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ABSTRACT 

 
Low-Density Parity-Check (LDPC) code is an error correcting code first 

discovered in the early 1960’s, and rediscovered in 1999. The decoding algorithm of 

LDPC is inherently parallel and can achieve performance close to the Shannon Limit, 

thus making LDPC code widely adopted in communication standards, such as WLAN 

(IEEE 802.11n), WiMAX (IEEE 802.16e) and DVB-S2. 

However, it is still a great challenge for the researchers to design LDPC decoders 

with high performance. As LDPC decoders are mainly used to detect and correct 

errors in wireless communication devices, there are many aspects which should be 

concerned in the design, such as Bit Error Rate (BER) performance, hardware cost, 

throughput etc. As an error correcting technique, the BER performance is always an 

important metric for the design. The higher the BER performance is, the higher the 

reliability of the transmission is. In terms of LSI design, the hardware cost of LDPC 

decoder is considered to be a critical metric for the manufacture process. Also, in 

communication systems, throughput is an essential metric for LDPC decoders to 

ensure the real-time transmission. 

In this dissertation, we mainly focus on the LDPC decoder design for IEEE 802.11n 

application and Integrated Services Digital Broadcasting via Satellite - Second 

Generation (ISDB-S2) application.  

In the previous design of IEEE 802.11n LDPC decoder, fully-parallel decoder 

structures have been implemented aiming at high throughput but with relatively large 

area. A previous work implementing partially-parallel structure can achieve relatively 

low hardware cost, but has a low throughput, which is only 54Mbps. However, high 

throughput as well as low hardware cost is demanded for IEEE 802.11n application.  
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On the other hand, for ISDB-S2 LDPC decoder, previous decoding algorithms for 

LDPC decoders can either achieve very high BER performance by implementing very 

complicated hardware (Belief-Propagation –based algorithms), or achieve small area 

cost in the sacrifice of degrading BER performance (Min-sum –based algorithms). 

However, as long as the stable transmission is necessary for satellite broadcasting, 

very high BER performance is a key request for the design. But as for the 

manufacture demand, Belief-Propagation –based algorithms with large area cost is 

not a good option for LDPC decoder design for ISDB-S2. 

Based on the above discussion, this dissertation is mainly composed of two issues: 

the LDPC decoder design for IEEE 802.11n targeting high throughput and low 

hardware cost; and the LDPC decoder algorithm design for ISDB-S2 targeting high 

BER performance and low hardware cost. 

This dissertation consists of six chapters which are as follows: 

Chapter 1 [Introduction] gives a brief introduction of this dissertation. It 

introduces the basic knowledge of LDPC codes and LDPC decoders. The LDPC 

decoding algorithms are discussed, followed by the motivation and contribution of 

this work.  

Chapter 2 [A partially-parallel LDPC decoder targeting high throughput] 

proposed a partially-parallel irregular LDPC decoder for IEEE 802.11n standard 

targeting high throughput applications.  

The proposed decoder has several merits:  

(i) The decoder is designed based on a novel delta-value based message passing 

(DVMP) schedule which facilitates the decoding throughput by redundant 

computation removal.  

(ii) Techniques such as binary sorting, parallel column operation, high performance 

pipelining are used to further speed up the message-passing procedure.  
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The implementation is done by using TSMC 0.18μm technology and the synthesis 

result shows that for (648,324) irregular LDPC code, this decoder can achieve 8 times 

increase in throughput compared to the previous work targeting the same code, 

reaching 418 Mbps at the frequency of 200MHz. 

Chapter 3 [A partially-parallel LDPC decoder targeting high throughput and 

low hardware cost] proposed a sum-delta message passing (SDMP) schedule based 

on the DVMP schedule which can keep the advantages of the DVMP schedule while 

decrease the area of the decoder. 

Registers and memory are optimized to store only the frequently used messages to 

decrease the hardware cost. An efficient pipeline structure is utilized to boost the total 

throughput. The synthesis is done by TSMC 0.18μm technology which demonstrates 

that for (648,324) irregular LDPC code, this decoder achieves 7.5X improvement in 

throughput compared to the previous work targeting the same code, which reaches 

404 Mbps at the frequency of 200MHz. The decoder can also achieve a 11% area 

reduction compared to the previous work. The backend design of this decoder is also 

done by Synopsys Astro with ARM’s Artisan SAGE-X 0.18μm 1P6M stand-cell 

library for TSMC, the layout area of this decoder is 13.69mm2. 

Chapter 4 [Self-adjustable offset min-sum algorithm targeting high BER 

performance and low hardware cost] proposed a novel self-adjustable offset 

min-sum LDPC decoding algorithm for ISDB-S2 application.  

The existing LDPC decoding algorithms can either be categorized into 

Belief-Propagation (BP) –based algorithms which can achieve good BER 

performance but with large hardware cost, or Min-sum (MS) –based algorithms 

which consumes small hardware cost but degrades the BER performance.  

In this chapter, a uniform approximation of the check node operation through 

mathematical induction on Jacobian logarithm is presented for the first time, and 

theoretically shows that the offset value is mainly dependent on the difference 

between the two most unreliable inputs from the bit nodes. The algorithm proposed 
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can adjust the offset value according to the inputs during the iterative decoding 

procedure. Simulation results for all 11 code rates of ISDB-S2 demonstrate that the 

proposed method can achieve an average of 0.12dB gain under the same BER 

performance, compared to the MS based algorithms, and consumes only 1.21% 

computation complexity compared to BP-based algorithms in the best case. 

Chapter 5 [Data conflict resolution for layered schedule targeting high BER 

performance] proposed a novel selective recalculation method to solve the data 

conflict problem for applying layered schedule to ISDB-S2 LDPC codes.  

The data conflict happens when layered algorithm is directly applied to ISDB-S2 

codes. This problem arises as the layered algorithm adopts a parallel computation 

among a layer of several rows, which ignores the data dependencies of A Posterior 

Probability (APP). The selective recalculation method proposed in this chapter can 

determine the inaccurately calculated values based on a recalculation decision rule, 

and correct them accordingly. By applying this selective recalculation method, the 

layered algorithm can achieve conflict free BER performance.  

Chapter 6 [Conclusion] summarizes the results of this work and discuss the 

future work. 
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1 Introduction 
 

In this chapter, a brief introduction of this thesis is provided. First of all, the basic 

knowledge of LDPC codes and LDPC decoders are described. Then the state of art 

LDPC decoder design and design challenges are introduced together with the 

motivation of this work, and the contribution is summarized, after which the thesis 

organization is provided. 

 

1.1 LDPC codes and LDPC decoders 
 

Low-Density Parity-Check (LDPC) code is an error correcting code originally 

proposed by Gallager in 1963[1], but soon forgotten by the scientific world because of 

the incapability of the microelectronics technology of that time. However, the recent 

requirement for modern communication systems to operate very close to the Shannon 

limit of channel capacity, the theoretical maximum [2], led to the rediscovery of the 

LDPC codes by Mackay and Neal [3] in 1996. After that irregular LDPC codes are 

constructed enabling data transmission rates close to the Shannon Limit [4], [5]. On 

the other hand, the LDPC decoding algorithm is inherently parallel and is easier to be 

implemented than its comparator turbo codes, thus making it more attractive to 

researchers [5]. As a result, they have been adopted for the 10GBase-T [6], the 

DVB-S2 [7], WLAN (IEEE802.11n) [17] and WiMAX (IEEE 802.16e) [8]. 

There are two kinds of LDPC codes: regular codes and irregular codes, as shown 

in Figure 1.1. The number of ”1” in one row is called the row weight (wr), the number 

of ”1” in one column is called the column weight (wc). If the row weight is the same 

and the column weight is the same, it is called regular LDPC code, as shown in 
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Figure 1.1(a). Regular codes are easy to be implemented in hardware while suffering 

a main problem that the Bit Error Rate (BER) performance is relatively worse than 

that of irregular codes [5]. As for irregular LDPC code, as shown in Figure. 1.1 (b), 

the row weight is different and the column weight is different. Although it has good 

error correction ability, irregularity results in hardware complexity and inefficiency in 

terms of reusability of functional units.  

 

 

Figure 1.1 LDPC codes: (a) regular LDPC code, and (b) irregular LDPC code 

 

As for the hardware implementation, LDPC decoders can be categorized as 

fully-parallel decoder and partially-parallel decoder, as shown in Figure 1.2. 

Fully-parallel LDPC decoder, as shown in Figure 1.2(a), does the row operations and 

column operations simultaneously for all the rows and columns, which can achieve 

higher throughput with routing complexity and area overhead [9]. In addition, 

fully-parallel LDPC decoder requires registers instead of SRAM banks for the row 

operation modules and the column operation modules. Therefore, the wiring area 

becomes a significant problem and the hardware architecture is fixed according to the 

parity check matrix. However, the partially-parallel decoder, as shown in Figure 

1.2(b), does the row operations and column operations in groups by reusing the 

functional units. Figure 1.2(b) shows an example of partially parallel decoder which 

has one row operation module and one column operation module, respectively. In this 

way, area and power consumption can be reduced by reusing the functional units but 

with relatively low throughput [10], [11].  
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(a) 

(b) 

Figure 1.2 LDPC decoders: (a) fully-parallel LDPC decoder, and (b) 
partially-parallel LDPC decoder 

 



 

4 
 

 

1.2 LDPC Code Representation 

 

There are two ways to represent LDPC codes: parity check matrix and tanner graph. 

Parity Check matrix can provide a direct view of the LDPC code in a mathematical 

way while through Tanner graph we can clearly see the connection between check 

nodes and bit nodes.  

 

1.2.1 Parity Check Matrix 

 
The LDPC codes can be defined by a parity check matrix HMN as shown in Equation 

(1.1), where M and N represent the number of rows and the number of columns in the 

parity check matrix. Structured LDPC codes can be divided into B × D sub-blocks, 

where B and D are the number of row-blocks and column-blocks respectively. Each 

sub-block matrix is a b×b square matrix, obtained through right shifting the identity 

matrix Ib×b by a specific number. The parity check matrix shown in Figure 1.3 is the 

targeted parity check matrix in Chapter 2 and Chapter 3. It is a 324 × 648 structured 

matrix (each sub-block is 27bits×27bits) defined in IEEE 802.11n standard [17] with 

code rate of 1/2 and code length of 648 bits. It has 12 row-blocks and 24 

column-blocks. In this figure, each small square represents a 27bits×27bits sub-block 

and sub-blocks in one row constitute one row-block, sub-blocks in one column 

constitute one column-block. Blank squares represent for zero sub-blocks while 

squares with lines are the sub-blocks who are obtained through right shifting the 

identity matrix.  
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Figure 1.3 IEEE802.11n parity check matrix  
(24✕12 sub-blocks, each is 27bits✕27bits) 

 

1.2.2 Tanner graph 

 

LDPC codes can be represented effectively by a bi-partite graph called a Tanner graph. 

There are two classes of nodes in a Tanner graph, “Bit Nodes” and “Check Nodes”. 

The Tanner graph of a code is drawn according to the following rule: Check node cm 

(m=1,…, M) is connected to Bit node bn (n=1,…, N) whenever element hmn in H is 

“1”. Figure 1.4 shows a Tanner graph and the corresponding parity check matrix is 

also shown. When there is a “1” in the parity check matrix, there is a connection 

between the corresponding bit node and check node. 
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Figure 1.4 Tanner graph of a parity check matrix 

 

1.3 Message passing (MP) decoding algorithm 
 

The model of the communication system using LDPC code is demonstrated in Figure 

1.5. Parity data is added to the transmitted data (Tx) to ensure H×Tx =0 in the sender 

part. The received data (Rx) should be correct if H×Rx=0. However because of the 

channel noise, H×Rx≠0 often happens. In the receiver, LDPC decoder is used to 

correct the received data until H×Rx=0.  
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Figure 1.5 Transmission model using LDPC code 
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The encoding for LDPC code is relatively easy, while the decoding process is 

complicated and not easy to be implemented in hardware. In this section, basic 

decoding algorithms for LDPC code are introduced. The decoding algorithm for 

LDPC code is called message passing algorithm [1] which passes the messages 

between check nodes and bit nodes by performing row and column operations 

iteratively. It can also be called Two Phase Message Passing (TPMP) algorithm in 

contrast to layered algorithm which will be introduced in Section 1.4. According to 

the different formula used in the message passing algorithm, several kinds of message 

passing algorithms can be defined. 

 

1.3.1 Belief Propagation (BP) algorithm 

 

We first define the column index sets A(m) and the row index sets B(n)as follows: 

 1)(  mnHnmA                                 

 1)(  mnHmnB                                

For the AWGN channel with noise variance σ2 and received signal yi, the 

conditional probability of being xi = 0 or xi = 1 is represented as follows: 
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The input to the message passing algorithm is initialized as message n . As a 

Log Likelihood Ratio (LLR), the initial message n  for BPSK modulation can be 

represented as follows:  
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Figure 1.6 shows the flowchart of LDPC decoding algorithm. Following six 

steps shows the detailed process of message passing algorithm: 





 

Figure 1.6 Flowchart of LDPC decoding algorithm 

 

Let λn denote the Log-Likelihood Ratios (LLR) of the bit node n of the received 

codeword from the channel, αmn be the message sent from check node m to bit node n, 

βmn be the message sent from bit node n to check node m, and sumn be the A 

Posteriori Probability (APP) message of the bit node n of the codeword. 
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Step 1 [initialization] 

Compute the log likelihood ratio (LLR) n  for n = 1,2,…,N using the following 

equation, where σ2 is variance of the noise generated by the AWGN Channel.  

2/2  nn y                           

Set  mn= n for each (m,n) satisfying Hmn=1. Set the loop counter l = 1, and the 

maximum number of iterations is set to lmax. 

Step 2 [row operation] 

It can also be called check node operation.  

For all the check nodes Cm in the order from m=1,2,…,M, compute the 

intermediate messages  mn according to the following equation, where each set 

(m,n) satisfies Hmn = 1. 

))
2

tanh((tanh2 '

\)('

1 mn

nmAn
mn




        (1.2) 

Step 3 [column operation] 

It can also be called bit node operation.  

For all the bit nodes bn in the order from n = 1,2,…,N, compute the message βmn 

with the following equation, where each set (m,n) satisfies Hmn = 1. 





mnBm

nmnmn
\)('

'     (1.3) 

Step 4 [APP update operation] 

Compute all the APP data sumn for n = 1,2,.., N. 





)('

'
nBm

nmnnsum      (1.4) 

Step 5 [parity check] 

Compute all the tentative LDPC code bits nŷ  for n = 1,2,.., N. 









1)(,1

1)(,0
ˆ

n

n
n sumsign

sumsign
y  

If the tentative code word )ˆ,,ˆ,ˆ( 21 Nyyy   satisfies following equation, output 

the code word, and terminate the message passing algorithm, otherwise go to Step 6. 
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0)ˆ,,ˆ,ˆ( 21  T
NyyyH   

Step 6 [increment counter] 

If maxll  , set the loop counter 1 ll  and go to Step 2. Otherwise output the 

tentative code word )ˆ,,ˆ,ˆ( 21 Nyyy  and end the algorithm. 

 

1.3.2 Min-sum Algorithm 

 

In the row operation in the BP algorithm, there is a non-linear Hyperbolic function 

(Equation (1.2)), which is hard to be implemented in the hardware. The hardware for 

the Hyperbolic function can be realized by Look Up Table (LUP) or linear 

approximation [38][39][40]. A famous approach called min-sum (MS) algorithm 

which uses Equation (1.5) is widely used in the hardware implementation [18].  

||min)( '
\)('

'
\)('

mn
nmAn

mn
nmAn

mn sign 




      (1.5) 

The above equation shows that the min-sum algorithm only uses addition, 

minimization and XOR operation for the procedure, which is suitable for the hardware 

implementation.  

 

1.3.3 Normalized min-sum (NMS) algorithm and offset 

min-sum (OMS) algorithm 

 

Although MS algorithm can be easily implemented in hardware, it suffers a large 

performance degrading which encourages further researches to find better 

approximation based on the MS algorithm. For example, a normalization factor or 

offset factor is applied to the MS algorithm, which forms the well-known Normalized 

Min-sum algorithm (NMS) and Offset Min-sum algorithm (OMS) [19] [20] [21] [22] 

[23] [24]. 
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The row operation with Equation (1.6) and Equation (1.7) is called normalized 

min-sum algorithm and offset min-sum algorithm, respectively. 

||min)( '
\)('

'
\)('

mn
nmAn

mn
nmAn

mn sign 




                (1.6) 

)0,||minmax()( '
\)('

'
\)('

 



 mn

nmAn
mn

nmAn
mn sign     (1.7) 

The above equations also demonstrate an easy implementation in hardware with 

addition, minimization, XOR and shift operation. 

 

1.4 Layered algorithm 

 
Layered decoding algorithm is another family of LDPC decoding algorithm. It was 

first proposed in [26] with the name of Turbo Decoding Message Passing (TDMP) 

algorithm. Recently, because of the layer based operation, it is also called layered 

decoding algorithm [27]. A layer consists of several rows in the parity check matrix 

and particularly, the layer for structured parity check matrix can be the row-block of 

the parity check matrix. Layered decoding algorithm has fast convergence speed 

compared to message passing algorithm, therefore, the iterations needed to decode the 

codeword is decreased, thus increasing the throughput and decreasing the power [34].  

    Figure 1.7 shows the flowchart of layered algorithm. Layered algorithm is 

repeated for each horizontal layer and the updated A Posteriori Probability (APP) 

messages are passed between layers. Let λn denote the Log-Likelihood Ratios (LLR) 

of the bit node n of the received codeword from the channel, αmn be the message sent 

from check node m to bit node n, βmn be the message sent from bit node n to check 

node m, and sumn be the APP message of the bit node n of the codeword and be 

initialized as λn. The detailed procedure can be described in the following seven 

steps: 
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Figure 1.7 Flowchart of layered LDPC decoding algorithm 

 

Step 1 [initialization] 

Compute the log likelihood ratio (LLR) n  for n = 1,2,…,N using following 

equation, where σ2 is variance of the noise generated by the AWGN Channel.  

2/2  nn y  

Set sumn= n for each (m,n) satisfying Hmn=1. Set the loop counter l = 1, and the 

maximum number of iterations is set to lmax. 

Step 2 [bit node operation] 

For each bit node bn inside the current layer in the order from n = 1,2,…,N, 

compute the message βmn with the following equation, where each set (m,n) satisfies 

Hmn = 1. 

mnnmn sum             
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Step 3 [check node operation] 

For all the check nodes Cm in the current layer in the order from m=1,2,…,M, 

compute the intermediate messages  mn according to the following equation, where 

each set (m,n) satisfies Hmn = 1. 

||min)( '
}{\)('

'
}{\)('

mn
nmAn

mn
nmAn

mn sign 


  

where  1)(  mnHnmA . 

Step 4 [APP update operation] 

The APP messages in the current layer are updated by: 

mnmnnsum    

Step 5 [last layer judgement] 

Decide if there is next layer in this iteration. If there is, back to Step 2 to continue 

to do the operation for the next layer. If there is not, go to step 6.  

Step 6 [parity check] 

Compute all the tentative LDPC code bits nŷ  for n = 1,2,.., N. 









1)(,1

1)(,0
ˆ

n

n
n sumsign

sumsign
y  

If the tentative code word )ˆ,,ˆ,ˆ( 21 Nyyy   satisfies following equation, output 

the code word, and terminate the message passing algorithm. 

0)ˆ,,ˆ,ˆ( 21  T
NyyyH   

Step 7 [increment counter] 

If maxll  , set the loop counter 1 ll  and go to Step 2. Otherwise output the 

tentative code word )ˆ,,ˆ,ˆ( 21 Nyyy  and end the algorithm. 

 

1.5 Design challenges of LDPC decoders 
 

Although many works have been done on LDPC decoder design, there still remains 
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challenges to design the decoder for specific applications. 

 

1.5.1 BER performance 

 

As an error correcting technique, the BER performance is always an important metric 

for the design. The higher the BER performance is, the higher the error correcting 

ability is. As for some communication system which demands very high error 

correcting ability, the design becomes extremely difficult [42] [43].  

Basically, BP algorithm can provide the best BER performance, but it is not 

hardware-friendly due to the need of implementation of a non-linear Hyperbolic 

function (Equation (1.2)). Basically it can be implemented by Look Up Table (LUT) 

or linear approximation [38][39][40]. However, not only the hardware implementation 

of LUT or linear approximation consumes large hardware cost, but also the BER 

performance will degrade through the approximations.  

On the other hand, MS algorithm, NMS algorithm and OMS algorithm can be 

implemented in quite simple hardware, but the BER performance is degraded 

compared to BP algorithm which is certainly not enough for some applications which 

require very high error correcting performance such as the broadcasting application 

[18][19]. 

 

1.5.2 Hardware cost 

 

Compared to other error correcting codes like convolutional code or turbo code, 

LDPC code has the best error correcting ability. However, the largest issue for LDPC 

decoder is the relatively large area for implementing because of the large quantity of 

message exchanges between the check nodes and bit nodes. The storage used to store 

the intermediate messages consumes almost half of all the LDPC decoder which is 

also a main reason for the large hardware cost [14]. The reason why LDPC code has 
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not completely taken place of all the other error correcting code in the real application 

is because of the large hardware cost problem. So from this point of view, 

partially-parallel LDPC decoder which can reuse the function units and has relatively 

small area has become more and more popular [13] [14] [25]. 

    On the other hand, the row operation of LDPC decoding algorithm performs an 

important role in the complexity of LDPC decoder. As introduced in Section 1.5.1, BP 

algorithm can achieve good BER performance but with large hardware cost, and the 

hardware cost of MS algorithm, NMS algorithm, OMS algorithm is relatively small 

but the BER performance is also degraded [18] [19]. There is a tradeoff between the 

BER performance and hardware cost, and it is still a challenge in LDPC decoder 

design.  

 

1.5.3 Throughput 

 

Because of the growing need of small hardware for manufacture process, 

partially-parallel LDPC decoder is basically used for modern LDPC decoder design. 

But the throughput is relatively low compared to the fully-parallel LDPC decoder [10] 

[11] [14]. However, high throughput is required to ensure the large amount of data 

transmission in real-time communication systems. There is a tradeoff between 

hardware cost and throughput, and it is another big challenge in LDPC decoder 

design. 

 

1.6 Motivation of this work 

 
As introduced in Section 1.3, LDPC code is very suitable for hardware 

implementation by utilizing a parallel decoding algorithm called Message-Passing 

(MP) algorithm [1]. In the last few years, researches have been done on designing 

specific decoder architectures for LDPC implementations, seeking for the best 
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trade-off between area, power consumption and performance [10] [11] [12] [13] [14]. 

The LDPC decoders that have been designed share the same primitive processing 

elements: check functional unit (CFU) performing row operations for check nodes and 

bit functional unit (BFU) performing column operations for bit nodes. These 

processing elements are connected according to the Tanner graph, a graph 

representing the relation between bit nodes and check nodes. The MP algorithm 

exchanges messages between check nodes and bit nodes by performing row and 

column operations iteratively. 

The authors in [13] proposed an accelerated message-passing schedule, which 

only performs those column operations whose corresponding check nodes have been 

updated by the row operations, which is demonstrated to be more efficient than the 

basic algorithm. A partially-parallel LDPC decoder based on the accelerated MP 

schedule is introduced in [14] to support for irregular LDPC code for IEEE802.11n 

application. Although the partially-parallel irregular LDPC decoder proposed in [14] 

can improve the error correction performance, it suffers a main problem that the 

overall throughput is relatively low compared with the regular or fully-parallel 

irregular LDPC decoder (eg. [15], [16]). Considering the fact that throughput is an 

essential metric in real-time communication systems applying LDPC code for 

IEEE802.11n application, good tradeoff between hardware cost and throughput for 

irregular LDPC decoder is required. 

On the other hand, LDPC code is also used in the Integrated Services Digital 

Broadcasting via Satellite - Second Generation (ISDB-S2) application in Japan. 

Previous decoding algorithms for LDPC decoders can either achieve very high BER 

performance by implementing very complicated hardware (Belief-Propagation –based 

algorithms)[29][30], or achieve small area cost in the sacrifice of degrading BER 

performance (Min-sum –based algorithms)[31][32]. However, as long as the stable 

transmission is necessary for satellite broadcasting, very high BER performance is a 

key request for the design. But as for the manufacture demand, Belief-Propagation 

–based algorithms with large area cost is not a good option for LDPC decoder design 

for ISDB-S2. So a good tradeoff between BER performance and hardware cost for 
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LDPC decoding algorithm targeting ISDB-S2 is another topic of this work. 

 

1.7 Contribution 
 

In this dissertation, we mainly focus on two issues: the LDPC decoder design for 

IEEE 802.11n application targeting high throughput and low hardware cost; an 

improved LDPC decoding algorithm for ISDB-S2 LDPC decoder targeting high BER 

performance and low hardware cost. 

 

1.7.1 High throughput partially-parallel irregular LDPC 

decoder 

 

In this issue, we propose a partially-parallel irregular LDPC decoder for IEEE 

802.11n standard targeting high throughput applications. The proposed decoder has 

several merits:  

(i) The decoder is designed based on a novel delta-value based message passing 

schedule which facilitates the decoding throughput by redundant computation 

removal.  

(ii) Techniques such as binary sorting, parallel column operation, high performance 

pipelining are used to further speed up the message-passing procedure.  

The synthesis result in TSMC 0.18 CMOS technology demonstrates that for 

(648,324) irregular LDPC code, our decoder can achieve 8 times increase in 

throughput, reaching 418 Mbps at the frequency of 200MHz. 

 

1.7.2 An improved design for low area cost application 

 

Based on the proposed delta-value based message passing schedule, we propose 
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another schedule called sum-delta message passing schedule and a partially-parallel 

irregular LDPC decoder targeting high throughput and small area application is 

implemented. The design of this decoder is characterized as follows:  

(i) Decoding throughput is greatly improved by utilizing the difference value between 

the updated and the original value to remove redundant computations.  

(ii)Registers and memories are optimized to store only the frequently used messages 

to decrease the hardware cost.   

The synthesis result in TSMC 0.18 CMOS technology demonstrates that for 

(648,324) irregular LDPC code, our decoder achieves 7.5X improvement in 

throughput, which reaches 404 Mbps at the frequency of 200MHz, with 11% area 

reduction. The synthesis result also demonstrates the competitiveness to the 

fully-parallel regular LDPC decoders in terms of the tradeoff between throughput, 

area and power. The backend design of this decoder is implemented using TSMC 

0.18μm technology and the layout area is 13.69mm2. 

 

1.7.3 Self-adjustable offset min-sum algorithm targeting 

high BER performance and low hardware cost 

 

A novel self-adjustable offset min-sum LDPC decoding algorithm is proposed for 

ISDB-S2 (Integrated Services Digital Broadcasting via Satellite - Second Generation) 

application. We present for the first time a uniform approximation of the check node 

operation through mathematical induction on Jacobian logarithm. The approximation 

theoretically shows that the offset value is mainly dependent on the difference 

between the two most unreliable inputs from the bit nodes and the algorithm proposed 

can adjust the offset value according to the inputs during the iterative decoding 

procedure. Simulation results for all 11 code rates of ISDB-S2 demonstrate that the 

proposed method can achieve an average of 0.12dB gain under the same Bit Error 

Rate (BER) performance, compared to the Min-sum based algorithms, and can save 

98.79% computation complexity compared to BP-based algorithms in the best case. 
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1.7.4 Data conflict resolution for layered schedule targeting 

high BER performance 

 

Layered LDPC decoding algorithm is known to achieve high Bit Error Rate (BER) 

performance and high throughput for LDPC decoders. However, for ISDB-S2 

(Integrated Services Digital Broadcasting via Satellite - Second Generation) LDPC 

decoder, applying layered algorithm directly will result in data conflict problem. In 

this work, a novel selective recalculation method is proposed to solve the data conflict 

problem. It determines the inaccurately calculated values based on a recalculation 

decision rule, and correct them accordingly. By applying this selective recalculation 

method, the layered algorithm can achieve conflict free BER performance. Simulation 

results of applying selective recalculation method to the layered schedule of the 

proposed algorithm introduced in Section 1.7.3 demonstrate that the proposed method 

can achieve further BER performance improvement, which can achieve an average of 

0.2dB gain compared to the MS-based algorithms.  

 

1.8 Organization of the dissertation 

 

The rest of this thesis is organized as follows: 

Chapter 2 describes a high throughput partially parallel LDPC decoder based on 

Delta-Value based Message Passing Schedule. Chapter 3 provides an improved 

design targeting high throughput and low area cost design based on Sum-Delta 

Message Passing Schedule. Chapter 4 provides the idea of self-adjustable offset 

min-sum algorithm and shows the simulation result. Chapter 5 introduces the idea of 

date conflict resolution by selective recalculation for layered LDPC decoding 

algorithm. Finally Chapter 6 makes a conclusion over all.  
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2  A partially-parallel LDPC 

decoder targeting high 

throughput 

 
2.1 Introduction 

The authors in [13] proposed an accelerated message-passing schedule, which only 

performs those column operations whose corresponding check nodes have been 

updated by the row operations, which is demonstrated to be more efficient than the 

basic message-passing algorithm. A partially-parallel LDPC decoder based on the 

accelerated MP schedule is introduced in [14] to support for irregular LDPC code. 

Although the partially-parallel irregular LDPC decoder proposed in [14] can improve 

the error correction performance, it suffers a main problem that the overall throughput 

is relatively low compared with the fully-parallel LDPC decoder (eg. [15][16]). 

Moreover, the throughput of current partially parallel irregular LDPC decoders 

designed, such as 54Mbps of [14], is not sufficient for most applications of 802.11n 

standard [17], which requires a throughput of up to 330Mbps. From this observation, 

there is room for the improvement for partially-parallel irregular LDPC decoders.  

In this chapter, we propose an improved MP algorithm and decoder architecture 

for irregular LDPC decoder, in this paper, to achieve a nearly 8X speedup with almost 

the same BER performance.  

The novelties of this decoder in terms of high throughput are as follows: 

• The proposed LDPC decoder is based on a novel delta-value message-passing 

algorithm suitable for high throughput design. 
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• An improved binary sorting scheme is designed in row operation to reduce the 

computation time. 

• A parallel structure of bit function unit is designed to speed up the column operation. 

• A high performance pipeline structure is used to further speed up the 

message-passing procedure.  

The synthesis result in TSMC 0.18μm CMOS technology demonstrates that for 

(648,324) irregular LDPC code, our decoder can achieve 8 times increasement in 

throughput, reaching 418 Mbps at the frequency of 200MHz. 

 

2.2 Proposed delta-value based message passing 

(DVMP) schedule 
 

In this section, the accelerated message passing algorithm is illustrated through an 

example and an improved message passing schedule is proposed based on the 

accelerated message passing algorithm which can achieve high throughput 

application. 

 

2.2.1 Accelerated message passing algorithm 

 

In this section, we use an example to demonstrate the problem of the accelerated 

message-passing algorithm. 

The accelerated message passing schedule, proposed in [13], is well suitable for 

irregular LDPC decoder design. The flowchart of the accelerated message passing 

algorithm is shown in Figure 2.1(a), with the solid line showing the flowchart of the 

algorithm stages and the dotted line showing the data transmission of the storages. 

Each iteration of the algorithm is composed of four phases: row operation, column 

operation, error correction and parity check. The row operation updates message α 

of all check nodes using message β, and sends the message to bit nodes. The column 
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operation updates message β of all bit nodes based on message α and initial 

message λ. The error correction calculates the tentative decision and the parity check 

operation decides whether another decoding iteration is necessary or not according to 

the tentative decision. 





 

Figure 2.1 Accelerated message passing algorithm: (a) flowchart of accelerated 
MP algorithm and (b) parity check matrix of motivation example 
 

 The idea is illustrated through an example demonstrated in Figure 2.1(b). In a 

simple 3×1 parity check matrix, of which each sub-block is a 3×3 matrix, the row 

operations for all the first rows in each sub-block is executed first. Then three α values 

are updated, which are  1(1,1),  2(1,2) and  3(1,3) respectively. In the 

accelerated MP algorithm, the calculation of   values will be executed right after 

the first row operation. The computations of the first column are shown as follows: 
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


 

 

2.2.2 Motivation 

 

If we consider these column operations that calculate the updated message  , 

only a small part of the operands have been changed since last computation of the 

same message  . For example, only  1(1, 1) is changed for calculation of  2(3, 1) 

and  3(2, 1) and no operand is changed for calculation of  1(1, 1). A considerable 

part of addition operations in column operation, in fact are a repetition of former 

computations. And for the targeting parity check matrix, when |B(n)| is large, this 

problem becomes more significant as more useless additions are operated. The above 

observation demonstrates that accelerated MP scheme still has computational 

redundancies, which degrade the efficiency of hardware implementation. 

 

2.2.3 Delta-Value Based Message Passing Schedule 

 

In accelerated MP algorithm, the computation of   for columns with a weight of 12 

in the targeted parity check matrix (|B(n)| = 12), requires the addition of 11   

values and one λ value according to Equation (1.3) [13] [14]. This results in a 

five-depth addition and thus becomes the bottleneck to get high throughput designs. 

However, we propose an improved MP schedule called Delta-Value based 

Message-Passing (DVMP) schedule to help solve this bottleneck problem and thus 

increases the throughput.  

We first introduce the concept of a new message Δα, as follows.  
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),(-),('),( nmnmnm                                  (2.1) 

Back to example in Figure 2.1(b), the calculation can be simplified by adding 

only the updated delta-value of message α shown as follows. 

)1,1()1,2()1,2(

)1,1()1,3()1,3(

 )1,1()1,1(

133

122

11











 

This new calculation method of message β can remove redundant computations 

and reduce the total number of additions in the bottleneck column operation, 

especially when |B(n)| becomes larger. For the targeted parity check matrix [17], at 

most two message α are updated after certain row operation. Based on this 

observation, only a small number of updated α value is sufficient to generate a correct 

message  . Therefore, we proposed our DVMP algorithm by only calculating the 

delta value of updated α in the row operation to improve the decoding efficiency. In 

such scheme, the resulting   can be obtained by at most 2 levels of addition in 

DVMP rather than 5 levels in the accelerated MP scheme [13], [14]. 

The proposed DVMP algorithm is shown in Figure 2.2, with the solid line 

showing the flowchart of the algorithm stages and the dotted line showing the data 

transmission of the storages. In the initialization step, message   is initialized as 

message λ. Then the row operation is executed to update message α according to 

Equation (1.6) and generate corresponding Δ  according to Equation (2.1) at the 

meantime. Next, the column operation calculates message   by the updated α 

values as Equation (2.2). The error correction calculates the tentative decision, based 

on which a parity check is done after each iteration to determine the termination of the 

decoding process. 

                                              ),(),(),(
\)(D





mnm

nmnmnm  (2.2) 
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



 

 

Figure 2.2 Flowchart of proposed delta-value message passing algorithm 

 

In Equation (2.2), D(n) are those row numbers of which the message α has been 

updated since the last computation of  (m, n) in column n. The total number of 

possible addition is reduced from |B(n)| to |D(n)|. And in the situation of the targeted 

irregular decoding matrix, this redundancy removal can improve the column operation 

by a saving of three level additions, which reduce both the computation time and area 

of hardware implementation. 
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2.3 Proposed high throughput design 
 

Apart from the high throughput DVMP schedule, we integrated three different 

strategies into the proposed decoder to further speed up the decoding process. In row 

operation module, a binary sort scheme is used to shorten the comparison time. In 

column operation module, parallel DVMP schedule is used to save the processing 

time. Furthermore, a pipeline structure is utilized to speed up the whole processing 

procedure. 

 

2.3.1 High throughput row operation module 

 

In the calculation of α value according to Equation (1.6), the minimum and second 

minimum   value among a total of |A(m)| values in the same row should be 

obtained through a proper comparison scheme. In previous designs [13], [14], simple 

sorting algorithms are used to obtain the minimum values, such as the implementation 

of bubble sort comparison scheme illustrated in Figure 2.3. Eight   values (|A(m)| = 

8 for the targeted matrix) are compared serially to the min1 and min2 to find the 

minimum value and the second minimum values from the eight   values. min1 and 

min2 at the input side of Figure 2.3 are the initial values of the registers used for 

storing the minimum value and the second minimum value. 
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1
2
3
4
5

6
7
8

 

Figure 2.3 Previous comparison scheme in row operation module 

 

The diamond symbol in Figure 2.3 is a decision process which feeds   to 

different output branches based on the relation between   and min1. For example, 

 1 is compared with min1 first and the register value of min1 is replaced with  1 if 

 1 is smaller, or otherwise sent to compare with min2. In this way, the total number 

of clock cycles to get the minimum and second minimum value is 9. These serial 

comparison steps, however, requires considerable computational time and becomes 

the most time consuming part in row operation when the number of message   

increases greatly in the targeted matrix. 
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Figure 2.4 Proposed comparison scheme in row operation module 

 

In order to improve the hardware performance, a tree structure is proposed, 

together with a binary sort to obtain two minimum values in parallel. The modified 

sorting scheme requires less area and can generate the result in only five comparison 

steps. The detailed comparison procedure in row operation module is shown in Figure 

2.4. The upper tree and the lower tree represent respectively the sorting for the 

minimum and the second minimum   value among a total of eight values. In the 

figure, we assume that the values of eight   at the same row (  1,  2, . . . ,  8) 

comply with the relationship of  1 <  2 < . . . <  7 <  8 and the resulting 
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values are labelled on each data path. In the first step, eight   values are compared 

in pairs. The smaller one (e.g.,  1) is remained in the sorting tree for the minimum 

value while the larger one (e.g.,  2) is eliminated to the sorting tree for the second 

minimum value. Then the values in both trees will continue the comparison process in 

pairs with the larger one in the upper tree eliminated to the lower tree. In this manner, 

we can get the minimum and the second minimum value at the third and the fifth step 

of the operation. Compared with a total 9 clock cycles in [14], our proposed scheme 

can complete the comparison in only 2 clock cycles under the frequency of 200MHz, 

a 4.5X speedup. 

 

2.3.2 High throughput column operation module 

 
As discussed in Section 2.2.3, the DVMP-based column operation can update   

values by the addition of its original   and at most two updated Δα values according 

to Equation (2.2). The number of updated Δ  values and the exact position of each 

updated Δ  in the column operation are determined by the parity check matrix. 

Therefore, Equation (2.2) is simply achieved by two addition steps during 

implementation. In the first addition step, at most two updated Δ  values is added 

together for the targeting LDPC code in IEEE802.11n [17]. Then we compute the new 

  value by adding the original one and the sum of Δ  in the second step. By 

adapting the DVMP schedule, not only the computation time of each column 

operation is minimized, but also the area of hardware implementation is reduced. 

Based on this observation, we can further improve the throughput by applying a 

parallel column operation here. 
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Figure 2.5 Example of column operation: (a) column after column scheme (b) 
parallel scheme 

 

In previous implementation of the accelerated MP schedule [13], [14], all N 

column-blocks are computed in parallel while different columns in one column-block 

are calculated in serial as shown in Figure 2.5(a). After the first row operation is 

calculated, which is shown as gray rectangulars, column operations are calculated one 

by one. This processing procedure requires at most 11 clock cycles for column 

computation in the real implementation of the targeting LDPC code [14]. In the 

proposed module, message   of all columns, in which there exists an updated  , 

are computed in parallel, as shown in Figure 2.5(b). A hardware implementation for 

computing k columns in parallel is shown in Figure 2.6. The resulting parallel 

DVMP-based column operation can be computed in one clock cycle, which is 11 

times faster than the implementation in [14]. 
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Figure 2.6 Architecture of proposed DVMP-based column operation module 

 

2.3.3 High throughput pipeline schedule 

 

In the proposed decoder, pipeline structure is utilized to achieve further speed up of 

the procedure, as shown in Figure 2.7. The row operation and column operation 

(including message read and write) are divided into four and three pipeline stages 

respectively to balance the computation time of each stage. After a further overlap of 

the row and column operation based on data dependency information, the message of 

a particular row operation and corresponding column operation can be updated after 

four clock cycle. 
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Figure 2.7 Timing schedule of the decoder applying DVMP schedule 
 

During the first clock cycle,   and   values are read in to prepare for a row 

operation. In the second and third clock cycles, a tree structure comparison is 

conducted for the minimum and second minimum   value, and corresponding   

and Δ  values are obtained. In the fourth clock cycle, all related column operations 

are computed based on Δ  values, and   values are written into memories at 

meantime. 
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Figure 2.8  Bit error rate performance of the decoder applying DVMP schedule 
 

Based on this proposed pipeline structure, the updated message of a specific row 

can be used after four clock cycles, in other words, the updated messages of mth row 

can be used by (m + 4)th row operation. In [25], the updated messages of mth row can 

be used by (m+27)th row operation. Although in [14], the updated message of the 

same row is used by (m+3)th row operation, our pipeline structure incurs nearly no 

performance degrading compared to [14] as illustrated in Figure 2.8. The reason of the 

gap in the figure is that the updated message of mth row can be used at (m+4)th row 

other than (m+3)th row in [14], and the sooner the updated messages are used the 

better the performance will be. Furthermore, the proposed pipeline structure is more 

compact, which improves both the hardware utilization and throughput. 

 

2.4 Implementation and result 
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In this section, the hardware implementation of the proposed partially-parallel 

irregular LDPC decoder and the synthesis results are presented. 

 

2.4.1 Implementation details 

 

The proposed decoder is mainly composed of five parts: row operation modules, 

column operation modules, parity check, controller and storage parts (memory for   

value, registers for   value, Δ  value and tentative decision value), as shown in 

Figure 2.9. 
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Figure 2.9 Block diagram of the decoder applying DVMP schedule 

 

In the proposed decoder, we design 12 CFUs and 24 BFUs in order to execute 

the computation of the same row or column in each sub-block in parallel. Since the 

targeted LDPC decoding matrix is irregular, two different row operation modules 

(CFU_for_7in and CFU_for_8in), and three different column operation modules 

(BFU_for_12in, BFU_for_3in, and BFU_for_2in) are designed for rows and columns 
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with different |A(m)| and |B(n)|. The controller module generates the control signals 

for storage and operation modules, while parity check module does the error 

correction and the parity check at the end of each iteration. Message   is only used 

in the row operation and is stored in memory with corresponding row address. Other 

messages like  , which have multiple-access problem, are stored in registers. 

 

Table 2.1 Composition of the decoder core implementing DVMP schedule 
 

Module without DVMP with DVMP 

Number of 

Gates 

Percentage 

(%) 

Number of 

Gates 

Percentage 

(%) 

Row operation modules 49,902 41.17 53,042 53.00 

Column operation modules 60,903 50.24 36,619 36.59 

Parity check 9,285 7.66 9,258 9.28 

Controller 1,124 0.93 1,124 1.13 

LDPC decoder core 121,214 100 100,070 100 

 

The detailed composition of the proposed decoder core is listed in Table 2.1, 

under the column with DVMP. The result is compared to the implementation without 

DVMP, and we can see from the table, the former computation-intensive column 

operation modules are reduced because of the use of DVMP algorithm. 

 

2.4.2 Synthesis result 

 
The proposed decoder is implemented under TSMC 0.18um CMOS technology. The 

synthesis results are listed in Table 2.2. Ref. [10] is a partially-parallel irregular 

decoder whose code length is 8088 bit. And we compare our work with [13], [14] 

under the same LDPC code and the same design rule. Under column Ref. [14] is the 
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synthesis result of a partially-parallel irregular LDPC decoder designed in [14], which 

is the only design known, targeting the same newly proposed LDPC code in [17]. We 

also modified the design in [13] to support the same irregular code with detailed 

synthesis result under column Ref. [13]*. 

 

Table 2.2 Synthesis result of the LDPC decoder implementing DVMP schedule 
 

 Ref. [10] Ref. [13]* Ref. [14] Proposed 

Design rule TI 0.11μm TSMC 0.18μm 

LDPC code 8088 bit  

rate 1/2 

irregular 

802.11n 648 bit rate 1/2 irregular 

LDPC decoder Partially-parallel 

Throughput 188Mbps 

(itr=25, 

SNR=NA) 

54Mbps 

(itr= 5,  

SNR = 3.0) 

54Mbps 

(itr= 5,  

SNR = 3.0) 

418Mbps 

(itr= 5,  

SNR = 3.0) 

Frequency 212MHz 200MHz 200MHz 200MHz 

Memory area 407Kgates 708Kgates 502Kgates 170Kgates 

Area w/o wiring 742Kgates 832Kgates 611Kgates 423Kgates 

Area w/. wiring N/A 13,090,549μm2 9,004,366μm2 12,930,433μm2

Power(mW) 

@200MHz,1.6V 

N/A 765.85 486.44 893.18 

 

Because of the pipeline structure along with the improved row and column 

operation modules, our proposed decoder requires only 31 clock cycles for a single 

iteration and five iterations for codeword correction under SNR of 3.0dB, which can 

achieve 8 times throughput than [13], [14]. And it can also achieve more than twice 

the throughput than [10] and also requires much smaller gate counts than [10].  
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2.5 Conclusion 

 
In this chapter, a novel high throughput partially-parallel irregular LDPC decoder is 

proposed. Row operations and column operations are speeded up by a modified binary 

searching scheme and delta-value based message-passing schedule respectively. 

Moreover a pipeline structure is utilized to further compact the procedure. The 

synthesis result demonstrates that our decoder can achieve a much higher throughput 

and almost the same bit error rate performance compared to other partially-parallel 

irregular LDPC decoders.  
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3 A partially-parallel LDPC decoder 

targeting high throughput and low 

hardware cost 

 
3.1 Introduction 

 
Although the decoder proposed in Chapter 2 can achieve a throughput of 418Mbps 

which meets the requirements for all the applications for IEEE802.11n, the hardware 

overhead is still a challenge in the design. In this chapter, we propose a 

partially-parallel irregular LDPC decoder based on the decoder proposed in Chapter 2 

and target high throughput and small area applications. The design is based on a novel 

sum-delta message passing algorithm characterized as follows:  

• The decoder designed is based on a novel sum-delta message passing algorithm 

well suitable for high throughput and low area design. 

• The decoding process is further speeded up by an improved binary sorting scheme 

for row operation and parallel computation for column operation using the proposed 

sum-delta message passing algorithm. An efficient pipeline structure is utilized to 

boost message-passing throughput. 

• The proposed sum-delta message passing algorithm can effectively reduce the 

storage area for messages passing through computation units by storing only the 

frequently used messages, thus saving the total area. 

The synthesis result in TSMC 0.18 CMOS technology demonstrates that for 
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(648,324) irregular LDPC code, our decoder achieves 7.5X improvement in 

throughput, which reaches 404 Mbps at the frequency of 200MHz, with 11% area 

reduction. The synthesis result also demonstrates the competitiveness to the 

fully-parallel regular LDPC decoders in terms of the tradeoff between throughput, 

area and power. 

 

3.2 Proposed sum-delta message passing (SDMP) 

schedule 

 

Through observing the accelerated message passing algorithm, we found in Equation 

(1.3) where message   is obtained by the addition of λ and all connected message 

  of the same column except the one at the same row. Similar computations exist 

among the calculation of different message   at the same column, such as  1(1, 1), 

 2(3, 1) and  3(2, 1) in the example in Figure 2.1(b). 

Based on DVMP schedule, we present our SDMP schedule in this section to 

address the efficiency issues. The proposed algorithm can improve the overall 

throughput and save storage area. We first introduce the concept of a new message 

sum, as follows. 

(3.1)                                                       ),()()(
)(





nBm

nmnnsum   

Compared with Equation (1.3),   value can be computed as follows. 

(3.2)                                                    ),()(),( nmnsumnm    

Then message sum instead of message   is stored and passed through different 

computation modules to form a new message passing scheme and save computation 

cost. The corresponding storage is also reduced from at most 12 message   to a 

single message sum. We further simplify the computation of message sum by 
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introducing Δ  values. In Figure 3.1(a), let us revisit the example in Figure 2.1(b), 

as can be noticed from the example that during the computation of message sum using 

Equation (3.1), only one   ( 1(1, 1)) out of three has been updated. Therefore, only 

those updated delta value of message α is enough to calculate the correct message 

sum. 

(3.3)                                                        ),()()('
)(D





nm

nmnsumnsum   

In Equation (3.3), D(n) are those row numbers of which the message   has 

been updated since the last computation of  (m, n) in column n. The total number of 

possible addition is reduced from |B(n)| to |D(n)|. 
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Figure 3.1 Sum-delta message passing schedule: (a) parity check matrix of 
motivation example, and (b) flowchart of proposed sum-delta message passing 

schedule 



 

42 
 

 

The proposed SDMP schedule, which is shown in Figure 3.1(b), takes fully 

advantage of the improvement compared to DVMP schedule. In the initialization step, 

message sum is initialized as message λ. Then the row operation is executed to update 

message   according to Equation (1.6), where   value is obtained through 

Equation (3.2) using message sum and  , and corresponding Δ  is generated at the 

meantime. After that, the column operation calculates message sum by the updated 

Δ  values as Equation (3.3). The error correction calculates the tentative decision, 

based on which a parity check is done after each iteration to determine the termination 

of the decoding process.  

Back to the example in Figure 3.1(a), for the computation of   value in this 

example using SDMP schedule, we update sum value using delta-value of message 

  first and each   value can be calculated using Equation (3.2) respectively. 

)1,2()1('s(2,1)'

)1,3()1('s(3,1)'

)1,1()1('s(1,1)'

)1,1()1()1('s

33

22

11

1











um

um

um

sumum

 

In this example, the addition depth only decreases from two to one, this is 

because the parity check matrix is so small that the advantage of SDMP schedule is 

not obvious. But as for the real implementation of the targeted matrix in 802.11n, the 

addition depth is decreased significantly using the SDMP schedule. By comparing the 

proposed algorithm and the accelerated algorithm, we can see that the benefit of this 

SDMP schedule is twofold. First, this calculation method of newly introduced 

message sum based on updated message Δ  only, can remove the redundant 

computations and reduce the total number of addition depth in the column operation, 

especially when |B(n)| becomes larger. For the targeted parity check matrix, at most 

two messages α are updated after certain row operation (|D(n)| = 2). This will save the 

computational depth from 5 levels in the accelerated MP scheme to at most 2 levels, 

which improve decoding throughput. On the other hand, by adapting this novel 
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decoding scheme, only one message sum rather than at most 12 message β of each 

column is required for storage, which helps reduce area cost. The detailed area saving 

strategies are discussed in section 3.4. 

 

3.3 High throughput design 
 

In this section, strategies other than SDMP schedule to achieve high throughput 

design in described. 

 

3.3.1 SDMP based column operation module 

 

As discussed in the previous section, the SDMP-based column operation can update 

message sum by addition of its original value and at most two updated Δα values 

using Equation (3.3). The number of updated Δ  values and the exact position of 

each updated Δ  in the column operation are determined by the parity check matrix. 

By adapting the SDMP schedule, not only the computation time of each column 

operation is minimized, but also the area of hardware implementation is reduced. 

Based on this observation, we can further improve the throughput by applying a 

parallel column operation here.  

sum(n1)

Σ△α1 (m’,n1)
+

sum(nk)
+sum’(n1) sum’(nk)Σ△αk(m’,nk)

 
Figure 3.2 Architecture of proposed SDMP-based column operation module 

 

In previous implementation of the accelerated MP schedule [13], [14], all N 

column-blocks are computed in parallel while different columns in one column-block 

are calculated in serial, which may require at most 11 clock cycles for column 

computation. In the proposed module, message sum of all columns, in which there 

exists an updated  , are computed in parallel. A hardware implementation for 

computing k columns in parallel is shown in Figure 3.2. The resulting parallel 
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SDMP-based column operation can be computed in one clock cycle. 

 

3.3.2 Pipeline schedule 

 

In the proposed decoder, a pipeline structure is utilized to achieve further speed-up of 

the procedure, as shown in Figure 3.3. Compared to the pipeline schedule in Chapter 2, 

this design needs one more clock cycle to calculate   from sum and  . The row 

operation and column operation are divided into five and three pipeline stages 

respectively to balance the computation time of each stage.  
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Figure 3.3 Timing schedule of the decoder applying SDMP schedule 

 

During the first clock cycle,   and sum values are read in to prepare for a row 

operation. In the second clock cycle,   value is obtained from   and sum values. 

In the third and fourth clock cycles, a tree structure comparison is conducted for the 

minimum and second minimum   value, and corresponding   and Δ  values 
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are obtained. In the fifth clock cycle, all related column operations are computed 

based on sum and Δ  values, and α values are written into memories at meantime. 

Then the updated   and sum messages will be read in and used by (m + 5)th row 

operation. Based on this proposed pipeline structure, the BER performance 

comparison with ref. [14] and the proposed decoder in Chapter 2 is illustrated in 

Figure 3.4 under the same iteration (itr=5). Method 1 represents the design in Chapter 

2 using DVMP schedule and method 2 is the design proposed in this chapter. This 

pipeline structure incurs nearly no performance degrading compared to [14]. The 

reason of the gap of the BER performance of method 2 and ref. [14] is that the 

updated message of mth row can be used at (m+5)th row other than (m+3)th row in [14], 

and the sooner the updated messages are used the better the performance will be. 

Besides that, the proposed pipeline structure is more compact, which improves both 

the hardware utilization and throughput. The number of clock cycles for each iteration 

decreased from 256 to 32. 
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Figure 3.4 Bit error rate performance of the decoder applying SDMP schedule 
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3.4 Low area design 
 

By adapting the novel SDMP schedule described in Section 3.2, we can further reduce 

the memory allocation and save chip area. Let us revisit the motivation example 

shown in Figure 3.1(a). Since   values  1(1, 1),  2(3, 1),  3(2, 1) is obtained 

and used only in row operation, the storage of message β is no longer required. 

Instead, only one message sum(1) for the first column is stored for further 

computation. In columns with a weight of 12 in the targeted parity check matrix 

(|B(n)| = 12), this strategy will save the area by 11/12 at the best case. 

The implementation result demonstrates that using the storage for sum instead of 

β in SDMP schedule can save 82% ((1,949,487-347,036)/1,949,487) of the storage 

area, as listed in Table 3.1. 

   Furthermore, in the proposed SDMP schedule,   value is only required in row 

operation for the calculation of Δα, while in former MP scheme, message   is 

accessed at both row and column operation. In other words, in former MP scheme, 

message   should be accessible by both row and column address, while in SDMP, a 

row of message   can be stored in a single memory line, thus saving control logic 

and area. Additionally, in SDMP schedule, λ is no longer used in each column 

operation, which further saves the storage area. The detailed saving for message   

and λ are also demonstrated in Table 3.1. As we can see from the table, the proposed 

method can save a total 60% storage compared to [14]. 
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Table 3.1 Comparison of storage area (μm2)for messages in TSMC 0.18μm 
 

 Ref. [14] Proposed  Total saving 

  1,949,487 0 

3,117,887 

Sum 0 347,036 

  1,949,487 1,695,501 

Λ 1,301,845 0 

Δ  0 40,395 

Total 5,200,819 2,082,932 

 

3.5 Implementation and result 
 

In this section, we present the hardware implementation of the proposed 

partially-parallel irregular LDPC decoder, using TSMC 0.18μm CMOS technology 

and the synthesis result of the proposed decoder. 

 

3.5.1 Implementation details 

 

The proposed decoder is mainly composed of five parts: row operation, column 

operation, parity check, controller and storage parts (memory for   value, registers 

for sum value, Δ  value), as shown in Figure 3.5. 
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Figure 3.5 Block diagram of the decoder applying SDMP schedule 

 

In the proposed decoder, we design 12 CFUs and 24 BFUs in order to execute 

the computation of the same row or column in each sub-block in parallel. Since the 

targeted LDPC decoding matrix is irregular, two different row operation modules 

(CFU_for_7in and CFU_for_8in), and three different column operation modules 

(BFU_for_12in, BFU_for_3in, and BFU_for_2in) are designed for rows and columns 

with different |A(m)| and |B(n)|. The controller module generates the control signals 

for storage and operation modules, while parity check module does the error 

correction and the parity check at the end of each iteration. Message α is only used in 

the row operation and stored in memory with corresponding row address. Other 

messages like sum, which have multiple-access problem, are stored in registers. 

The detailed composition of the proposed decoder core is listed in Table 3.2. As 

we can see from the table, the former computation-intensive column operation 

modules are greatly reduced because of the use of SDMP schedule. 
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Table 3.2 Composition of the decoder core implementing SDMP schedule 
 

Module Number of Gates Percentage (%) 

Row Operation Modules 81,813 82.48 

Column Operation Modules 6,669 6.73 

Parity Check  9,258 9.36 

Controller 1,419 1.43 

LDPC decoder core 99,186 100 

 

3.5.2 Synthesis result 

 

The synthesis results of the proposed decoder are listed in Table 3.3. We compare our 

work with typical decoder designs in [9], [10] under the different specifications, and 

with [13], [14] under the same LDPC code and the same design rule. The design in [8] 

is an irregular partially-parallel decoder targeting a different LDPC code while the 

design in [9] is a fully-parallel regular decoder. Under column Ref. [14] is the 

synthesis result of a partially-parallel irregular LDPC decoder designed in [14], which 

is the only design known, targeting the same newly proposed LDPC code in [17]. We 

also modified the design in [13] to support the same irregular code with detailed 

synthesis result under column Ref. [13]*. Ref. [25] is the design targeting different 

irregular LDPC code in 802.11n. The decoder under column Method 1 is the decoder 

introduced in Chapter 2. The decoder under column Method 2 is the decoder 

introduced in this chapter. 
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Table 3.3 Synthesis result of the LDPC decoder implementing SDMP schedule 
 

 Ref. [9] Ref. [10] Ref.[25] 

Design rule 0.16μm TI 0.11μm TSMC 0.18μm 

LDPC code 1024 bit rate 1/2 regular 8088 bit  

rate 1/2 

irregular 

802.11n 1296bit 
rate:1/2 

irregular 

LDPC decoder Fully-parallel Partially-parallel Partially-parallel 

Throughput 1Gbps✕1/2 

(itr=54, SNR = 3.0dB) 

188Mbps 

(itr=25, SNR=NA)

1Gbps 

(Itr= 5)  

Frequency 64MHz 212NHz 200MHz 

Memory area N/A 407Kgates No use 

Area w/o wiring 1750Kgates 742Kgates 520Kgates 

Area w/. wiring N/A N/A 23,528,130μm2 

Power(mW) 690 

(@64MHz, 1.5V) 

N/A 755 

Chip area(mm2) N/A N/A N/A 
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Table 3.4 Synthesis result of the LDPC decoder implementing SDMP schedule 
(continued) 

 

 Ref. [13]* Ref. [14] Method 1 Method 2 

Design rule TSMC 0.18μm 

LDPC code 802.11n 648 bit rate 1/2 irregular 

LDPC decoder Partially-parallel 

Throughput 54Mbps 

(itr= 5,  

SNR = 3.0) 

54Mbps 

(itr= 5,  

SNR = 3.0) 

418Mbps 

(itr= 5,  

SNR = 3.0) 

404Mbps 

(itr= 5,  

SNR = 3.0) 

Frequency 200MHz 200MHz 200MHz 200MHz 

Memory area 708Kgates 502Kgates 170Kgates 170Kgates 

Area w/o wiring 832Kgates 611Kgates 423Kgates 313Kgates 

Area w/. wiring 13,090,549μm2 9,004,366μm2 12,930,433μm2 8,012,999μm2

Power(mW) 765.85 486.44 893.18 712.38 

Chip area(mm2) N/A N/A N/A 13.69 

(layout) 

 

Because of the novel SDMP schedule along with the improved row and column 

operation modules, our proposed decoder requires only 32 clock cycles for a single 

iteration and five iterations for codeword correction under Signal-to-Noise Ratio 

(SNR) of 3.0dB. In contrast to the partially-parallel decoders in [10], [13], [14], the 

proposed decoder achieves much highest throughput for partially-parallel irregular 

LDPC decoder. Because of the optimization of storage, the proposed decoder achieves 

a gate count reduction of 39% and 11% compared with [13], [14] respectively. 

Although it can not achieve as high as the throughput compared with [25], the 

proposed decoder consumes less power and area. It also shows the advantage in the 

area and power when it is compared to the design introduced in Chapter 2.  

When it is compared to the fully-parallel decoder in [9], although it consumes a 
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little more power than [9], the proposed decoder requires only about 1/5 the gate 

count of that of [9].  

The backend design of the proposed decoder is implemented by Synopsys Astro 

with ARM’s Artisan SAGE-X 0.18μm 1P6M stand-cell library for TSMC. The layout 

design includes the design setup, floor planning, timing setup, placement, CTS and 

routing. The layout is provided in Figure 3.6, where modules are labeled in the figure 

and memories on the boundaries are for message α. The size of the chip core after 

layout is 13.69mm2(3.7mm × 3.7mm). 
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Figure 3.6 Layout of the decoder 
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3.6 Conclusion 

 
In this chapter, a novel high throughput low area cost partially-parallel irregular 

LDPC decoder is proposed based on the one proposed in Chapter 2. Row and column 

operations are speeded up by a modified binary searching scheme and SDMP 

schedule respectively. Area cost is decreased because of the use of the proposed 

SDMP schedule. The synthesis result demonstrates that our decoder can achieve a 

much higher throughput and almost the same bit error rate performance with less area 

cost compared to other partially-parallel irregular LDPC decoders. It is also a better 

design in terms of tradeoff between throughput, area and power compared to 

fully-parallel regular LDPC decoders. 
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4 Self-adjustable offset min-sum 

algorithm targeting high BER 

performance and low hardware 

cost 
 

4.1 Introduction 

 

In Japan, a next generation satellite broadcasting system named "Integrated Services 

Digital Broadcasting via Satellite - Second Generation (ISDB-S2)" was proposed by 

NHK (Japan Broadcasting Corporation), and is currently under the examination of 

Association of Radio Industries and Businesses (ARIB) [28]. To ensure the 

transmission quality and high error correction capability, LDPC code is selected as the 

error correction code for ISDB-S2 and is expected to achieve a Bit Error Rate (BER) 

of 10-11.  

Defined by ISDB-S2, the parity check matrices targeted in this work are 11 

different codes with code rate ranging from 1/4 to 9/10. The numbers of columns (N) 

for all 11 codes are fixed as 44,880 and the numbers of rows (M) are related to the 

code rate. And all the codes are structured LDPC codes, with a sub-block size of 374

× 374. 

LDPC code can be efficiently decoded through messages exchange between check 

nodes and bit nodes by performing check node and bit node operations iteratively. 

Among decoding algorithms, Belief Propagation (BP) algorithm, also known as Sum 

Product algorithm, is well known for its good error correcting performance. However 

it is not hardware-friendly due to the necessity of implementing Hyperbolic functions 
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[1]. Min-sum (MS) algorithm approximates BP algorithm with easy hardware 

implementation but greatly degrades the error correcting performance [18]. Recently, 

many approaches have been proposed to trade off between the BER performance and 

hardware complexity. These approaches can be categorized as two kinds of schemes: 

MS-based schemes and BP-based schemes. The MS-based schemes aim at improving 

the error correcting performance of the MS algorithm by introducing a multiplied or 

additive factor, i.e., Normalized Min-sum (NMS) algorithm and Offset Min-sum 

(OMS) algorithm [19]. Later on, some further derivatives of OMS algorithm appear, 

such as the Degree-Matched Min-sum (DMMS) algorithm [29] which associates the 

offset with the degree of the check node, and the Adaptive Offset Min-sum (AOMS) 

algorithm [30] which adapts the offset according to the most unreliable information 

sent from the bit nodes. BP-based schemes, on the other hand, approximate the BP 

algorithm by calculating the Hyperbolic function term by term using Jacobian 

logarithm, such as Modified Min-sum (MMS) algorithm and Delta Min (DM) 

algorithm[31][32]. 

 

BER Performance

Hardware cost

MS-
based

BP-
based

target

high

low

small large
 

Figure 4.1 Requirement for ISDB-S2 LDPC decoder 
 

Generally, BP-based algorithms outperform MS-based algorithms in BER 
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performance, but they require larger hardware cost due to the iterative term-based 

implementation, as shown in Figure 4.1. Specifically, for the LDPC codes in ISDB-S2, 

a maximum of 90 times of computation complexity is introduced compared to MS 

algorithm, which directly increases the hardware overhead and power consumption. 

As far as the high BER performance requirement of practical ISDB-S2 application is 

concerned, MS-based algorithms are not competent enough. On the other hand, the 

hardware and power overhead of BP-based algorithms also limit their practical usage 

for the highly parallel implementation of ISDB-S2 LDPC decoder. Therefore, a 

decoding scheme which can achieve a similar BER performance as BP-based 

algorithms while maintaining the low hardware cost, will become the trend of future 

LDPC decoder design for next generation satellite applications. 

Motivated by this challenging design task, we proposed a hybrid decoding 

scheme as an initial attempt for both high BER performance and low hardware cost 

design. The algorithm improves the OMS algorithm by a uniform approximation to 

the check node computation while the approximation is derived through mathematical 

induction on Jacobian logarithm, adopted widely by BP-based algorithms. It utilizes a 

self-adjustable offset based on the difference of the two most unreliable input values 

from the bit nodes. The simulation results further demonstrate that the proposed 

method can not only improve the BER performance compared to the MS-based 

schemes with nearly no overhead in hardware cost, but also consumes far less 

hardware than the BP-based schemes.  

 

4.2 MS-based approximation and BP-based 

approximation 

 

Let λn denote the Log-Likelihood Ratios (LLR) of the bit node n of the received 

codeword from the channel, αmn be the message sent from check node m to bit node n, 

βmn be the message sent from bit node n to check node m, and sumn be the A Posteriori 
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Probability (APP) message of the bit node n of the codeword. The check node 

operation, bit node operation and APP update operation of BP algorithm can be 

expressed as Equation (4.1), Equation (4.2) and Equation (4.3), respectively. Note that 

A(m) and B(n) are defined as A(m) = {n|Hmn = 1} and B(n) = {m|Hmn = 1}.  
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Since the check node function of BP algorithm is not hardware friendly, varies 

researches have been done to approximate the BP algorithm for better hardware 

implementation. 

 

4.2.1 MS-based approximation 

 

A simple approximation to Equation (4.1) is called Min-Sum algorithm which uses 

the minimum magnitude of input β as a replacement of the Hyperbolic functions, as 

shown in Equation (4.4). 
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Although MS algorithm can be easily implemented in hardware, it suffers a large 

performance degrading which encourages further researches to find better 

approximation based on the MS algorithm. For instance, a normalization factor or 

offset factor is applied to the MS algorithm, which forms the well-known Normalized 

MS algorithm and Offset MS algorithm, as shown in Equation (4.5) and (4.6) [19]. 
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Note that the normalization factor γ and offset factor ε is not subject to change 

during the decoding procedure. Some recent progress claims that techniques to adjust 

the offset factor according to either the degree of the check node (DMMS algorithm 

[29]) or the minimum output data from the check node (AOMS algorithm[30]) can 

achieve better performance. However, DMMS requires significant computation power 

to determine the offset factor while the AOMS lacks sufficient theoretical evidence to 

support its approximation. 

4.2.2 BP-based approximation 

 

We first denote a basic computation in the check node operation of BP algorithm 

(Equation (4.2)) as function ⊗:  

21
211 ))

2
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                (4.7) 

Therefore, Equation (4.2) can be simplified as Equation (4.8). 
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Equation (4.7), the primitive form of Equation (4.8), can be expanded using 

Jacobian Logarithm (ln(ea+eb)=max(a,b)+ln(1+e-|a-b|)) twice as follows[31]: 
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(4.9) 

where function f(x) is defined as f(x)=ln(1+e-|x|) as shown in Figure 4.2. 
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Figure 4.2 f(x)=ln(1+e-|x|) 
 

Since f(x) is not hardware friendly, several works focus on the approximation of 

Equation (4.9). An MMS algorithm is proposed in [31] with Equation (4.10) as a 

substitution of Equation (4.9). Similarly, a DM algorithm is proposed in [32] using 

Equation (4.11) to calculate the parameter D in Equation (4.10). 
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Equation (4.10) and Equation (4.11) are then applied iteratively for the check 

node operation (Equation 2). Figure 4.2 demonstrates this iterative computation 
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process for message αm1. In each iteration, the ⊗ function of the intermediate result 

and a β message is calculated. Therefore, for each α value, a total of (|A(m)|-2) ⊗ 

computations are required. Since altogether there are |A(m)| α values to be calculated 

in one row, the computation complexity of the check node operation is proportional to 

|A(m)|×(|A(m)|-2), which is relatively large for some codes in ISDB-S2. 

 

2m

3m
4m

mn
1m




 

Figure 4.3 Iterative calculation for row operation using BP-based scheme 
 

 

4.3 Proposed self-adjustable offset min-sum 

algorithm 

In this section, a novel self-adjustable offset min-sum algorithm is proposed, in which 

a uniform approximation for the check node operation of the BP algorithm is 

developed through mathematical induction on Jacobian logarithm. The effectiveness 

of the proposed approximation is demonstrated by the simulation results of all the 11 

parity check matrices in ISDB-S2, showing a better BER performance than MS-based 

schemes. The computation complexity and area cost are also analyzed to further 

exhibit that the proposed algorithm has much smaller hardware cost than the 

BP-based schemes. 
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4.3.1 Proposed approximation of BP algorithm 

 

In order to reduce the computation complexity of check node operation, we first 

consider a general case as shown in Equation (4.12). Note that the general case is 

targeted here by considering n’∈A(m) rather than n’∈A(m)╲n in Equation (4.2). The 

exact calculation of αmn will be explained after the uniform approximation is 

derived. 

  


)('

'21

'

)('

1 ))
2

tanh((tanh2

mAn

mnmm

mn

mAn















                       (4.12) 

Since function ⊗ holds commutative law, we can fairly assume that |βm1| < |

βm2| < … < |βmn’|. Under this assumption, Equation (4.12) can be further 

expanded as Equation (4.13) through a mathematical induction based on Equation 

(4.9). 
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The detailed proof of Equation (4.13) is listed below.  

------------------------------------------------------------------------------------------------- 

(1)The condition of n’= 2 is already proved in Section 4.2.2 

(2)Suppose n’= k is correct, consider the situation of n’=k+1 

if 
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is true 
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Since |A(m)| is usually a large number for ISDB-S2, the implementation of 

Equation (4.13) requires a large amount of hardware resources. Hence an efficient 

approximation to the equation to reduce hardware cost is a necessity. Based on the 

characteristics of function f(x), as shown in Figure 4.3, we find out that f(x) is a 
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monotonically decreasing function with f (x) ≒ 0 when x > 2.5. Because of the 

relationships among |βm1|,…, |βmn|, we can derive that |βm2|−|βm1| is the 

smallest one among all the arguments of f (x) in the equation, thus −f (|βm2|−|βm1|) 

becomes the dominant term of all the function f (x) terms. We can easily figure out, 

through the above derivation, the offset term is mainly dependent on the two most 

unreliable inputs from the bit nodes which are denoted as βmin1 and βmin2 from 

now on. However, simply keeping the dominant term and ignoring all the other ones 

degrades the precision of computation. Therefore, we further approximate all the other 

ones by multiplying a normalization factor or adding an offset factor to the dominant 

term −f (βmin2−βmin1). In this work, we use the normalization factor γ’ and 

obtain Equation (4.14) as an approximation to Equation (4.13). 
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As can be seen from Equation (4.2), the computation of αmn is based on βmn’ 

values with n’∈ A(m)╲n. However, Equation (4.14) is derived considering the βmn’ 

values with n’∈ A(m). In the following parts, we will discuss, in three different cases, 

how we derive the proposed approximation of Equation (4.2) from Equation (4.14).  

 Case 1: |βmn| is |βmin1|, the smallest one among all absolute β values. In this 

case, |βmin1| should not be included in the computation of αmn. Therefore, |β

min2| and |βmin3| become the minimum value and second minimum value among 

all βmn’ (n’∈A(m)╲n). Hence, 
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Case 2: |βmn| is |βmin2|, the second minimum value among all absolute β values. 

In this case, |βmin1| and |βmin3| become the minimum value and second minimum 

value among all βmn’(n’∈ A(m) ╲n). Therefore, 
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Case 3: |βmn| is neither |βmin1| nor |βmin2|. In this case |βmin1|and |β

min2| are still the minimum value and second minimum value among all βmn’ (n’∈ 

A(m)╲n). Therefore, 
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So altogether three cases should be considered to implement Equation (14), 

which gives rise to additional design overhead. To solve the problem, we further 

simplify the check node operation. Through simulation, we notice that the 

computation of |βmin3|−|βmin2| in Case 1 can be approximated as |βmin2|−|β

min1| , and using –γ’f (|βmin2|−|βmin1|) instead of –γ’f (|βmin3|−|βmin1|) for 

Case 2 incurs nearly no performance degrading. Hence, we combine three cases into 

one uniform expression shown in Equation (4.15), which greatly reduces the hardware 

implementation cost.  

|))|-|(|'||min)(sgn( 1minmin2'
\)('

'
\)('

 fmn
nmAn

mn
nmAn

mn 


        (4.15) 

From Equation (4.15), we can see that the offset factor is self adjustable, during 

the iterative decoding, according to the difference of the two most unreliable inputs 

from the bit nodes. Such adjustable scheme precisely models the variations of bit node 

messages, hence enhances the decoding efficiency. 

 

4.4 Simulation result 
 

 Software simulation of the proposed decoding algorithm has been conducted for 

all 11 parity check matrices used in ISDB-S2. The QPSK modulation and AWGN 

channel is modeled in the simulation. A total of 10,771,200 input bits are used for 

simulation. The maximum number of iteration is set to 50, and the simulation program 

terminates when the decoded codeword is a valid one or the maximum iteration times 

are achieved.  

Figure 4.4 and Figure 4.5 illustrate the simulation result of the BER performance 

of BP, NMS, OMS, DMMS, AOMS, MMS, DM and the proposed decoding algorithm 

for rate 3/5 and 3/4 , which will be mainly used in ISDB-S2 service. Except BP 

algorithm is simulated using floating values, all the intermediate messages of 

simulations for the other algorithms are coded in 6 bit sign-magnitude format and the 

APP message is realized in an 8 bit sign-magnitude format to avoid overflow. The 
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parameters of all algorithms are chosen to optimize both the BER performance and 

hardware implementation as γ=0.875 for NMS (Equation (4.5)), ε= 0.125 for 

OMS (Equation (4.6)), and γ’= 0.125 for the proposed method (Equation (4.15)). 

Also, for simple hardware implementation, we use the same Δ function Δ(x) = 

max( 5/8 − |x|/4, 0) as [26] for approximation of function f(x) for the proposed 

algorithm in this work. The approximation is illustrated in Figure 4.6. It can be 

observed from the figure that the proposed algorithm achieves an average of 0.2dB 

gain compared to the MS-based algorithms, and sometimes even outperforms 

BP-based algorithms. 
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Figure 4.4 BER performance comparison for rate 3/5 
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Figure 4.5 BER performance comparison for rate 3/4 
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Figure 4.6 f(x) and its approximation function Δ(x) 

 

 

4.5 Comparison of required CNR  
 

In order to further analyze the efficiency of the proposed algorithm and its 

suitability to all the LDPC codes in ISDB-S2, we use a metric, called the required 

CNR. The required CNR is defined as the carrier-to-noise ratio when the BER 

exceeds 10−11 for ISDB-S2 [33]. Because of the error floor free performance of 

ISDB-S2 code and relatively long computer simulation time to evaluate the BER 

downto the range of 10−11, in this work, we use the same evaluation method as [33], 

namely extrapolation, to calculate the required CNR. The simulation uses 107 input 

data, if no error can be found in the simulation, it is fair to say that this point is free of 

error at BER = 10−7. We call this point “BER = 0 Observation Point”, as shown in 

Figure 4.7. In this figure, P1 and P2 are simulation points obtained from the computer 

simulation result. P3 is the BER=0 Observation Point and P4 is the point with the 

required CNR (CNR4). We calculate CNR4 as shown in Equation (4.16) using the 
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extrapolation technique.  
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 (4.16) 

The results of the required CNR are listed in Table 4.1 for BP algorithm [33], and 

all other algorithms discussed in this chapter. Except the result of BP algorithm which 

we include from [33], the results for other algorithms discussed in this paper are 

obtained through simulation. In this table, the result for BP algorithm uses floating 

simulation and the results for other algorithms include a 6-bit quantization. The row 

ΔBP(TPMP) in the table indicates the average differences of required CNR for all the 

code rates compared to the BP algorithm in [33]. As can be seen from Table 4.1, the 

proposed algorithm is only 0.226dB away from the standard BP algorithm [33], and is 

about 0.12dB better than the MS-based algorithms in average. 
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Figure 4.7 Required CNR calculation using extrapolation 
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Table 4.1 Comparison of required CNR (dB) 

 

Rate 

BP 

(floating 

point)[33] 

MS-based BP-based 

Proposed
NMS OMS DMMS AOMS MMS DM 

1/4 -2.1 -1.43 -1.29 -1.38 -1.35 -1.55 -1.44 -1.41 

1/3 -1.0 -0.61 -0.50 -0.52 -0.41 -0.83 -0.73 -0.51 

2/5 0.0 0.36 0.34 0.48 0.54 0.15 0.24 0.37 

1/2 1.2 1.51 1.46 1.57 1.56 1.43 1.37 1.41 

3/5 2.5 2.79 2.81 2.66 2.66 2.58 2.57 2.57 

2/3 3.3 3.59 3.58 3.46 3.46 3.38 3.37 3.37 

3/4 4.0 4.31 4.39 4.36 4.36 4.19 4.05 4.19 

4/5 5.0 5.28 5.37 5.28 5.15 5.08 5.07 5.07 

5/6 5.5 5.79 6.00 5.66 5.66 5.58 5.46 5.58 

7/8 5.9 6.29 6.07 6.28 6.28 6.08 6.09 6.07 

9/10 6.8 7.08 6.88 7.00 7.00 6.78 6.77 6.88 

Δ

BP 
0 0.351 0.365 0.341 0.346 0.161 0.156 0.226 

 

 

4.6 Comparison of computation complexity and 

hardware cost 

 

Although the BER performance of BP-based algorithms outperforms the proposed 

algorithm, their computation complexity and hardware cost can not be neglected. The 

comparison of computation complexity and the hardware cost of the check node 
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operation for one row (exclude the sign computation) are listed in Table 4.2. 

 

Table 4.2 Comparison of computation complexity and hardware cost 

 

 Computation Complexity Hardware Cost 

NMS 2×|A(m)|×[comp]+2×[shift] 2×[adder5] 

OMS 2×|A(m)|×[comp]+2×[add] 4×[adder5] 

DMMS (2×|A(m)|+4)×[comp]+3×[shift] 

+7×[add] 

5×[adder5]+ 6×[adder6] 

AOMS 2×|A(m)|×[comp]+1×[shift] 

+2×[add] 

4×[adder5]+8word×3bit[LUT] 

MMS |A(m)|×(|A(m)|-2) 

×(3×[comp]+3×[add]) 

|A(m)|×(4×[adder6]+2×[adder5])

DM |A(m)|×(|A(m)|-2) 

×(1×[comp]+3×[add] +1×[shift]) 

|A(m)|×(4×[adder5]) 

Proposed 2×|A(m)|×[comp] +4×[add] 

+2×[shift] 

6×[adder5] 

 

Under column computation complexity, [comp], [add], [shift] indicate the 

computation complexity of comparison operation, addition or subtraction operation, 

and shift operation, respectively. For MS-based algorithm, |A(m)| items are compared 

serially to get the minimum and the second minimum value, so 2×|A(m)|×[comp] is 

needed. After that, normalization factor or offset factor is applied to minimum and 

second minimum value, so additional calculations for the normalization factor γ 

and offset factor ε in Equation (4.5) and Equation (4.6) are needed. For the 

proposed algorithm, after the minimum value and the second minimum value are 

found, according to Equation (4.15), we require two more subtraction, two more shift 

operation and 2 subtraction for offset. For BP-based algorithm, Equation (4.10) or 

Equation (11) is invoked (|A(m)|−2) times for each n(n∈A(m)) and a total of |A(m)| 

different n values, thus requiring |A(m)|×(|A(m)|−2) times of Equation (10) or 
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Equation (4.11). For rate 9/10 with the biggest row weight |A(m)| of 32 among all the 

parity check matrices in ISDB-S2, the computation complexity relation between NMS, 

OMS, DMMS, AOMS, MMS, DM and the proposed method is 1.03 : 1.03 : 1.22 : 

1.05 : 90 : 75 : 1.09. The computation complexity for the proposed algorithm is 

similar to MS-based algorithms, and much smaller compared to BP-based algorithms. 

Figure 4.8 shows the relation of average computation complexity and average 

required CNR for all the rates in ISDB-S2. From the figure, we can see that the 

proposed algorithm consumes much less computation complexity compared to the 

BP-based algorithms but can achieve much better error correcting performance 

compared to MS-based algorithm with almost the same computation complexity.  
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Figure 4.8 Average required CNR vs. average computation complexity 
 

We also estimate the hardware cost for one check node operation (exclude the 

sign operation) using gate counts. The estimation results are listed under column 

hardware cost with [adder5] and [adder6] indicating the cost of an adder or subtractor 

for 5 bits and 6 bits. Note that we assume a comparator shares a similar cost with an 
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adder, and we neglected the cost for shifter. To keep almost the same clock cycles for 

one check node operation for all algorithms, MMS and DM require a parallel 

implementation of comparison, thus making the hardware cost almost |A(m)| times as 

the other algorithms. In Figure 4.9, we show the relation of area cost and average 

required CNR for all the rates in ISDB-S2. The adder is estimated as 6 gates per bit 

and the LUT is estimated as 10 gates per bit. The figure demonstrates a similar trend 

as Figure 4.8 that the proposed algorithm greatly reduces the area compared to the 

BP-based algorithms while achieves much better error correcting performance than 

MS-based algorithms. 
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Figure 4.9 Average required CNR vs. area 
 

4.7 Conclusion 

 

In this chapter, in order to achieve high BER performance for satellite 

transmission services, a novel self-adjustable offset min-sum algorithm is proposed 
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with the check node operation approximating BP algorithm. The correctness of the 

approximation is proved by mathematical induction through using Jacobian logarithm 

iteratively. The proposed algorithm is hardware-friendly compared to the BP-based 

algorithms and the simulation results show that the proposed algorithm can achieve an 

average of 0.12dB gain compared to Min-sum based algorithms. 
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5 Data conflict resolution for 

layered schedule targeting high 

BER performance 
 

5.1 Introduction 
 

LDPC code can be efficiently decoded by two phase message passing (TPMP) 

algorithm [1] introduced in Section 1.3, which can correct errors through messages 

exchange between check nodes and bit nodes by performing check node and bit node 

operations iteratively. In terms of different implementation of the check node 

operation, TPMP algorithm can be categorized as Belief Propagation (BP) algorithm 

[1], Min-sum (MS) algorithm [18], Normalized Min-sum (NMS) algorithm [19] and 

Offset Min-sum (OMS) algorithm [19], etc. BP algorithm has the best error correcting 

performance, yet not hardware-friendly due to the implementation of Hyperbolic 

functions. MS algorithm uses the minimum magnitude of inputs from the bit nodes as 

a replacement of the Hyperbolic functions, but incurs great performance degrading. In 

chapter 4, we proposed a Self-adjustable Offset Min-sum (SOMS) algorithm which 

can adjust the offset value according to the inputs during the iterative decoding 

procedure and achieves a 0.12dB improvement of BER performance compared to 

MS-based algorithms.  

On the other hand, in 2003, a new family of decoding algorithm called layered 

algorithm or layered schedule is proposed by Mansour [26]. Because layered 

algorithm shares the same check node operation as TPMP algorithm, the decoding 

methods for the check nodes in TPMP can be applied to layered algorithm, forming 
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the new Layered BP (LBP) algorithm, Layered Min-sum (LMS) algorithm, Layered 

Normalized Min-sum (LNMS) algorithm and Layered Offset Min-sum (LOMS) 

algorithm. And they maintain a similar pros and cons as in TPMP algorithms. Of 

course, the Self-adjustable Offset Min-sum (SOMS) algorithm proposed in Chapter 4 

for ISDB-S2 application can also be applied to layered algorithm to achieve further 

high BER performance.  

Instead of using A Posteriori Probability (APP) message at the end of each 

iteration in traditional TPMP algorithm, layered algorithm uses the intermediate APP 

results between layers within iterations, and converges two times faster than TPMP 

algorithm [34]. Therefore, layered algorithm becomes more suitable for high BER 

performance and high throughput design for the satellite transmission services. 

However data conflict problem happens when layered algorithm is directly 

applied to ISDB-S2 codes. This problem arises as the layered algorithm adopts a 

parallel computation among a layer of several rows, which ignores the data 

dependencies of APP messages, thus degrading BER performance. To solve the data 

conflict problem in layered algorithm, authors in [35] and [36] tried to split the layers 

through memory mapping and scheduling the matrices for DVB-S2 and DVB-T2 

application, but these methods cannot eliminate all the conflicts and they are limited 

when they are used to ISDB-S2 codes because of a different code design. Ref. [37] 

proposed a method to approximate the APP value targeting DVB-S2, and authors in 

[36] also proposed to add dummy bit nodes for DVB-T2 to leverage the performance 

degrading. But neither of these methods can achieve conflict free performance and 

they introduce additional computations and storages. 

In this work, we proposed a selective recalculation method to achieve conflict 

free performance by recalculating the inaccurately calculated values. This method 

enables a parallel implementation of the whole layer and can correct the inaccurate 

values after the parallel implementation based on the decision of a recalculation rule. 

The simulation results show that the proposed method can achieve better BER 

performance than the previous data conflict strategy in [37]. 
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5.2 Data conflict 

In this section, data conflict problem of layered algorithm is introduced. The reason 

for data conflict is explained and the characteristics of the LDPC parity check 

matrices which have data conflict problem is introduced through an example. The 

previous strategies to solve data conflict problem are discussed, and the proposed data 

conflict resolution by selective recalculation is introduced.  

5.2.1 Reason for data conflict 

As discussed in Section 5.1, layered algorithm is usually favored for high BER 

performance application. However, directly applying layered algorithm to ISDB-S2 

LDPC codes will lead to data conflict. This is mainly because of the data dependency 

during the parallel execution within each layer. Here LNMS algorithm is used as an 

example to introduce the data conflict problem and the correspondent conflict 

resolutions, other MS-based algorithms share the same characteristics. 

The bit node operation, check node operation and APP update operation of the 

LNMS algorithm can be expressed as Equation (5.1), Equation (5.2) and Equation 

(5.3), respectively. 

 

mnnmn sum                              (5.1) 
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       (5.2) 

mnmnnsum                              (5.3) 

 

Figure 5.1 shows an example of a layer with two sub-blocks (size b = 3). Each 

element “1” in the matrix indicates a corresponding α and β message, and there is 

an APP data sumn associated with each column n. Take column 1 as an example, if a 

sequential decoding process is applied, the bit node operation, check node operation 

and APP update operation for column 1 are listed as Equation (5.4): 
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Figure 5.1 Example of data conflict in layered algorithm 
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Here, β11 and α11, for example, stand for the message β and message α at 

row 1 and column 1, and sum1 represents the APP value of column 1. sum1(1) and 

sum1(2) are the APP value updated for the first time and the second time. Note that, in 

the sequential decoding process, the calculation of message β21 uses the updated 

APP value sum1(1), and the last updated APP value (sum1(2)) is passed to the next 

layer as the initial APP value for the next layer. If a layer of b (b = 3) rows are 

processed in parallel instead, the bit node operation, check node operation and APP 

update operation of this parallel calculation for column 1 are listed as Equation (5.5): 
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        (5.5) 

 

As can be seen, the calculation for β21 uses the old APP value sum1 other than 

the updated data sum1(1). The incorrect calculation of β21 will not only result in the 

incorrect result of sum1(2) but also make the calculation of α22 and α25 inaccurate 

either. Such data dependency problem in layered algorithm is called data conflict, and 

will degrade the decoding performance. In this example, all the “1”’s with red circle 

have data conflict problem. In general, when applying layered decoding algorithm to 

structured LDPC codes, data conflicts happens when there are more than two “1”’s in 

one column within the layer. 

Simply ignoring the data conflict will affect the performance, which makes 

layered schedule less effective than TPMP schedule. After a complete simulation of 

all the parity check matrices in ISDB-S2, we find out that the worst case happens for 

rate 7/8 with 9.85% of the sub-blocks having data conflict problems, and an average 

of 4.67% for all the codes. The small number of conflicts encourages us to apply 

layered schedule with proper remedy for data conflict to achieve better performance. 

 

5.2.2 Previous data conflict resolution 

 

To solve the data conflict problem, [35] proposed to use group splitting through 

memory mapping for DVB-S2, while [36] considered to achieve group splitting 

through reconstructing the matrices by scheduling for DVB-T2. However these two 

methods cannot eliminate all the data conflicts and they are limited when they are 

used for ISDB-S2 matrices because that the size of the layer of ISDB-S2 (b = 374) has 
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less factors than that of DVB-S2 or DVB-T2 (b = 360). Ref. [36] also introduced a 

method to add dummy bit nodes and check nodes to reconstruct the matrices which 

can help leverage the performance degrading, but introduced additional computations 

and storages. Also, it cannot achieve conflict free performance. 

Table 5.1 shows the simulation result of the decoding performance of several 

layer sizes using the proposed algorithm in Chapter 4. The required CNR is evaluated 

using extrapolation as introduced in Section 4.4 [33]. Here we mainly consider those 

layer sizes whose value is the factor of 374 to simplify the decoding control logic. The 

results of required CNR metric of these layer sizes for different code rates are 

demonstrated in Table 5.1. Data under column 374P is the result of computing 374 

rows in parallel (i.e., layer size of 374). It can be interpreted as simply ignoring all the 

data conflicts. Column 1P is the result of scheduling with layer size of 1, which is the 

simulation result of conflict free schedule. Columns 187P, 34P and 22P illustrate the 

simulation results for layer size of 187, 34 and 22 respectively. As can be observed 

from the table, layer size of both 34 and 22 achieve better performance than TPMP 

but has performance loss compared to the conflict free one, not to mention the low 

throughput due to procedure based on small layer sizes. 

Ref. [37] proposed a method to approximate the APP value which enables the 

parallel implementation for 360 rows for DVB-S2. The method in [37] can be 

introduced based on the example in Figure 5.1. The authors in [37] analyzed the 

relation between the intermediate APP values (sum1(1) and sum1(2)) and the initial 

APP value (sum1) for the current layer, and after the parallel calculation shown in 

Equation (5.5), Equation (5.6) is calculated to approximate the updated APP value for 

current layer (sum’1) which will be used as the initial APP value for the next layer. 

1111 )2()1(' sumsumsumsum              (5.6) 
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Table 5.1 Required CNR for different layer sizes (dB) 
 

Rate TPMP 374p 187p 34p 22p 1p 

1/4 -1.41 -0.91 -1.15 -1.55 -1.55 -1.55 

1/3 -0.51 -0.49 -0.49 -0.52 -0.56 -0.67 

2/5 0.37 0.44 0.38 0.38 0.38 0.34 

1/2 1.41 1.4 1.4 1.38 1.38 1.38 

3/5 2.57 2.86 2.58 2.46 2.46 2.45 

2/3 3.37 3.47 3.36 3.25 3.25 3.25 

3/4 4.19 4.61 4.28 4.05 4.05 4.05 

4/5 5.07 5.44 5.18 5.07 5.08 5.07 

5/6 5.58 6.07 5.67 5.57 5.57 5.45 

7/8 6.07 6.39 6.17 6.07 6.07 6.07 

9/10 6.88 7.45 7.11 6.88 6.88 6.88 

Average 3.054 3.339 3.135 3.004 3.001 2.975 

 

However, the APP approximation method cannot achieve the conflict free BER 

performance and it introduces additional storages for the intermediate APP values. In 

this work, we proposed for the first time a method called selective recalculating to 

enable a parallel implementation of 374 rows for ISDB-S2 to achieve conflict free 

BER performance. 

To further explain the efficiency of these layered schedules, we compare, in 

Figure 5.2, the simulation results with the method in [37] for code rate 7/8, the code 

with the most conflicts in ISDB-S2. As can be seen in the figure, schedules with the 

layer size of 187, 34 and 22 all achieve better performance than [37]. However, none 

of these data conflict resolutions can achieve conflict free BER performance.  
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Figure 5.2 BER performance comparison of different solving strategies for data 
conflict problem for rate 7/8 

 

 

5.3 Proposed data conflict resolution by selective 

recalculation 

In this section, the proposed data conflict resolution scheme which can achieve 

conflict free BER performance is introduced. A detailed memory-saving strategy is 

also discussed to realize the proposed data conflict resolution scheme.  

5.3.1 Selective recalculation scheme 

In the example shown in Figure 5.1, because of the parallel calculation of a layer, 
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β21 is incorrectly calculated which will further result in the incorrect calculation of 

α22 and α25 by using Equation (5.2). The error will propagate to sum1, sum2, sum5 

based on Equation (5.3). In order to compensate for the error, we considered to 

recalculate the problematic β values and the related α and sum values after the 

computation of each layer.  

However, according to Equation (5.2), not all the α and sum values related to 

the recalculated β values need to be adjusted. To demonstrate that, we divide 

Equation (5.2) into two parts, the calculation of the sign of αmn (Equation (5.7)) and 

the calculation of the absolute value of αmn (Equation (5.8)). 
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            (5.7) 
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                (5.8) 

It can be observed in Equation (5.8) that the absolute values of αmn have only 

two values: either the minimum β values from a total of |A(m)| βmn values or the 

second minimum in the case that the corresponding input β value happens to be the 

minimum one. So Equation (5.8) can be rewritten as Equation (5.9). Here βmin1 and 

βmin2 indicate the minimum and second minimum β values among all βmn values. 

The condition pos(βmn) = pos(βmin1) indicates the position of βmn under calculation 

is the position of βmin1 and only in this condition the absolute value of βmn equals  

γ×|βmin2|. 
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From Equation (5.7) and Equation (5.9), it is apparent that the sign of αmn is 

only related to the sign of β values input from the bit nodes, and the absolute value 

of αmn is only related to the minimum and second minimum β values input from 

the bit nodes and the position of the minimum β value. So the calculation of 

Equation (5.2) requires recording the signs of allβvalues in row m and tracking the 

minimum and second minimum β values. However, the inaccurately calculated   

βmn values should be excluded from the calculation of minimum and second 

minimum β values. We denote the minimum and second minimum β values 
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without considering the inaccurate βmn values in row m as min1_m and min2_m 

from now on and provides the recalculation decision rule in Figure 5.3. 

 

βi 

recalculated

β'i<min2_m or 
sign(β'i)≠sign(βi)

YES NO

Si(α),Si(sum) 
recalculation 

Si_sub(sum) 
recalculation

 

Figure 5.3 Recalculation decision rule for Si(α) and Si(sum) 
 

In Figure 5.3, we denote the β values which should be recalculated as set S(β), 

βi as the ithβmn value in set S(β), andβi’ as the ithβmn value after recalculation. We 

also denote the α values and sum values which should be recalculated because of 

the recalculation ofβi as Si(α) and Si(sum). When conditionβi’ < min2_m or 

sign(β i’) ≠  sign(β i) satisfies, according to Equation (5.2), Si(α) should be 

recalculated because of the alteration of input variables in Equation (4), and Si(sum) 

should also be recalculated because of the recalculation of Si(α) according to 

Equation (5.3). When condition βi’ < min2_m or sign(βi’) ≠ sign(βi) does not 

satisfy, the results of Equation (5.2) are not changed, so only a subset of Si(sum) 

(sumn) needs to be recalculated because of the recalculatedβi’ (Equation (5.3)). 

Since usually |A(m)| for ISDB-S2 is a large number, the probability forβi < 

min2_m almost equals to 2/|A(m)| which is quite small. Moreover, as the sign forβi is 

not altered frequently, the recalculation decision rule is rarely satisfied. Even when the 

recalculation decision rule satisfies, the recalculations of Si(α) and Si(sum) are not 

complicated and the detailed recalculation techniques will be introduced later. 

Based on the above exploration, we finally get our selective recalculation scheme 
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by using the recalculation decision rule, as shown in Figure 5.4. Here X represents all 

the “1” in the layer, and Sm(β) indicates the subset of S(β) for theβ in the same 

row m. Note that the recalculation for rows can also be computed in parallel as long as 

there are no further data conflicts during the recalculation, i.e., there are no two ”1”’s 

in the same column of these simultaneously calculated rows. Basically, the proposed 

selective recalculating method is effective for any layered algorithm based on MS 

algorithm, such as LMS algorithm, LNMS algorithm and LOMS algorithm and the 

proposed algorithm in Chapter 4. Also, the proposed method can be used in any 

structured LDPC parity check matrix, not limited by ISDB-S2. Figure 5.5 shows how 

our selective recalculation works for the code in Figure 5.1. 

 

 

 

Figure 5.4 Selective recalculation scheme 
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Figure 5.5 Example of data conflict resolution by selective recalculation 
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5.3.2 Realization of selective recalculation scheme 

 

If the recalculation selection rule in Figure 5.3 satisfies, Si(α) and Si(sum) need 

to be recalculated. As can be seen in Equation (5.2) and Equation (5.3), the 

recalculation for the check node operation is comparably complicated and time 

consuming. However, the recalculation can be easily carried out by favoring a 

memory-saving strategy which can not only save the memory for messageαbut also 

accelerate the procedure for the recalculation of check node operation.  

As explained in Section 5.3.1, the result ofαmn is only related to the minimum 

and the second minimum β messages sent from bit nodes, the position of the 

minimum β message and the sign of all theβ messages. Hence the storage of α 

values can be divided into its absolute value and sign bit. In this design, we favor a 

memory saving strategy based on this special characteristic. Instead of storing all the

α messages in the memory, we only store min1_m, min2_m, the position of min1_m 

and the signs of α  messages in the form of a vector as [min1_m, min2_m, 

pos_min1_m, {sign(αmn)|n ∈ A(m)}][35]. With this form of representation, each α 

value can be easily retrieved through Equation (5.7) and Equation (5.9). This method 

can help save memories, specifically for rate 9/10 which has the largest row weight 

|A(m)| of 32 in ISDB-S2, whose α memory is only 24.5% of that of storing all α 

messages. 

As shown in Figure 5.3, S(αi) and S(sumi) will be recalculated only if the 

recalculatedβmn’ is smaller than the min2_m or the sign of the recalculated βmn’ is 

different from that of βmn. In the following parts, we will discuss, in five different 

cases, how we can easily derive the recalculated value[min1’_m, min2’_m, 

pos_min1’_m, {sign(α’mn)|n ∈ A(m)}] using this vector representation. 

・ Case 1: βmn’< min1_m and sign(βmn’) = sign(βmn). 

In this case, the minimum value, the second minimum value and the position of 

the minimum value are all changed. Therefore, min1’_m = |βmn’|, min2’_m = 

min1_m and pos_ min1’_m = pos(βmn’). 
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・ Case 2: βmn’< min1_m and sign(βmn’)≠ sign(βmn) 

In this case, the minimum value , the second minimum value, the position of the 

minimum value and the signs of α are changed. Therefore, min1’_m = |βmn’|, 

min2’_m = min1_ m and pos_ min1’_m = pos(βmn’), and the signs of α messages 

are all changed except that of αmn. 

・ Case 3:min1_m <βmn’< min2_m and sign(βmn’) = sign(βmn). 

In this case, the second minimum value is changed. Therefore min2_m’= |βmn’|. 

・ Case 4: min1_m <βmn’< min2_m and sign(βmn’) ≠sign(βmn) 

In this case, the second minimum value and the signs of α are changed. 

Therefore, min2_m’= |βmn’|, and the signs of α messages are all changed except 

that of αmn. 

・ Case 5: βmn’ > min2_m and and sign(βmn’) ≠sign(βmn). 

In this case, the signs of α messages are all changed except that of αmn. 

We can see that the recalculation of S(αi) can be done without calculating 

Equation (5.2) again. Such scheme can not only save the memory but also expedite 

the recalculation procedure. 

 

5.4 Simulation result 
 

In this section, the performance of the proposed selective recalculation is 

presented compared to the result in Chapter 4. 

 

5.4.1 BER performance 

 

Software simulation of the proposed conflict resolution scheme @has been 

conducted for all 11 parity check matrices used in ISDB-S2 using the algorithm 

proposed in Chapter 4. The QPSK modulation and AWGN channel is modeled in the 

simulation. The maximum number of iteration is set to 50, and the simulation program 

terminates when the decoded codeword is valid or the iteration upper bound is 
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reached. Figure 5.6 and Figure 5.7 illustrate the simulation result of the BER 

performance of rate 3/5 and rate 3/4 which will be mainly used in ISDB-S2 service. 

Except BP algorithm is simulated using floating values, all the intermediate messages 

of simulations for the other algorithms are coded in 6 bit sign-magnitude format and 

the APP message is realized in an 8 bit sign-magnitude format to avoid overflow. The 

parameters of all algorithms are chosen to optimize both the BER performance and 

hardware implementation as γ=0.875 for NMS (Equation (4.5)), ε= 0.125 for 

OMS (Equation (4.6)), and γ’ = 0.125 for the proposed method (Equation (4.15)). 

Also, for simple hardware implementation, we use the same Δ function Δ(x) = 

max(5/8 − |x|/4, 0) as [26] for approximation of function f(x) for the proposed 

algorithm in this work. The line labeled “proposed (layered)” indicates the simulation 

result of proposed algorithm in Chapter 4 after applying layered schedule and the data 

conflict is solved by selective recalculation proposed in this chapter. 

As can be observed from Figure 5.6 and Figure 5.7, after applying the layered 

schedule to the proposed algorithm in Chapter 4, the proposed algorithm can achieve 

further BER improvement and performs better than BP-based algorithms.  
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Figure 5.6 BER performance comparison for rate 3/5 (including layered 
schedule) 
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Figure 5.7 BER performance comparison for rate 3/4 (including layered 

schedule) 

 

5.4.2 Comparison of required CNR 

 

In order to further analyze the efficiency of the proposed selective recalculation 

and its suitability to all the LDPC codes in ISDB-S2, we use the same metric as 

Section 4.5, required CNR, to evaluate the performance. The required CNR is defined 

as the carrier-to-noise ratio when the BER exceeds 10−11 for ISDB-S2 [33]. Because of 

the error floor free performance of ISDB-S2 code and relatively long computer 

simulation time to evaluate the BER down to the range of 10−11, in this work, we use 

the same evaluation method as in Chapter 4, namely extrapolation, to calculate the 

required CNR. 

The results of the required CNR of all the codes in ISDB-S2 are listed in Table 



 

91 
 

5.2 for BP algorithm [33], NMS algorithm, OMS algorithm, DMMS algorithm, 

AOMS algorithm, MMS algorithm, DM algorithm and the proposed algorithm with 

TPMP schedule. The result of the proposed algorithm of layered schedule with 

selective recalculation scheme to solve the data conflict problem is also listed in this 

table. Except the result of BP algorithm which we include from [33], the results for 

others are obtained through simulation. In this table, the result for BP algorithm uses 

floating point simulation and the results for others include a 6-bit quantization process. 

The row ΔBP in the table indicates the average differences of required CNR for all 

the code rates compared to the BP algorithm in [33]. As can be seen in this table, after 

applying layered schedule to the proposed algorithm, it can achieve 0.2dB BER 

improvement compared to MS-based algorithms.  

 

Table 5.2 Comparison of required CNR after applying layered schedule (dB) 
 

Rate 

BP 

(floating 

point)[33] 

MS-based BP-based Proposed 

NMS OMS DMMS AOMS MMS DM TPMP layered

1/4 -2.1 -1.43 -1.29 -1.38 -1.35 -1.55 -1.44 -1.41 -1.55 

1/3 -1.0 -0.61 -0.50 -0.52 -0.41 -0.83 -0.73 -0.51 -0.67 

2/5 0.0 0.36 0.34 0.48 0.54 0.15 0.24 0.37 0.34 

1/2 1.2 1.51 1.46 1.57 1.56 1.43 1.37 1.41 1.38 

3/5 2.5 2.79 2.81 2.66 2.66 2.58 2.57 2.57 2.45 

2/3 3.3 3.59 3.58 3.46 3.46 3.38 3.37 3.37 3.25 

3/4 4.0 4.31 4.39 4.36 4.36 4.19 4.05 4.19 4.05 

4/5 5.0 5.28 5.37 5.28 5.15 5.08 5.07 5.07 5.07 

5/6 5.5 5.79 6.00 5.66 5.66 5.58 5.46 5.58 5.45 

7/8 5.9 6.29 6.07 6.28 6.28 6.08 6.09 6.07 6.07 

9/10 6.8 7.08 6.88 7.00 7.00 6.78 6.77 6.88 6.88 

Δ

BP 
0 0.351 0.365 0.341 0.346 0.161 0.156 0.226 0.148
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5.5 Conclusion 
 

In this chapter, in order to further improve the BER performance for satellite 

transmission services, layered algorithm is applied to the proposed algorithm in 

Chapter 4 and the data conflict problem is completely solved through a selective 

recalculation method. After applying selective recalculation to layered algorithm, it 

can achieve conflict free performance. The simulation results of applying selective 

recalculation method to the proposed algorithm in Chapter 4 using layered schedule 

also demonstrate that the proposed method can achieve a further BER performance 

improvement, which can achieve 0.2dB gain under the same BER performance than 

MS-based algorithms. 
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6 Conclusion 
 

6.1 Summary of results 
 

In order to solve the low throughput problem for partially-parallel LDPC 

decoder for IEEE 802.11n application, two methods are proposed: 

The first schedule is named Delta-Value based Message Passing (DVMP) 

schedule (proposed in Chapter 2). In this design, row operation is speeded up by a 

modified binary searching scheme and column operation is speeded up by DVMP 

schedule, in which the redundant computations are removed through using the 

difference between the updated value and the original value. Moreover a pipeline 

structure is utilized to further compact the procedure. The synthesis result 

demonstrates that our decoder can achieve a much higher throughput and almost the 

same bit error rate performance compared to other partially-parallel irregular LDPC 

decoders.  

The other schedule is proposed based on the DVMP schedule proposed in 

Chapter 2, whose name is Sum-Delta Message Passing (SDMP) schedule (proposed 

in Chapter 3). In this design, the decoding throughput is greatly improved by utilizing 

the difference value between the updated and the original value to remove redundant 

computation. Registers ad memory are optimized to store only the frequently used 

messages to decrease the hardware cost. The synthesis result shows that our decoder 

can achieve much higher throughput and almost the same bit error rate performance 

with less area cost to other partially-parallel irregular LDPC decoders. The backend 

design of this decoder is implemented by Synopsys Astro with ARM’s Artisan 

SAGE-X 0.18μm 1P6M stand-cell library for TSMC and the layout area is 13.69mm2. 
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In order to achieve high BER performance for ISDB-S2 application, two 

techniques are also proposed to improve the BER performance: 

The first technique is introduced in Chapter 4. In order to achieve high BER 

performance for satellite transmission services, a novel self-adjustable offset min-sum 

algorithm is proposed with the check node operation approximating BP algorithm. 

The correctness of the approximation is proved by mathematical induction through 

using Jacobian logarithm iteratively. The proposed algorithm is hardware-friendly 

compared to the BP-based algorithms and the simulation results show that the 

proposed algorithm can achieve an average of 0.12dB gain compared to Min-sum 

-based algorithms. 

The other technique is introduced in Chapter 5 to further apply layered schedule 

to ISDB-S2 codes. In order to achieve high BER performance for satellite 

transmission services, layered algorithm is applied to the proposed algorithm in 

Chapter 4 to ISDB-S2 LDPC decoder and the data conflict problem is completely 

solved through a selective recalculation method. After applying selective recalculation 

to the proposed algorithm in Chapter 4 using layered schedule, it can achieve 0.2dB 

gain under the same BER performance compared to Min-sum -based algorithms.  

 

6.2 Future work 

As long LDPC code is adopted in satellite transmission to ensure the transmission 

quality, the hardware design for long code becomes a challenge because the hardware 

cost is large [35][37][41][42][43]. A hardware architecture which is suitable for the 

implementation of long code and multi-rate code is a main future work for us.  

On the other hand, the LDPC code design is an important topic in this field. A 

good LDPC code can achieve good error correcting performance as well as small 

hardware cost. There are already some methods for designing LDPC codes which 

proves to be efficient, but the design should be vary for different application and 

requirement [44][45][46].  
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Also, for wide application, multi-standard LDPC decoder design (for example, 

IEEE 802.11 and IEEE 802.13) or flexible decoder architecture for multiple error 

correction codes (for example, LDPC code and turbo code) is also a good topic for 

research in LDPC field [47][48].  
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