inoue in Fujitsu Labs, whose suggestions, comments and guidance were invaluable to

the completion of this work.

I am grateful to Professor Takeshi Ikenaga at Waseda University for the valuable

knowledge I learned in his courses. It is also a pleasure to thank many of my

colleagues who have constantly supported me and made this thesis possible,

especially to Dr. Shinpei Hijiya, Mr. Hiroshi Nakayama and Mr. Makoto

Hamaminato in Fujitsu Labs. Also, I would like to thank all the students in Goto lab.

They gave me a lot of help and advices in my research and made my life in Waseda a

wonderful memory.

Finally, I thank my parents, Qihua Ji and Yuqin Li, for their kind support over

the years.

vi

vii

CONTENTS

ABSTRACT ... i

ACKNOLEDGEMENTS ... v

LIST OF FIGURES ... x

LIST OF TABLES ..xii

1 Introduction ... 1

1.1 LDPC codes and LDPC decoders .. 1

1.2 LDPC Code Representation ... 4

1.2.1 Parity Check Matrix ... 4

1.2.2 Tanner graph .. 5

1.3 Message passing (MP) decoding algorithm ... 6

1.3.1 Belief Propagation (BP) algorithm .. 8

1.3.2 Min-sum Algorithm ... 11

1.3.3 Normalized min-sum (NMS) algorithm and offset min-sum (OMS)

algorithm .. 11

1.4 Layered algorithm .. 12

1.5 Design challenges of LDPC decoders .. 14

1.5.1 BER performance ... 15

1.5.2 Hardware cost .. 15

1.5.3 Throughput ... 16

1.6 Motivation of this work .. 16

1.7 Contribution .. 18

1.7.1 High throughput partially-parallel irregular LDPC decoder 18

1.7.2 An improved design for low area cost application 18

1.7.3 Self-adjustable offset min-sum algorithm targeting high BER

viii

performance and low hardware cost .. 19

1.7.4 Data conflict resolution for layered schedule targeting high BER

performance ... 20

1.8 Organization of the dissertation .. 20

2 A partially-parallel LDPC decoder targeting high throughput 21

2.1 Introduction .. 21

2.2 Proposed delta-value based message passing (DVMP) schedule 22

2.2.1 Accelerated message passing algorithm .. 22

2.2.2 Motivation .. 24

2.2.3 Delta-Value Based Message Passing Schedule 24

2.3 Proposed high throughput design ... 27

2.3.1 High throughput row operation module ... 27

2.3.2 High throughput column operation module 30

2.3.3 High throughput pipeline schedule .. 32

2.4 Implementation and result .. 34

2.4.1 Implementation details ... 35

2.4.2 Synthesis result .. 36

2.5 Conclusion .. 38

3 A partially-parallel LDPC decoder targeting high throughput and low hardware

cost 39

3.1 Introduction .. 39

3.2 Proposed sum-delta message passing (SDMP) schedule 40

3.3 High throughput design .. 43

3.3.1 SDMP based column operation module ... 43

3.3.2 Pipeline schedule ... 44

3.4 Low area design .. 46

3.5 Implementation and result .. 47

3.5.1 Implementation details ... 47

3.5.2 Synthesis result .. 49

3.6 Conclusion .. 53

ix

4 Self-adjustable offset min-sum algorithm targeting high BER performance and

low hardware cost .. 54

4.1 Introduction .. 54

4.2 MS-based approximation and BP-based approximation 56

4.2.1 MS-based approximation ... 57

4.2.2 BP-based approximation .. 58

4.3 Proposed self-adjustable offset min-sum algorithm 60

4.3.1 Proposed approximation of BP algorithm .. 61

4.4 Simulation result ... 64

4.5 Comparison of required CNR ... 67

4.6 Comparison of computation complexity and hardware cost 69

4.7 Conclusion .. 72

5 Data conflict resolution for layered schedule targeting high BER performance .. 74

5.1 Introduction .. 74

5.2 Data conflict ... 76

5.2.1 Reason for data conflict ... 76

5.2.2 Previous data conflict resolution .. 78

5.3 Proposed data conflict resolution by selective recalculation 81

5.3.1 Selective recalculation scheme .. 81

5.3.2 Realization of selective recalculation scheme 86

5.4 Simulation result ... 87

5.4.1 BER performance ... 87

5.4.2 Comparison of required CNR .. 90

5.5 Conclusion .. 92

6 Conclusion .. 93

6.1 Summary of results ... 93

6.2 Future work .. 94

REFERENCE ... 96

LIST OF PUBLICATIONS ... 102

x

LIST OF FIGURES

Figure 1.1 LDPC codes: (a) regular LDPC code, and (b) irregular LDPC code 2

Figure 1.2 LDPC decoders: (a) fully-parallel LDPC decoder, and (b)

partially-parallel LDPC decoder ... 3

Figure 1.3 IEEE802.11n parity check matrix ... 5

Figure 1.4 Tanner graph of a parity check matrix ... 6

Figure 1.5 Transmission model using LDPC code ... 7

Figure 1.6 Flowchart of LDPC decoding algorithm ... 9

Figure 1.7 Flowchart of layered LDPC decoding algorithm 13

Figure 2.1 Accelerated message passing algorithm: (a) flowchart of accelerated

MP algorithm and (b) parity check matrix of motivation example 23

Figure 2.2 Flowchart of proposed delta-value message passing algorithm 26

Figure 2.3 Previous comparison scheme in row operation module 28

Figure 2.4 Proposed comparison scheme in row operation module 29

Figure 2.5 Example of column operation: (a) column after column scheme (b)

parallel scheme .. 31

Figure 2.6 Architecture of proposed DVMP-based column operation module 32

Figure 2.7 Timing schedule of the decoder applying DVMP schedule 33

Figure 2.8 Bit error rate performance of the decoder applying DVMP schedule

 ... 34

Figure 2.9 Block diagram of the decoder applying DVMP schedule 35

Figure 3.1 Sum-delta message passing schedule: (a) parity check matrix of

motivation example, and (b) flowchart of proposed sum-delta message

passing schedule .. 41

xi

Figure 3.2 Architecture of proposed SDMP-based column operation module 43

Figure 3.3 Timing schedule of the decoder applying SDMP schedule 44

Figure 3.4 Bit error rate performance of the decoder applying SDMP schedule .. 45

Figure 3.5 Block diagram of the decoder applying SDMP schedule 48

Figure 3.6 Layout of the decoder .. 52

Figure 4.1 Requirement for ISDB-S2 LDPC decoder .. 55

Figure 4.2 f(x)=ln(1+e-|x|) .. 59

Figure 4.3 Iterative calculation for row operation using BP-based scheme 60

Figure 4.4 BER performance comparison for rate 3/5 .. 65

Figure 4.5 BER performance comparison for rate 3/4 .. 66

Figure 4.6 f(x) and its approximation function Δ(x) ... 67

Figure 4.7 Required CNR calculation using extrapolation 68

Figure 4.8 Average required CNR vs. average computation complexity 71

Figure 4.9 Average required CNR vs. area ... 72

Figure 5.1 Example of data conflict in layered algorithm 77

Figure 5.2 BER performance comparison of different solving strategies for data

conflict problem for rate 7/8 ... 81

Figure 5.3 Recalculation decision rule for Si(α) and Si(sum) 83

Figure 5.4 Selective recalculation scheme .. 84

Figure 5.5 Example of data conflict resolution by selective recalculation 85

Figure 5.6 BER performance comparison for rate 3/5 (including layered schedule)

 ... 89

Figure 5.7 BER performance comparison for rate 3/4 (including layered schedule)

 ... 90

xii

LIST OF TABLES

Table 2.1 Composition of the decoder core implementing DVMP schedule 36

Table 2.2 Synthesis result of the LDPC decoder implementing DVMP schedule 37

Table 3.1 Comparison of storage area (μm2)for messages in TSMC 0.18μm 47

Table 3.2 Composition of the decoder core implementing SDMP schedule 49

Table 3.3 Synthesis result of the LDPC decoder implementing SDMP schedule 50

Table 3.4 Synthesis result of the LDPC decoder implementing SDMP schedule

(continued) .. 51

Table 4.1 Comparison of required CNR (dB) ... 69

Table 4.2 Comparison of computation complexity and hardware cost 70

Table 5.1 Required CNR for different layer sizes (dB) .. 80

Table 5.2 Comparison of required CNR after applying layered schedule (dB) 91

1

1 Introduction

In this chapter, a brief introduction of this thesis is provided. First of all, the basic

knowledge of LDPC codes and LDPC decoders are described. Then the state of art

LDPC decoder design and design challenges are introduced together with the

motivation of this work, and the contribution is summarized, after which the thesis

organization is provided.

1.1 LDPC codes and LDPC decoders

Low-Density Parity-Check (LDPC) code is an error correcting code originally

proposed by Gallager in 1963[1], but soon forgotten by the scientific world because of

the incapability of the microelectronics technology of that time. However, the recent

requirement for modern communication systems to operate very close to the Shannon

limit of channel capacity, the theoretical maximum [2], led to the rediscovery of the

LDPC codes by Mackay and Neal [3] in 1996. After that irregular LDPC codes are

constructed enabling data transmission rates close to the Shannon Limit [4], [5]. On

the other hand, the LDPC decoding algorithm is inherently parallel and is easier to be

implemented than its comparator turbo codes, thus making it more attractive to

researchers [5]. As a result, they have been adopted for the 10GBase-T [6], the

DVB-S2 [7], WLAN (IEEE802.11n) [17] and WiMAX (IEEE 802.16e) [8].

There are two kinds of LDPC codes: regular codes and irregular codes, as shown

in Figure 1.1. The number of ”1” in one row is called the row weight (wr), the number

of ”1” in one column is called the column weight (wc). If the row weight is the same

and the column weight is the same, it is called regular LDPC code, as shown in

2

Figure 1.1(a). Regular codes are easy to be implemented in hardware while suffering

a main problem that the Bit Error Rate (BER) performance is relatively worse than

that of irregular codes [5]. As for irregular LDPC code, as shown in Figure. 1.1 (b),

the row weight is different and the column weight is different. Although it has good

error correction ability, irregularity results in hardware complexity and inefficiency in

terms of reusability of functional units.

Figure 1.1 LDPC codes: (a) regular LDPC code, and (b) irregular LDPC code

As for the hardware implementation, LDPC decoders can be categorized as

fully-parallel decoder and partially-parallel decoder, as shown in Figure 1.2.

Fully-parallel LDPC decoder, as shown in Figure 1.2(a), does the row operations and

column operations simultaneously for all the rows and columns, which can achieve

higher throughput with routing complexity and area overhead [9]. In addition,

fully-parallel LDPC decoder requires registers instead of SRAM banks for the row

operation modules and the column operation modules. Therefore, the wiring area

becomes a significant problem and the hardware architecture is fixed according to the

parity check matrix. However, the partially-parallel decoder, as shown in Figure

1.2(b), does the row operations and column operations in groups by reusing the

functional units. Figure 1.2(b) shows an example of partially parallel decoder which

has one row operation module and one column operation module, respectively. In this

way, area and power consumption can be reduced by reusing the functional units but

with relatively low throughput [10], [11].

3

(a)

(b)

Figure 1.2 LDPC decoders: (a) fully-parallel LDPC decoder, and (b)
partially-parallel LDPC decoder

4

1.2 LDPC Code Representation

There are two ways to represent LDPC codes: parity check matrix and tanner graph.

Parity Check matrix can provide a direct view of the LDPC code in a mathematical

way while through Tanner graph we can clearly see the connection between check

nodes and bit nodes.

1.2.1 Parity Check Matrix

The LDPC codes can be defined by a parity check matrix HMN as shown in Equation

(1.1), where M and N represent the number of rows and the number of columns in the

parity check matrix. Structured LDPC codes can be divided into B × D sub-blocks,

where B and D are the number of row-blocks and column-blocks respectively. Each

sub-block matrix is a b×b square matrix, obtained through right shifting the identity

matrix Ib×b by a specific number. The parity check matrix shown in Figure 1.3 is the

targeted parity check matrix in Chapter 2 and Chapter 3. It is a 324 × 648 structured

matrix (each sub-block is 27bits×27bits) defined in IEEE 802.11n standard [17] with

code rate of 1/2 and code length of 648 bits. It has 12 row-blocks and 24

column-blocks. In this figure, each small square represents a 27bits×27bits sub-block

and sub-blocks in one row constitute one row-block, sub-blocks in one column

constitute one column-block. Blank squares represent for zero sub-blocks while

squares with lines are the sub-blocks who are obtained through right shifting the

identity matrix.

5





















10011010

01100110

10101001

01010101

48H (1.1)

12
 r

ow
-b

lo
ck

s

Figure 1.3 IEEE802.11n parity check matrix
(24✕12 sub-blocks, each is 27bits✕27bits)

1.2.2 Tanner graph

LDPC codes can be represented effectively by a bi-partite graph called a Tanner graph.

There are two classes of nodes in a Tanner graph, “Bit Nodes” and “Check Nodes”.

The Tanner graph of a code is drawn according to the following rule: Check node cm

(m=1,…, M) is connected to Bit node bn (n=1,…, N) whenever element hmn in H is

“1”. Figure 1.4 shows a Tanner graph and the corresponding parity check matrix is

also shown. When there is a “1” in the parity check matrix, there is a connection

between the corresponding bit node and check node.

6





















10011010

01100110

10101001

01010101

H

Figure 1.4 Tanner graph of a parity check matrix

1.3 Message passing (MP) decoding algorithm

The model of the communication system using LDPC code is demonstrated in Figure

1.5. Parity data is added to the transmitted data (Tx) to ensure H×Tx =0 in the sender

part. The received data (Rx) should be correct if H×Rx=0. However because of the

channel noise, H×Rx≠0 often happens. In the receiver, LDPC decoder is used to

correct the received data until H×Rx=0.

7

 

 



 

   

 




000000

100100

1
0

0
1

0
0

0
1

0
0

0
0

0
0

0
0

1
0

0
0

1
0

0
1

'
R

x
H

 

 



 

   

 




000010

100110

1
0

0
1

0
0

0
1

0
0

0
0

0
0

0
0

1
0

0
0

1
0

0
1

R
x

H

 

 



 

   

 




000000

100100

1
0

0
1

0
0

0
1

0
0

0
0

0
0

0
0

1
0

0
0

1
0

0
1

Tx
H

Figure 1.5 Transmission model using LDPC code

8

The encoding for LDPC code is relatively easy, while the decoding process is

complicated and not easy to be implemented in hardware. In this section, basic

decoding algorithms for LDPC code are introduced. The decoding algorithm for

LDPC code is called message passing algorithm [1] which passes the messages

between check nodes and bit nodes by performing row and column operations

iteratively. It can also be called Two Phase Message Passing (TPMP) algorithm in

contrast to layered algorithm which will be introduced in Section 1.4. According to

the different formula used in the message passing algorithm, several kinds of message

passing algorithms can be defined.

1.3.1 Belief Propagation (BP) algorithm

We first define the column index sets A(m) and the row index sets B(n)as follows:

 1)( mnHnmA

 1)( mnHmnB

For the AWGN channel with noise variance σ2 and received signal yi, the

conditional probability of being xi = 0 or xi = 1 is represented as follows:

)
2

)1(
exp(

2

1
)1|(

)
2

)1(
exp(

2

1
)0|(

2

2

2

2

2

2











i
ii

i
ii

y
xyP

y
xyP

The input to the message passing algorithm is initialized as message n . As a

Log Likelihood Ratio (LLR), the initial message n for BPSK modulation can be

represented as follows:

)
2

)1(
exp(

2

1

)
2

)1(
exp(

2

1

)1|(

)0|(
ln

2

2

2

2

2

2




















n

n

nn

nn
n

y

y

xyP

xyP

△

△

9

2

2

2

2

2

2
2

)1(

2

)1(




n

nn

y

yy









Figure 1.6 shows the flowchart of LDPC decoding algorithm. Following six

steps shows the detailed process of message passing algorithm:





Figure 1.6 Flowchart of LDPC decoding algorithm

Let λn denote the Log-Likelihood Ratios (LLR) of the bit node n of the received

codeword from the channel, αmn be the message sent from check node m to bit node n,

βmn be the message sent from bit node n to check node m, and sumn be the A

Posteriori Probability (APP) message of the bit node n of the codeword.

10

Step 1 [initialization]

Compute the log likelihood ratio (LLR) n for n = 1,2,…,N using the following

equation, where σ2 is variance of the noise generated by the AWGN Channel.

2/2  nn y

Set  mn= n for each (m,n) satisfying Hmn=1. Set the loop counter l = 1, and the

maximum number of iterations is set to lmax.

Step 2 [row operation]

It can also be called check node operation.

For all the check nodes Cm in the order from m=1,2,…,M, compute the

intermediate messages  mn according to the following equation, where each set

(m,n) satisfies Hmn = 1.

))
2

tanh((tanh2 '

\)('

1 mn

nmAn
mn




  (1.2)

Step 3 [column operation]

It can also be called bit node operation.

For all the bit nodes bn in the order from n = 1,2,…,N, compute the message βmn

with the following equation, where each set (m,n) satisfies Hmn = 1.





mnBm

nmnmn
\)('

' (1.3)

Step 4 [APP update operation]

Compute all the APP data sumn for n = 1,2,.., N.





)('

'
nBm

nmnnsum  (1.4)

Step 5 [parity check]

Compute all the tentative LDPC code bits nŷ for n = 1,2,.., N.









1)(,1

1)(,0
ˆ

n

n
n sumsign

sumsign
y

If the tentative code word)ˆ,,ˆ,ˆ(21 Nyyy  satisfies following equation, output

the code word, and terminate the message passing algorithm, otherwise go to Step 6.

11

0)ˆ,,ˆ,ˆ(21  T
NyyyH 

Step 6 [increment counter]

If maxll  , set the loop counter 1 ll and go to Step 2. Otherwise output the

tentative code word)ˆ,,ˆ,ˆ(21 Nyyy  and end the algorithm.

1.3.2 Min-sum Algorithm

In the row operation in the BP algorithm, there is a non-linear Hyperbolic function

(Equation (1.2)), which is hard to be implemented in the hardware. The hardware for

the Hyperbolic function can be realized by Look Up Table (LUP) or linear

approximation [38][39][40]. A famous approach called min-sum (MS) algorithm

which uses Equation (1.5) is widely used in the hardware implementation [18].

||min)('
\)('

'
\)('

mn
nmAn

mn
nmAn

mn sign 




  (1.5)

The above equation shows that the min-sum algorithm only uses addition,

minimization and XOR operation for the procedure, which is suitable for the hardware

implementation.

1.3.3 Normalized min-sum (NMS) algorithm and offset

min-sum (OMS) algorithm

Although MS algorithm can be easily implemented in hardware, it suffers a large

performance degrading which encourages further researches to find better

approximation based on the MS algorithm. For example, a normalization factor or

offset factor is applied to the MS algorithm, which forms the well-known Normalized

Min-sum algorithm (NMS) and Offset Min-sum algorithm (OMS) [19] [20] [21] [22]

[23] [24].

12

The row operation with Equation (1.6) and Equation (1.7) is called normalized

min-sum algorithm and offset min-sum algorithm, respectively.

||min)('
\)('

'
\)('

mn
nmAn

mn
nmAn

mn sign 




  (1.6)

)0,||minmax()('
\)('

'
\)('

 



 mn

nmAn
mn

nmAn
mn sign (1.7)

The above equations also demonstrate an easy implementation in hardware with

addition, minimization, XOR and shift operation.

1.4 Layered algorithm

Layered decoding algorithm is another family of LDPC decoding algorithm. It was

first proposed in [26] with the name of Turbo Decoding Message Passing (TDMP)

algorithm. Recently, because of the layer based operation, it is also called layered

decoding algorithm [27]. A layer consists of several rows in the parity check matrix

and particularly, the layer for structured parity check matrix can be the row-block of

the parity check matrix. Layered decoding algorithm has fast convergence speed

compared to message passing algorithm, therefore, the iterations needed to decode the

codeword is decreased, thus increasing the throughput and decreasing the power [34].

 Figure 1.7 shows the flowchart of layered algorithm. Layered algorithm is

repeated for each horizontal layer and the updated A Posteriori Probability (APP)

messages are passed between layers. Let λn denote the Log-Likelihood Ratios (LLR)

of the bit node n of the received codeword from the channel, αmn be the message sent

from check node m to bit node n, βmn be the message sent from bit node n to check

node m, and sumn be the APP message of the bit node n of the codeword and be

initialized as λn. The detailed procedure can be described in the following seven

steps:

13

start

initialization

bit node operation

check node operation

parity
check

end

α

APP update operation

sum

λ

β

last layer
judgement

Y

Y

N

N

Figure 1.7 Flowchart of layered LDPC decoding algorithm

Step 1 [initialization]

Compute the log likelihood ratio (LLR) n for n = 1,2,…,N using following

equation, where σ2 is variance of the noise generated by the AWGN Channel.

2/2  nn y

Set sumn= n for each (m,n) satisfying Hmn=1. Set the loop counter l = 1, and the

maximum number of iterations is set to lmax.

Step 2 [bit node operation]

For each bit node bn inside the current layer in the order from n = 1,2,…,N,

compute the message βmn with the following equation, where each set (m,n) satisfies

Hmn = 1.

mnnmn sum  

14

Step 3 [check node operation]

For all the check nodes Cm in the current layer in the order from m=1,2,…,M,

compute the intermediate messages  mn according to the following equation, where

each set (m,n) satisfies Hmn = 1.

||min)('
}{\)('

'
}{\)('

mn
nmAn

mn
nmAn

mn sign 




where  1)( mnHnmA .

Step 4 [APP update operation]

The APP messages in the current layer are updated by:

mnmnnsum  

Step 5 [last layer judgement]

Decide if there is next layer in this iteration. If there is, back to Step 2 to continue

to do the operation for the next layer. If there is not, go to step 6.

Step 6 [parity check]

Compute all the tentative LDPC code bits nŷ for n = 1,2,.., N.









1)(,1

1)(,0
ˆ

n

n
n sumsign

sumsign
y

If the tentative code word)ˆ,,ˆ,ˆ(21 Nyyy  satisfies following equation, output

the code word, and terminate the message passing algorithm.

0)ˆ,,ˆ,ˆ(21  T
NyyyH 

Step 7 [increment counter]

If maxll  , set the loop counter 1 ll and go to Step 2. Otherwise output the

tentative code word)ˆ,,ˆ,ˆ(21 Nyyy  and end the algorithm.

1.5 Design challenges of LDPC decoders

Although many works have been done on LDPC decoder design, there still remains

15

challenges to design the decoder for specific applications.

1.5.1 BER performance

As an error correcting technique, the BER performance is always an important metric

for the design. The higher the BER performance is, the higher the error correcting

ability is. As for some communication system which demands very high error

correcting ability, the design becomes extremely difficult [42] [43].

Basically, BP algorithm can provide the best BER performance, but it is not

hardware-friendly due to the need of implementation of a non-linear Hyperbolic

function (Equation (1.2)). Basically it can be implemented by Look Up Table (LUT)

or linear approximation [38][39][40]. However, not only the hardware implementation

of LUT or linear approximation consumes large hardware cost, but also the BER

performance will degrade through the approximations.

On the other hand, MS algorithm, NMS algorithm and OMS algorithm can be

implemented in quite simple hardware, but the BER performance is degraded

compared to BP algorithm which is certainly not enough for some applications which

require very high error correcting performance such as the broadcasting application

[18][19].

1.5.2 Hardware cost

Compared to other error correcting codes like convolutional code or turbo code,

LDPC code has the best error correcting ability. However, the largest issue for LDPC

decoder is the relatively large area for implementing because of the large quantity of

message exchanges between the check nodes and bit nodes. The storage used to store

the intermediate messages consumes almost half of all the LDPC decoder which is

also a main reason for the large hardware cost [14]. The reason why LDPC code has

16

not completely taken place of all the other error correcting code in the real application

is because of the large hardware cost problem. So from this point of view,

partially-parallel LDPC decoder which can reuse the function units and has relatively

small area has become more and more popular [13] [14] [25].

 On the other hand, the row operation of LDPC decoding algorithm performs an

important role in the complexity of LDPC decoder. As introduced in Section 1.5.1, BP

algorithm can achieve good BER performance but with large hardware cost, and the

hardware cost of MS algorithm, NMS algorithm, OMS algorithm is relatively small

but the BER performance is also degraded [18] [19]. There is a tradeoff between the

BER performance and hardware cost, and it is still a challenge in LDPC decoder

design.

1.5.3 Throughput

Because of the growing need of small hardware for manufacture process,

partially-parallel LDPC decoder is basically used for modern LDPC decoder design.

But the throughput is relatively low compared to the fully-parallel LDPC decoder [10]

[11] [14]. However, high throughput is required to ensure the large amount of data

transmission in real-time communication systems. There is a tradeoff between

hardware cost and throughput, and it is another big challenge in LDPC decoder

design.

1.6 Motivation of this work

As introduced in Section 1.3, LDPC code is very suitable for hardware

implementation by utilizing a parallel decoding algorithm called Message-Passing

(MP) algorithm [1]. In the last few years, researches have been done on designing

specific decoder architectures for LDPC implementations, seeking for the best

17

trade-off between area, power consumption and performance [10] [11] [12] [13] [14].

The LDPC decoders that have been designed share the same primitive processing

elements: check functional unit (CFU) performing row operations for check nodes and

bit functional unit (BFU) performing column operations for bit nodes. These

processing elements are connected according to the Tanner graph, a graph

representing the relation between bit nodes and check nodes. The MP algorithm

exchanges messages between check nodes and bit nodes by performing row and

column operations iteratively.

The authors in [13] proposed an accelerated message-passing schedule, which

only performs those column operations whose corresponding check nodes have been

updated by the row operations, which is demonstrated to be more efficient than the

basic algorithm. A partially-parallel LDPC decoder based on the accelerated MP

schedule is introduced in [14] to support for irregular LDPC code for IEEE802.11n

application. Although the partially-parallel irregular LDPC decoder proposed in [14]

can improve the error correction performance, it suffers a main problem that the

overall throughput is relatively low compared with the regular or fully-parallel

irregular LDPC decoder (eg. [15], [16]). Considering the fact that throughput is an

essential metric in real-time communication systems applying LDPC code for

IEEE802.11n application, good tradeoff between hardware cost and throughput for

irregular LDPC decoder is required.

On the other hand, LDPC code is also used in the Integrated Services Digital

Broadcasting via Satellite - Second Generation (ISDB-S2) application in Japan.

Previous decoding algorithms for LDPC decoders can either achieve very high BER

performance by implementing very complicated hardware (Belief-Propagation –based

algorithms)[29][30], or achieve small area cost in the sacrifice of degrading BER

performance (Min-sum –based algorithms)[31][32]. However, as long as the stable

transmission is necessary for satellite broadcasting, very high BER performance is a

key request for the design. But as for the manufacture demand, Belief-Propagation

–based algorithms with large area cost is not a good option for LDPC decoder design

for ISDB-S2. So a good tradeoff between BER performance and hardware cost for

18

LDPC decoding algorithm targeting ISDB-S2 is another topic of this work.

1.7 Contribution

In this dissertation, we mainly focus on two issues: the LDPC decoder design for

IEEE 802.11n application targeting high throughput and low hardware cost; an

improved LDPC decoding algorithm for ISDB-S2 LDPC decoder targeting high BER

performance and low hardware cost.

1.7.1 High throughput partially-parallel irregular LDPC

decoder

In this issue, we propose a partially-parallel irregular LDPC decoder for IEEE

802.11n standard targeting high throughput applications. The proposed decoder has

several merits:

(i) The decoder is designed based on a novel delta-value based message passing

schedule which facilitates the decoding throughput by redundant computation

removal.

(ii) Techniques such as binary sorting, parallel column operation, high performance

pipelining are used to further speed up the message-passing procedure.

The synthesis result in TSMC 0.18 CMOS technology demonstrates that for

(648,324) irregular LDPC code, our decoder can achieve 8 times increase in

throughput, reaching 418 Mbps at the frequency of 200MHz.

1.7.2 An improved design for low area cost application

Based on the proposed delta-value based message passing schedule, we propose

19

another schedule called sum-delta message passing schedule and a partially-parallel

irregular LDPC decoder targeting high throughput and small area application is

implemented. The design of this decoder is characterized as follows:

(i) Decoding throughput is greatly improved by utilizing the difference value between

the updated and the original value to remove redundant computations.

(ii)Registers and memories are optimized to store only the frequently used messages

to decrease the hardware cost.

The synthesis result in TSMC 0.18 CMOS technology demonstrates that for

(648,324) irregular LDPC code, our decoder achieves 7.5X improvement in

throughput, which reaches 404 Mbps at the frequency of 200MHz, with 11% area

reduction. The synthesis result also demonstrates the competitiveness to the

fully-parallel regular LDPC decoders in terms of the tradeoff between throughput,

area and power. The backend design of this decoder is implemented using TSMC

0.18μm technology and the layout area is 13.69mm2.

1.7.3 Self-adjustable offset min-sum algorithm targeting

high BER performance and low hardware cost

A novel self-adjustable offset min-sum LDPC decoding algorithm is proposed for

ISDB-S2 (Integrated Services Digital Broadcasting via Satellite - Second Generation)

application. We present for the first time a uniform approximation of the check node

operation through mathematical induction on Jacobian logarithm. The approximation

theoretically shows that the offset value is mainly dependent on the difference

between the two most unreliable inputs from the bit nodes and the algorithm proposed

can adjust the offset value according to the inputs during the iterative decoding

procedure. Simulation results for all 11 code rates of ISDB-S2 demonstrate that the

proposed method can achieve an average of 0.12dB gain under the same Bit Error

Rate (BER) performance, compared to the Min-sum based algorithms, and can save

98.79% computation complexity compared to BP-based algorithms in the best case.

20

1.7.4 Data conflict resolution for layered schedule targeting

high BER performance

Layered LDPC decoding algorithm is known to achieve high Bit Error Rate (BER)

performance and high throughput for LDPC decoders. However, for ISDB-S2

(Integrated Services Digital Broadcasting via Satellite - Second Generation) LDPC

decoder, applying layered algorithm directly will result in data conflict problem. In

this work, a novel selective recalculation method is proposed to solve the data conflict

problem. It determines the inaccurately calculated values based on a recalculation

decision rule, and correct them accordingly. By applying this selective recalculation

method, the layered algorithm can achieve conflict free BER performance. Simulation

results of applying selective recalculation method to the layered schedule of the

proposed algorithm introduced in Section 1.7.3 demonstrate that the proposed method

can achieve further BER performance improvement, which can achieve an average of

0.2dB gain compared to the MS-based algorithms.

1.8 Organization of the dissertation

The rest of this thesis is organized as follows:

Chapter 2 describes a high throughput partially parallel LDPC decoder based on

Delta-Value based Message Passing Schedule. Chapter 3 provides an improved

design targeting high throughput and low area cost design based on Sum-Delta

Message Passing Schedule. Chapter 4 provides the idea of self-adjustable offset

min-sum algorithm and shows the simulation result. Chapter 5 introduces the idea of

date conflict resolution by selective recalculation for layered LDPC decoding

algorithm. Finally Chapter 6 makes a conclusion over all.

21

2 A partially-parallel LDPC

decoder targeting high

throughput

2.1 Introduction

The authors in [13] proposed an accelerated message-passing schedule, which only

performs those column operations whose corresponding check nodes have been

updated by the row operations, which is demonstrated to be more efficient than the

basic message-passing algorithm. A partially-parallel LDPC decoder based on the

accelerated MP schedule is introduced in [14] to support for irregular LDPC code.

Although the partially-parallel irregular LDPC decoder proposed in [14] can improve

the error correction performance, it suffers a main problem that the overall throughput

is relatively low compared with the fully-parallel LDPC decoder (eg. [15][16]).

Moreover, the throughput of current partially parallel irregular LDPC decoders

designed, such as 54Mbps of [14], is not sufficient for most applications of 802.11n

standard [17], which requires a throughput of up to 330Mbps. From this observation,

there is room for the improvement for partially-parallel irregular LDPC decoders.

In this chapter, we propose an improved MP algorithm and decoder architecture

for irregular LDPC decoder, in this paper, to achieve a nearly 8X speedup with almost

the same BER performance.

The novelties of this decoder in terms of high throughput are as follows:

• The proposed LDPC decoder is based on a novel delta-value message-passing

algorithm suitable for high throughput design.

22

• An improved binary sorting scheme is designed in row operation to reduce the

computation time.

• A parallel structure of bit function unit is designed to speed up the column operation.

• A high performance pipeline structure is used to further speed up the

message-passing procedure.

The synthesis result in TSMC 0.18μm CMOS technology demonstrates that for

(648,324) irregular LDPC code, our decoder can achieve 8 times increasement in

throughput, reaching 418 Mbps at the frequency of 200MHz.

2.2 Proposed delta-value based message passing

(DVMP) schedule

In this section, the accelerated message passing algorithm is illustrated through an

example and an improved message passing schedule is proposed based on the

accelerated message passing algorithm which can achieve high throughput

application.

2.2.1 Accelerated message passing algorithm

In this section, we use an example to demonstrate the problem of the accelerated

message-passing algorithm.

The accelerated message passing schedule, proposed in [13], is well suitable for

irregular LDPC decoder design. The flowchart of the accelerated message passing

algorithm is shown in Figure 2.1(a), with the solid line showing the flowchart of the

algorithm stages and the dotted line showing the data transmission of the storages.

Each iteration of the algorithm is composed of four phases: row operation, column

operation, error correction and parity check. The row operation updates message α

of all check nodes using message β, and sends the message to bit nodes. The column

23

operation updates message β of all bit nodes based on message α and initial

message λ. The error correction calculates the tentative decision and the parity check

operation decides whether another decoding iteration is necessary or not according to

the tentative decision.





Figure 2.1 Accelerated message passing algorithm: (a) flowchart of accelerated
MP algorithm and (b) parity check matrix of motivation example

 The idea is illustrated through an example demonstrated in Figure 2.1(b). In a

simple 3×1 parity check matrix, of which each sub-block is a 3×3 matrix, the row

operations for all the first rows in each sub-block is executed first. Then three α values

are updated, which are  1(1,1),  2(1,2) and  3(1,3) respectively. In the

accelerated MP algorithm, the calculation of  values will be executed right after

the first row operation. The computations of the first column are shown as follows:

24

)1,3()1,1()1()1,2(

)1,2()1,1()1()1,3(

)1,2()1,3()1()1,1(

213

312

321









2.2.2 Motivation

If we consider these column operations that calculate the updated message  ,

only a small part of the operands have been changed since last computation of the

same message  . For example, only  1(1, 1) is changed for calculation of  2(3, 1)

and  3(2, 1) and no operand is changed for calculation of  1(1, 1). A considerable

part of addition operations in column operation, in fact are a repetition of former

computations. And for the targeting parity check matrix, when |B(n)| is large, this

problem becomes more significant as more useless additions are operated. The above

observation demonstrates that accelerated MP scheme still has computational

redundancies, which degrade the efficiency of hardware implementation.

2.2.3 Delta-Value Based Message Passing Schedule

In accelerated MP algorithm, the computation of  for columns with a weight of 12

in the targeted parity check matrix (|B(n)| = 12), requires the addition of 11 

values and one λ value according to Equation (1.3) [13] [14]. This results in a

five-depth addition and thus becomes the bottleneck to get high throughput designs.

However, we propose an improved MP schedule called Delta-Value based

Message-Passing (DVMP) schedule to help solve this bottleneck problem and thus

increases the throughput.

We first introduce the concept of a new message Δα, as follows.

25

),(-),('),(nmnmnm   (2.1)

Back to example in Figure 2.1(b), the calculation can be simplified by adding

only the updated delta-value of message α shown as follows.

)1,1()1,2()1,2(

)1,1()1,3()1,3(

)1,1()1,1(

133

122

11











This new calculation method of message β can remove redundant computations

and reduce the total number of additions in the bottleneck column operation,

especially when |B(n)| becomes larger. For the targeted parity check matrix [17], at

most two message α are updated after certain row operation. Based on this

observation, only a small number of updated α value is sufficient to generate a correct

message  . Therefore, we proposed our DVMP algorithm by only calculating the

delta value of updated α in the row operation to improve the decoding efficiency. In

such scheme, the resulting  can be obtained by at most 2 levels of addition in

DVMP rather than 5 levels in the accelerated MP scheme [13], [14].

The proposed DVMP algorithm is shown in Figure 2.2, with the solid line

showing the flowchart of the algorithm stages and the dotted line showing the data

transmission of the storages. In the initialization step, message  is initialized as

message λ. Then the row operation is executed to update message α according to

Equation (1.6) and generate corresponding Δ according to Equation (2.1) at the

meantime. Next, the column operation calculates message  by the updated α

values as Equation (2.2). The error correction calculates the tentative decision, based

on which a parity check is done after each iteration to determine the termination of the

decoding process.

),(),(),(
\)(D





mnm

nmnmnm  (2.2)

26







Figure 2.2 Flowchart of proposed delta-value message passing algorithm

In Equation (2.2), D(n) are those row numbers of which the message α has been

updated since the last computation of  (m, n) in column n. The total number of

possible addition is reduced from |B(n)| to |D(n)|. And in the situation of the targeted

irregular decoding matrix, this redundancy removal can improve the column operation

by a saving of three level additions, which reduce both the computation time and area

of hardware implementation.

27

2.3 Proposed high throughput design

Apart from the high throughput DVMP schedule, we integrated three different

strategies into the proposed decoder to further speed up the decoding process. In row

operation module, a binary sort scheme is used to shorten the comparison time. In

column operation module, parallel DVMP schedule is used to save the processing

time. Furthermore, a pipeline structure is utilized to speed up the whole processing

procedure.

2.3.1 High throughput row operation module

In the calculation of α value according to Equation (1.6), the minimum and second

minimum  value among a total of |A(m)| values in the same row should be

obtained through a proper comparison scheme. In previous designs [13], [14], simple

sorting algorithms are used to obtain the minimum values, such as the implementation

of bubble sort comparison scheme illustrated in Figure 2.3. Eight  values (|A(m)| =

8 for the targeted matrix) are compared serially to the min1 and min2 to find the

minimum value and the second minimum values from the eight  values. min1 and

min2 at the input side of Figure 2.3 are the initial values of the registers used for

storing the minimum value and the second minimum value.

28

1
2
3
4
5

6
7
8

Figure 2.3 Previous comparison scheme in row operation module

The diamond symbol in Figure 2.3 is a decision process which feeds  to

different output branches based on the relation between  and min1. For example,

 1 is compared with min1 first and the register value of min1 is replaced with  1 if

 1 is smaller, or otherwise sent to compare with min2. In this way, the total number

of clock cycles to get the minimum and second minimum value is 9. These serial

comparison steps, however, requires considerable computational time and becomes

the most time consuming part in row operation when the number of message 

increases greatly in the targeted matrix.

29

>
<

<

<

<

>

>

>

<

<

<

>

>

<

<
>

<

<

<

<

2

3

4

5

1

7

8

8

1

3

5

7

1

5

6

6

2

4

2

6

3

7
3

2
2

5

2

1

Figure 2.4 Proposed comparison scheme in row operation module

In order to improve the hardware performance, a tree structure is proposed,

together with a binary sort to obtain two minimum values in parallel. The modified

sorting scheme requires less area and can generate the result in only five comparison

steps. The detailed comparison procedure in row operation module is shown in Figure

2.4. The upper tree and the lower tree represent respectively the sorting for the

minimum and the second minimum  value among a total of eight values. In the

figure, we assume that the values of eight  at the same row ( 1,  2, . . . ,  8)

comply with the relationship of  1 <  2 < . . . <  7 <  8 and the resulting

30

values are labelled on each data path. In the first step, eight  values are compared

in pairs. The smaller one (e.g.,  1) is remained in the sorting tree for the minimum

value while the larger one (e.g.,  2) is eliminated to the sorting tree for the second

minimum value. Then the values in both trees will continue the comparison process in

pairs with the larger one in the upper tree eliminated to the lower tree. In this manner,

we can get the minimum and the second minimum value at the third and the fifth step

of the operation. Compared with a total 9 clock cycles in [14], our proposed scheme

can complete the comparison in only 2 clock cycles under the frequency of 200MHz,

a 4.5X speedup.

2.3.2 High throughput column operation module

As discussed in Section 2.2.3, the DVMP-based column operation can update 

values by the addition of its original  and at most two updated Δα values according

to Equation (2.2). The number of updated Δ values and the exact position of each

updated Δ in the column operation are determined by the parity check matrix.

Therefore, Equation (2.2) is simply achieved by two addition steps during

implementation. In the first addition step, at most two updated Δ values is added

together for the targeting LDPC code in IEEE802.11n [17]. Then we compute the new

 value by adding the original one and the sum of Δ in the second step. By

adapting the DVMP schedule, not only the computation time of each column

operation is minimized, but also the area of hardware implementation is reduced.

Based on this observation, we can further improve the throughput by applying a

parallel column operation here.

31

Figure 2.5 Example of column operation: (a) column after column scheme (b)
parallel scheme

In previous implementation of the accelerated MP schedule [13], [14], all N

column-blocks are computed in parallel while different columns in one column-block

are calculated in serial as shown in Figure 2.5(a). After the first row operation is

calculated, which is shown as gray rectangulars, column operations are calculated one

by one. This processing procedure requires at most 11 clock cycles for column

computation in the real implementation of the targeting LDPC code [14]. In the

proposed module, message  of all columns, in which there exists an updated  ,

are computed in parallel, as shown in Figure 2.5(b). A hardware implementation for

computing k columns in parallel is shown in Figure 2.6. The resulting parallel

DVMP-based column operation can be computed in one clock cycle, which is 11

times faster than the implementation in [14].

32

β1 (m,n1)

Σ△α1(m’,n1)
+

β2 (m,n1)
+

β 12 (m,n1)
+

β 1 (m,nk)
+

+

β2 (m,nk)
+

β1’(m,n1)

β’2(m,n1)

β’12(m,n1)

β1’(m,nk)

β2’(m,nk)

β12’(m,nk)

Σ△α2(m’,n1)

Σ△α12(m’,n1)

Σ△α1(m’,nk)

Σ△α2(m’,nk)

Σ△α12(m’,nk)

β 12 (m,nk)

Figure 2.6 Architecture of proposed DVMP-based column operation module

2.3.3 High throughput pipeline schedule

In the proposed decoder, pipeline structure is utilized to achieve further speed up of

the procedure, as shown in Figure 2.7. The row operation and column operation

(including message read and write) are divided into four and three pipeline stages

respectively to balance the computation time of each stage. After a further overlap of

the row and column operation based on data dependency information, the message of

a particular row operation and corresponding column operation can be updated after

four clock cycle.

33

Column
Operation

mth

mth

m+1th

m+3th

m+2th

m+4th

Row
Operation

read β, α process β process β write α

read β, α process β process β write α

read β, △ α process △α write β

read β, △ α process △α write β

read β, α process β process β write α

read β, α process β process β write α

read β, △ α process △α write β

read β, △ α process △α write β

read β, α process β process β write α

read β, △ α process △α write β

m+1th

m+3th

m+2th

m+4th

Figure 2.7 Timing schedule of the decoder applying DVMP schedule

During the first clock cycle,  and  values are read in to prepare for a row

operation. In the second and third clock cycles, a tree structure comparison is

conducted for the minimum and second minimum  value, and corresponding 

and Δ values are obtained. In the fourth clock cycle, all related column operations

are computed based on Δ values, and  values are written into memories at

meantime.

34

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/N0(dB)

B
E
R

ref[14]
ref[25]
method 1

Figure 2.8 Bit error rate performance of the decoder applying DVMP schedule

Based on this proposed pipeline structure, the updated message of a specific row

can be used after four clock cycles, in other words, the updated messages of mth row

can be used by (m + 4)th row operation. In [25], the updated messages of mth row can

be used by (m+27)th row operation. Although in [14], the updated message of the

same row is used by (m+3)th row operation, our pipeline structure incurs nearly no

performance degrading compared to [14] as illustrated in Figure 2.8. The reason of the

gap in the figure is that the updated message of mth row can be used at (m+4)th row

other than (m+3)th row in [14], and the sooner the updated messages are used the

better the performance will be. Furthermore, the proposed pipeline structure is more

compact, which improves both the hardware utilization and throughput.

2.4 Implementation and result

35

In this section, the hardware implementation of the proposed partially-parallel

irregular LDPC decoder and the synthesis results are presented.

2.4.1 Implementation details

The proposed decoder is mainly composed of five parts: row operation modules,

column operation modules, parity check, controller and storage parts (memory for 

value, registers for  value, Δ value and tentative decision value), as shown in

Figure 2.9.

M
em

ory
R

egister



R

eg
is

te
r


T

en
ta

tiv
e

D
ec

is
io

n
R

eg
is

te
r

Figure 2.9 Block diagram of the decoder applying DVMP schedule

In the proposed decoder, we design 12 CFUs and 24 BFUs in order to execute

the computation of the same row or column in each sub-block in parallel. Since the

targeted LDPC decoding matrix is irregular, two different row operation modules

(CFU_for_7in and CFU_for_8in), and three different column operation modules

(BFU_for_12in, BFU_for_3in, and BFU_for_2in) are designed for rows and columns

36

with different |A(m)| and |B(n)|. The controller module generates the control signals

for storage and operation modules, while parity check module does the error

correction and the parity check at the end of each iteration. Message  is only used

in the row operation and is stored in memory with corresponding row address. Other

messages like  , which have multiple-access problem, are stored in registers.

Table 2.1 Composition of the decoder core implementing DVMP schedule

Module without DVMP with DVMP

Number of

Gates

Percentage

(%)

Number of

Gates

Percentage

(%)

Row operation modules 49,902 41.17 53,042 53.00

Column operation modules 60,903 50.24 36,619 36.59

Parity check 9,285 7.66 9,258 9.28

Controller 1,124 0.93 1,124 1.13

LDPC decoder core 121,214 100 100,070 100

The detailed composition of the proposed decoder core is listed in Table 2.1,

under the column with DVMP. The result is compared to the implementation without

DVMP, and we can see from the table, the former computation-intensive column

operation modules are reduced because of the use of DVMP algorithm.

2.4.2 Synthesis result

The proposed decoder is implemented under TSMC 0.18um CMOS technology. The

synthesis results are listed in Table 2.2. Ref. [10] is a partially-parallel irregular

decoder whose code length is 8088 bit. And we compare our work with [13], [14]

under the same LDPC code and the same design rule. Under column Ref. [14] is the

37

synthesis result of a partially-parallel irregular LDPC decoder designed in [14], which

is the only design known, targeting the same newly proposed LDPC code in [17]. We

also modified the design in [13] to support the same irregular code with detailed

synthesis result under column Ref. [13]*.

Table 2.2 Synthesis result of the LDPC decoder implementing DVMP schedule

 Ref. [10] Ref. [13]* Ref. [14] Proposed

Design rule TI 0.11μm TSMC 0.18μm

LDPC code 8088 bit

rate 1/2

irregular

802.11n 648 bit rate 1/2 irregular

LDPC decoder Partially-parallel

Throughput 188Mbps

(itr=25,

SNR=NA)

54Mbps

(itr= 5,

SNR = 3.0)

54Mbps

(itr= 5,

SNR = 3.0)

418Mbps

(itr= 5,

SNR = 3.0)

Frequency 212MHz 200MHz 200MHz 200MHz

Memory area 407Kgates 708Kgates 502Kgates 170Kgates

Area w/o wiring 742Kgates 832Kgates 611Kgates 423Kgates

Area w/. wiring N/A 13,090,549μm2 9,004,366μm2 12,930,433μm2

Power(mW)

@200MHz,1.6V

N/A 765.85 486.44 893.18

Because of the pipeline structure along with the improved row and column

operation modules, our proposed decoder requires only 31 clock cycles for a single

iteration and five iterations for codeword correction under SNR of 3.0dB, which can

achieve 8 times throughput than [13], [14]. And it can also achieve more than twice

the throughput than [10] and also requires much smaller gate counts than [10].

38

2.5 Conclusion

In this chapter, a novel high throughput partially-parallel irregular LDPC decoder is

proposed. Row operations and column operations are speeded up by a modified binary

searching scheme and delta-value based message-passing schedule respectively.

Moreover a pipeline structure is utilized to further compact the procedure. The

synthesis result demonstrates that our decoder can achieve a much higher throughput

and almost the same bit error rate performance compared to other partially-parallel

irregular LDPC decoders.

39

3 A partially-parallel LDPC decoder

targeting high throughput and low

hardware cost

3.1 Introduction

Although the decoder proposed in Chapter 2 can achieve a throughput of 418Mbps

which meets the requirements for all the applications for IEEE802.11n, the hardware

overhead is still a challenge in the design. In this chapter, we propose a

partially-parallel irregular LDPC decoder based on the decoder proposed in Chapter 2

and target high throughput and small area applications. The design is based on a novel

sum-delta message passing algorithm characterized as follows:

• The decoder designed is based on a novel sum-delta message passing algorithm

well suitable for high throughput and low area design.

• The decoding process is further speeded up by an improved binary sorting scheme

for row operation and parallel computation for column operation using the proposed

sum-delta message passing algorithm. An efficient pipeline structure is utilized to

boost message-passing throughput.

• The proposed sum-delta message passing algorithm can effectively reduce the

storage area for messages passing through computation units by storing only the

frequently used messages, thus saving the total area.

The synthesis result in TSMC 0.18 CMOS technology demonstrates that for

40

(648,324) irregular LDPC code, our decoder achieves 7.5X improvement in

throughput, which reaches 404 Mbps at the frequency of 200MHz, with 11% area

reduction. The synthesis result also demonstrates the competitiveness to the

fully-parallel regular LDPC decoders in terms of the tradeoff between throughput,

area and power.

3.2 Proposed sum-delta message passing (SDMP)

schedule

Through observing the accelerated message passing algorithm, we found in Equation

(1.3) where message  is obtained by the addition of λ and all connected message

 of the same column except the one at the same row. Similar computations exist

among the calculation of different message  at the same column, such as  1(1, 1),

 2(3, 1) and  3(2, 1) in the example in Figure 2.1(b).

Based on DVMP schedule, we present our SDMP schedule in this section to

address the efficiency issues. The proposed algorithm can improve the overall

throughput and save storage area. We first introduce the concept of a new message

sum, as follows.

(3.1)),()()(
)(





nBm

nmnnsum 

Compared with Equation (1.3),  value can be computed as follows.

(3.2)),()(),(nmnsumnm  

Then message sum instead of message  is stored and passed through different

computation modules to form a new message passing scheme and save computation

cost. The corresponding storage is also reduced from at most 12 message  to a

single message sum. We further simplify the computation of message sum by

41

introducing Δ values. In Figure 3.1(a), let us revisit the example in Figure 2.1(b),

as can be noticed from the example that during the computation of message sum using

Equation (3.1), only one  ( 1(1, 1)) out of three has been updated. Therefore, only

those updated delta value of message α is enough to calculate the correct message

sum.

(3.3)),()()('
)(D





nm

nmnsumnsum 

In Equation (3.3), D(n) are those row numbers of which the message  has

been updated since the last computation of  (m, n) in column n. The total number of

possible addition is reduced from |B(n)| to |D(n)|.

start

end

initialization

row operation

column
operation

error
correction

parity check
N

Y

(b)





sum

(a)

1

1

1

1

1

1

1

1

1

1 2 3

2

1

3

2

1

3

2

1

3

sub- block 1

sub- block 2

sub- block 3

1 2 3

1 2 3

Figure 3.1 Sum-delta message passing schedule: (a) parity check matrix of
motivation example, and (b) flowchart of proposed sum-delta message passing

schedule

42

The proposed SDMP schedule, which is shown in Figure 3.1(b), takes fully

advantage of the improvement compared to DVMP schedule. In the initialization step,

message sum is initialized as message λ. Then the row operation is executed to update

message  according to Equation (1.6), where  value is obtained through

Equation (3.2) using message sum and  , and corresponding Δ is generated at the

meantime. After that, the column operation calculates message sum by the updated

Δ values as Equation (3.3). The error correction calculates the tentative decision,

based on which a parity check is done after each iteration to determine the termination

of the decoding process.

Back to the example in Figure 3.1(a), for the computation of  value in this

example using SDMP schedule, we update sum value using delta-value of message

 first and each  value can be calculated using Equation (3.2) respectively.

)1,2()1('s(2,1)'

)1,3()1('s(3,1)'

)1,1()1('s(1,1)'

)1,1()1()1('s

33

22

11

1











um

um

um

sumum

In this example, the addition depth only decreases from two to one, this is

because the parity check matrix is so small that the advantage of SDMP schedule is

not obvious. But as for the real implementation of the targeted matrix in 802.11n, the

addition depth is decreased significantly using the SDMP schedule. By comparing the

proposed algorithm and the accelerated algorithm, we can see that the benefit of this

SDMP schedule is twofold. First, this calculation method of newly introduced

message sum based on updated message Δ only, can remove the redundant

computations and reduce the total number of addition depth in the column operation,

especially when |B(n)| becomes larger. For the targeted parity check matrix, at most

two messages α are updated after certain row operation (|D(n)| = 2). This will save the

computational depth from 5 levels in the accelerated MP scheme to at most 2 levels,

which improve decoding throughput. On the other hand, by adapting this novel

43

decoding scheme, only one message sum rather than at most 12 message β of each

column is required for storage, which helps reduce area cost. The detailed area saving

strategies are discussed in section 3.4.

3.3 High throughput design

In this section, strategies other than SDMP schedule to achieve high throughput

design in described.

3.3.1 SDMP based column operation module

As discussed in the previous section, the SDMP-based column operation can update

message sum by addition of its original value and at most two updated Δα values

using Equation (3.3). The number of updated Δ values and the exact position of

each updated Δ in the column operation are determined by the parity check matrix.

By adapting the SDMP schedule, not only the computation time of each column

operation is minimized, but also the area of hardware implementation is reduced.

Based on this observation, we can further improve the throughput by applying a

parallel column operation here.

sum(n1)

Σ△α1 (m’,n1)
+

sum(nk)
+sum’(n1) sum’(nk)Σ△αk(m’,nk)

Figure 3.2 Architecture of proposed SDMP-based column operation module

In previous implementation of the accelerated MP schedule [13], [14], all N

column-blocks are computed in parallel while different columns in one column-block

are calculated in serial, which may require at most 11 clock cycles for column

computation. In the proposed module, message sum of all columns, in which there

exists an updated  , are computed in parallel. A hardware implementation for

computing k columns in parallel is shown in Figure 3.2. The resulting parallel

44

SDMP-based column operation can be computed in one clock cycle.

3.3.2 Pipeline schedule

In the proposed decoder, a pipeline structure is utilized to achieve further speed-up of

the procedure, as shown in Figure 3.3. Compared to the pipeline schedule in Chapter 2,

this design needs one more clock cycle to calculate  from sum and  . The row

operation and column operation are divided into five and three pipeline stages

respectively to balance the computation time of each stage.

Column
operation

Row
operation

read sum,α compute α’ compute α’ write α’

compute α’ compute α’ write α’

compute β compute α’ compute α’ write α’

compute β compute α’ compute α’ write α’

compute β compute α’ compute α’

compute β compute α’

compute β

read sum,α compute β

read sum,α

read sum,α

read sum,α

read sum,α

m+1th

m+3th

m+2th

read sum,△α compute sum’ write sum’

read sum,△α compute sum’ write sum’

read sum,△α compute sum’ write sum’

read sum,△α compute sum’

mth

mth

m+1th

m+2th

m+3th

m+4th

m+5th

Figure 3.3 Timing schedule of the decoder applying SDMP schedule

During the first clock cycle,  and sum values are read in to prepare for a row

operation. In the second clock cycle,  value is obtained from  and sum values.

In the third and fourth clock cycles, a tree structure comparison is conducted for the

minimum and second minimum  value, and corresponding  and Δ values

45

are obtained. In the fifth clock cycle, all related column operations are computed

based on sum and Δ values, and α values are written into memories at meantime.

Then the updated  and sum messages will be read in and used by (m + 5)th row

operation. Based on this proposed pipeline structure, the BER performance

comparison with ref. [14] and the proposed decoder in Chapter 2 is illustrated in

Figure 3.4 under the same iteration (itr=5). Method 1 represents the design in Chapter

2 using DVMP schedule and method 2 is the design proposed in this chapter. This

pipeline structure incurs nearly no performance degrading compared to [14]. The

reason of the gap of the BER performance of method 2 and ref. [14] is that the

updated message of mth row can be used at (m+5)th row other than (m+3)th row in [14],

and the sooner the updated messages are used the better the performance will be.

Besides that, the proposed pipeline structure is more compact, which improves both

the hardware utilization and throughput. The number of clock cycles for each iteration

decreased from 256 to 32.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/N0(dB)

B
E
R

ref[14]
method 1
method 2

Figure 3.4 Bit error rate performance of the decoder applying SDMP schedule

46

3.4 Low area design

By adapting the novel SDMP schedule described in Section 3.2, we can further reduce

the memory allocation and save chip area. Let us revisit the motivation example

shown in Figure 3.1(a). Since  values  1(1, 1),  2(3, 1),  3(2, 1) is obtained

and used only in row operation, the storage of message β is no longer required.

Instead, only one message sum(1) for the first column is stored for further

computation. In columns with a weight of 12 in the targeted parity check matrix

(|B(n)| = 12), this strategy will save the area by 11/12 at the best case.

The implementation result demonstrates that using the storage for sum instead of

β in SDMP schedule can save 82% ((1,949,487-347,036)/1,949,487) of the storage

area, as listed in Table 3.1.

 Furthermore, in the proposed SDMP schedule,  value is only required in row

operation for the calculation of Δα, while in former MP scheme, message  is

accessed at both row and column operation. In other words, in former MP scheme,

message  should be accessible by both row and column address, while in SDMP, a

row of message  can be stored in a single memory line, thus saving control logic

and area. Additionally, in SDMP schedule, λ is no longer used in each column

operation, which further saves the storage area. The detailed saving for message 

and λ are also demonstrated in Table 3.1. As we can see from the table, the proposed

method can save a total 60% storage compared to [14].

47

Table 3.1 Comparison of storage area (μm2)for messages in TSMC 0.18μm

 Ref. [14] Proposed Total saving

 1,949,487 0

3,117,887

Sum 0 347,036

 1,949,487 1,695,501

Λ 1,301,845 0

Δ 0 40,395

Total 5,200,819 2,082,932

3.5 Implementation and result

In this section, we present the hardware implementation of the proposed

partially-parallel irregular LDPC decoder, using TSMC 0.18μm CMOS technology

and the synthesis result of the proposed decoder.

3.5.1 Implementation details

The proposed decoder is mainly composed of five parts: row operation, column

operation, parity check, controller and storage parts (memory for  value, registers

for sum value, Δ value), as shown in Figure 3.5.

48

su
m

R
eg

is
te

r
M

em
ory

3 1０ 1１

Input Data

Output Data

R
egister

Row Operation Modules
CFU_for

_７in
CFU_for

_8in

Column Operation Modules

BFU_for
_12in

BFU_for
_3in

BFU_for
_2in

8 4

Parity Check Controller




Figure 3.5 Block diagram of the decoder applying SDMP schedule

In the proposed decoder, we design 12 CFUs and 24 BFUs in order to execute

the computation of the same row or column in each sub-block in parallel. Since the

targeted LDPC decoding matrix is irregular, two different row operation modules

(CFU_for_7in and CFU_for_8in), and three different column operation modules

(BFU_for_12in, BFU_for_3in, and BFU_for_2in) are designed for rows and columns

with different |A(m)| and |B(n)|. The controller module generates the control signals

for storage and operation modules, while parity check module does the error

correction and the parity check at the end of each iteration. Message α is only used in

the row operation and stored in memory with corresponding row address. Other

messages like sum, which have multiple-access problem, are stored in registers.

The detailed composition of the proposed decoder core is listed in Table 3.2. As

we can see from the table, the former computation-intensive column operation

modules are greatly reduced because of the use of SDMP schedule.

49

Table 3.2 Composition of the decoder core implementing SDMP schedule

Module Number of Gates Percentage (%)

Row Operation Modules 81,813 82.48

Column Operation Modules 6,669 6.73

Parity Check 9,258 9.36

Controller 1,419 1.43

LDPC decoder core 99,186 100

3.5.2 Synthesis result

The synthesis results of the proposed decoder are listed in Table 3.3. We compare our

work with typical decoder designs in [9], [10] under the different specifications, and

with [13], [14] under the same LDPC code and the same design rule. The design in [8]

is an irregular partially-parallel decoder targeting a different LDPC code while the

design in [9] is a fully-parallel regular decoder. Under column Ref. [14] is the

synthesis result of a partially-parallel irregular LDPC decoder designed in [14], which

is the only design known, targeting the same newly proposed LDPC code in [17]. We

also modified the design in [13] to support the same irregular code with detailed

synthesis result under column Ref. [13]*. Ref. [25] is the design targeting different

irregular LDPC code in 802.11n. The decoder under column Method 1 is the decoder

introduced in Chapter 2. The decoder under column Method 2 is the decoder

introduced in this chapter.

50

Table 3.3 Synthesis result of the LDPC decoder implementing SDMP schedule

 Ref. [9] Ref. [10] Ref.[25]

Design rule 0.16μm TI 0.11μm TSMC 0.18μm

LDPC code 1024 bit rate 1/2 regular 8088 bit

rate 1/2

irregular

802.11n 1296bit
rate:1/2

irregular

LDPC decoder Fully-parallel Partially-parallel Partially-parallel

Throughput 1Gbps✕1/2

(itr=54, SNR = 3.0dB)

188Mbps

(itr=25, SNR=NA)

1Gbps

(Itr= 5)

Frequency 64MHz 212NHz 200MHz

Memory area N/A 407Kgates No use

Area w/o wiring 1750Kgates 742Kgates 520Kgates

Area w/. wiring N/A N/A 23,528,130μm2

Power(mW) 690

(@64MHz, 1.5V)

N/A 755

Chip area(mm2) N/A N/A N/A

51

Table 3.4 Synthesis result of the LDPC decoder implementing SDMP schedule
(continued)

 Ref. [13]* Ref. [14] Method 1 Method 2

Design rule TSMC 0.18μm

LDPC code 802.11n 648 bit rate 1/2 irregular

LDPC decoder Partially-parallel

Throughput 54Mbps

(itr= 5,

SNR = 3.0)

54Mbps

(itr= 5,

SNR = 3.0)

418Mbps

(itr= 5,

SNR = 3.0)

404Mbps

(itr= 5,

SNR = 3.0)

Frequency 200MHz 200MHz 200MHz 200MHz

Memory area 708Kgates 502Kgates 170Kgates 170Kgates

Area w/o wiring 832Kgates 611Kgates 423Kgates 313Kgates

Area w/. wiring 13,090,549μm2 9,004,366μm2 12,930,433μm2 8,012,999μm2

Power(mW) 765.85 486.44 893.18 712.38

Chip area(mm2) N/A N/A N/A 13.69

(layout)

Because of the novel SDMP schedule along with the improved row and column

operation modules, our proposed decoder requires only 32 clock cycles for a single

iteration and five iterations for codeword correction under Signal-to-Noise Ratio

(SNR) of 3.0dB. In contrast to the partially-parallel decoders in [10], [13], [14], the

proposed decoder achieves much highest throughput for partially-parallel irregular

LDPC decoder. Because of the optimization of storage, the proposed decoder achieves

a gate count reduction of 39% and 11% compared with [13], [14] respectively.

Although it can not achieve as high as the throughput compared with [25], the

proposed decoder consumes less power and area. It also shows the advantage in the

area and power when it is compared to the design introduced in Chapter 2.

When it is compared to the fully-parallel decoder in [9], although it consumes a

52

little more power than [9], the proposed decoder requires only about 1/5 the gate

count of that of [9].

The backend design of the proposed decoder is implemented by Synopsys Astro

with ARM’s Artisan SAGE-X 0.18μm 1P6M stand-cell library for TSMC. The layout

design includes the design setup, floor planning, timing setup, placement, CTS and

routing. The layout is provided in Figure 3.6, where modules are labeled in the figure

and memories on the boundaries are for message α. The size of the chip core after

layout is 13.69mm2(3.7mm × 3.7mm).

Parity
Check

Column
Operation
ModulesSum

Register
Row

Operation
Modules

∆α
Register

Figure 3.6 Layout of the decoder

53

3.6 Conclusion

In this chapter, a novel high throughput low area cost partially-parallel irregular

LDPC decoder is proposed based on the one proposed in Chapter 2. Row and column

operations are speeded up by a modified binary searching scheme and SDMP

schedule respectively. Area cost is decreased because of the use of the proposed

SDMP schedule. The synthesis result demonstrates that our decoder can achieve a

much higher throughput and almost the same bit error rate performance with less area

cost compared to other partially-parallel irregular LDPC decoders. It is also a better

design in terms of tradeoff between throughput, area and power compared to

fully-parallel regular LDPC decoders.

54

4 Self-adjustable offset min-sum

algorithm targeting high BER

performance and low hardware

cost

4.1 Introduction

In Japan, a next generation satellite broadcasting system named "Integrated Services

Digital Broadcasting via Satellite - Second Generation (ISDB-S2)" was proposed by

NHK (Japan Broadcasting Corporation), and is currently under the examination of

Association of Radio Industries and Businesses (ARIB) [28]. To ensure the

transmission quality and high error correction capability, LDPC code is selected as the

error correction code for ISDB-S2 and is expected to achieve a Bit Error Rate (BER)

of 10-11.

Defined by ISDB-S2, the parity check matrices targeted in this work are 11

different codes with code rate ranging from 1/4 to 9/10. The numbers of columns (N)

for all 11 codes are fixed as 44,880 and the numbers of rows (M) are related to the

code rate. And all the codes are structured LDPC codes, with a sub-block size of 374

× 374.

LDPC code can be efficiently decoded through messages exchange between check

nodes and bit nodes by performing check node and bit node operations iteratively.

Among decoding algorithms, Belief Propagation (BP) algorithm, also known as Sum

Product algorithm, is well known for its good error correcting performance. However

it is not hardware-friendly due to the necessity of implementing Hyperbolic functions

55

[1]. Min-sum (MS) algorithm approximates BP algorithm with easy hardware

implementation but greatly degrades the error correcting performance [18]. Recently,

many approaches have been proposed to trade off between the BER performance and

hardware complexity. These approaches can be categorized as two kinds of schemes:

MS-based schemes and BP-based schemes. The MS-based schemes aim at improving

the error correcting performance of the MS algorithm by introducing a multiplied or

additive factor, i.e., Normalized Min-sum (NMS) algorithm and Offset Min-sum

(OMS) algorithm [19]. Later on, some further derivatives of OMS algorithm appear,

such as the Degree-Matched Min-sum (DMMS) algorithm [29] which associates the

offset with the degree of the check node, and the Adaptive Offset Min-sum (AOMS)

algorithm [30] which adapts the offset according to the most unreliable information

sent from the bit nodes. BP-based schemes, on the other hand, approximate the BP

algorithm by calculating the Hyperbolic function term by term using Jacobian

logarithm, such as Modified Min-sum (MMS) algorithm and Delta Min (DM)

algorithm[31][32].

BER Performance

Hardware cost

MS-
based

BP-
based

target

high

low

small large

Figure 4.1 Requirement for ISDB-S2 LDPC decoder

Generally, BP-based algorithms outperform MS-based algorithms in BER

56

performance, but they require larger hardware cost due to the iterative term-based

implementation, as shown in Figure 4.1. Specifically, for the LDPC codes in ISDB-S2,

a maximum of 90 times of computation complexity is introduced compared to MS

algorithm, which directly increases the hardware overhead and power consumption.

As far as the high BER performance requirement of practical ISDB-S2 application is

concerned, MS-based algorithms are not competent enough. On the other hand, the

hardware and power overhead of BP-based algorithms also limit their practical usage

for the highly parallel implementation of ISDB-S2 LDPC decoder. Therefore, a

decoding scheme which can achieve a similar BER performance as BP-based

algorithms while maintaining the low hardware cost, will become the trend of future

LDPC decoder design for next generation satellite applications.

Motivated by this challenging design task, we proposed a hybrid decoding

scheme as an initial attempt for both high BER performance and low hardware cost

design. The algorithm improves the OMS algorithm by a uniform approximation to

the check node computation while the approximation is derived through mathematical

induction on Jacobian logarithm, adopted widely by BP-based algorithms. It utilizes a

self-adjustable offset based on the difference of the two most unreliable input values

from the bit nodes. The simulation results further demonstrate that the proposed

method can not only improve the BER performance compared to the MS-based

schemes with nearly no overhead in hardware cost, but also consumes far less

hardware than the BP-based schemes.

4.2 MS-based approximation and BP-based

approximation

Let λn denote the Log-Likelihood Ratios (LLR) of the bit node n of the received

codeword from the channel, αmn be the message sent from check node m to bit node n,

βmn be the message sent from bit node n to check node m, and sumn be the A Posteriori

57

Probability (APP) message of the bit node n of the codeword. The check node

operation, bit node operation and APP update operation of BP algorithm can be

expressed as Equation (4.1), Equation (4.2) and Equation (4.3), respectively. Note that

A(m) and B(n) are defined as A(m) = {n|Hmn = 1} and B(n) = {m|Hmn = 1}.

))
2

tanh((tanh2 '

\)('

1 mn

nmAn
mn




  (4.1)





mnBm

nmnmn
\)('

' (4.2)





)('

'
nBm

nmnnsum  (4.3)

Since the check node function of BP algorithm is not hardware friendly, varies

researches have been done to approximate the BP algorithm for better hardware

implementation.

4.2.1 MS-based approximation

A simple approximation to Equation (4.1) is called Min-Sum algorithm which uses

the minimum magnitude of input β as a replacement of the Hyperbolic functions, as

shown in Equation (4.4).

||min '
\)('

mn
nmAn

mn 


 (4.4)

Although MS algorithm can be easily implemented in hardware, it suffers a large

performance degrading which encourages further researches to find better

approximation based on the MS algorithm. For instance, a normalization factor or

offset factor is applied to the MS algorithm, which forms the well-known Normalized

MS algorithm and Offset MS algorithm, as shown in Equation (4.5) and (4.6) [19].

||min)('
\)('

'
\)('

mn
nmAn

mn
nmAn

mn sign 




  (4.5)

)0,||minmax()('
\)('

'
\)('

 



 mn

nmAn
mn

nmAn
mn sign (4.6)

58

Note that the normalization factor γ and offset factor ε is not subject to change

during the decoding procedure. Some recent progress claims that techniques to adjust

the offset factor according to either the degree of the check node (DMMS algorithm

[29]) or the minimum output data from the check node (AOMS algorithm[30]) can

achieve better performance. However, DMMS requires significant computation power

to determine the offset factor while the AOMS lacks sufficient theoretical evidence to

support its approximation.

4.2.2 BP-based approximation

We first denote a basic computation in the check node operation of BP algorithm

(Equation (4.2)) as function ⊗:

21
211))

2
tanh()

2
(tanh(tanh2   

 (4.7)

Therefore, Equation (4.2) can be simplified as Equation (4.8).

  
|\)(|

21

211

...

))
2

tanh()...
2

tanh()
2

(tanh(tanh2

nmA

n

n
n







 

 (4.8)

Equation (4.7), the primitive form of Equation (4.8), can be expanded using

Jacobian Logarithm (ln(ea+eb)=max(a,b)+ln(1+e-|a-b|)) twice as follows[31]:

)1ln()2,1max()1ln()21,0max(

)ln()1ln(

1
ln

))
2

tanh()
2

(tanh(tanh2

|21||21|

2121

21

21

211































ee

eee

ee

e

|)))2||1(||)2||1(||)2||,1(min(|)2()1(

)1ln()1ln(|)2||,1(min(|)2()1(||2||1||||2||1||


 


 

ffsignsign

eesignsign

(4.9)

where function f(x) is defined as f(x)=ln(1+e-|x|) as shown in Figure 4.2.

59

Figure 4.2 f(x)=ln(1+e-|x|)

Since f(x) is not hardware friendly, several works focus on the approximation of

Equation (4.9). An MMS algorithm is proposed in [31] with Equation (4.10) as a

substitution of Equation (4.9). Similarly, a DM algorithm is proposed in [32] using

Equation (4.11) to calculate the parameter D in Equation (4.10).

))0,|)2||,1(max(min(|)2()1(21 Dsignsign  

where











else

D

0

1|21|&1|21|5.0

1|21|&1|21|5.0




 (4.10)

||2||1||)0),
2

9.0max((
 whereD (4.11)

Equation (4.10) and Equation (4.11) are then applied iteratively for the check

node operation (Equation 2). Figure 4.2 demonstrates this iterative computation

60

process for message αm1. In each iteration, the ⊗ function of the intermediate result

and a β message is calculated. Therefore, for each α value, a total of (|A(m)|-2) ⊗

computations are required. Since altogether there are |A(m)| α values to be calculated

in one row, the computation complexity of the check node operation is proportional to

|A(m)|×(|A(m)|-2), which is relatively large for some codes in ISDB-S2.

2m

3m
4m

mn
1m




Figure 4.3 Iterative calculation for row operation using BP-based scheme

4.3 Proposed self-adjustable offset min-sum

algorithm

In this section, a novel self-adjustable offset min-sum algorithm is proposed, in which

a uniform approximation for the check node operation of the BP algorithm is

developed through mathematical induction on Jacobian logarithm. The effectiveness

of the proposed approximation is demonstrated by the simulation results of all the 11

parity check matrices in ISDB-S2, showing a better BER performance than MS-based

schemes. The computation complexity and area cost are also analyzed to further

exhibit that the proposed algorithm has much smaller hardware cost than the

BP-based schemes.

61

4.3.1 Proposed approximation of BP algorithm

In order to reduce the computation complexity of check node operation, we first

consider a general case as shown in Equation (4.12). Note that the general case is

targeted here by considering n’∈A(m) rather than n’∈A(m)╲n in Equation (4.2). The

exact calculation of αmn will be explained after the uniform approximation is

derived.

  


)('

'21

'

)('

1))
2

tanh((tanh2

mAn

mnmm

mn

mAn















 (4.12)

Since function ⊗ holds commutative law, we can fairly assume that |βm1| < |

βm2| < … < |βmn’|. Under this assumption, Equation (4.12) can be further

expanded as Equation (4.13) through a mathematical induction based on Equation

(4.9).

|))||(||)||(||)||(|

|)||(||)||(||)||(|

|)|,|,||,)(min(|()()(

))
2

tanh()
2

(tanh(tanh2

1'1312

1'1312

'21'21

'11

mmnmmmm

mmnmmmm

mnmmmnmm

mnm

fff

fff

signsignsign






















(4.13)

The detailed proof of Equation (4.13) is listed below.

(1)The condition of n’= 2 is already proved in Section 4.2.2

(2)Suppose n’= k is correct, consider the situation of n’=k+1

if

|))||(||)||(|

|))||(||)||(|

|)|,|,)(min(|()(

))
2

tanh()
2

(tanh(tanh2

112

112

11

11

mmkmm

mmkmm

mkmmkm

mkm

ff

ff

signsign






















62

is true

|))||(||)||(||)||(|

|))||(||)||(||)||(|

|))||,|,|,)(min(|()()(

))
2

tanh()
2

tanh()
2

(tanh(tanh2

1)1(112

1)1(112

1(11)1(1

)1(11

mkmmmkmm

mkmmmkmm

kmmkmkmmkm

kmmkm

fff

fff

signsignsign































is also true
proof:

2
tanh

))
2

tanh()
2

(tanh(tanh2

)
2

tanh()
2

tanh(

11

1








 mkm

mkm









|))||(||)||(||)||,)(min(|()(

))
2

tanh()
2

(tanh(tanh2

))
2

tanh((tanh2

))
2

tanh()
2

tanh()
2

(tanh(tanh2

)1()1()1()1(

)1(1

)1(1

)1(11
















kmkmkmkm

km

km

kmmkm

fYfsignsign 








|))||(||)||(||)||(|

|)||(||)||(||)||(|

|)||,|,|,)(min(|()()(

|)))|,|,min(||(||))|,|,min(||(|

|)||),||(||)||(|

|)||(||)||(||)|,|,|)(min(min(()()(

))
2

tanh()
2

tanh()
2

(tanh(tanh2

|||)|,|,min(|||

|))||(||)||(||)||),||(||)||(|

|)||(||)||(||)|,|,|)(min(min(()()(

1)1(112

1)1(112

)1(1)1(1

1)1(1)1(

)1(112

1121)1(1

)1(11

11

)1()1()1(112

1121)1(1

mkmmmkmm

mkmmmkmm

kmmkmkmmkm

kkmmkmkm

kmmmkmm

mmkmmmkmkmmnm

kmmkm

mmkm

kmkmkmmmkmm

mmkmmmkmkmmkm

fff

fff

signsignsign

ff

ff

ffsignsignsign

Y

ffff

ffsignsignsign















































































--

Since |A(m)| is usually a large number for ISDB-S2, the implementation of

Equation (4.13) requires a large amount of hardware resources. Hence an efficient

approximation to the equation to reduce hardware cost is a necessity. Based on the

characteristics of function f(x), as shown in Figure 4.3, we find out that f(x) is a

63

monotonically decreasing function with f (x) ≒ 0 when x > 2.5. Because of the

relationships among |βm1|,…, |βmn|, we can derive that |βm2|−|βm1| is the

smallest one among all the arguments of f (x) in the equation, thus −f (|βm2|−|βm1|)

becomes the dominant term of all the function f (x) terms. We can easily figure out,

through the above derivation, the offset term is mainly dependent on the two most

unreliable inputs from the bit nodes which are denoted as βmin1 and βmin2 from

now on. However, simply keeping the dominant term and ignoring all the other ones

degrades the precision of computation. Therefore, we further approximate all the other

ones by multiplying a normalization factor or adding an offset factor to the dominant

term −f (βmin2−βmin1). In this work, we use the normalization factor γ’ and

obtain Equation (4.14) as an approximation to Equation (4.13).

))-('||min)(sgn(min1min2'
\)('

'
\)('

 fmn
nmAn

mn
nmAn

mn 


 (4.14)

As can be seen from Equation (4.2), the computation of αmn is based on βmn’

values with n’∈ A(m)╲n. However, Equation (4.14) is derived considering the βmn’

values with n’∈ A(m). In the following parts, we will discuss, in three different cases,

how we derive the proposed approximation of Equation (4.2) from Equation (4.14).

 Case 1: |βmn| is |βmin1|, the smallest one among all absolute β values. In this

case, |βmin1| should not be included in the computation of αmn. Therefore, |β

min2| and |βmin3| become the minimum value and second minimum value among

all βmn’ (n’∈A(m)╲n). Hence,

))|-(|' min2)(sgn(2min3min'
\)('

 fmn
nmAn

mn 


Case 2: |βmn| is |βmin2|, the second minimum value among all absolute β values.

In this case, |βmin1| and |βmin3| become the minimum value and second minimum

value among all βmn’(n’∈ A(m) ╲n). Therefore,

|))|-|(|' min2)(sgn(1min3min'
\)('

 fmn
nmAn

mn 


Case 3: |βmn| is neither |βmin1| nor |βmin2|. In this case |βmin1|and |β

min2| are still the minimum value and second minimum value among all βmn’ (n’∈

A(m)╲n). Therefore,

64

|))min1|-|min2(|' min2)(sgn('
\)('

 fmn
nmAn

mn 


So altogether three cases should be considered to implement Equation (14),

which gives rise to additional design overhead. To solve the problem, we further

simplify the check node operation. Through simulation, we notice that the

computation of |βmin3|−|βmin2| in Case 1 can be approximated as |βmin2|−|β

min1| , and using –γ’f (|βmin2|−|βmin1|) instead of –γ’f (|βmin3|−|βmin1|) for

Case 2 incurs nearly no performance degrading. Hence, we combine three cases into

one uniform expression shown in Equation (4.15), which greatly reduces the hardware

implementation cost.

|))|-|(|'||min)(sgn(1minmin2'
\)('

'
\)('

 fmn
nmAn

mn
nmAn

mn 


 (4.15)

From Equation (4.15), we can see that the offset factor is self adjustable, during

the iterative decoding, according to the difference of the two most unreliable inputs

from the bit nodes. Such adjustable scheme precisely models the variations of bit node

messages, hence enhances the decoding efficiency.

4.4 Simulation result

 Software simulation of the proposed decoding algorithm has been conducted for

all 11 parity check matrices used in ISDB-S2. The QPSK modulation and AWGN

channel is modeled in the simulation. A total of 10,771,200 input bits are used for

simulation. The maximum number of iteration is set to 50, and the simulation program

terminates when the decoded codeword is a valid one or the maximum iteration times

are achieved.

Figure 4.4 and Figure 4.5 illustrate the simulation result of the BER performance

of BP, NMS, OMS, DMMS, AOMS, MMS, DM and the proposed decoding algorithm

for rate 3/5 and 3/4 , which will be mainly used in ISDB-S2 service. Except BP

algorithm is simulated using floating values, all the intermediate messages of

simulations for the other algorithms are coded in 6 bit sign-magnitude format and the

APP message is realized in an 8 bit sign-magnitude format to avoid overflow. The

65

parameters of all algorithms are chosen to optimize both the BER performance and

hardware implementation as γ=0.875 for NMS (Equation (4.5)), ε= 0.125 for

OMS (Equation (4.6)), and γ’= 0.125 for the proposed method (Equation (4.15)).

Also, for simple hardware implementation, we use the same Δ function Δ(x) =

max(5/8 − |x|/4, 0) as [26] for approximation of function f(x) for the proposed

algorithm in this work. The approximation is illustrated in Figure 4.6. It can be

observed from the figure that the proposed algorithm achieves an average of 0.2dB

gain compared to the MS-based algorithms, and sometimes even outperforms

BP-based algorithms.

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

CNR(dB)

B
E
R

Floating BP
NMS
OMS
DMMS
AOMS
MMS
DM
Proposed

Figure 4.4 BER performance comparison for rate 3/5

66

3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

CNR(dB)

B
E

R

Floating BP
NMS
OMS
DMMS
AOMS
MMS
DM
Proposed

Figure 4.5 BER performance comparison for rate 3/4

67

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Δ-function

x

Δ
(x

)

ln(1+exp(-|x|))

Δ(x)

Figure 4.6 f(x) and its approximation function Δ(x)

4.5 Comparison of required CNR

In order to further analyze the efficiency of the proposed algorithm and its

suitability to all the LDPC codes in ISDB-S2, we use a metric, called the required

CNR. The required CNR is defined as the carrier-to-noise ratio when the BER

exceeds 10−11 for ISDB-S2 [33]. Because of the error floor free performance of

ISDB-S2 code and relatively long computer simulation time to evaluate the BER

downto the range of 10−11, in this work, we use the same evaluation method as [33],

namely extrapolation, to calculate the required CNR. The simulation uses 107 input

data, if no error can be found in the simulation, it is fair to say that this point is free of

error at BER = 10−7. We call this point “BER = 0 Observation Point”, as shown in

Figure 4.7. In this figure, P1 and P2 are simulation points obtained from the computer

simulation result. P3 is the BER=0 Observation Point and P4 is the point with the

required CNR (CNR4). We calculate CNR4 as shown in Equation (4.16) using the

68

extrapolation technique.

3

23

)2log()3log(

12

)1log()2log(
)3log()10log(

24
11

CNR

CNRCNR

BERBER

CNRCNR

BERBER
BER

CNR 













 (4.16)

The results of the required CNR are listed in Table 4.1 for BP algorithm [33], and

all other algorithms discussed in this chapter. Except the result of BP algorithm which

we include from [33], the results for other algorithms discussed in this paper are

obtained through simulation. In this table, the result for BP algorithm uses floating

simulation and the results for other algorithms include a 6-bit quantization. The row

ΔBP(TPMP) in the table indicates the average differences of required CNR for all the

code rates compared to the BP algorithm in [33]. As can be seen from Table 4.1, the

proposed algorithm is only 0.226dB away from the standard BP algorithm [33], and is

about 0.12dB better than the MS-based algorithms in average.

10-3

10-4

10-5

10-6

10-7

10-8

10-9

10-10

10-11

10-2

extrapolation

P1(CNR1,BER1)

P2(CNR2,BER2)

P3(CNR3,BER3)

P4(CNR4, 10-11)

Required
CNR

BER

C/N(dB)

Simulation Point

BER =0 Observation Point

BER =10-11 Point

Figure 4.7 Required CNR calculation using extrapolation

69

Table 4.1 Comparison of required CNR (dB)

Rate

BP

(floating

point)[33]

MS-based BP-based

Proposed
NMS OMS DMMS AOMS MMS DM

1/4 -2.1 -1.43 -1.29 -1.38 -1.35 -1.55 -1.44 -1.41

1/3 -1.0 -0.61 -0.50 -0.52 -0.41 -0.83 -0.73 -0.51

2/5 0.0 0.36 0.34 0.48 0.54 0.15 0.24 0.37

1/2 1.2 1.51 1.46 1.57 1.56 1.43 1.37 1.41

3/5 2.5 2.79 2.81 2.66 2.66 2.58 2.57 2.57

2/3 3.3 3.59 3.58 3.46 3.46 3.38 3.37 3.37

3/4 4.0 4.31 4.39 4.36 4.36 4.19 4.05 4.19

4/5 5.0 5.28 5.37 5.28 5.15 5.08 5.07 5.07

5/6 5.5 5.79 6.00 5.66 5.66 5.58 5.46 5.58

7/8 5.9 6.29 6.07 6.28 6.28 6.08 6.09 6.07

9/10 6.8 7.08 6.88 7.00 7.00 6.78 6.77 6.88

Δ

BP
0 0.351 0.365 0.341 0.346 0.161 0.156 0.226

4.6 Comparison of computation complexity and

hardware cost

Although the BER performance of BP-based algorithms outperforms the proposed

algorithm, their computation complexity and hardware cost can not be neglected. The

comparison of computation complexity and the hardware cost of the check node

70

operation for one row (exclude the sign computation) are listed in Table 4.2.

Table 4.2 Comparison of computation complexity and hardware cost

 Computation Complexity Hardware Cost

NMS 2×|A(m)|×[comp]+2×[shift] 2×[adder5]

OMS 2×|A(m)|×[comp]+2×[add] 4×[adder5]

DMMS (2×|A(m)|+4)×[comp]+3×[shift]

+7×[add]

5×[adder5]+ 6×[adder6]

AOMS 2×|A(m)|×[comp]+1×[shift]

+2×[add]

4×[adder5]+8word×3bit[LUT]

MMS |A(m)|×(|A(m)|-2)

×(3×[comp]+3×[add])

|A(m)|×(4×[adder6]+2×[adder5])

DM |A(m)|×(|A(m)|-2)

×(1×[comp]+3×[add] +1×[shift])

|A(m)|×(4×[adder5])

Proposed 2×|A(m)|×[comp] +4×[add]

+2×[shift]

6×[adder5]

Under column computation complexity, [comp], [add], [shift] indicate the

computation complexity of comparison operation, addition or subtraction operation,

and shift operation, respectively. For MS-based algorithm, |A(m)| items are compared

serially to get the minimum and the second minimum value, so 2×|A(m)|×[comp] is

needed. After that, normalization factor or offset factor is applied to minimum and

second minimum value, so additional calculations for the normalization factor γ

and offset factor ε in Equation (4.5) and Equation (4.6) are needed. For the

proposed algorithm, after the minimum value and the second minimum value are

found, according to Equation (4.15), we require two more subtraction, two more shift

operation and 2 subtraction for offset. For BP-based algorithm, Equation (4.10) or

Equation (11) is invoked (|A(m)|−2) times for each n(n∈A(m)) and a total of |A(m)|

different n values, thus requiring |A(m)|×(|A(m)|−2) times of Equation (10) or

71

Equation (4.11). For rate 9/10 with the biggest row weight |A(m)| of 32 among all the

parity check matrices in ISDB-S2, the computation complexity relation between NMS,

OMS, DMMS, AOMS, MMS, DM and the proposed method is 1.03 : 1.03 : 1.22 :

1.05 : 90 : 75 : 1.09. The computation complexity for the proposed algorithm is

similar to MS-based algorithms, and much smaller compared to BP-based algorithms.

Figure 4.8 shows the relation of average computation complexity and average

required CNR for all the rates in ISDB-S2. From the figure, we can see that the

proposed algorithm consumes much less computation complexity compared to the

BP-based algorithms but can achieve much better error correcting performance

compared to MS-based algorithm with almost the same computation complexity.

10
1

10
2

10
3

10
42.95

3

3.05

3.1

3.15

3.2

3.25

Average Computation Complexity (times)

A
ve

ra
ge

 R
eq

ui
re

d
C

N
R

 (
dB

)

NMS
OMS
DMMS
AOMS
MMS
DM
Proposed

Figure 4.8 Average required CNR vs. average computation complexity

We also estimate the hardware cost for one check node operation (exclude the

sign operation) using gate counts. The estimation results are listed under column

hardware cost with [adder5] and [adder6] indicating the cost of an adder or subtractor

for 5 bits and 6 bits. Note that we assume a comparator shares a similar cost with an

72

adder, and we neglected the cost for shifter. To keep almost the same clock cycles for

one check node operation for all algorithms, MMS and DM require a parallel

implementation of comparison, thus making the hardware cost almost |A(m)| times as

the other algorithms. In Figure 4.9, we show the relation of area cost and average

required CNR for all the rates in ISDB-S2. The adder is estimated as 6 gates per bit

and the LUT is estimated as 10 gates per bit. The figure demonstrates a similar trend

as Figure 4.8 that the proposed algorithm greatly reduces the area compared to the

BP-based algorithms while achieves much better error correcting performance than

MS-based algorithms.

10
1

10
2

10
3

10
42.95

3

3.05

3.1

3.15

3.2

3.25

Area (gates)

A
ve

ra
ge

 R
eq

ui
re

d
C

N
R

 (
dB

)

NMS
OMS
DMMS
AOMS
MMS
DM
Proposed

Figure 4.9 Average required CNR vs. area

4.7 Conclusion

In this chapter, in order to achieve high BER performance for satellite

transmission services, a novel self-adjustable offset min-sum algorithm is proposed

73

with the check node operation approximating BP algorithm. The correctness of the

approximation is proved by mathematical induction through using Jacobian logarithm

iteratively. The proposed algorithm is hardware-friendly compared to the BP-based

algorithms and the simulation results show that the proposed algorithm can achieve an

average of 0.12dB gain compared to Min-sum based algorithms.

74

5 Data conflict resolution for

layered schedule targeting high

BER performance

5.1 Introduction

LDPC code can be efficiently decoded by two phase message passing (TPMP)

algorithm [1] introduced in Section 1.3, which can correct errors through messages

exchange between check nodes and bit nodes by performing check node and bit node

operations iteratively. In terms of different implementation of the check node

operation, TPMP algorithm can be categorized as Belief Propagation (BP) algorithm

[1], Min-sum (MS) algorithm [18], Normalized Min-sum (NMS) algorithm [19] and

Offset Min-sum (OMS) algorithm [19], etc. BP algorithm has the best error correcting

performance, yet not hardware-friendly due to the implementation of Hyperbolic

functions. MS algorithm uses the minimum magnitude of inputs from the bit nodes as

a replacement of the Hyperbolic functions, but incurs great performance degrading. In

chapter 4, we proposed a Self-adjustable Offset Min-sum (SOMS) algorithm which

can adjust the offset value according to the inputs during the iterative decoding

procedure and achieves a 0.12dB improvement of BER performance compared to

MS-based algorithms.

On the other hand, in 2003, a new family of decoding algorithm called layered

algorithm or layered schedule is proposed by Mansour [26]. Because layered

algorithm shares the same check node operation as TPMP algorithm, the decoding

methods for the check nodes in TPMP can be applied to layered algorithm, forming

75

the new Layered BP (LBP) algorithm, Layered Min-sum (LMS) algorithm, Layered

Normalized Min-sum (LNMS) algorithm and Layered Offset Min-sum (LOMS)

algorithm. And they maintain a similar pros and cons as in TPMP algorithms. Of

course, the Self-adjustable Offset Min-sum (SOMS) algorithm proposed in Chapter 4

for ISDB-S2 application can also be applied to layered algorithm to achieve further

high BER performance.

Instead of using A Posteriori Probability (APP) message at the end of each

iteration in traditional TPMP algorithm, layered algorithm uses the intermediate APP

results between layers within iterations, and converges two times faster than TPMP

algorithm [34]. Therefore, layered algorithm becomes more suitable for high BER

performance and high throughput design for the satellite transmission services.

However data conflict problem happens when layered algorithm is directly

applied to ISDB-S2 codes. This problem arises as the layered algorithm adopts a

parallel computation among a layer of several rows, which ignores the data

dependencies of APP messages, thus degrading BER performance. To solve the data

conflict problem in layered algorithm, authors in [35] and [36] tried to split the layers

through memory mapping and scheduling the matrices for DVB-S2 and DVB-T2

application, but these methods cannot eliminate all the conflicts and they are limited

when they are used to ISDB-S2 codes because of a different code design. Ref. [37]

proposed a method to approximate the APP value targeting DVB-S2, and authors in

[36] also proposed to add dummy bit nodes for DVB-T2 to leverage the performance

degrading. But neither of these methods can achieve conflict free performance and

they introduce additional computations and storages.

In this work, we proposed a selective recalculation method to achieve conflict

free performance by recalculating the inaccurately calculated values. This method

enables a parallel implementation of the whole layer and can correct the inaccurate

values after the parallel implementation based on the decision of a recalculation rule.

The simulation results show that the proposed method can achieve better BER

performance than the previous data conflict strategy in [37].

76

5.2 Data conflict

In this section, data conflict problem of layered algorithm is introduced. The reason

for data conflict is explained and the characteristics of the LDPC parity check

matrices which have data conflict problem is introduced through an example. The

previous strategies to solve data conflict problem are discussed, and the proposed data

conflict resolution by selective recalculation is introduced.

5.2.1 Reason for data conflict

As discussed in Section 5.1, layered algorithm is usually favored for high BER

performance application. However, directly applying layered algorithm to ISDB-S2

LDPC codes will lead to data conflict. This is mainly because of the data dependency

during the parallel execution within each layer. Here LNMS algorithm is used as an

example to introduce the data conflict problem and the correspondent conflict

resolutions, other MS-based algorithms share the same characteristics.

The bit node operation, check node operation and APP update operation of the

LNMS algorithm can be expressed as Equation (5.1), Equation (5.2) and Equation

(5.3), respectively.

mnnmn sum   (5.1)

||min)('
}{\)('

'
}{\)('

mn
nmNn

mn
nmNn

mn sign 


 (5.2)

mnmnnsum   (5.3)

Figure 5.1 shows an example of a layer with two sub-blocks (size b = 3). Each

element “1” in the matrix indicates a corresponding α and β message, and there is

an APP data sumn associated with each column n. Take column 1 as an example, if a

sequential decoding process is applied, the bit node operation, check node operation

and APP update operation for column 1 are listed as Equation (5.4):

77

1 0 1

1 1 0

0 1 1

1 0 0

0 1 0

0 0 1

1 2 3 4 5 6

1

2

3

Figure 5.1 Example of data conflict in layered algorithm

21211

2522252221

21121

11111

1413141311

11111

)2(

|)||,min(|)()(

)1(

)1(

|)||,min(|)()(



















sum

signsign

sum

sum

signsign

sum

 (5.4)

Here, β11 and α11, for example, stand for the message β and message α at

row 1 and column 1, and sum1 represents the APP value of column 1. sum1(1) and

sum1(2) are the APP value updated for the first time and the second time. Note that, in

the sequential decoding process, the calculation of message β21 uses the updated

APP value sum1(1), and the last updated APP value (sum1(2)) is passed to the next

layer as the initial APP value for the next layer. If a layer of b (b = 3) rows are

processed in parallel instead, the bit node operation, check node operation and APP

update operation of this parallel calculation for column 1 are listed as Equation (5.5):

78

21211

11111

2522252221

1413141311

21121

11111

)2(

)1(

|)||,min(|)()(

|)||,min(|)()(



















sum

sum

signsign

signsign

sum

sum

 (5.5)

As can be seen, the calculation for β21 uses the old APP value sum1 other than

the updated data sum1(1). The incorrect calculation of β21 will not only result in the

incorrect result of sum1(2) but also make the calculation of α22 and α25 inaccurate

either. Such data dependency problem in layered algorithm is called data conflict, and

will degrade the decoding performance. In this example, all the “1”’s with red circle

have data conflict problem. In general, when applying layered decoding algorithm to

structured LDPC codes, data conflicts happens when there are more than two “1”’s in

one column within the layer.

Simply ignoring the data conflict will affect the performance, which makes

layered schedule less effective than TPMP schedule. After a complete simulation of

all the parity check matrices in ISDB-S2, we find out that the worst case happens for

rate 7/8 with 9.85% of the sub-blocks having data conflict problems, and an average

of 4.67% for all the codes. The small number of conflicts encourages us to apply

layered schedule with proper remedy for data conflict to achieve better performance.

5.2.2 Previous data conflict resolution

To solve the data conflict problem, [35] proposed to use group splitting through

memory mapping for DVB-S2, while [36] considered to achieve group splitting

through reconstructing the matrices by scheduling for DVB-T2. However these two

methods cannot eliminate all the data conflicts and they are limited when they are

used for ISDB-S2 matrices because that the size of the layer of ISDB-S2 (b = 374) has

79

less factors than that of DVB-S2 or DVB-T2 (b = 360). Ref. [36] also introduced a

method to add dummy bit nodes and check nodes to reconstruct the matrices which

can help leverage the performance degrading, but introduced additional computations

and storages. Also, it cannot achieve conflict free performance.

Table 5.1 shows the simulation result of the decoding performance of several

layer sizes using the proposed algorithm in Chapter 4. The required CNR is evaluated

using extrapolation as introduced in Section 4.4 [33]. Here we mainly consider those

layer sizes whose value is the factor of 374 to simplify the decoding control logic. The

results of required CNR metric of these layer sizes for different code rates are

demonstrated in Table 5.1. Data under column 374P is the result of computing 374

rows in parallel (i.e., layer size of 374). It can be interpreted as simply ignoring all the

data conflicts. Column 1P is the result of scheduling with layer size of 1, which is the

simulation result of conflict free schedule. Columns 187P, 34P and 22P illustrate the

simulation results for layer size of 187, 34 and 22 respectively. As can be observed

from the table, layer size of both 34 and 22 achieve better performance than TPMP

but has performance loss compared to the conflict free one, not to mention the low

throughput due to procedure based on small layer sizes.

Ref. [37] proposed a method to approximate the APP value which enables the

parallel implementation for 360 rows for DVB-S2. The method in [37] can be

introduced based on the example in Figure 5.1. The authors in [37] analyzed the

relation between the intermediate APP values (sum1(1) and sum1(2)) and the initial

APP value (sum1) for the current layer, and after the parallel calculation shown in

Equation (5.5), Equation (5.6) is calculated to approximate the updated APP value for

current layer (sum’1) which will be used as the initial APP value for the next layer.

1111)2()1(' sumsumsumsum  (5.6)

80

Table 5.1 Required CNR for different layer sizes (dB)

Rate TPMP 374p 187p 34p 22p 1p

1/4 -1.41 -0.91 -1.15 -1.55 -1.55 -1.55

1/3 -0.51 -0.49 -0.49 -0.52 -0.56 -0.67

2/5 0.37 0.44 0.38 0.38 0.38 0.34

1/2 1.41 1.4 1.4 1.38 1.38 1.38

3/5 2.57 2.86 2.58 2.46 2.46 2.45

2/3 3.37 3.47 3.36 3.25 3.25 3.25

3/4 4.19 4.61 4.28 4.05 4.05 4.05

4/5 5.07 5.44 5.18 5.07 5.08 5.07

5/6 5.58 6.07 5.67 5.57 5.57 5.45

7/8 6.07 6.39 6.17 6.07 6.07 6.07

9/10 6.88 7.45 7.11 6.88 6.88 6.88

Average 3.054 3.339 3.135 3.004 3.001 2.975

However, the APP approximation method cannot achieve the conflict free BER

performance and it introduces additional storages for the intermediate APP values. In

this work, we proposed for the first time a method called selective recalculating to

enable a parallel implementation of 374 rows for ISDB-S2 to achieve conflict free

BER performance.

To further explain the efficiency of these layered schedules, we compare, in

Figure 5.2, the simulation results with the method in [37] for code rate 7/8, the code

with the most conflicts in ISDB-S2. As can be seen in the figure, schedules with the

layer size of 187, 34 and 22 all achieve better performance than [37]. However, none

of these data conflict resolutions can achieve conflict free BER performance.

81

5.5 5.6 5.7 5.8 5.9 6 6.1 6.2 6.3
10

-5

10
-4

10
-3

10
-2

10
-1

CNR(dB)

B
E

R

TPMP
374P
187P
34P
22P
Ref. [37]
Conflict free

Figure 5.2 BER performance comparison of different solving strategies for data
conflict problem for rate 7/8

5.3 Proposed data conflict resolution by selective

recalculation

In this section, the proposed data conflict resolution scheme which can achieve

conflict free BER performance is introduced. A detailed memory-saving strategy is

also discussed to realize the proposed data conflict resolution scheme.

5.3.1 Selective recalculation scheme

In the example shown in Figure 5.1, because of the parallel calculation of a layer,

82

β21 is incorrectly calculated which will further result in the incorrect calculation of

α22 and α25 by using Equation (5.2). The error will propagate to sum1, sum2, sum5

based on Equation (5.3). In order to compensate for the error, we considered to

recalculate the problematic β values and the related α and sum values after the

computation of each layer.

However, according to Equation (5.2), not all the α and sum values related to

the recalculated β values need to be adjusted. To demonstrate that, we divide

Equation (5.2) into two parts, the calculation of the sign of αmn (Equation (5.7)) and

the calculation of the absolute value of αmn (Equation (5.8)).

)()('
\)('

mn
nmAn

mn signsign 

 (5.7)

||min|| '
\)('

mn
nmAn

mn 


 (5.8)

It can be observed in Equation (5.8) that the absolute values of αmn have only

two values: either the minimum β values from a total of |A(m)| βmn values or the

second minimum in the case that the corresponding input β value happens to be the

minimum one. So Equation (5.8) can be rewritten as Equation (5.9). Here βmin1 and

βmin2 indicate the minimum and second minimum β values among all βmn values.

The condition pos(βmn) = pos(βmin1) indicates the position of βmn under calculation

is the position of βmin1 and only in this condition the absolute value of βmn equals

γ×|βmin2|.









otherwise

pospos mn
mn ||

)()(||
||

1min

1min2min




 (5.9)

From Equation (5.7) and Equation (5.9), it is apparent that the sign of αmn is

only related to the sign of β values input from the bit nodes, and the absolute value

of αmn is only related to the minimum and second minimum β values input from

the bit nodes and the position of the minimum β value. So the calculation of

Equation (5.2) requires recording the signs of allβvalues in row m and tracking the

minimum and second minimum β values. However, the inaccurately calculated

βmn values should be excluded from the calculation of minimum and second

minimum β values. We denote the minimum and second minimum β values

83

without considering the inaccurate βmn values in row m as min1_m and min2_m

from now on and provides the recalculation decision rule in Figure 5.3.

βi

recalculated

β'i<min2_m or
sign(β'i)≠sign(βi)

YES NO

Si(α),Si(sum)
recalculation

Si_sub(sum)
recalculation

Figure 5.3 Recalculation decision rule for Si(α) and Si(sum)

In Figure 5.3, we denote the β values which should be recalculated as set S(β),

βi as the ithβmn value in set S(β), andβi’ as the ithβmn value after recalculation. We

also denote the α values and sum values which should be recalculated because of

the recalculation ofβi as Si(α) and Si(sum). When conditionβi’ < min2_m or

sign(β i’) ≠ sign(β i) satisfies, according to Equation (5.2), Si(α) should be

recalculated because of the alteration of input variables in Equation (4), and Si(sum)

should also be recalculated because of the recalculation of Si(α) according to

Equation (5.3). When condition βi’ < min2_m or sign(βi’) ≠ sign(βi) does not

satisfy, the results of Equation (5.2) are not changed, so only a subset of Si(sum)

(sumn) needs to be recalculated because of the recalculatedβi’ (Equation (5.3)).

Since usually |A(m)| for ISDB-S2 is a large number, the probability forβi <

min2_m almost equals to 2/|A(m)| which is quite small. Moreover, as the sign forβi is

not altered frequently, the recalculation decision rule is rarely satisfied. Even when the

recalculation decision rule satisfies, the recalculations of Si(α) and Si(sum) are not

complicated and the detailed recalculation techniques will be introduced later.

Based on the above exploration, we finally get our selective recalculation scheme

84

by using the recalculation decision rule, as shown in Figure 5.4. Here X represents all

the “1” in the layer, and Sm(β) indicates the subset of S(β) for theβ in the same

row m. Note that the recalculation for rows can also be computed in parallel as long as

there are no further data conflicts during the recalculation, i.e., there are no two ”1”’s

in the same column of these simultaneously calculated rows. Basically, the proposed

selective recalculating method is effective for any layered algorithm based on MS

algorithm, such as LMS algorithm, LNMS algorithm and LOMS algorithm and the

proposed algorithm in Chapter 4. Also, the proposed method can be used in any

structured LDPC parity check matrix, not limited by ISDB-S2. Figure 5.5 shows how

our selective recalculation works for the code in Figure 5.1.

Figure 5.4 Selective recalculation scheme

85

Figure 5.5 Example of data conflict resolution by selective recalculation

86

5.3.2 Realization of selective recalculation scheme

If the recalculation selection rule in Figure 5.3 satisfies, Si(α) and Si(sum) need

to be recalculated. As can be seen in Equation (5.2) and Equation (5.3), the

recalculation for the check node operation is comparably complicated and time

consuming. However, the recalculation can be easily carried out by favoring a

memory-saving strategy which can not only save the memory for messageαbut also

accelerate the procedure for the recalculation of check node operation.

As explained in Section 5.3.1, the result ofαmn is only related to the minimum

and the second minimum β messages sent from bit nodes, the position of the

minimum β message and the sign of all theβ messages. Hence the storage of α

values can be divided into its absolute value and sign bit. In this design, we favor a

memory saving strategy based on this special characteristic. Instead of storing all the

α messages in the memory, we only store min1_m, min2_m, the position of min1_m

and the signs of α messages in the form of a vector as [min1_m, min2_m,

pos_min1_m, {sign(αmn)|n ∈ A(m)}][35]. With this form of representation, each α

value can be easily retrieved through Equation (5.7) and Equation (5.9). This method

can help save memories, specifically for rate 9/10 which has the largest row weight

|A(m)| of 32 in ISDB-S2, whose α memory is only 24.5% of that of storing all α

messages.

As shown in Figure 5.3, S(αi) and S(sumi) will be recalculated only if the

recalculatedβmn’ is smaller than the min2_m or the sign of the recalculated βmn’ is

different from that of βmn. In the following parts, we will discuss, in five different

cases, how we can easily derive the recalculated value[min1’_m, min2’_m,

pos_min1’_m, {sign(α’mn)|n ∈ A(m)}] using this vector representation.

・ Case 1: βmn’< min1_m and sign(βmn’) = sign(βmn).

In this case, the minimum value, the second minimum value and the position of

the minimum value are all changed. Therefore, min1’_m = |βmn’|, min2’_m =

min1_m and pos_ min1’_m = pos(βmn’).

87

・ Case 2: βmn’< min1_m and sign(βmn’)≠ sign(βmn)

In this case, the minimum value , the second minimum value, the position of the

minimum value and the signs of α are changed. Therefore, min1’_m = |βmn’|,

min2’_m = min1_ m and pos_ min1’_m = pos(βmn’), and the signs of α messages

are all changed except that of αmn.

・ Case 3:min1_m <βmn’< min2_m and sign(βmn’) = sign(βmn).

In this case, the second minimum value is changed. Therefore min2_m’= |βmn’|.

・ Case 4: min1_m <βmn’< min2_m and sign(βmn’) ≠sign(βmn)

In this case, the second minimum value and the signs of α are changed.

Therefore, min2_m’= |βmn’|, and the signs of α messages are all changed except

that of αmn.

・ Case 5: βmn’ > min2_m and and sign(βmn’) ≠sign(βmn).

In this case, the signs of α messages are all changed except that of αmn.

We can see that the recalculation of S(αi) can be done without calculating

Equation (5.2) again. Such scheme can not only save the memory but also expedite

the recalculation procedure.

5.4 Simulation result

In this section, the performance of the proposed selective recalculation is

presented compared to the result in Chapter 4.

5.4.1 BER performance

Software simulation of the proposed conflict resolution scheme @has been

conducted for all 11 parity check matrices used in ISDB-S2 using the algorithm

proposed in Chapter 4. The QPSK modulation and AWGN channel is modeled in the

simulation. The maximum number of iteration is set to 50, and the simulation program

terminates when the decoded codeword is valid or the iteration upper bound is

88

reached. Figure 5.6 and Figure 5.7 illustrate the simulation result of the BER

performance of rate 3/5 and rate 3/4 which will be mainly used in ISDB-S2 service.

Except BP algorithm is simulated using floating values, all the intermediate messages

of simulations for the other algorithms are coded in 6 bit sign-magnitude format and

the APP message is realized in an 8 bit sign-magnitude format to avoid overflow. The

parameters of all algorithms are chosen to optimize both the BER performance and

hardware implementation as γ=0.875 for NMS (Equation (4.5)), ε= 0.125 for

OMS (Equation (4.6)), and γ’ = 0.125 for the proposed method (Equation (4.15)).

Also, for simple hardware implementation, we use the same Δ function Δ(x) =

max(5/8 − |x|/4, 0) as [26] for approximation of function f(x) for the proposed

algorithm in this work. The line labeled “proposed (layered)” indicates the simulation

result of proposed algorithm in Chapter 4 after applying layered schedule and the data

conflict is solved by selective recalculation proposed in this chapter.

As can be observed from Figure 5.6 and Figure 5.7, after applying the layered

schedule to the proposed algorithm in Chapter 4, the proposed algorithm can achieve

further BER improvement and performs better than BP-based algorithms.

89

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

CNR(dB)

B
E
R

Floating BP
NMS
OMS
DMMS
AOMS
MMS
DM
Proposed
Proposed (layered)

Figure 5.6 BER performance comparison for rate 3/5 (including layered
schedule)

90

3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

CNR(dB)

B
E

R

Floating BP
NMS
OMS
DMMS
AOMS
MMS
DM
Proposed
Proposed (layered)

Figure 5.7 BER performance comparison for rate 3/4 (including layered

schedule)

5.4.2 Comparison of required CNR

In order to further analyze the efficiency of the proposed selective recalculation

and its suitability to all the LDPC codes in ISDB-S2, we use the same metric as

Section 4.5, required CNR, to evaluate the performance. The required CNR is defined

as the carrier-to-noise ratio when the BER exceeds 10−11 for ISDB-S2 [33]. Because of

the error floor free performance of ISDB-S2 code and relatively long computer

simulation time to evaluate the BER down to the range of 10−11, in this work, we use

the same evaluation method as in Chapter 4, namely extrapolation, to calculate the

required CNR.

The results of the required CNR of all the codes in ISDB-S2 are listed in Table

91

5.2 for BP algorithm [33], NMS algorithm, OMS algorithm, DMMS algorithm,

AOMS algorithm, MMS algorithm, DM algorithm and the proposed algorithm with

TPMP schedule. The result of the proposed algorithm of layered schedule with

selective recalculation scheme to solve the data conflict problem is also listed in this

table. Except the result of BP algorithm which we include from [33], the results for

others are obtained through simulation. In this table, the result for BP algorithm uses

floating point simulation and the results for others include a 6-bit quantization process.

The row ΔBP in the table indicates the average differences of required CNR for all

the code rates compared to the BP algorithm in [33]. As can be seen in this table, after

applying layered schedule to the proposed algorithm, it can achieve 0.2dB BER

improvement compared to MS-based algorithms.

Table 5.2 Comparison of required CNR after applying layered schedule (dB)

Rate

BP

(floating

point)[33]

MS-based BP-based Proposed

NMS OMS DMMS AOMS MMS DM TPMP layered

1/4 -2.1 -1.43 -1.29 -1.38 -1.35 -1.55 -1.44 -1.41 -1.55

1/3 -1.0 -0.61 -0.50 -0.52 -0.41 -0.83 -0.73 -0.51 -0.67

2/5 0.0 0.36 0.34 0.48 0.54 0.15 0.24 0.37 0.34

1/2 1.2 1.51 1.46 1.57 1.56 1.43 1.37 1.41 1.38

3/5 2.5 2.79 2.81 2.66 2.66 2.58 2.57 2.57 2.45

2/3 3.3 3.59 3.58 3.46 3.46 3.38 3.37 3.37 3.25

3/4 4.0 4.31 4.39 4.36 4.36 4.19 4.05 4.19 4.05

4/5 5.0 5.28 5.37 5.28 5.15 5.08 5.07 5.07 5.07

5/6 5.5 5.79 6.00 5.66 5.66 5.58 5.46 5.58 5.45

7/8 5.9 6.29 6.07 6.28 6.28 6.08 6.09 6.07 6.07

9/10 6.8 7.08 6.88 7.00 7.00 6.78 6.77 6.88 6.88

Δ

BP
0 0.351 0.365 0.341 0.346 0.161 0.156 0.226 0.148

92

5.5 Conclusion

In this chapter, in order to further improve the BER performance for satellite

transmission services, layered algorithm is applied to the proposed algorithm in

Chapter 4 and the data conflict problem is completely solved through a selective

recalculation method. After applying selective recalculation to layered algorithm, it

can achieve conflict free performance. The simulation results of applying selective

recalculation method to the proposed algorithm in Chapter 4 using layered schedule

also demonstrate that the proposed method can achieve a further BER performance

improvement, which can achieve 0.2dB gain under the same BER performance than

MS-based algorithms.

93

6 Conclusion

6.1 Summary of results

In order to solve the low throughput problem for partially-parallel LDPC

decoder for IEEE 802.11n application, two methods are proposed:

The first schedule is named Delta-Value based Message Passing (DVMP)

schedule (proposed in Chapter 2). In this design, row operation is speeded up by a

modified binary searching scheme and column operation is speeded up by DVMP

schedule, in which the redundant computations are removed through using the

difference between the updated value and the original value. Moreover a pipeline

structure is utilized to further compact the procedure. The synthesis result

demonstrates that our decoder can achieve a much higher throughput and almost the

same bit error rate performance compared to other partially-parallel irregular LDPC

decoders.

The other schedule is proposed based on the DVMP schedule proposed in

Chapter 2, whose name is Sum-Delta Message Passing (SDMP) schedule (proposed

in Chapter 3). In this design, the decoding throughput is greatly improved by utilizing

the difference value between the updated and the original value to remove redundant

computation. Registers ad memory are optimized to store only the frequently used

messages to decrease the hardware cost. The synthesis result shows that our decoder

can achieve much higher throughput and almost the same bit error rate performance

with less area cost to other partially-parallel irregular LDPC decoders. The backend

design of this decoder is implemented by Synopsys Astro with ARM’s Artisan

SAGE-X 0.18μm 1P6M stand-cell library for TSMC and the layout area is 13.69mm2.

94

In order to achieve high BER performance for ISDB-S2 application, two

techniques are also proposed to improve the BER performance:

The first technique is introduced in Chapter 4. In order to achieve high BER

performance for satellite transmission services, a novel self-adjustable offset min-sum

algorithm is proposed with the check node operation approximating BP algorithm.

The correctness of the approximation is proved by mathematical induction through

using Jacobian logarithm iteratively. The proposed algorithm is hardware-friendly

compared to the BP-based algorithms and the simulation results show that the

proposed algorithm can achieve an average of 0.12dB gain compared to Min-sum

-based algorithms.

The other technique is introduced in Chapter 5 to further apply layered schedule

to ISDB-S2 codes. In order to achieve high BER performance for satellite

transmission services, layered algorithm is applied to the proposed algorithm in

Chapter 4 to ISDB-S2 LDPC decoder and the data conflict problem is completely

solved through a selective recalculation method. After applying selective recalculation

to the proposed algorithm in Chapter 4 using layered schedule, it can achieve 0.2dB

gain under the same BER performance compared to Min-sum -based algorithms.

6.2 Future work

As long LDPC code is adopted in satellite transmission to ensure the transmission

quality, the hardware design for long code becomes a challenge because the hardware

cost is large [35][37][41][42][43]. A hardware architecture which is suitable for the

implementation of long code and multi-rate code is a main future work for us.

On the other hand, the LDPC code design is an important topic in this field. A

good LDPC code can achieve good error correcting performance as well as small

hardware cost. There are already some methods for designing LDPC codes which

proves to be efficient, but the design should be vary for different application and

requirement [44][45][46].

95

Also, for wide application, multi-standard LDPC decoder design (for example,

IEEE 802.11 and IEEE 802.13) or flexible decoder architecture for multiple error

correction codes (for example, LDPC code and turbo code) is also a good topic for

research in LDPC field [47][48].

96

REFERENCE
[1] Gallager, R. G., “Low-Density Parity-Check Codes”, MIT Press, Cambridge,
MA , 1963

[2] Shannon, C., “A mathematical theory of communication”, Bell Syst. Tech. J.,
Vol.27,pp.379–423,623–656, 1948

[3] MacKay, D.J.C., “Good error-correcting codes based on very sparse matrices”,
IEEE Trans. Inform. Theory, Vol.45, No.2, pp.399–431, 2001

[4] Richardson, T. J., Sholrollahi, M. A. and Urbanke, R. L., “Design of capacity
approaching low-density parity-check codes”, IEEE Trans. Inform. Theory, Vol.47,
No.2, pp.619–637, 2001

[5] S.Y., Forney, G.D., Richardson, T.J. and Urbanke, R.L., “On the design of
low-density parity-check codes within 0.0045 dB of the Shannon limit”, IEEE
Commun. Lett., Vol.5, No.2, pp.58–60, 2001

[6] World Wide Web, IEEE 802.3an Task Force, http://www.ieee802.org/3/an/index.
html, 2004

[7] ETSI, D. V.B.: Second generation framing structure, channel coding and
modulation systems for Broadcasting, Interative Services, News Gathering and other
broadband satellite applications, draft EN 302 307 V1.1.1 edition, 2004

[8] IEEE Standard for Local and Metropolitan Area Networks, IEEE 802.16e
Standard, http://standards.ieee.org/getieee 802/download/802.16e-2005.pdf, 2006

[9] Blanksby, A. and Howland, C., “A 690-mW 1-Gbps 1024-b, rate-1/2 low-density
parity-check code decoder”, J. Solid State Circuits, Vol.37, No.3, pp.404–412, 2002

97

[10] Chen, Y. and Hocevar, D., “A FPGA and ASIC implementation of rate 1/2
8088-b irregular low density parity check decoder”, IEEE Global
Telecommunications Conf., pp.113–117, 2003

[11] Mansour, M. and Shanbhag, N., “Low power VLSI decoder architectures for
LDPC codes”, Proc. Int. Symp. Low Power Electronics & Design, pp.284–289, 2002

[12] Liao, E., Yeo, E. and Nikolic, B., “Low-density parity-check code constructions
for hardware implementation”, Proc. IEEE Conf. Communications, pp.2573–2577,
2004

[13] Shimizu, K., Ishikawa, T., Togawa, N., Ikenaga, T. and Goto, S.,
“Power-efficient LDPC decoder architecture based on accelerated message-passing
schedule”, IEICE Trans. Fundamentals, Vol.E89-A, No.12, pp.3602–3612, 2006

[14] Li, X., Abe, Y., Shimizu, K., Qiu, Z., Ikenaga, T. and Goto, S., “Cost-efficient
parallel irregular LDPC decoder with message passing schedule”, Int. Symp.
Integrated Circuits, pp.548–551, 2007

[15] Chien, Y.H. and Ku, M.K., “A high throughput H-QC LDPC decoder”, IEEE
Int. Symp. Circuits & System, pp.1648–1652, 2007

[16] Wang, Q., Shimizu, K., Ikenaga, T. and Goto, S., “A power-saved 1Gbps
irregular LDPC decoder based on simplified min-sum algorithm”, VLSI Design,
Automation and Test (VLSI-DAT), pp.95–98, 2007

[17] IEEE P802.11 Wireless LANs Joint Proposal: High throughput extension to the
802.11 Standard: PHY, IEEE 802.11-05/1102r4, Jan. 2006

98

[18] M. Fossorier, M. Mihaljevic and H. Imai, “Reduced Complexity Iterative
Decoding of Low Density Parity Check Codes Based on Belief Propogation”, IEEE
Trans. Commun., vol. 47, pp. 673-680, May 1999

[19] J. Chen, A. Dholakia, E. Eleftheriou, M. Fossoeier and X.-Y. Hu,
“Reduced-Complexity Decoding of LDPC Codes”, IEEE Trans. Commun., vol. 53,
pp.1288-1299, Aug. 2005

[20] J. Chen and M. Fossorier, “Density evolution for two improved BP-based
decoding algorithms of LDPC codes”, IEEE Commun. Lett., vol. 6, pp. 208-210, May
2002

[21] Zarkeshvari, F. and Banihashemi, A.H., “On implementation of min-sum
algorithm for decoding low-density parity-check (LDPC) codes”, Global
Telecommunications Conference, 2002. (GLOBECOM ’02), vol. 2, pp. 1349-1353,
Nov. 2002

[22] Jinghu Chen and Marc P. C. Fossorier, “Near optimum universal belief
propagation based decoding of low-density parity check codes”, IEEE Trans.
commun., vol. 50, no. 3, pp. 406-414, March 2002

[23] Jinghu Chen, Tanner, T.M. Jones, C. and Yan Li, “Improved min-sum decoding
algorithms for irregular LDPC codes”, IEEE proc. International Symposium on
Information Theory (ISIT’05), pp. 49-53, Sept. 2005

[24] Darabiha, A., Carusone, A.C. and Kschischang, F.R., “A bit-serial approximate
min-sum LDPC decoder and FPGA implementation”, IEEE Proc. International
Symposium on Circuits and Systems, 2006. (ISCAS’06), pp. 149-152, May 2006

[25] Yuta Abe, X. Li, K. Shimizu, T. Ikenaga and S. Goto, "High-Throughput
Design of High-Efficiency Message Passing partially parallel irregular-LDPC

decoder based on 802.11n"，The 2008 International Conference on Embedded

Systems and Intelligent Technology (ICESIT2008) , Thailand, 2008

99

[26] M. Mansour and N.R. Shanbhag, “High-Throughput LDPC Decoders”, IEEE
Trans. on Very Large Scale Integration (VLSI) Systems, 11(6): 976-996, Dec. 2003

[27] D. E. Hocevar, “A reduced complexity decoder architecture via layered
decoding of LDPC codes”, IEEE Workshop on Signal Processing Systems(SiPS’04),
pp 107-112, Austin, USA, Oct. 2004

[28] A. Hashimoto and Y. Suzuki, “A new transmission system for the advanced
satellite broadcast”, IEEE Trans. Consum. Electron., vol. 54, Issue 2, pp. 353-360,
May 2008

[29] S. L. Howard, C. Schlegel, and V. C. Gaudet, “Degree-matched check node
decoding for regular and irregular LDPCs”, IEEE Trans. Circuits Syst. II, Exp. Briefs,
vol. 53, no. 10, pp. 1054-1058, Oct. 2006

[30] M. Jiang, C. Zhao, L. Zhang, and E. Xu, “Adaptive offset min-sum algorithm
for low-density parity check codes”, IEEE Commun. Lett., vol. 10, no. 6, pp. 483-485,
June 2006

[31] A. Anastasopoulos, “A comparison between the sum-product and the min-sum
iterative detection algorithms based on density evolution”, IEEE Global
Telecommunications Conference (GLOBECOM), vol. 2, pp. 1021-1025, Nov. 2001

[32] L. Sakai, W. Matsumoto, and H. Yoshida, “Reduced complexity decoding
based on approximation of update function for low-density parity-check codes”,
IEICE Trans. Fundamentals, vol. J90-A, no. 2, pp. 83-91, Feb. 2007

[33] Y. Suzuki, A. Hashimoto, M. Kojima, S. Tanaka, T. Kimura, and T. Saito,
“LDPC codes for the advanced digital satellite broadcasting system”, IEICE
Technical Report, vol. 109, no. 212, pp. 19-24, Sep. 2009

100

[34] P. Radosavljevic, A. D. Baynast, and J. R. Cavallaro, “Optimized message
passing schedules for LDPC decoding”, Asilomar Conference on Signals, Systems
and Computers 2005 (ACSSC), pp. 591-595, Oct. 2009

[35] J. Dielissen, A. Hekstra, and V. Berg, “Low cost LDPC decoder for DVB-S2”,
Design, Automation and Test in Europe (DATE 2006), pp. 130-135, March 2006

[36] C. Marchand, J. B. Dore, L. C. Canencia, and E. Boutillon, “Conflict resolution
by matrix reordering for DVB-T2 LDPC decoders”, IEEE Global
Telecommunications Conference (GLOBECOM), Oct. 2009

[37] A. Segard, F. Verdier, D. Declercq, and P. Urard, “A DVB-S2 compliant LDPC
decoder integrating the horizontal shuffle scheduling”, International Symposium on
Intelligent Signal Processing and Communication Systems (ISPACS), pp. 1013-1016,
Dec. 2006

[38] A. Blad and O. Gustafsson, “Energy-efficient data representation in LDPC
decoders”, IET Journals , Electronics Letters, Vol. 42, Issue 18, pp. 1051-1052, 2006

[39] T. Theocharides, G. Link, E.Swankoski, N. Vijaykrishnan, M.J. Irwin and H.
Schmit, “Evaluating alternative implementations for LDPC decoder check node
function”, IEEE Computer Society Annual Symposium on VLSI, pp. 77-82, 2004

[40] Tong Zhang, Zhongfeng Wang and Keshab K. Parhi, “On finite precision
implementation of low density parity check codes decoder”, IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 202-205, vol. 4, 2001

[41] Macro Gomes, Gabriel Falcao, Vitor Silva, Vitor Ferreira, Alaxandre Sengo and
Miguel Falcao, “Flexible parallel architecture for DVB-S2 LDPC decoders”, Global
Telecommunications Conference (GLOBECOM’07), pp. 3265-3269, Nov. 2007

[42] P. Urard, E. Yeo, L. Paumier, P. Georgelin, T. Michel, V. Lebars, E.
Lantreibecq, B. Gupta, “A 135Mb/s DVB-S2 compliant codec based on 64800b

101

LDPC and BCH codes”, IEEE International Solid-State Circuits Conference (ISSCC),
pp. 446-609 vol. 1, Feb. 2005

[43] P. Urard, L. Paumier, V. Heinrich, N. Raina, N. Chawla, “A 360mW 105MB/s
DVB-S2 compliant codec based on 64800b LDPC and BCH codes enabling
satellite-transmission portable devices”, IEEE International Solid-State Circuits
Conference(ISSCC), pp. 310-311, Feb. 2008

[44] Yu Kou, Shu Lin, Marc P. C. Fossorier, “Low density parity check codes based
on finite geometries: a rediscovery and new results ”, IEEE Trans. on Information
Theory, vol 47, issue 7, pp. 2711-2736, 2001

[45] Norifumi Kamiya, “High-rate quasi-cyclic low-density parity-check codes
derived from finite affine planes”, IEEE Trans. on Information Theory, vol. 53, no. 4,
pp. 1444-1459, 2007

[46] Zhengang Chen, Tyler L. Brandon, Duncan G. Elliott, Stephen Bates, Witold A.
Krzymien, and Bruce F. Cockburn, “Jointly designed architecture-aware LDPC
convolutional codes and high-throughput parallel encoders/decoders”, IEEE Trans.
on Circuits and Systems, vol. 57, issue 4, pp. 836-849, 2010

[47] F. Naessens, V. Derudder, H. Cappelle, L. Hollevoet, P. Raghavan, M. Desmet,
A. M. AbdelHamid, I. Vos, L. Folens, S. O’Loughlin, S. Singirikonda, S. Dupont,
J.-W. Weijers, A. Dejonghe, L. Van der Perre, “A 10.37mm2 675mW reconfigurable
LDPC and Turbo encoder and decoder for 802.11n, 802.16e and 3GPP-LTE”, 2010
IEEE Symposium on VLSI Circuits (VLSIC), pp. 213-214, June 2010

[48] T. S. V. Gautham, Andrew Thangaraj, Devendra Jalihal, “Common architecture
for decoding turbo and LDPC codes”, 2010 National Conference on Communications
(NCC), pp.1-5, Jan. 2010

102

LIST OF PUBLICATIONS

Journal

1. Wen Ji, Yuta Abe, Takeshi Ikenaga, Satoshi Goto, "A High Performance

Partially-Parallel Irregular LDPC Decoder Based on Sum-Delta Message Passing

Schedule", IEICE Trans. Fundamentals, Vol.E91-A, No.12 pp.3622-3629, Dec. 2008

2. Wen Ji, Xing Li, Takeshi Ikenaga, Satoshi Goto, “A High Throughput LDPC

Decoder Design Based on Novel Delat-value Message-passing Schedule”, IPSJ

Transactions on System LSI Design Methodology, Vol. 2, pp 122-130, Feb. 2009

3. Wen Ji, Makoto Hamaminato, Hiroshi Nakayama and Satoshi Goto,

“Self-adjustable offset min-sum algorithm for ISDB-S2 LDPC decoder”, IEICE

Electron. Express, Vol. 7, No. 17, pp.1283-1289, 2010

International Conference

1. Wen Ji, Xing Li, Takeshi Ikenaga, Satoshi Goto, "High Throughput

Partially-Parallel Irregular LDPC Decoder Based on Delta-Value

Message-Passing Schedule ", VLSI Design, Automation and Test

(VLSI-DAT), Hsinchu, Taiwan, pp.220-223, Apr. 2008

2. Wen Ji, Yuta Abe, Takeshi Ikenaga, Satoshi Goto, "A Cost-Efficient

Partially-Parallel Irregular LDPC Decoder Based on Sum-Delta Message

Passing Algorithm", Great Lakes Symp. VLSI (GLSVLSI), Florida, USA,

pp.207-212, May. 2008

103

3. Wenming Tang, Wen Ji, Xianghui Wei, Takeshi Ikenaga, Satoshi Goto,

"A Power-saving 1Gbps Irregular LDPC Decoder based on High-efficiency

Message Passing", The 23rd International Technical Conference on

Circuits/Systems, Computers and Communications (ITC-CSCC), pp.

193-196, Shimonoseki, Japan, Jul.2008

4. Wen Ji, Yuta Abe, Takeshi Ikenaga, Satoshi Goto, "A High Performance

LDPC Decoder for IEEE802.11n Standard”, 14th Asia and South Pacific

Design Automation Conference (ASP-DAC2009), Japan, pp. 127-128, Jan.

2009.

5. Wen Ji, Makoto Hamaminato, Hiroshi Nakayama, Satoshi Goto, “A

Novel Hardware-friendly Self-adjustable Offset Min-sum Algorithm for

ISDB-S2 LDPC Decoder”, 2010 European Signal Processing Conference

(EUSIPCO), Aalborg, Denmark, Aug. 2010

6. Wen Ji, Makoto Hamaminato, Hiroshi Nakayama, Satoshi Goto, “Data

Conflict Resolution for Layered LDPC Decoding Algorithm by Selective

Recalculation”, The 3rd International Congress on Image and Signal

Processing (CISP) , Yantai, China, Oct. 2010

Domestic Conference

1. Wen Ji, Yuta Abe, Takeshi Ikenaga, Satoshi Goto, “High Throughput

Rate-1/2 Partially-Parallel Irregular LDPC Decoder”, 2008 IEICE General

Conference, pp. 123, Kitakyushu, Japan, March. 2008

2. Wen Ji, Makoto Hamaminato, Hiroshi Nakayama, and Satoshi Goto, “An

104

Efficient Decoding Algorithm for ISDB-S2”, IEICE LDPC workshop 2009,

Tokyo, Japan, pp. 13-17, Sep. 2009

