
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. B. Rimoldi, président du jury
Prof. A. P. Burg, directeur de thèse

Prof. W. J. Gross, rapporteur
Prof. I. Tal, rapporteur

Prof. R. Urbanke, rapporteur

Hardware implementation aspects of polar decoders and
ultra high-speed LDPC decoders

THÈSE NO 7297 (2016)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 28 OCTOBRE 2016

À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEUR
LABORATOIRE DE CIRCUITS POUR TÉLÉCOMMUNICATIONS

PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

Suisse
2016

PAR

Alexios Konstantinos BALATSOUKAS STIMMING

Acknowledgements
I would like to start by thanking my advisor, Prof. Andreas Burg, for his continuous guidance

and support throughout the duration of my PhD studies. In particular, I would like to thank

him for believing in my potential and agreeing to become my doctoral advisor, for encouraging

and enabling me to attend scientific conferences all over the world, for initiating fruitful col-

laborations with external partners, for always providing meaningful ideas for future research

directions, and for acting as a filter between myself and academic politics, thus enabling me

to focus almost exclusively on my research.

Taking a small step back in time, I want to thank my undergraduate and MSc advisor, Prof.

Athanasios P. Liavas (Department of Electronic and Computer Engineering, Technical Uni-

versity of Crete), who took me by the hand and provided me with all the necessary academic

provisions that enabled me to embark on the journey of my PhD. I have nothing but the utmost

respect for his personal and professional integrity and his highly systematic and responsible

approach to both teaching and research.

I would also like to thank Prof. Bixio Rimoldi for acting as the president of my PhD jury, Prof.

Rüdiger Urbanke for serving as an internal examiner, and Prof. Warren J. Gross (Integrated

Systems for Information Processing Laboratory, McGill University) and Prof. Ido Tal (De-

partment of Electrical Engineering, Technion - Israel Institute of Technology) for serving as

external examiners. Special thanks also go to Prof. Zhengya Zhang (Department of Electrical

Engineering and Computer Science, University of Michigan), Prof. Erdal Arıkan (Department

of Electrical and Electronics Engineering, Bilkent University), and Prof. Amin Shokrollahi

(Algorithmic Mathematics Laboratory, EPFL) for their willingness to serve as examiners for my

thesis defense.

The administrative assistant of our laboratory, Ioanna Paniara, as well as the administrative

assistants of my doctoral school, Cecilia Chapuis and Corinne Degott, were always very helpful.

Many thanks go to them for smoothly taking care of all administrative issues.

Particular thanks go to all of my labmates for endless discussions of varying depth and serious-

ness on countless topics, both technical and non-technical, as well as lavish culinary feasts

and adventurous excursions. They all certainly made these years one of the most memorable

periods of my life. In alphabetical order, I would like to thank: Orion Afisiadis, Konstantinos

Alexandris, Andrew Austin, Pavle Belanovic, Andrea Bonetti, Jeremy Constantin, Shrikanth

Ganapathy, Pascal Giard, Georgios Karakonstantis, Reza Ghanaatian, Pascal Meinerzhagen,

Christoph Müller, Nicholas Preyss, Lorenz Schmid, Christian Senning, Adam Teman, Johannes

Wüthrich.

i

Acknowledgements

I also had the pleasure of working with several brilliant people outside of our laboratory. In

particular, I would like to thank Mani Bastani Parizi (Information Theory Laboratory, EPFL)

for a very fruitful collaboration on the implementation of polar decoders and for pleasant

mealtime discussions. I would also like to thank Mani’s advisor, Prof. Emre Telatar, for

initiating and encouraging our collaboration. Many thanks also go to Michael Meidlinger

and his advisor Prof. Gerald Matz (Institute of Telecommunications, Vienna Institute of

Technology) for our collaboration on the implementation of ultra high-speed look-up table

based decoders for LDPC codes and for their impeccable integrity and professionalism. I

also had the pleasure of working on the implementation of polar decoders with students

of Prof. Warren J. Gross (Integrated Systems for Information Processing Laboratory, McGill

University) on several occasions. In particular, I would like to thank Seyyed Ali Hashemi,

Alexandre Raymond, and Gabi Sarkis for the smooth collaboration and helpful discussions.

While we only had the opportunity of collaborating once to this date, I would like to thank Prof.

Joseph Cavallaro (Center for Multimedia Communication, Rice University) for his openness

and for very pleasant discussions at several conferences.

During my PhD studies, I had the thrilling opportunity of doing an internship at Intel Labs in

Hillsboro, Oregon, USA, under the supervision of Dr Farhana Sheikh. I would like to thank

her for believing in my technical abilities, for providing me with a very interesting research

project to work on, for her guidance throughout my internship, and for a very educational

glimpse into the world of leadership and management. I would also like to thank my Intel

Labs colleagues Chia-Hsiang Chen, Ching-En (Alex) Lee, and Wei Tang for interesting and

honest discussions.

Finally, I would like to thank my parents, Heidi and Georgios, and my girlfriend, Kynthia, for

their love, for believing in me and supporting my decisions, and for always being proud of my

achievements!

Lausanne, 10 October 2016 Alexios Balatsoukas Stimming

ii

Abstract
The goal of channel coding is to detect and correct errors that appear during the transmission

of information. In the past few decades, channel coding has become an integral part of most

communications standards as it improves the energy-efficiency of transceivers manyfold

while only requiring a modest investment in terms of the required digital signal processing

capabilities. The most commonly used channel codes in modern standards are low-density

parity-check (LDPC) codes and Turbo codes, which were the first two types of codes to ap-

proach the capacity of several channels while still being practically implementable in hardware.

The decoding algorithms for LDPC codes, in particular, are highly parallelizable and suitable

for high-throughput applications.

A new class of channel codes, called polar codes, was introduced recently. Polar codes have an

explicit construction and low-complexity encoding and successive cancellation (SC) decoding

algorithms. Moreover, polar codes are provably capacity achieving over a wide range of

channels, making them very attractive from a theoretical perspective. Unfortunately, polar

codes under standard SC decoding cannot compete with the LDPC and Turbo codes that are

used in current standards in terms of their error-correcting performance. For this reason,

several improved SC-based decoding algorithms have been introduced. The most prominent

SC-based decoding algorithm is the successive cancellation list (SCL) decoding algorithm,

which is powerful enough to approach the error-correcting performance of LDPC codes. The

original SCL decoding algorithm was described in an arithmetic domain that is not well-suited

for hardware implementations and is not clear how an efficient SCL decoder architecture can

be implemented. To this end, in this thesis, we re-formulate the SCL decoding algorithm in

two distinct arithmetic domains, we describe efficient hardware architectures to implement

the resulting SCL decoders, and we compare the decoders with existing LDPC and Turbo

decoders in terms of their error-correcting performance and their implementation efficiency.

Due to the ongoing technology scaling, the feature sizes of integrated circuits keep shrinking

at a remarkable pace. As transistors and memory cells keep shrinking, it becomes increasingly

difficult and costly (in terms of both area and power) to ensure that the implemented digital

circuits always operate correctly. Thus, manufactured digital signal processing circuits, includ-

ing channel decoder circuits, may not always operate correctly. Instead of discarding these

faulty dies or using costly circuit-level fault mitigation mechanisms, an alternative approach is

to try to live with certain malfunctions, provided that the algorithm implemented by the circuit

is sufficiently fault-tolerant. In this spirit, in this thesis we examine decoding of polar codes

and LDPC codes under the assumption that the memories that are used within the decoders

iii

Abstract

are not fully reliable. We show that, in both cases, there is inherent fault-tolerance and we

also propose some methods to reduce the effect of memory faults on the error-correcting

performance of the considered decoders.

As we already explained, LDPC codes are well-suited for high-speed applications. A new

degree of parallelism in LDPC decoding was recently explored by completely unrolling the

decoding loop of the LDPC decoder and mapping every decoding iteration directly to hardware,

leading to a decoder architecture that can achieve a throughput of over one Terabit per second.

However, routing is a severe problem in this kind of architecture as there are typically hundreds

of thousands of global wires required in order to connect the various processing blocks within

the decoder. In this thesis, we apply an information-theoretic quantization method in order

to significantly reduce the bit-width of the quantities that are processed within an unrolled

LDPC decoder. Using this approach, we reduce the area and increase the maximum operating

frequency, while also significantly reducing the routing congestion.

Key words: Polar codes, successive cancellation list decoding, hardware implementation, VLSI,

approximate computing, faulty decoding, LDPC codes, unrolled decoding.

iv

Résumé
L’objectif du codage de canal est de détecter et de corriger les erreurs introduites lors de la

transmission de données. Au cours des dernières décennies, le codage de canal est devenu

partie intégrante de la plupart des normes de communication car il améliore significativement

l’efficacité énergétique des émetteurs-récepteurs au coût d’un modeste investissement en

terme de capacité de traitement numérique du signal. Les codes pour canaux les plus com-

muns dans les normes modernes sont les codes à contrôle de parité de faible densité (LDPC)

ainsi que les turbo codes. Ces codes furent les deux premiers types de codes à approcher la

capacité de plusieurs canaux tout en permettant une implémentation matérielle réalisable.

Notamment, les algorithmes de décodage des codes LDPC sont hautement parallélisables et,

de ce fait, sont bien adaptés aux applications à haut débit.

Une nouvelle classe de code de canal, appelée codes polaires, fut récemment introduite. Les

codes polaires ont une construction explicite ainsi que des algorithmes d’encodage et de

décodage, par annulations successives (SC), de faible complexité. De plus, les codes polaires

permettent d’atteindre la capacité d’une grande plage de canaux les rendant ainsi très attrayant

d’un point de vue théorique. Malheureusement, lorsque décodés avec l’algorithme SC, la

performance en terme de correction d’erreurs des codes polaires ne peut compétitionner avec

celle des codes LDPC ou des turbo codes utilisés dans les normes de communication actuelles.

C’est pourquoi plusieurs algorithmes de décodage améliorés, se basant tout de même sur

l’annulation successive, furent introduits. Le plus notoire de ces algorithmes est l’algorithme

de décodage par annulations successives de type liste (SCL). C’est un algorithme suffisamment

puissant pour permettre aux codes polaires de rivaliser avec la performance de correction

d’erreurs des codes LDPC. L’algorithme de décodage SCL originel fut décrit dans un domaine

arithmétique mal adapté à l’implémetation matérielle. De ce fait, il n’est pas clair qu’une

architecture matérielle efficace pour un décodeur SCL soit réalisable. À cet effet, dans cette

thèse, nous reformulons l’algorithme de décodage SCL dans deux domaines arithmétiques

distincts et nous décrivons des architectures matérielles efficaces pour l’implémentation des

décodeurs SCL résultants. Enfin, nous comparons ces décodeurs avec les décodeurs existants,

pour codes LDPC et turbo codes, à la fois en terme de performance de corrections d’erreurs

qu’en terme d’efficacité d’implémentation.

Grâce aux progrès de la miniaturisation, la taille des circuits intégrés ne cesse de réduire, et

ce, à un rythme remarquable. À mesure que la taille des transistors et des cellules mémoires

continues d’être réduite, il devient de plus en plus ardu et onéreux (en termes d’espace et

de puissance) d’assurer le perpétuel bon fonctionnement des circuits numériques. Ainsi, les

v

Résumé

circuits fabriqués de traitement numérique du signal, incluant les circuits de décodage de

canal, peuvent ne pas toujours opérer correctement. Au lieu de jeter ces puces dysfonction-

nelles ou d’utiliser des mécanismes coûteux de mitigation de fautes au niveau du circuit, une

approche alternative consiste à tenter de faire avec certains dysfonctionnements, en autant

que l’algorithme implémenté par le circuit soit suffisamment tolérant aux fautes. C’est dans cet

esprit que, dans cette thèse, nous examinons le décodage de codes polaires et de codes LDPC

sous l’hypothèse que les mémoires utilisées dans ces décodeurs ne sont pas complètement

fiables. Nous montrons que, dans les deux cas, il y a une tolérance inhérente aux fautes et

nous proposons également quelques méthodes pour réduire l’effet des fautes mémoires sur la

performance de correction d’erreurs des décodeurs considérés.

Tel qu’expliqué précédemment, les codes LDPC sont appropriés pour les applications à haut

débit. Un nouveau degré de parallélisme dans le décodage LDPC fut récemment exploré en

déroulant complètement la boucle de décodage d’un décodeur LDPC et en faisant un mappage

direct de chacune des itérations de décodage en matériel. Cela conduisit à une architecture

de décodeur pouvant atteindre un débit de plus d’un térabit par seconde. Cependant, dans

ce genre d’architecture, le routage est un problème sévère puisqu’il y a typiquement des

centaines de milliers de fils requis afin d’interconnecter les divers blocs de traitement au

sein du décodeur. Dans cette thèse, nous appliquons une méthode de quantification issue

de la théorie de l’information afin de significativement réduire le nombre de bits requis pour

exprimer les valeurs traitées dans un décodeur LDPC déroulé. En utilisant cette approche,

nous réduisons l’espace requise et augmentons la fréquence maximale d’opération tout en

réduisant significativement la congestion lors du routage.

Mots clefs : Codes polaires, décodage par annulations successives de type liste, implémenta-

tion matérielle, VLSI, calcul approximatif, décodage erroné, codes LDPC, décodage déroulé.

vi

Zusammenfassung
Kanalcodierung wird verwendet um Fehler, die bei der Informationsübertragung auftreten

können, zu erkennen und zu korrigieren. Kanalcodierung ist ein integraler Bestandteil der

meisten Kommunikationsstandards der letzten Jahrzehnten, weil sie deren Energieeffizienz

vielfach verbessern kann mit geringen Anforderungen bezüglich der erforderlichen Signalver-

arbeitungsfähigkeit des Systems. Die meisten modernen Kommunikationsstandards setzen

Paritätsprüfungcodes geringer Dichte (“low-density parity-check (LDPC) codes”) oder Turbo

Codes ein. LDPC und Turbo Codes waren die ersten zwei Arten von praktisch implementierba-

ren Kanalcodes die sich der Kapazität von mehreren Übertragungskanälen nähern können.

Die Decodieralgorithmen für LDPC Codes sind besonders hoch parallelisierbar und sind daher

sehr geeignet für Anwendungen die hohen Datendurchsatz erfordern.

Polare Codes sind die jüngste Entwicklung im Bereich der Kanalcodierung. Polare Codes

verfügen über eine explizite Konstruktion und sie können mit Hilfe sukzessiver Annullierung

(“successive cancellation (SC) decoding”) mit geringer Komplexität decodiert werden. Zudem

können polare Codes nachweisbar die Kapazität von mehreren Übertragungskanälen errei-

chen und sind daher aus theoretischer Sicht hochattraktiv. Die Fehlerkorrekturleistung von

polaren Codes mit dem SC Decodieralgorithmus steht jedoch der Fehlerkorrekturleistung von

LDPC und Turbo Codes leider bedeutend nach. Aus diesem Grund wurden mehrere verbes-

serte Decodieralgorithmen eingeführt die auf dem SC Algorithmus basieren. Der bekannte-

ste SC-basierte Decodieralgorithmus ist der SC Listenalgorithmus (SCL), der leistungsfähig

genug ist um sich der Fehlerkorrekturleistung von LDPC Codes zu nähern. Der SCL Deco-

dieralgorithmus wurde ursprünglich in einem arithmetischen Domain beschrieben, der für

Hardwareimplementierungen schlecht geeignet ist. Es ist daher eher unklar wie eine effiziente

SCL Decoder-Architektur implementiert werden kann. In dieser Doktorarbeit formulieren

wir aus diesem Grund den SCL Algorithmus in zwei unterschiedlichen arithmetischen Do-

mänen die für Hardwareimplementierungen besser geeignet sind. Ausserdem beschreiben

wir effiziente Hardwarearchitekturen für die neu formulierten SCL Algorithmen und verglei-

chen wir diese Architekturen mit existierenden LDPC und Turbo Decodern bezüglich ihrer

Fehlerkorrekturleistung und Implementierungseffizienz.

Die Integrationsdichte von integrierten Schaltungen nimmt mit bemerkenswertem Tempo

zu aufgrund der andauernden Technologie-Skalierung. Da Transistoren und Speicherzellen

immer kleiner werden, wird es zunehmend schwieriger und kostspieliger (bezüglich des

Energievebrauchs und der Schaltungsfläche) sicher zu stellen dass digitale Schaltungen im-

mer einwandfrei funktionieren. Aus diesem Grund kann es vorkommen dass hergestellte

vii

Zusammenfassung

digitale Signalverarbeitungsschaltungen, einschliesslich Kanaldecoderschaltungen, fehler-

haft sind. Die fehlerhaften Schaltungen werden üblicherweise entweder weggeworfen oder

durch kostspielige Fehlerausgleichsmechanismen abgeschirmt. Ein alternativer Ansatz ist

eine bestimmte Anzahl von Störungen zuzulassen, vorausgesetzt dass der implementierte

Algorithmus ausreichend fehlertolerant ist. In dieser Doktorarbeit untersuchen wir in diesem

Sinne die Decodierung von polaren Codes und LDPC Codes unter der Annahme dass die

von der digitalen Schaltung verwendeten Speicherelemente nicht völlig zuverlässig sind. Wir

beweisen, dass beide Decoder inhärent Fehlertolerant sind und wir schlagen einige Verfahren

vor die die Auswirkung der Speicherfehler auf die Fehlerkorrekturleistung der untersuchten

Decoder verringern können.

Wie bereits erklärt wurde sind LDPC Codes gut geeignet für Anwendungen die hohen Daten-

durchsatz erfordern. Ein neuer Parallelitätsgrad in der Decodierung von LDPC Codes, der

durch das vollständige Abrollen der Decodierungsschleife des LDPC-Decoders und durch

die direkte Implementierung jeder Decodieriteration in Hardware ermöglicht wird, wurde in

letzter Zeit untersucht. Diese Methode ermöglicht die Gestaltung von Decodierungsschaltun-

gen die einen Durchsatz von mehr als einem Terabit pro Sekunde erreichen. Das Leitungs-

routing ist ein schwerwiegendes Problem in dieser Art von Architektur, weil typischerweise

Hunderttausende von globalen Leitungen erforderlich sind, um die verschiedenen Verar-

beitungsblöcke innerhalb des Decoders miteinander zu verbinden. In dieser Doktorarbeit

verwenden wir ein informationstheoretisches Quantisierungsverfahren, um die Bitbreite der

Daten die in einem abgerollten LDPC Decoder verarbeitet werden deutlich zu reduzieren.

Dieser Ansatz reduziert die Schaltungsfläche, erhöht die maximale Betriebsfrequenz und

reduziert die Routing-Kongestion der Decodierungsschaltung deutlich.

Stichwörter: Polare Codes, Listenalgorithmus mit sukzessiver Annullierung, Hardwareimple-

mentierung, VLSI, approximierende Berechnung, defekte Decodierung, LDPC Codes, abge-

rollte Decodierung.

viii

Contents
Acknowledgements i

Abstract (English/Français/Deutsch) iii

List of figures xiii

List of tables xix

1 Introduction 1

1.1 Thesis Outline & Contributions . 3

1.2 Notation and Preliminaries . 5

1.3 Polar Codes . 6

1.3.1 Polarizing Transformation . 6

1.3.2 Construction of Polar Codes . 9

1.3.3 Decoding of Polar Codes . 10

1.4 LDPC Codes . 19

1.4.1 Construction of LDPC Codes . 19

1.4.2 Message-Passing Decoding of LDPC Codes 20

2 Hardware Decoders for Polar Codes 23

2.1 LL-Based SCL Decoder . 24

2.1.1 Likelihood Representation . 24

2.1.2 List SC Decoder Architecture . 26

2.2 LLR-Based SCL Decoder . 30

2.2.1 LLR-Based Path Metric Computation . 31

2.2.2 LLR-Based SCL Decoder Hardware Architecture 35

2.2.3 Path Metric Sorting . 38

2.3 Hardware Implementation Results . 48

2.3.1 Quantization Parameters . 48

2.3.2 Comparison of Path Metric Sorters . 49

2.3.3 LLR-based SCL Decoder: Radix-2L Sorter versus Pruned Radix-2L Sorter 52

2.3.4 LLR-based SCL Decoder: Comparison with LL-based SCL Decoders . . . 53

2.3.5 CRC-Aided SCL Decoder . 56

2.4 Polar Decoder Survey and Comparison with Existing Decoders 62

ix

Contents

2.4.1 Polar Hardware Decoders . 62

2.4.2 Comparison of Polar Codes with LDPC and Turbo Codes 70

2.5 Summary . 84

3 Faulty Polar and LDPC Channel Decoders 87

3.1 Approximate Computing . 87

3.2 Successive Cancellation Decoding with Intentionally Mismatched Polar Codes 88

3.2.1 Complexity-Performance Trade-Offs for SC Decoding of Polar Codes . . 88

3.2.2 Greedy Optimization Algorithm . 92

3.2.3 Numerical Results . 94

3.3 Successive Cancellation Decoding of Polar Codes with Faulty Memories 97

3.3.1 Faulty Successive Cancellation Decoding of Polar Codes for the BEC . . . 98

3.3.2 Erasure Probability of Synthetic Channels Under Faulty SC Decoding . . 101

3.3.3 Frame Erasure Rate Under Faulty SC Decoding 106

3.3.4 Unequal Error Protection . 109

3.3.5 Optimal Blocklength Under Faulty SC Decoding 110

3.3.6 Numerical results . 111

3.4 Min-Sum Decoding of LDPC Codes with Faulty Memories 114

3.4.1 Channel Model and Memory Fault Model 116

3.4.2 Density Evolution for Faulty Quantized MS Decoding 117

3.4.3 Bit-Error Probability and Decoding Threshold 120

3.4.4 Numerical Results . 121

3.5 Summary . 123

4 Hardware Decoders for Ultra High-Speed Decoding of LDPC Codes 125

4.1 Mutual Information Based Message Quantization 126

4.1.1 Channel Model and Symmetry Conditions 127

4.1.2 LUT Design via Density Evolution . 128

4.2 LUT Design Considerations for Practical Decoders 130

4.2.1 Performance of Min-LUT Decoding . 130

4.2.2 Reduced Complexity LUT Structure . 131

4.2.3 Design SNR . 133

4.2.4 LUT Re-use . 134

4.2.5 LUT Input/Output Alphabet Downsizing 136

4.3 LUT-Based Fully Unrolled Decoder Hardware Architecture 138

4.3.1 Decoder Architecture . 139

4.3.2 Decoding Latency and Throughput . 142

4.3.3 Memory Requirements . 142

4.4 Implementation Results . 142

4.4.1 Quantization Parameters . 143

4.4.2 Adder-based vs. LUT-based Decoder . 143

4.5 Summary . 145

x

Contents

5 Conclusion & Outlook 147

Bibliography 162

xi

List of Figures

1.1 One step of the polarizing transformation applied to two copies of the channel

W and generating two synthetic channels W (−) and W (+). 7

1.2 Synthetic channel construction for a polar code of length N = 23 = 8. Pairs of

solid lines represent the + transformation and pairs of dashed lines represent

the − transformation. 8

1.3 Implementation of F⊗n for a polar encoder of length N = 23 = 8. The application

of B N to the result of this encoding circuit would simply re-arrange the output

in the natural ordering, i.e., c = [c0 c1 . . . c7]. 9

1.4 The data dependency graph (DDG) for the computation of the LLRs of a polar

code with N = 23 = 8. Solid lines represent application of f+ and dashed lines

represent application of f−. The partial sums required for the f+ updates can be

computed by using the encoder structure of Figure 1.3 and setting ui = ûi once

each estimate becomes available. 12

1.5 Factor graph for belief propagation decoding of polar codes. 16

1.6 Basic computation unit for belief propagation decoding. 17

1.7 Example of a Tanner graph for a (2,4)-regular LDPC code of blocklength N = 6. 19

1.8 (a) Variable node update for N (n) = {k,k1, . . . ,kdv−1} and (b) check node update

for N (k) = {n,n1, . . . ,ndc−1}. 20

1.9 Decision node update for N (n) = {k,k1, . . . ,kdv }. 21

2.1 High-level overview of the list SC decoder architecture. 26

2.2 Details of the proposed LL-based SCL decoder: (a) pointer memory, (b) metric

sorter. 28

2.3 Overview of the SCL decoder architecture. Details on the i , s, ps , as well as the

func & stage and MemAddr components inside the control unit, which are not

described in this section, can be found in Section 2.1. The dashed green and the

dotted red line show the critical paths for L = 2 and L = 4,8 respectively. 36

2.4 Bit-cell copying mechanism controlled by the metric sorter. 37

2.5 Radix-2L sorter for L = 2. 40

2.6 Bitonic sorter for L = 4. 41

2.7 Pruned radix-2L sorter for L = 2. 42

xiii

List of Figures

2.8 Pruned bitonic sorter for L = 4. The full bitonic sorter requires all the depicted

CAS units (cf. Figure 2.6), while in the pruned bitonic sorter all CAS units in red

dotted lines can be removed. 43

2.9 Bubble sorter for 2L = 8. The full bubble sorter requires all the depicted CAS

units, while in the simplified bubble sorter all CAS units in red dotted lines can

be removed. 46

2.10 The performance of floating-point vs. fixed-point SCL decoders (L = 1, i.e., SC

decoding, and L = 2). M = 8 quantization bits are used for the path metric in

fixed-point SCL decoders. 49

2.11 The performance of floating-point vs. fixed-point SCL decoders (L = 4 and L = 8).

M = 8 quantization bits are used for the path metric in fixed-point SCL decoders. 50

2.12 The performance of LLR-based SCL decoders compared to that of CRC-aided

SCL decoders for L = 2,4,8. 58

2.13 CA-SCLD with L = 2,4, results in the same performance at blocklength N = 1024

as the conventional SC decoding with N = 2048 and N = 4096, respectively. . . 60

2.14 Time complexity vs. area for various decoders for polar codes. All decoders are

given for N = 1024. The SCL decoder implementations are given for L = 4. The

area and operating frequency are normalized to 90 nm CMOS technology using

standard technology scaling rules. 69

2.15 Throughput vs. power for various decoders for polar codes. The power and

operating frequency are normalized to 90 nm CMOS and 1 V using standard

technology scaling rules. 70

2.16 Performance of the LDPC code of the IEEE 802.11ad standard compared to polar

codes under SC decoding, BP decoding, and SCL decoding (8-bit CRC). 72

2.17 Hardware efficiency of IEEE 802.11ad LDPC decoder implementations and SC,

BP, and SCL polar decoder implementations when only considering technology

scaling. 73

2.18 Performance of the LDPC code of the IEEE 802.11ad standard compared to polar

codes under SC decoding and BP decoding, and a polar code with N = 512 under

SCL decoding (8-bit CRC). 74

2.19 Hardware efficiency of IEEE 802.11ad LDPC decoder implementations and SC,

BP, and SCL polar decoder implementations when scaling for iso-FER. 74

2.20 Performance of the LDPC code of IEEE 802.11n standard compared to polar

codes with N = 1024 under SC decoding, BP decoding, and SCL decoding (8-bit

CRC). 75

2.21 Hardware efficiency of IEEE 802.11n LDPC decoder implementations and SC,

BP, and SCL polar decoder implementations when only considering technology

scaling. 76

2.22 Performance of the LDPC code of IEEE 802.11n standard compared to polar

codes with N = 1024 under SC decoding, BP decoding (I = 40), and SCL decoding

(8-bit CRC). 77

xiv

List of Figures

2.23 Hardware efficiency of IEEE 802.11n LDPC decoder implementations and SC,

BP, and SCL polar decoder implementations when scaling for iso-FER. 77

2.24 Performance of the LDPC code of the IEEE 802.3an standard compared to polar

codes with N = 1024 under SC decoding, BP decoding, and SCL decoding (8-bit

CRC). 78

2.25 Hardware efficiency of IEEE 802.3an LDPC decoder implementations and SC,

BP, and SCL polar decoder implementations when only considering technology

scaling. 79

2.26 Performance of the LDPC code of the IEEE 802.3an standard compared to polar

codes with N = 4096 under SC and BP decoding, and N = 1024 under SCL

decoding (8-bit CRC). 80

2.27 Hardware efficiency of IEEE 802.3an LDPC decoder implementations and SC,

BP, and SCL polar decoder implementations when scaling for iso-FER. 80

2.28 Performance of Turbo code of LTE standard compared to polar codes with N =
1024 under SC decoding, BP decoding (I = 15), and SCL decoding (L = 4, 8-bit

CRC). 81

2.29 Hardware efficiency of LTE Turbo decoder implementations and SC, BP, and SCL

polar decoder implementations when only considering technology scaling. . . 82

2.30 Performance of Turbo code of LTE standard compared to polar codes with N =
32768 under SC decoding and BP decoding (I = 30), and polar codes with N =
4096 under SCL decoding (L = 4, 16-bit CRC). 83

2.31 Hardware efficiency of 3GPP LTE Turbo decoder implementations and SC, BP,

and SCL polar decoder implementations which have been scaled in order to

match the FER performance of the 3GPP LTE Turbo decoders. 83

3.1 Decoding graph for N = 4 with channel groups. An optimization variable xi is

associated with each group gi . Setting xi = 1 corresponds to freezing all channels

in gi . 90

3.2 Tree structure of channel groups with descendants of g6, i.e., D(g6), and their

corresponding optimization variables. If x6 = 1, then xi = 0 has to be enforced

for all xi : gi ∈ D(g6). 91

3.3 Results from exact solution of (3.11) and of the greedy algorithm for R = 0.5,

N = 2n , n = 4,5,6,7, and transmission over a BEC(0.5). 95

3.4 Solutions of greedy algorithm for R = 0.5, N = 2n , n = 9,10,11,12,13,15, over a

BEC(0.5). 96

3.5 Frame erasure rate performance and performance metric of the useful codes for

R = 0.5 and N = 210. 96

3.6 Synthetic channel construction for a polar code of length N = 22 = 4 under

faulty SC decoding. Solid lines represent the + transformation and dashed lines

represent the − transformation. 100

xv

List of Figures

3.7 Sorted Z (s)
n,δ, s ∈ {+,−}n and Z (s)

n , s ∈ {+,−}n , values for polar codes of length

N = 256,1024,4096, designed for the BEC(0.5) under faulty SC decoding with

δ= 10−6 and non-faulty decoding, respectively. 112

3.8 Evaluation of P UB
e and P LB

e for polar codes of lengths N = 256,1024,4096, de-

signed for the BEC(0.5) with δ= 10−6. 113

3.9 Evaluation of P UB
e and P LB

e for N = 2n , n = 0, . . . ,12, and various code rates

R ∈ {0.1250,0.1875,0.2500} for transmission over a BEC with erasure probability

0.5 under faulty SC decoding with δ= 10−6. 113

3.10 FER for a polar code of length N = 1024 designed for the BEC(0.5) under faulty SC

decoding with δ= 10−6 and np = 0, . . . ,5, protected decoding levels. Protecting

np = n +1 levels is equivalent to using a non-faulty decoder. 114

3.11 FER for polar codes of length N = 512,1024,2048, designed for the BEC(0.5)

under faulty SC decoding with δ= 10−6 and np = n −5 protected decoding levels.115

3.12 Message fault model: an incoming b-bit noiseless message of value m is passed

through b independent BSC(δ) channels, resulting in the faulty message e(m). 116

3.13 Faulty variable node update for N (n) = {m,m1, . . . ,mdv−1} (a) and faulty check

node update (b) for N (m) = {n,n1, . . . ,ndc−1}. 117

3.14 Faulty decision node update for N (n) = {m,m1, . . . ,mdv }. 117

3.15 Error probability for a (3,6)-regular LDPC code under faulty MS and MS decoding

for δ= 10−5 and δ= 10−6. The calculated thresholds are σ2∗(10,10−5) = 0.6576

and σ2∗(10,10−6) = 0.6582. 121

3.16 Decoding threshold for a (3,6)-regular LDPC code under faulty MS and MS

decoding for δ= 10−3 for different numbers of quantization bits. 122

4.1 Performance comparison of floating point and fixed point min-sum decoding

with our proposed min-LUT decoder for the IEEE 802.3an LDPC code (�max = 5). 131

4.2 Six different LUT tree structures. Note that T1 ≥T T4 ≥T T6, T2 ≥T T5, T3 ≥T T5,

and T3 ≥T T6. However, we cannot compare T2 with T3 or T5 with T6 using the

relation ≥T . 132

4.3 FER versus channel SNR for min-LUT decoder at different design SNRs γ for the

IEEE 802.3an LDPC code (�max = 5, |L| = 4, |M| = 3). 134

4.4 Performance comparison of floating point and fixed point min-sum decoding

with our proposed min-LUT decoder for the IEEE 802.3an LDPC code and vari-

ous LUT re-use patterns r (�max = 5, |L| = 24, |M| = 23,γ= 4.2 dB). 135

4.5 Performance comparison of floating point and fixed point min-sum decoding

with our proposed min-LUT decoder for the IEEE 802.3an LDPC code and vari-

ous LUT downsizing patterns d (�max = 5, |L| = 24,γ= 4.2 dB). 136

4.6 Top level decoder architecture processing pipeline. The channel LLRs are the

input of the left-hand side and the decoded codeword is obtained as the output

of the right-hand side. 139

xvi

List of Figures

4.7 (a) The variable node LUT tree that is used in the hardware implementation

for the calculation of one output of a variable node of degree dv = 6. This

tree is identical to T6 of Figure 4.2. Each LUT-based variable node contains dv

such LUT trees, one for each combination of (dv −1) input messages. (b) The

decision node LUT tree that is used in the hardware implementation for the hard

decisions taken by each variable node of degree dv = 6. This tree is similar to T5

of Figure 4.2 with an additional input added to the right LUT of the lowest level.

Each LUT-based decision node contains a single decision tree. 141

4.8 FER vs Eb/N0 for the N = 2048 (6,32)-regular LDPC code defined in IEEE 802.3an

under various decoding algorithms. 143

xvii

List of Tables
2.1 Synthesis Results for Radix-2L and Pruned Radix-2L Sorters 50

2.2 Synthesis Results for Bitonic and Pruned Bitonic Sorters 51

2.3 Comparison of Pruned Radix-2L, Pruned Bitonic, and Simplified Bubble Sorters 52

2.4 LLR-based SCL Decoder: Radix-2L vs. Pruned Radix-2L Sorter 52

2.5 Metric Sorter Delay and Critical Path Start- and Endpoints for our LLR-Based

SCL Decoder Using the Radix-2L and the Pruned Radix-2L Sorters. 53

2.6 SCL Decoder Synthesis Results (R = 1
2 , N = 1024) 53

2.7 Comparison of LLR-based implementation with existing LL-based implementa-

tions . 54

2.8 Cell Area Breakdown for the LL-Based and the Radix-2L LLR-based SCL Decoders

(R = 1
2 , N = 1024) . 54

2.9 Throughput Reduction in CRC-Aided SCL Decoders 57

2.10 LLR-Based SC Decoder vs. SCL Decoder Synthesis Results 59

2.11 SC Decoder Hardware Implementations . 63

2.12 Complexity and Decoding Latency of Different SC Decoder Architectures 64

2.13 BP Decoder Hardware Implementations . 65

2.14 SCL Decoder Hardware Implementations (L = 4) 69

2.15 Properties of the LDPC and Turbo codes used for comparison. 70

2.16 IEEE 802.11ad LDPC Decoder Implementations. 84

2.17 IEEE 802.11n LDPC Decoder Implementations. 84

2.18 IEEE 802.3an LDPC Decoder Implementations. 85

2.19 3GPP LTE Turbo Decoder Implementations. 85

3.1 Thresholds of various (dv ,dc)-regular codes under MS and faulty MS decoding

for α= 10 and b = 5 bits. 122

4.1 Comparison of cumulative depth and DE threshold for various tree structures

(cf. Figure 4.2). 132

4.2 Synthesis Results for the Adder-based and the LUT-based Decoders 143

4.3 Area Breakdown . 144

xix

1 Introduction

Practically all modern communications systems are digital in nature and they use sophis-

ticated digital signal processing techniques that can be readily implemented using digital

integrated circuits. The quality of a digital communications system can be described by a

quantifiable and intuitive metric, called the bit-error rate, which is defined as the average

fraction of transmitted bits that are mistaken for a different bit at the receiver due to the noise

introduced by the transmission channel. Error-correction coding has become an integral part

of digital communications systems, as it can significantly reduce their bit-error rate and, in

turn, increase their efficiency.

For example, consider a system whose (uncoded) bit-error rate is Pe . If a single bit is transmit-

ted using this system, it will arrive correctly at the receiver with probability Pc = 1−Pe and in

error with probability Pe . Now consider the case where we transmit the same bit three times

over the channel and use a majority rule at the receiver to decode the transmitted bit. In this

scenario, the bit will be received correctly if either no instances of the bit are in error or if one

instance of the bit is in error and the probability of receiving the bit correctly is

Pc,coded = (1−Pe)3 +3(1−Pe)2Pe = 1−P 2
e +2P 3

e . (1.1)

It can be verified that Pe,coded = 1−Pc,coded < Pe for any Pc ∈ (0,1). Thus, this repetition code

improves the bit-error probability of the system. However, it also reduces the rate of the

system, since only one information bit is transmitted for every three coded bits. In general,

the code rate is defined as the number of information bits K transmitted over the number

of total bits N transmitted, i.e., R = K
N . This simple repetition code can be easily generalized

to any odd blocklength N with rate R = 1
N , where a bit error occurs if more than N−1

2 of the

bit instances are received erroneously. A simple lower bound on the bit-error probability of

any code can be derived if we only consider one of the events that lead to a bit-error, namely

the case where all N bit instances are received erroneously. This gives us the lower bound

Pe,coded ≥ P N
e . Thus, a necessary condition for Pe,coded to become arbitrarily small is that N

must go to infinity. However, as N goes to infinity, the rate of the repetition code goes to

zero, leaving us with the tautological statement that the only way to avoid bit-errors during

1

Chapter 1. Introduction

transmission over a noisy channel is to not send any bits over this channel.

The belief that arbitrarily reliable transmission of information is only possible if the rate of

transmission goes asymptotically to zero was widely held until the seminal work of Shannon in

1948 [1]. Shannon showed that each transmission channel has a capacity and that arbitrarily

reliable transmission is in fact possible at any rate that is strictly smaller than the capacity of

the channel. Shannon used a random coding argument for his proof which does not enable the

construction of practically useful codes, since both the encoding and the decoding complexity

of randomly constructed codes are exponential in the blocklength N . While error-correcting

codes existed before the work of Shannon, the promise of a fundamental limit that is, at least

in principle, achievable essentially gave birth to the field of coding theory.

Classical coding theory studies codes mainly in terms of their algebraic properties, such as

the minimum distance, in order to derive bounds on the error-correcting capabilities of these

codes. Hamming codes and Reed-Solomon codes are well-known and widely used examples

of classical codes. The way of looking at codes changed fundamentally in the 1990s, when al-

gebraic properties gave way to the analysis of codes modeled using sparse graphs and efficient

message-passing decoding algorithms. A common term used to describe this paradigm shift

is modern coding theory [2]. Turbo codes [3] are one of the first examples of modern codes

and they are also the first class of codes that was able to approach channel capacity while still

being practically implementable. Low-density parity-check (LDPC) codes [4, 5] are another

famous example of modern codes that are both capacity-approaching and implementable

with reasonable hardware complexity. While both Turbo and LDPC codes have excellent

capacity-approaching performance, it has not been shown that they are generally capacity-

achieving. The latest breakthrough in channel coding came with Arıkan’s polar codes [6],

which are provably capacity-achieving over a very wide range of transmission channels.

Since error-correcting codes are an essential part of today’s communications systems, the

hardware implementation of such systems is a crucial issue. Indeed, a Google Scholar search

reveals that there are more than 50’000 publications on the implementation of Turbo decoders

and more than 20’000 publications on the implementation of LDPC decoders.1 However, a

similar search for decoder implementations of the more recently invented polar codes only

returns slightly more than 200 results. Thus, while it is safe to say that after two decades of

research we know how to build efficient Turbo and LDPC decoders for most applications, the

same claim can unfortunately not be made for polar decoders, as the field is still in its infancy.

Digital signal processing algorithms and their hardware implementation are commonly treated

in isolation. System engineers devise algorithms that are then passed on to the hardware

engineers who make sure that they are implemented as efficiently as possible. However,

as the node sizes of integrated circuits keep shrinking, this classical approach of layered

1We used the search string CODE+("code*"|"decoder*")+("hardware"|"vlsi"|"fpga"|"asic"), where
CODE was either "turbo" or ("ldpc"|"low-density parity-check") or "polar". Specifically for polar codes,
we had to append +"arikan" to the search string in order to exclude several thousands of publications related to
physics and biology.

2

1.1. Thesis Outline & Contributions

abstraction not only becomes inefficient, but even inaccurate. This happens because various

effects that affect the analog components that are used to build digital circuits actually start

manifesting themselves in the operation of the digital circuit. The altered operation of the

digital circuit, in turn, directly affects the functionality of the algorithm that it implements.

Thus, algorithms and hardware become inextricably intertwined and it becomes imperative

to study the behavior of digital signal processing algorithms in a more holistic and cross-layer

fashion that takes into account the intricacies of sub-100 nm VLSI technologies. This cross-

layer approach can have a big impact on the energy efficiency and manufacturing cost of

integrated circuits, as it allows us to find ways to use less reliable and less energy-hungry

hardware while still guaranteeing acceptable performance levels for many applications.

1.1 Thesis Outline & Contributions

The contributions of this thesis can be summarized as follows. First, we bridge the gap between

Turbo/LDPC decoders and polar decoders by showing how the successive cancellation list

decoding algorithm for polar codes, which is particularly interesting due to its superior error

rate performance, can be efficiently implemented in hardware. Second, we examine the

performance of several channel decoding algorithms in scenarios where the digital hardware

that is used to implement them is faulty. Finally, we use a sophisticated quantization method

that is inspired by an information-theoretic performance metric in order to design an ultra

high-speed LDPC decoder that achieves a decoding throughput of more than one Terabit per

second.

In the following, we will briefly outline the contents of each chapter of this thesis and we will

summarize the respective main contributions.

Chapter 2: Hardware Decoders for Polar Codes

This chapter deals with the hardware implementation of various successive cancellation

list (SCL) decoders for polar codes. We note that this chapter is derived from our works

of [7, 8, 9, 10].

More specifically, in Section 2.1 we present the first hardware implementation of an SCL

decoder in the literature. This architecture uses a log-likelihood (LL) representation for

the internal messages and a smart copying mechanism in order to avoid copying the path

likelihoods directly.

In Section 2.2, we present a reformulation of the SCL decoding algorithm in the log-likelihood

ratio (LLR) domain, which greatly improves the numerical stability of the SCL decoding

algorithm while also decreasing the logic and memory requirements. Moreover, we describe a

hardware architecture, that is based on the decoder described in Section 2.1, which exploits the

reformulation of SCL decoding in the LLR domain. We also study some properties of the LLR-

3

Chapter 1. Introduction

based path metrics that are then used in order to greatly improve the hardware implementation

of the crucial path selection step of SCL decoding. In Section 2.3, we demonstrate the benefits

of the LLR-based formulation of SCL decoding in terms of both the area requirements and the

maximum operating frequency of the implemented decoder.

Finally, in Section 2.4 we present a survey on hardware implementations of various decoders

for polar codes, covering BP, SC, and SCL decoding. We outline the most important techniques

used in the literature so far and we compare the resulting polar decoders with each other.

Moreover, we provide an in-depth comparison of polar decoders with existing LDPC and Turbo

decoders, both in terms of the error-correcting performance and in terms of the hardware

efficiency. Finally, we conclude this section by identifying some interesting and important

open problems in the field of hardware decoders for polar codes.

Chapter 3: Faulty Polar and LDPC Channel Decoders

In this chapter we study the performance of both polar and LDPC codes under various

approximate computing scenarios. We note that this chapter is derived from our works

of [11, 12, 13, 14].

More specifically, in Section 3.2 we propose and formalize a modified construction of polar

codes whose goal is to reduce the decoding complexity under successive cancellation decoding

by sacrificing the error-correcting performance in a systematic fashion. We show that the

modified construction is an NP-hard optimization problem and we propose a greedy algorithm

to construct polar codes with large blocklengths. Finally, we demonstrate that, with the

proposed code construction method, meaningful performance-complexity trade-offs can be

achieved.

In Section 3.3, we study SC decoding of polar codes over the binary erasure channel (BEC)

in the case where the memories that are used within the decoder are not fully reliable due

to various possible reasons, including manufacturing defects and voltage scaling for power

reduction. To this end, we introduce a memory fault model and we show that polarization

does not happen in faulty SC decoding in the sense that all synthetic channels become

asymptotically fully noisy. Moreover, we generalize an existing lower bound on the frame

erasure rate (FER) and we use it, along with a well-known upper bound, in order to easily

compute the FER-optimal polar code blocklength under faulty SC decoding. Finally, we

present an unequal error-protection mechanism for the faulty memories that can significantly

reduce the FER of finite-length polar codes with minimal overhead, while also re-enabling

fully reliable communication asymptotically when protecting only a fixed fraction of the total

decoder memory.

Finally, in Section 3.4 we study min-sum (MS) decoding of low-density parity-check (LDPC)

codes in the case where the memories that are used within the decoder are not fully reliable.

To this end, we first prove that the usual density evolution (DE) analysis remains valid under

4

1.2. Notation and Preliminaries

the considered fault model and we generalize the DE equations for MS decoding to the case of

faulty MS decoding. Finally, we use the derived DE equations to quantify the effect of faulty

memories on the convergence speed and on the threshold of the decoder and we also show

that in the faulty decoding case using more quantization bits does not necessarily lead to

better error-correcting performance.

Chapter 4: Hardware Decoders for Ultra High-Speed Decoding of LDPC Codes

In this chapter we are concerned with quantized message-passing decoding of LDPC codes.

We note that this chapter is derived from our works of [15, 16].

In Section 4.1 we describe the method that we use to design custom quantized decoding

algorithms for any given message quantization bit-width and we explore various design

parameter trade-offs. The method can design the variable node and check node update

rules based on an information-theoretic criterion. More specifically, the update rules are

designed in a way that maximizes the mutual information between each outgoing message

and its corresponding codeword bit. Moreover, in Section 4.3 we present a fully unrolled

LDPC decoder hardware architecture that greatly benefits from the aforementioned custom

decoding algorithms and that can achieve a decoding throughput of more than 1 Terabit per

second.

1.2 Notation and Preliminaries

Throughout this thesis, lowercase boldface letters denote vectors. The elements of a vector

x are denoted by xi and xm
l means the sub-vector [xl , xl+1, . . . , xm]T if m ≥ l and the null

vector otherwise. If I = {i1, i2, . . .} is an ordered set of indices, xI denotes the sub-vector

[xi1 , xi2 , . . .]T . Sets are denoted using calligraphic letters. If S is a countable set, |S| denotes its

cardinality. We use log(·) and ln(·) to denote the base-2 and the natural logarithm respectively.

Random variables are denoted using capital letters and individual realizations of random

variables are denoted using the corresponding lowercase letter. Vectors of random variables

are denoted by uppercase boldface letters. Uppercase boldface letters also denote matrices,

but the distinction between vectors of random variables and matrices is always clear from the

context. We use P [A] to denote the probability of event A and E [X] to denote the expectation

of the random variable X .

Let W denote a binary-input discrete memoryless channel (B-DMC) with input alphabet {0,1},

output alphabet Y , and transition probabilities W (y |x), x ∈ {0,1}, y ∈Y . Let W N denote N

independent uses of W . Two parameters that can be associated with any B-DMC W are the

symmetric capacity

I (W)�
∑

y∈Y

∑
x∈{0,1}

1

2
W (y |x) log

W (y |x)
1
2W (y |0)+ 1

2W (y |1)
, (1.2)

5

Chapter 1. Introduction

and the Bhattacharyya parameter

Z (W)�
∑

y∈Y

√
W (y |0)W (y |1), (1.3)

which measure rate and reliability, respectively. The relation between I (W) and Z (W) is

quantified as follows [6]. For any B-DMC W , we have

I (W) ≥ log
2

1+Z (W)
, (1.4)

I (W) ≤
√

1−Z (W)2. (1.5)

This means that whenever I (W) goes to 0, Z (W) goes to 1, and whenever I (W) goes to 1, Z (W)

goes to 0.

1.3 Polar Codes

In this section, we give an overview of the required background on the construction and

decoding of polar codes. More specifically, we first describe the polarizing transformation

introduced by Arıkan. Then, we explain how polar codes are constructed by exploiting the

properties of the polarizing transformation, as well as how they can be efficiently decoded

using various decoding algorithms.

1.3.1 Polarizing Transformation

The main idea behind polar codes is to use a polarizing transformation that converts N

independent copies of some channel W into N synthetic channels which are either better

or worse than the original channel W . In the limit of infinite blocklength, it can be shown

that channels become either perfectly noiseless or completely noisy. A polar code is then

constructed by only using the perfect channels to transmit information and freezing the input

of the bad channels to some value that is known at both ends of the communication link. It

can also be shown that the fraction of channels that become perfect converges to the mutual

information I (W) of the original channel W , meaning that polar codes are capacity achieving.

In the following sections, we explain the polarizing transformation in a more formal fashion.

1.3.1.1 Single-Step Polarizing Transformation

Let W denote a binary input memoryless channel with input u ∈ {0,1}, output y ∈ Y , and

transition probabilities W (y |u). Assume that we want to transmit two independent and

uniformly distributed bits u =
[

u0 u1

]
over two independent uses of W and let y =

[
y0 y1

]
denote the corresponding noisy outputs. The conditional distribution of y given u is

W 2(y |u)�W (y0|u0)W (y1|u1). (1.6)

6

1.3. Polar Codes

W (y1|u1)

W (y0|u0) ⊕
W (+)

2 (y ,u0|u1)

W (−)
2 (y |u0)

c1u1

c0u0

Figure 1.1 – One step of the polarizing transformation applied to two copies of the channel W
and generating two synthetic channels W (−) and W (+).

The first step of the polarizing transformation proposed by Arıkan is to apply a linear encoding

transformation to u as follows

c = uG2, where G2 = F =
[

1 0

1 1

]
. (1.7)

Assume that instead of transmitting u, we transmit c . In this case, the distribution of y

conditioned on u is

W2(y |u)�W 2(y |c) =W 2(y |G2u) =W (y0|u0 ⊕u1)W (y1|u1). (1.8)

The second and final step of the polarizing transformation is to split W2(y |u) into two synthetic

channels W (−) and W (+) out of W2(y |u) as follows

W (−)
2 (y |u0) = 1

2

(
W (y0|u0)W (y1|0)+W (y0|u0 ⊕1)W (y1|1)

)
, (1.9)

W (+)
2 (y ,u0|u1) = 1

2

(
W (y0|u0 ⊕u1)W (y1|u1)

)
. (1.10)

In order to intuitively understand the polarizing transformation, imagine that a successive

cancellation decoder is used, where u0 is decoded by considering u1 as noise, and then u1 is

decoded given a genie-aided decision on u0. In such a decoder, the channels experienced by

u0 and u1 are exactly W (−)
2 and W (+)

2 , respectively. It can be shown that [6]

I
(
W (−)

2

)
≤ I (W) ≤ I

(
W (+)

2

)
, (1.11)

with equality if and only if I (W) = 0 or I (W) = 1. In words, one synthetic channel is better

than the original channel W with respect to the mutual information, while the other channel

is worse than the original channel W . Furthermore, it can be shown that [6]

I
(
W (−)

2

)
+ I
(
W (+)

2

)
= 2I (W) , (1.12)

meaning that that total mutual information is preserved by the polarizing transformation.

7

Chapter 1. Introduction

s = 0 s = 1 s = 2 s = 3

W (�)
0,7

W (�)
0,6

W (�)
0,5

W (�)
0,4

W (�)
0,3

W (�)
0,2

W (�)
0,1

W (�)
0,0

W (+)
1,3

W (+)
1,2

W (+)
1,1

W (+)
1,0

W (−)
1,3

W (−)
1,2

W (−)
1,1

W (−)
1,0

W (++)
2,1

W (++)
2,0

W (+−)
2,1

W (+−)
2,0

W (−+)
2,1

W (−+)
2,0

W (−−)
2,1

W (−−)
2,0

W (+++)
3,0

W (++−)
3,0

W (+−+)
3,0

W (+−−)
3,0

W (−++)
3,0

W (−+−)
3,0

W (−−+)
3,0

W (−−−)
3,0

Figure 1.2 – Synthetic channel construction for a polar code of length N = 23 = 8. Pairs of solid
lines represent the + transformation and pairs of dashed lines represent the − transformation.

1.3.1.2 General Polarizing Transformation

The single-step transformation described in the previous section can be generalized to n steps

as follows. At step 1 of the polarizing transformation, N = 2n independent copies of the original

channel W , denoted by W (�)
0,k , k = 0, . . . , N −1, are combined pair-wise in order to generate

N /2 independent copies of a pair of new synthetic channels denoted by W (+)
1,k and W (−)

1,k , k =
0, . . . , N /2−1. As we explained in the previous section, the “+” channels can be shown to be

better than the original channel W , while the “-” channels are worse than the original channel

W . The same transformation is applied to W (+)
1,k and W (−)

1,k , k = 0, . . . , N /2−1 in order to generate

N /4 independent copies of W (++)
2,k , W (+−)

2,k , W (−+)
2,k and W (−−)

2,k , k = 0, . . . , N /4−1. This procedure

is repeated for a total of n steps, until N = 2n independent channels W (s)
n,0, s ∈ {+,−}n , are

generated. Note that, in general, the notation W (s)
s,k implies that |s| = s. An example of the

transformation steps is depicted in Figure 1.2 for n = 3.

The linear encoding transformation of (1.7) that is applied to u in order to obtain c can be

generalized to

c = uG N , where G N = F⊗nB N . (1.13)

We note that A⊗n denotes the n-fold Kronecker product of the matrix A and B N is a bit-reversal

permutation matrix.2An example of an encoding circuit for N = 8 is shown in Figure 1.3. It

can be verified that the circuit contains exactly N log N nodes and each node needs to be

activated once in order to implement the encoding operation uGN , meaning that encoding

can be performed with complexity O(N log N) [6].

2Let v and u be two length N = 2n vectors and index their elements using binary sequences of length n,
(b1,b2, . . . ,bn) ∈ {0,1}n . Then v = B N u iff v(b1,b2,...,bn) = u(bn ,bn−1,...,b1) for ∀(b1,b2, . . . ,bn) ∈ {0,1}n .

8

1.3. Polar Codes

s = 0 s = 1 s = 2 s = 3

c7

c3

c5

c1

c6

c2

c4

c0

=

=

=

=

⊕

⊕

⊕

⊕

=

=

⊕

⊕

=

=

⊕

⊕

=

⊕

=

⊕

=

⊕

=

⊕

u7

u6

u5

u4

u3

u2

u1

u0

Figure 1.3 – Implementation of F⊗n for a polar encoder of length N = 23 = 8. The application
of B N to the result of this encoding circuit would simply re-arrange the output in the natural
ordering, i.e., c = [c0 c1 . . . c7].

Arıkan showed that as n →∞, these synthetic channels polarize to ‘easy-to-use’ B-DMCs [6,

Theorem 1]. That is, all except a vanishing fraction of them will be either almost-noiseless

channels (whose output is almost a deterministic function of the input) or useless channels

(whose output is almost statistically independent of the input). Furthermore, the fraction of

almost-noiseless channels is equal to the symmetric capacity of the underlying channel, i.e.,

the highest rate at which reliable communication is possible through W when the input letters

{0,1} are used with equal probability [1].

1.3.2 Construction of Polar Codes

Let us define a mapping from s ∈ {+,−}n to the integer-valued indices i ∈ {0, . . . ,2n − 1} as

follows. First, we construct b by replacing each − that appears in s with a 0 and each + that

appears in s with a 1. Then, the index i can be obtained by considering b as a left-MSB

binary representation of i . As this mapping is a bijection, we use s and i interchangeably. For

example, W (−−+)
n,0 and W (1)

n,0 denote the same synthetic channel. Moreover, when referring to

any channel W (i)
n,0 at stage n of the synthetic channel construction process, we can skip the

second subscript for simplicity, since it is identical for all channels, and we can simply write

W (i)
n instead of W (i)

n,0.

Let us fix a blocklength N = 2n and a code rate R � K
N , 0 < K < N . Moreover, let A denote the

set of the K channel indices i (equivalently, strings s), that correspond to the K best synthetic

channels W (i)
n . A polar code of rate R is constructed by transmitting the information vector

uA over the K best synthetic channels, while freezing the inputs of the remaining synthetic

9

Chapter 1. Introduction

channels, i.e., uAc , to a value that is known at the receiver.3 This is equivalent to transmitting

the encoded codeword x = uGN over N independent uses of the initial channel W .

An important issue is how the quality of each synthetic channel can be assessed in order to

select the K best channels. For the special case where the original channel W is a binary

erasure channel (BEC), both the mutual information and the Bhattacharyya parameters of the

the synthetic channels can be calculated analytically using a simple recursive formula [6]. We

provide more details on this recursive formula in Section 3.3. For more general channels, in his

original paper Arıkan proposed a Monte Carlo based approach to estimate the Bhattacharyya

parameters of the synthetic channels [6]. This approach can work for any channel W in

principle, but its complexity can be quite high depending on the desired level of accuracy

of the Bhattacharyya parameter estimates. More sophisticated methods to construct polar

codes, which rely on approximating the synthetic channels in order to efficiently calculate the

Bhattacharyya parameters were considered in [17, 18, 19].

1.3.3 Decoding of Polar Codes

In this section, we describe the main decoding algorithms for polar codes. More specifically,

in Section 1.3.3.1 we describe the original successive cancellation (SC) decoding algorithm

proposed by Arıkan, in Section 1.3.3.2 we describe an improvement of SC decoding called

successive cancellation list (SCL) decoding, while in Section 1.3.3.3 we outline belief propa-

gation (BP) decoding of polar codes. Finally, we briefly mention some alternative decoding

algorithms in Section 1.3.3.4.

1.3.3.1 Successive Cancellation Decoding

Successive cancellation (SC) decoding is the most basic decoding algorithm for polar codes,

which was introduced by Arıkan in his original work [6]. As the name implies, SC decoding

takes successive decisions on the information bits. More specifically, the receiver observes

the channel output vector y and estimates the elements of the uA successively as follows:

Suppose the information indices are ordered as A= {i1, i2, . . . , iN R } (where i j < i j+1). Having

the channel output, the receiver has all the required information to decode the input of

the synthetic channel W (i1)
n as ûi1 , since ui1−1

0 is a part of the frozen sub-vector uF . Since

this synthetic channel is assumed to be almost-noiseless by construction, we have ûi1 = ui1

with high probability. Subsequently, the decoder can proceed to index i2 as the information

required for decoding the input of W (i2)
n is now available. Once again, this estimation is

with high probability error-free. As described in Algorithm 1 on a high level, this process is

continued until all the information bits have been estimated.

In fact, SC decoding can be viewed as a greedy depth-first search algorithm on a full binary

3For symmetric channels, uAc can be the all-zero vector. For asymmetric channels, the choice of uAc may have
an impact on the performance of the code [6].

10

1.3. Polar Codes

Algorithm 1: SC Decoding [6].

1 for i = 0,1, . . . , N −1 do
2 if i �∈A then // known frozen bits
3 ûi ← ui ;
4 else // information bits
5 ûi ← argmaxui∈{0,1} W (i)

n (y , ûi−1
0 |ui);

6 return ûA ;

tree. To see this, let

U (uF)� {v ∈ {0,1}N : vF = uF } (1.14)

denote the set of 2N R possible length-N vectors that the transmitter can send. The elements of

U (uF) are in one-to-one correspondence with 2N R leaves of a binary tree of height N . These

leaves are constrained to be reached from the root by following the direction ui at all levels

i ∈F . Therefore, any decoding procedure is essentially equivalent to picking a path from the

root to one of these leaves on the binary tree.

In particular, an optimal maximum-likelihood (ML) decoder, associates each path with its

likelihood (or any other path metric which is a monotone function of the likelihood) and picks

the path that maximizes this metric by exploring all possible paths

ûML = argmaxv∈U (uF) Wn(y |v). (1.15)

Clearly such an optimization problem is computationally infeasible as the number of paths,

|U (uF)|, grows exponentially with the blocklength N .

The SC decoder, in contrast, finds a sub-optimal solution by maximizing the likelihood via

a greedy one-time-pass through the tree: starting from the root, at each level i ∈ A, the

decoder extends the existing path by picking the child that maximizes the partial likelihood

W (i)
n (y , ûi−1

0 |ui).

SC Decoding Complexity The computational task of the SC decoder is to calculate the pairs

of likelihoods W (i)
n (y , ûi−1

0 |ui), ui ∈ {0,1}, needed for the decisions in line 5 of Algorithm 1.

Since the decisions are binary, it is sufficient to compute the decision log-likelihood ratios

(LLRs),

LLR(i)
n � ln

(
W (i)

n (y , ûi−1
0 |0)

W (i)
n (y , ûi−1

0 |1)

)
, i ∈ {0, . . . , N −1}. (1.16)

11

Chapter 1. Introduction

s = 0 s = 1 s = 2 s = 3

y7

y3

y5

y1

y6

y2

y4

y0

û7

û6

û5

û4

û3

û2

û1

û0

LLR(7)
0

LLR(3)
0

LLR(5)
0

LLR(1)
0

LLR(6)
0

LLR(2)
0

LLR(4)
0

LLR(0)
0

LLR(7)
1

LLR(3)
1

LLR(5)
1

LLR(1)
1

LLR(6)
1

LLR(2)
1

LLR(4)
1

LLR(0)
1

LLR(7)
2

LLR(3)
2

LLR(6)
2

LLR(2)
2

LLR(5)
2

LLR(1)
2

LLR(4)
2

LLR(0)
2

LLR(7)
3

LLR(6)
3

LLR(5)
3

LLR(4)
3

LLR(3)
3

LLR(2)
3

LLR(1)
3

LLR(0)
3

Figure 1.4 – The data dependency graph (DDG) for the computation of the LLRs of a polar code
with N = 23 = 8. Solid lines represent application of f+ and dashed lines represent application
of f−. The partial sums required for the f+ updates can be computed by using the encoder
structure of Figure 1.3 and setting ui = ûi once each estimate becomes available.

It can be shown (see [6, Section VII] and [20]) that the decision LLRs (1.16) can be computed

via the recursions,

LLR(2i)
s = f−

(
LLR(2i−[i mod 2s−1])

s−1 ,LLR(2s+2i−[i mod 2s−1])
s−1

)
, (1.17)

LLR(2i+1)
s = f+

(
LLR(2i−[i mod 2s−1])

s−1 ,LLR(2s+2i−[i mod 2s−1])
s−1 ,u(2i)

s

)
, (1.18)

for s = n,n −1, . . . ,1, where f− : R2 →R and f+ : R2 × {0,1} →R are defined as

f−(α,β)� ln
(eα+β+1

eα+eβ

)
, (1.19a)

f+(α,β,u)� (−1)uα+β, (1.19b)

respectively. The recursions terminate at s = 0 where

LLR(i)
0 � ln

(W (yi |0)

W (yi |1)

)
, ∀i ∈ {0, . . . , N −1},

are channel LLRs. The partial sums u(i)
s are computed starting from u(i)

n � ûi , ∀i ∈ {0, . . . , N −1}

and setting

u(2i−[i mod 2s−1])
s−1 = u(2i)

s ⊕u(2i+1)
s ,

u(2s+2i−[i mod 2s−1])
s−1 = u(2i+1)

s ,

for s = n,n −1, . . . ,1, which is equivalent to a step-wise encoding of the vector û. In essence,

the SC decoding algorithm consists of a forward step in which the LLRs are updated, and a

12

1.3. Polar Codes

feedback part in which the partial sums are updated. The data dependency graph (DDG) for

an SC polar decoder with N = 8 is shown in Figure 1.4. We note that, while Figure 1.4 may

suggest that each level can be processed in parallel similarly to the implementation of the fast

Fourier transform, in reality this is not the case due to the hidden dependencies stemming

from the feedback part of the decoder.

The entire set of N log N LLRs LLR(i)
s , s ∈ {1, . . . ,n}, i ∈ {0, . . . , N −1}, can be computed using

O(N log N) updates since from each pair of LLRs at stage s, a pair of LLRs at stage s + 1 is

calculated using f− and f+ update rules (see Figure 1.4). Additionally the decoder must keep

track of N log N partial sums u(i)
s , s ∈ {0, . . . ,n − 1}, i ∈ {0, . . . , N − 1}, and update them after

decoding each bit ûi , which is also achievable using O(N log N) updates.

Remark. While the update rule f+ given in (1.19b) is simple to implement in hardware, the

exact update rule f− given in (1.19a) is much more involved. To this end, in all hardware

implementations f− is approximated as

f−(α,β) ≈ sign(α)sign(β)min{|α|, |β|}. (1.20)

This approximation is a hardware-friendly function as it involves only the easy-to-implement

min{·, ·} operation (compared to f− which involves exponentiation and logarithms). This

approximation is called the min-sum (MS) approximation and it is also very commonly used

in message-passing decoding of low-density parity-check (LDPC) codes (cf. Section 1.4).

1.3.3.2 Successive Cancellation List Decoding

The successive cancellation list (SCL) decoding algorithm, introduced in [21], converts the

greedy one-time-pass search of SC decoding into a breadth-first search under a complexity

constraint in the following way: At each level i ∈A, instead of extending the path in only

one direction, the decoder is duplicated into two parallel decoding threads continuing in

both possible directions. However, in order to avoid the exponential growth of the number

of decoding threads, as soon as the number of parallel decoding threads reaches L, at each

step i ∈A, only L threads corresponding the L most likely paths (out of 2L tentative paths) are

retained. We note that, although it is not necessary, L is usually a power of 2. The decoder

eventually finishes with a list of L candidates û[�], � ∈ {0, . . . ,L−1}, corresponding to L (out of

2N R) paths on the binary tree and declares the most likely of them as the final estimate. This

procedure is formalized in Algorithm 2. Simulation results in [21] show that for a (2048,1024)

polar code, a list size of L = 32 is sufficient to have a close-to-ML block-error probability.

We note that in [21] SCL decoding is described in terms of the synthetic channel likelihoods

W (i)
n (y , ûi−1

0 [�]|u),∀� ∈ L,u ∈ {0,1}. These likelihoods can be computed using a recursion

whose schedule is identical to the one that we described in Section 1.3.3.1 to compute the

13

Chapter 1. Introduction

Algorithm 2: SC List Decoding [21]

1 L← {0} ; // start with a single active thread
2 for i = 0,1, . . . , N −1 do
3 if i �∈A then // known frozen bits
4 ûi [�] ← ui for ∀� ∈L;
5 else // information bits
6 if |L| < L then // duplicate all the threads
7 foreach � ∈L do
8 duplicatePath(�);

9 else
10 Compute P�,u =W (i)

n (y , ûi−1
0 [�]|u), for ∀� ∈L and ∀u ∈ {0,1};

11 τ← the median of 2L numbers P�,u ;
12 foreach � ∈L such that P�,0 < τ and P�,1 < τ do
13 Kill the thread � and set L←L\ {�};

14 for � ∈L do
15 if P�,u > τ while P�,u⊕1 < τ then
16 ûi [�] ← u;
17 else // both P�,0 and P�,1 are ≥ τ

18 duplicatePath(�);

19 �∗ ← argmax�∈LW (N−1)
n (y , ûN−1

0 [�]|ûN [�]);
20 return ûA[�∗];

21 subroutine duplicatePath(�)
22 Copy the thread � into a new thread �′ �∈L;
23 L←L∪ {�′};
24 ûi [�] ← 0;
25 ûi [�′] ← 1;

14

1.3. Polar Codes

LLRs, but the update rules are different. More specifically, we have

L(2i)
s = f−

(
L(2i−[i mod 2s−1])

s−1 ,L(2s+2i−[i mod 2s−1])
s−1

)
, (1.21)

L(2i+1)
s = f+

(
L(2i−[i mod 2s−1])

s−1 ,L(2s+2i−[i mod 2s−1])
s−1 ,u(2i)

s

)
, (1.22)

where L(i)
s are pairs of likelihoods, i.e.,

L(i)
s =

(
W (i)

s (y , ûi−1
0 |0),W (i)

s (y , ûi−1
0 |1)

)
, (1.23)

and

f−(a,b)�
(

1

2
(a(0)b(0)+a(1)b(1)) ,

1

2
(a(1)b(0)+a(0)b(1))

)
, (1.24)

f+(a,b,u)�
(

1

2
a(u)b(0),

1

2
a(1−u)b(1)

)
. (1.25)

We note that these two update rules correspond exactly to the transition probabilities of the

W (−) and W (+) channels created by the one-step polarizing transformation in (1.9)–(1.10).

The recursions terminate at s = 0 where

L(i)
0 �

(
W (yi |0),W (yi |1)

)
, ∀i ∈ {0, . . . , N −1},

are the channel likelihoods. The computation of the partial sums for each path is identical to

Section 1.3.3.1.

While a naive implementation of SCL decoder would have a decoding complexity of at least

Ω(L ·N 2) due to Θ(L ·N) duplications of data structures of size Ω(N) in lines 8 and 18 of Algo-

rithm 2, a clever choice of data structures together with the recursive nature of computations

enables the authors of [21] to use a copy-on-write mechanism and implement the decoder in

O(L ·N log N) complexity.

CRC-Aided Successive Cancellation List Decoder It was observed in [21] that when the SCL

decoder fails, in most of the cases, the correct path (corresponding to uA) is among the L paths

the decoder has ended up with. The decoding error only happens because there exists another

candidate path that is more likely and is thus selected in line 19 of Algorithm 2 (note that in

such situations the ML decoder would also fail). They, hence, conclude that the performance

of polar codes would be significantly improved if the decoder were assisted for its final choice.

One way of assisting the SCL decoder is by adding r more non-frozen bits (i.e., creating a

polar code of rate R + r /N instead of rate R) to the underlying polar code and then setting the

last r non-frozen bits to an r -bit CRC of the first N R information bits (note that the effective

information rate of the code is unchanged). The SCL decoder, at line 19, first discards the

paths that do not pass the CRC and then chooses the most likely path among the remaining

ones. Since the CRC can be computed very efficiently [22, Chapter 7], this measure does not

15

Chapter 1. Introduction

s = 3s = 2s = 1s = 0

LLR(7)
0

LLR(3)
0

LLR(5)
0

LLR(1)
0

LLR(6)
0

LLR(2)
0

LLR(4)
0

LLR(0)
0

=

=

=

=

⊕

⊕

⊕

⊕

=

=

⊕

⊕

=

=

⊕

⊕

=

⊕

=

⊕

=

⊕

=

⊕

LLR(7)
3

LLR(6)
3

LLR(5)
3

LLR(4)
3

LLR(3)
3

LLR(2)
3

LLR(1)
3

LLR(0)
3

Figure 1.5 – Factor graph for belief propagation decoding of polar codes.

notably increase the computational complexity of the decoder. This modification is called

the CRC-aided SCL (CA-SCL) decoder. The empirical results of [21] show that a (2048,1024)

concatenated polar code with a 16-bit CRC decoded using a list decoder with list size of L = 32,

outperforms the existing state-of-the-art WiMAX (2304,1152) LDPC code [23].

1.3.3.3 Belief Propagation Decoding

Even though SC and SCL decoding are very structured and have low decoding complexity, they

have certain drawbacks. First, both SC and SCL decoding produce hard outputs (i.e., binary

decisions) and cannot easily be used in an effective way in iterative receivers [24]. Moreover, it

is difficult to highly parallelize SC and SCL decoding due to their serial nature. Thus, achieving

high decoding throughput with SC and SCL decoders is challenging and quite sophisticated

methods need to be employed, as we will explain in more detail in Section 2.4. A simple way of

achieving both high decoding throughput and producing soft outputs for iterative receivers is

to use belief propagation (BP) decoding on the polar code’s factor graph, which can be derived

from the encoding graph of Figure 1.3 [6] and is depicted in Figure 1.5.

The factor graph of Figure 1.5 contains two types of nodes, namely “=” nodes and “⊕” nodes.

Due to their similarity with the nodes found in the Tanner graph of an LDPC code (cf. Sec-

tion 1.4), we call these two types of nodes variable nodes (VNs) and check nodes (CNs), respec-

tively. Each node has three edges connected to it and on each edge one incoming and one

outgoing message are transmitted. More specifically, for the basic computational structure

shown in Figure 1.6, there are four left-to-right (LR) messages, four right-to-left (RL) messages,

and two internal (I) messages. Out of the four LR and RL messages, two are incoming and

two are outgoing. The update rules to calculate these messages are identical to the update

rules of a VN and a CN of degree three, as explained in Section 1.4. More specifically, using the

16

1.3. Polar Codes

⊕

=

←
I 1

I 2
→

← RLout,1

LRin,1 →
← RLin,1

LRout,1 →

← RLout,2

LRin,2 →
← RLin,2

LRout,2 →

Figure 1.6 – Basic computation unit for belief propagation decoding.

min-sum approximation for the CN, we have

I1 = f−
(
LRin,1,RLin,1

)
, (1.26)

RLout,1 = f−
(
RLin,1, I2

)
, (1.27)

LRout,1 = f−
(
LRin,1, I2

)
, (1.28)

where

f−(a,b) = sign a · signb ·min(|a|, |b|). (1.29)

For the VN, we have

I2 = f+
(
LRin,2,RLin,2

)
, (1.30)

RLout,2 = f+
(
RLin,2, I1

)
, (1.31)

LRout,2 = f+
(
LRin,2, I1

)
, (1.32)

where

f+(a,b) = a +b. (1.33)

One decoding iteration consists of the activation of all N log N nodes exactly once. Thus, the

per-iteration decoding complexity of BP decoding is O(N log N), which is identical to the de-

coding complexity of SC decoding. However, several decoding iterations need to be performed

in order to get useful error-correcting performance, so the overall decoding complexity of

BP decoding is O(�maxN log N), where �max is the number of performed decoding iterations.

The order of activation of the nodes is defined by the decoding schedule. Several different

decoding schedules are possible, the most common being bi-directional (i.e., a left-to-right

pass followed by a right-to-left pass over the nodes) and uni-directional (i.e., only left-to-right

or right-to-left passes over the nodes).

1.3.3.4 Other Decoding Algorithms

A few other decoding algorithms for polar codes have been proposed in the literature. While

these alternative decoding algorithms are not directly related to the present thesis, we still

17

Chapter 1. Introduction

believe they are noteworthy and we mention them briefly.

Soft cancellation (SCAN) decoding [25] is an SC-based soft-output decoding algorithm. The

main idea behind SCAN decoding is to replace the hard-decision feedback part of the SC

decoder with a soft-decision feedback part. In essence, the SCAN decoder is a BP decoder with

an SC decoding schedule. Compared with BP decoding, SCAN decoding requires significantly

fewer iterations to converge and thus has a lower average computational complexity. On the

other hand, due to the serial decoding schedule, SCAN decoding is not as highly parallelizable

as BP decoding, making the implementation of high-throughput hardware decoders challeng-

ing. As SCAN decoding has very similar error-correcting performance to SC decoding, for the

hardware comparison we group SCAN decoders together with SC decoders. However, it is

important to note that SCAN decoding naturally generates soft outputs for iterative decoding.

Successive cancellation stack (SCS) decoding [26] is similar to SCL decoding in the sense

that it follows multiple paths on the decoding tree. However, the tree search strategy is

different, as only the path with the best metric (i.e., highest likelihood) is expanded at each

step, instead of all L paths simultaneously. The error correcting performance of SCS decoding

can be close to that of SCL decoding, but with much lower average computational complexity.

Unfortunately, the variable runtime and the large memory requirements of SCS decoding

reduce its attractiveness for hardware implementation.

Successive cancellation flip (SCF) decoding [27] is a CRC-aided tree search decoding algorithm

for polar codes which, similarly to SCL and SCS decoding, explores multiple decoding paths.

The main motivation behind SCF decoding is the observation that for most erroneous code-

words a single bit is in error. SCF decoding first performs standard SC decoding once and then

uses a CRC to detect (with high probability) whether the decoded codeword was correct or

not. If the decoded codeword was correct, decoding halts. If the decoded codeword was not

correct, standard SC decoding re-starts but one of the T least reliable bit decisions is flipped

over a maximum of T decoding restarts (or iterations). At each iteration, the CRC is used to

check whether the decoded codeword was correct. SCF decoding has similar computational

complexity to SCS decoding and worse error correcting performance, but much lower memory

requirements. Moreover, similarly to SCS decoding, SCF decoding has a variable runtime

which may make it unattractive for hardware implementation as the hardware would still need

to be tailored to also accommodate for the worst case execution times.

Sphere decoding of polar codes [28] is another tree-search decoding algorithm, which is

inspired by the MIMO detection algorithm of the same name. The main idea behind sphere

is decoding is that a complexity-constrained tree search is performed in order to find all

candidate codewords that lie within a multi-dimensional sphere of radius r (the distance is

commonly measured using the Euclidean distance metric). A combination of sphere decoding

with SCL decoding was also proposed in [29].

18

1.4. LDPC Codes

VN1 VN2 VN3 VN4 VN5 VN6

CN1 CN2 CN3

Figure 1.7 – Example of a Tanner graph for a (2,4)-regular LDPC code of blocklength N = 6.

1.4 LDPC Codes

LDPC codes are linear block codes that were first introduced by Gallager in 1962 [4]. At

the time, however, the decoding complexity of LDPC codes was considered too high to be

of practical interest and they were forgotten for more than thirty years. LDPC codes were

rediscovered by MacKay and Neal in 1997 [5] and, since then, they have been adopted by

numerous communications standards, such as IEEE 802.3an (10 Gbps Ethernet) [30], IEEE

802.11n (Wi-Fi) [31], IEEE 802.11ad (WiGig) [32], and DVB-S2 (digital video broadcasting) [33],

to name a few.

1.4.1 Construction of LDPC Codes

An LDPC code C of blocklength N is the set of N ×1 codeword vectors

C = {c ∈ {0,1}N
∣∣Hc = 0

}
, (1.34)

where all operations are performed modulo 2 and H ∈ {0,1}M×N is a matrix which is called the

parity-check matrix of the LDPC code. The parity-check matrix H is sparse in the sense that

the number of non-zero elements grows linearly with N (while the size of the matrix grows

quadratically with N). The design rate of the code is given by R = 1− M
N , and it is identical to

the actual rate provided that H has full rank.

If H contains exactly dv ones per column and exactly dc ones per row, then the corresponding

LDPC code is called a (dv ,dc)-regular LDPC code. Better error-correcting performance can

be achieved by designing irregular LDPC codes, where the column and row weights of the

parity-check matrix are not constant. As in this thesis we only employ regular LDPC codes, we

refer the interested reader to the work of [34] for more information on irregular LDPC codes.

The parity-check matrix H also forms an incidence matrix for a Tanner graph which contains

N variable nodes (VNs) and M check nodes (CNs). VN n is connected to CN k if and only if

H mn = 1. An example of a Tanner graph for a (2,4)-regular LDPC code with a blocklength of

N = 6 is illustrated in Figure 1.7.

19

Chapter 1. Introduction

k1 . . . kdv−1 k

n
Φv

μ̄k1→n μ̄kdv −1→n

μn→k

Ln

(a)

n1 . . . ndc−1 n

k

Φc

μn1→k
μndc−1→k

μ̄k→n

(b)

Figure 1.8 – (a) Variable node update for N (n) = {k,k1, . . . ,kdv−1} and (b) check node update
for N (k) = {n,n1, . . . ,ndc−1}.

1.4.2 Message-Passing Decoding of LDPC Codes

LDPC codes are traditionally decoded using message-passing (MP) algorithms, where informa-

tion is exchanged between the VNs and the CNs of the Tanner graph over the course of several

decoding iterations. There exist several ways to schedule the passing of these messages, but

in this thesis we only focus on the standard flooding schedule, where one decoding iteration

consists of the computation of all dv N VN-to-CN messages and N decision messages, followed

by the computation of all dc M CN-to-VN messages. Due to the sparsity of the parity-check

matrix, the number of messages that are exchanged over the Tanner graph edges grows linearly

with the blocklength N , meaning that the decoding complexity of MP algorithms grows as

O(N). In this section, we first describe MP decoding in a very general way and then give

examples of two particularly popular MP decoding algorithms, namely sum-product (SP)

decoding and min-sum (MS) decoding.

In general, both the message update rules and the message alphabets may change from one

decoding iteration to the next. Thus, we let the VN-to-CN and the CN-to-VN message alphabet

at iteration � be denoted by M(�) and the channel LLR alphabet be denoted by L. Moreover,

at each iteration the messages from VN n to CN k are computed using a mapping which is

defined as

μ(�)
n→k =Φ(�)

v

(
Ln ,μ̄(�−1)

N (n)\k→n

)
, ∀n ∈ {1, . . . , N }, k ∈N (n), (1.35)

where N (n) denotes the neighbors of node n in the Tanner graph, μ̄N (n)\k→n is a vector that

contains the incoming messages from all neighboring CNs except k, and Ln denotes the

channel LLR corresponding to VN n. For iteration �= 1, the vector μ̄(0)
N (n)\k→n is the all-zero

vector. Similarly, the CN-to-VN messages at iteration � are computed using a mapping which

is defined as

μ̄(�)
k→n =Φ(�)

c

(
μ(�)
N (k)\n→k

)
, ∀k ∈ {1, . . . , M }, n ∈N (k). (1.36)

In addition to Φv and Φc , a third mapping Φd is needed to provide an estimate of the trans-

mitted codeword bit based on the incoming check node messages and the channel LLR Ln

20

1.4. LDPC Codes

k1 . . . kdv−1 kdv

n
Φd

μ̄k1→n μ̄kdv −1→n

μkdv →n

ĉn

Ln

Figure 1.9 – Decision node update for N (n) = {k,k1, . . . ,kdv }.

ĉ(�)
n =Φ(�)

d

(
Ln ,μ̄(�)

N (n)→n

)
, n ∈ {1, . . . , N }. (1.37)

Figure 1.8 and Figure 1.9 illustrate the message updates in the Tanner graph (we have omitted

the iteration index for clearer illustration). We note that different choices for the mappings

(1.35)–(1.37) result in different MP decoding algorithms.

1.4.2.1 Sum-Product Decoding

For the case of the sum-product (SP) algorithm, which is asymptotically optimal with respect

to the bit error rate, we have L=M(�) =R, ∀�= 1,2, . . ., and the message update mappings

read

μ=ΦSP
v (L,μ̄

)= L+∑
i
μ̄i , (1.38)

μ̄=ΦSP
c (μ

)= 2tanh−1
(∏

i
tanh

(μi

2

))
. (1.39)

The decision mapping Φd is defined as

ĉ =ΦSP
d (L,μ̄) = 1

2

(
1− sign

(
L+∑

i
μ̄i

))
. (1.40)

We note that we have omitted the iteration index � in the update rules for simplicity since they

do not change from one iteration to the next.

1.4.2.2 Min-Sum Decoding

For the min-sum (MS) algorithm, which is widely used in hardware implementations due to

the simplicity of the CN update rule, we also have L=M(�) =R, ∀�= 1,2, . . . and the message

21

Chapter 1. Introduction

update mappings read

μ=ΦMS
v (L,μ̄

)= L+∑
i
μ̄i , (1.41)

μ̄=ΦMS
c (μ

)=
(∏

i
signμi

)
min |μ|, (1.42)

where min |μ| denotes the minimum of the absolute values of the vector elements of μ. The

decision mapping Φd is defined as

ĉ =ΦMS
d (L,μ̄) = 1

2

(
1− sign

(
L+∑

i
μ̄i

))
. (1.43)

We note that we have omitted the iteration index � in the update rules for simplicity since they

do not change from one iteration to the next.

1.4.2.3 Quantized Min-Sum Decoding

In hardware implementations of LDPC decoders, the message alphabets L and M(�) are

usually chosen to be relatively small and they usually do not change over the course of the

decoding iterations due to implementation complexity considerations, so for most implemen-

tations it is safe to assume that L=M(1) =M(2) = . . . =M. A very common approach is to

use uniform b-bit symmetric quantization for both the channel LLRs and the message LLRs,

meaning that |M| = 2b . In actual LDPC decoder hardware implementations, 4 ≤ b ≤ 7 are

common values (see, e.g., [35] and references therein). A uniform quantizer is defined by

qΔ(x) = sign(x)Δ

⌊ |x|
Δ

+ 1

2

⌋
, (1.44)

where Δ denotes the quantization step. Assume that the set of quantization levels M =
{m0,m1, . . . ,m2b−1} is sorted so that mi < mi+1,∀i ∈ {0, . . . ,2b −2}. Then, the corresponding

quantization intervals are

ti =
(mi−1 +mi

2
,

mi +mi+1

2

]
, i = 0, . . . ,2b −2, (1.45)

where m−1 =−∞ and m2b−1 =+∞. LLR saturation is commonly used in order for the results

of (1.35)–(1.37) to remain within the alphabet M. Specifically, the results of (1.35)–(1.37) that

are smaller than m0 or larger than m2b−2 are saturated to m0 and m2b−2, respectively.

22

2 Hardware Decoders for Polar Codes

In his seminal work [6], Arıkan constructed the first class of error correcting codes with a

systematic construction that can achieve the capacity of any symmetric binary-input discrete

memoryless channel (B-DMC) with efficient encoding and decoding algorithms. In particular,

Arıkan proposed a low-complexity successive cancellation (SC) decoder and proved that the

block-error probability of polar codes under SC decoding vanishes as their blocklength goes

to infinity. Several hardware architectures for SC decoding of polar codes have recently been

presented in the literature [20, 36, 37, 38, 39, 40, 41]. The first SC decoder ASIC was presented

in [42], and some simplifications of Arıkan’s original SC decoding algorithm are studied in

[43, 44, 45, 46].

Unfortunately, even though polar codes are asymptotically optimal, they do not perform well

at low-to-moderate blocklengths. This is to a certain extent due to the sub-optimality of the SC

decoding algorithm. To partially compensate for this sub-optimality, Tal and Vardy proposed

the successive cancellation list (SCL) decoder (cf. Section 1.3.3.2) whose computational

complexity is shown to scale identically to the SC decoder with respect to the blocklength [21].

The block-error probability of SCL decoding for polar codes can be improved even further if

one uses modified polar codes [21, 26], which are constructed by concatenating a polar code

with a cyclic redundancy check (CRC) code as an outer code. Adding the CRC increases neither

the computational complexity of the encoder nor that of the SCL decoder by a notable amount,

while reducing the block-error probability significantly, making the error-rate performance of

the modified polar codes under SCL decoding comparable to the state-of-the-art LDPC codes

[21]. In [47] an adaptive variant of the CRC-aided SCL decoding algorithm is proposed in order

to further improve the block-error probability of modified polar codes while maintaining

the average decoding complexity at a moderate level. The SCL decoding algorithm in [21]

is described in terms of likelihoods, which is a completely valid high-level description, but

it unfortunately makes the hardware implementation of SCL decoding uneconomic due to

severe numerical stability problems.

23

Chapter 2. Hardware Decoders for Polar Codes

2.1 LL-Based SCL Decoder

2.1.1 Likelihood Representation

As discussed in Section 1.3.3.1, SC decoding can be carried out in the log-likelihood ratio (LLR)

domain because at each step of decoding the decisions are binary. LLRs provide reduced

storage requirements, increased numerical stability, as well as simplified computations with

respect to a likelihood based implementation. Hence, in most channel decoders they are

essential for an efficient hardware realization. However, the original SCL decoder, in lines

10–18 of Algorithm 2, has to choose the L most likely children out of 2L children of L different

parents (see [48, Figure 3] for an illustration). For the necessary comparisons the decision

log-likelihood ratios LLR(i)
n alone are not sufficient. For this reason, the original SCL decoding

algorithm is described using likelihoods in [21]. In their software implementation, the authors

of [21] explain that, in order to avoid underflows, at each intermediate step of the updates

the likelihoods are scaled by a common factor such that P�,u in line 10 of Algorithm 2 is

proportional to W (y , ûi−1
0 [�]|u) [21].

For our initial SCL decoder hardware implementation, we propose to reformulate the SCL

decoding algorithm in the log-likelihood (LL) domain. Using LLs provides improved numerical

stability, leading to lower bit-width requirements for the hardware implementation, and, as

we will show, it also simplifies the f− and f+ update rules. In particular, we use negative

LLs, which, since all likelihoods are positive and smaller than 1, are always positive numbers

and do not require a sign bit to make the binary representation more compact. Assuming

BPSK-modulated transmission over an AWGN channel with noise variance σ2, the negative

channel LLs are

LL(i)
0 = (− lnW (yi |0),− lnW (yi |1)

)= ((yi −1)2

2σ2 + ln
√

2πσ2,
(yi +1)2

2σ2 + ln
√

2πσ2

)
(2.1)

The decision LLs can then be calculated recursively as

LL(2i)
s = f−

(
LL(2i−[i mod 2s−1])

s−1 ,LL(2s+2i−[i mod 2s−1])
s−1

)
, (2.2)

LL(2i+1)
s = f+

(
LL(2i−[i mod 2s−1])

s−1 ,LL(2s+2i−[i mod 2s−1])
s−1 ,u(2i)

s

)
, (2.3)

where LL(i)
s are pairs of log-likelihoods, i.e.,

LL(i)
s =

(
− lnW (i)

s (y , ûi−1
0 |0),− lnW (i)

s (y , ûi−1
0 |1)

)
. (2.4)

Using negative LLs, the update rules f− and f+ of (1.24) and (1.25) are re-written as

f−(a,b)� (min∗(a(0)+b(0), a(1)+b(1)),min∗(a(1)+b(0), a(0)+b(1))), (2.5)

f+(a,b,u)� (a(u)+b(0), a(1−u)+b(1)) , (2.6)

where min∗(a,b) = min(a,b)+ ln
(
1+e−|a−b|). The computation of the partial sums for each

24

2.1. LL-Based SCL Decoder

Algorithm 3: LL-based SCL Decoding

1 L← {0} ; // start with a single active path
2 for i = 0,1, . . . , N −1 do
3 if i �∈A then // known frozen bits
4 ûi [�] ← ui for ∀� ∈L;
5 else // information bits
6 if |L| < L then // duplicate all the paths
7 foreach � ∈L do
8 duplicatePath(�);

9 else

10 Compute P�,u = ln
(
W (i)

n (y , ûi−1
0 [�]|u)

)
, for ∀� ∈L and ∀u ∈ {0,1};

11 τ← the median of 2L numbers P�,u ;
12 foreach � ∈L such that P�,0 > τ and P�,1 > τ do
13 Kill the path � and set L←L\ {�};

14 for � ∈L do
15 if P�,u > τ while P�,u⊕1 < τ then
16 ûi [�] ← u;
17 else // both P�,0 and P�,1 are ≥ τ

18 duplicatePath(�);

19 �∗ ← argmin�∈L ln
(
W (N−1)

n (y , ûN−1
0 [�]|ûN [�])

)
;

20 return ûA[�∗];

21 subroutine duplicatePath(�)
22 Copy the path � into a new path �′ �∈L;
23 L←L∪ {�′};
24 ûi [�] ← 0;
25 ûi [�′] ← 1;

path is identical to Section 1.3.3.1.

In order to simplify the hardware implementation, the f− function of (2.5) is approximated by

ignoring the ln(·) term in the min∗ function. Thus, f− becomes

f−(a,b) ≈ (min(a(0)+b(0), a(1)+b(1)),min(a(1)+b(0), a(0)+b(1))), (2.7)

which is easily implementable in hardware as it only involves additions and finding the mini-

mum of two values. This approximation is known as the max-log approximation [49] when

standard LLs are used. Since we use negative LLs, we call (2.7) the min-log approximation.

25

Chapter 2. Hardware Decoders for Polar Codes

Figure 2.1 – High-level overview of the list SC decoder architecture.

Moreover, let c,d > 0 be constants. Then, for any a,b ≥ 0, we have

min(ca +d ,cb +d) = c min(a,b)+d , (2.8)

(ca +d)+ (cb +d) = c(a +b)+2d . (2.9)

In other words, with the approximation of (2.7) the update rules become linear, so we can

ignore the additive and multiplicative constants in (2.1) without affecting the ordering of the

path metrics. Thus, our decoder can safely use the following channel LLs

LL(i)
0 = ((yi −1)2, (yi +1)2) , (2.10)

which are significantly easier to handle by the quantization step due to their more limited

dynamic range with respect to the original channel LLs of (2.1).

The proposed LL-based decoding algorithm is summarized in Algorithm 3. We note that, in

general, LL-based SCL decoding differs from likelihood based SCL decoding as described

in Algorithm 2 in only very few operations: Since the largest likelihoods (i.e., closest to 1)

correspond to the smallest negative LLs (i.e., close to 0), the comparisons that are used to

decide which paths to duplicate and which to discard in lines 11–18 as well as the choice of

the most likely path in line 19 have to be inverted. Moreover, the path metric computation of

line 10 also has to be adapted to the use of LLs.

2.1.2 List SC Decoder Architecture

For each of the L decoding paths, the intermediate LLs LL(i)
s , s = 1, . . . ,n, i = 0, . . . , N −1, the

partial sums u(i)
s , s = 0, . . . ,n, i = 0, . . . , N −1, and the path itself û are stored in memories. We

call these three memories collectively the state-memories. The content of each memory forms

the state of each path. It was shown in [38] that by re-using memory positions, the N log N

26

2.1. LL-Based SCL Decoder

intermediate LLs produced for each path during SC decoding can be stored by only using

approximately 2N memory positions, while using a similar re-use argument one can show

that the partial sums can be stored using only approximately N memory positions. Finally,

each of the L paths requires N memory positions. After the path selection step of line 11 of

Algorithm 2, each of the initial L paths is either discarded, kept, or duplicated, depending on

whether it has zero, one, or two child nodes in the set of L out of 2L largest metrics, respectively.

In order to duplicate a path, in a straightforward implementation, its state is copied from one

state-memory to another state-memory with some differences between the two copies that

correspond to the two different choices for ûi . It was shown in [21] that list SC decoding can

be performed with complexity O(LN log N) when using a lazy copy technique.

While the lazy copy mechanism used in [21] is sufficient to ensure that the decoding com-

plexity is O(LN log N), it is not ideal for a hardware implementation as it still requires copying

the internal LLs, which is costly in terms of power, decoding latency, and silicon area. In

our implementation we use an auxiliary pointer memory in order to improve this lazy copy

technique. More specifically, our hardware architecture contains L physical LL memory banks

for the intermediate LLs. Each decoder core � ∈ {1, . . . ,L} always writes its output LLs to the

same physical memory bank �. However, when a path is split into two paths, both paths can

read LLs from the same physical memory bank that corresponds to the parent path, while still

writing their produced LLs to their own private memory banks. The pointers keep track of

which physical memory bank each decoder core has to read from at each given stage of the

DDG. This way, splitting a path is equivalent to copying some of the contents of this small

pointer memory, instead of copying actual LLs from one physical memory bank to another.

The proposed LL-based list SC decoder consists of three main components. The first compo-

nent is the metric computation unit (MCU), which calculates the metrics for each path using

the standard SC procedure. The second component, called the state-memories component,

consists of L state-memories, which the MCU uses to compute the 2L path metrics. Moreover,

a third component manages the tree search by performing path selection based on the metrics

that are calculated by the MCU. An overview of the proposed list SC decoder architecture is

shown in Figure 2.1. The MCU contains L SC decoder cores, which perform the metric calcula-

tion based on the state that they are supplied with. Multiplexers are responsible for redirecting

the correct LLs to each decoder core, according to the entries of the pointer memory. The path

selection unit contains a sorter (cf. Section 2.1.2.2) which finds the L best metrics out of 2L

options, along with the path index and the value of ûi [�] from which they resulted, and the

pointer memory, which manages the memory read access of the SC decoder cores.

2.1.2.1 LL Quantization

Since the LLs are positive numbers and (2.7) and (2.6) only involve additions, as SC decoding

of a polar code of length N = 2n moves towards stage n, the dynamic range of the LLs increases.

When an LL pair saturates, it is useless for making a decision meaning that, when using LLs, it

is crucial to avoid saturation. In (2.7) and (2.6), two numbers with the same dynamic range

27

Chapter 2. Hardware Decoders for Polar Codes

(a) Overview of the pointer memory architec-
ture.

(b) Overview of the metric sorter architecture.

Figure 2.2 – Details of the proposed LL-based SCL decoder: (a) pointer memory, (b) metric
sorter.

are added. The simplest way to avoid all saturations is to increase the number of bits used to

store the LLs by one bit per stage. This way, the only performance degradation with respect

to the floating point implementation comes from the quantization of the channel LLs. More

specifically, let QLL denote the number of bits used for the quantization of the channel LLs.

Using the LL quantization scheme described previously, we have Qmax =QLL +n, where Qmax

denotes the maximum LL bit-width that is required by the decoder.

2.1.2.2 Decoder Building Blocks

Metric Computation Unit The architecture of the SC decoder cores contained in the MCU is

derived from the semi-parallel log-likelihood ratio (LLR) based architecture of [38], which was

modified to implement the LL-based SC decoding update rules. Each decoder core consists

of P processing elements (PEs) that operate on up to P nodes of each stage of the DDG in

parallel. The stages of the DDG that contain more than P nodes are processed in parts over

multiple clock cycles. The PEs implement both (2.5) and (2.6) simultaneously. An additional

input is used to choose between the f− and f+ outputs. Due to the conservative choice of

Qmax, no overflow checks are needed in the PEs. The MCU contains L L-to-1 multiplexers,

which are controlled by the pointer memory in the path selection unit and redirect the correct

LLs to each SC decoder core. The maximum LL bit-width Qmax determines the bit-width of

the arithmetic components within the PEs.

Control Unit The control unit is mainly responsible for generating the read and write ad-

dresses for the LL memory and for stalling the decoder cores for one clock cycle whenever

an information bit is encountered in order to perform the path management step. For this

reason, three counters track the index i of the bit that is currently being decoded, the current

stage s within the decoding graph, and the current part within the stage ps for the stages that

require more than one cycle to be processed. All control signals and memory addresses are

generated based on (i , s, ps) and the set of frozen bits Ac , exactly as in [38].

28

2.1. LL-Based SCL Decoder

Memory Unit LL Memory: SC decoding can be implemented by storing 2(N−1) LL pairs [38],

requiring a total of 4(N −1) data words. The N first pairs that correspond to the channel LLs

are never overwritten during SC decoding. Thus, only one copy of the channel LL memory

is needed, from which all decoder cores can read. The remaining N −1 memory position

pairs have to be distinct for each path � ∈ {0, . . . ,L−1}, meaning that we need L(N −1) distinct

memory position pairs for the internal LLs. Thus, the total number of required memory

position pairs is (L+1)N −L.

Path Memory: The path memory consists of L N -bit registers, denoted by û[�], � ∈ {0, . . . ,L−1}.

When a path � needs to be duplicated, the contents of û[�] are copied to û[�′], where �′

corresponds to an inactive path (cf. line 25 of Algorithm 4). The decoder is stalled for one clock

cycle in order to perform the required copy operations by means of N L×L crossbars which

connect each û[�], � ∈ {0, . . . ,L−1} with all other û[�′], �′ ∈ {0, . . . ,L−1}. The copy mechanism

is presented in detail in Figure 3, where we show how each memory bit-cell is controlled based

on the results of the metric sorter. After path � has been duplicated, one copy is extended with

the bit value ûi [�] = 0, while the other is updated with ûi [�′] = 1.

Partial Sum Memory: The partial sum memory consists of L partial sum networks (PSNs),

where each PSN is implemented as in [38]. When a path � ∈ {0, . . . ,L−1} needs to be duplicated,

the contents of the PSN � are copied to another PSN �′, where �′ corresponds to an inactive

path (cf. line 25 of Algorithm 4). Copying is performed in parallel with the copy of the

path memory in a single clock cycle by using N L ×L crossbars which connect each PSN

� ∈ {0, . . . ,L −1} with all other PSNs �′ ∈ {0, . . . ,L −1}. If PSN � was duplicated, one copy is

updated with the bit value ûi [�] = 0, while the other copy is updated with ûi [�′] = 1. If a single

copy of PSN � was kept, then this copy is updated with the value of ûi [�] that corresponds to

the surviving path.

Path Selection Unit For the path selection step, the 2L metrics are sorted in a single cycle.

To minimize the delay, a radix-2L sorter was implemented by extending the architecture

presented in [50] to support finding of the L smallest values, instead of only the 2 smallest

values. This sorter requires 2L(2L −1)/2 comparators of Qmax-bit quantities. Since a single

sorter is needed, minimizing its size is not critical. The architecture of the metric sorter is

presented in Figure 2.2(b).

Address Translation Unit The address translation unit contains a pointer memory with

L × (log N − 1) elements which can take on L distinct values. We need �logL� bits for the

representation of the L distinct values. In total, the pointer memory contains L�logL�(log N−1)

bits. For L = 2,4 and N = 1024, this translates to 18 and 72 bits, which is negligible. This

memory also has the copying functionality that the partial sum and path memories provide.

The architecture of the pointer memory is presented in Figure 2.2(a).

29

Chapter 2. Hardware Decoders for Polar Codes

2.1.2.3 Decoding Schedule and Latency

In order to decode a codeword, the channel LLs are first loaded into the channel LL memory.

Then, the MCU is activated in order to compute the 2L decision LLs (cf. Line 10 of Algorithm 3)

for each codeword bit i ∈ {0, . . . , N −1}. Since the MCU uses the semi-parallel architecture

of [42], the number of clock cycles required to compute all N sets of 2L decision LLs is

2N + N
P log N

4P . Every time the 2L decision LLs have been computed, the path selection unit is

activated in order to find the best L paths. The sorting could be carried out in the same clock

cycle as the computation of the 2L LL pairs, but we have found that this increases the critical

path through the decoder significantly. Thus, a register is added between the output of the

MCU and the metric sorter in order to reduce the length of the critical path. Unfortunately,

decoding cannot proceed before the choice of paths is made, hence an idle cycle has to be

introduced every time the output of the metric sorter is needed. This happens N R times per

codeword. Thus, by modifying the expression found in [42], the number of cycles required to

decode one codeword is now

DSCL(N ,P,A) = (2+R)N + N

P
log

N

4P
, (2.11)

where the rate can be calculated from A as R = |A|
N . The overhead with respect to the case

where we do not add a register is N R clock cycles, or approximately RN
2N = 50R percent if we

ignore the second term in 2.11, which is usually small. Nevertheless, our studies show that

adding the register leads to an overall higher throughput due to a much higher achievable

clock frequency.

2.2 LLR-Based SCL Decoder

In the previous section, we have described a baseline LL-based SCL decoder hardware archi-

tecture that provides some numerical stability and quantization bit-width gains with respect to

a likelihood-based implementation. Ideally, however, one would like to be able to implement

the SCL decoder using LLRs. LLRs provide additional numerical stability as well as lower

memory requirements since pairs of LLs can be compressed into a single LLR value. Moreover,

many processing blocks in practical receivers process the data in the form of LLRs. Therefore,

the LLR-based SCL decoder can readily be incorporated into existing systems.

To this end, we first prove in Section 2.2.1 that the SCL decoding algorithm can in fact be

formulated entirely in the LLR domain, thus enabling area-efficient and numerically stable

implementations of SCL decoding. We discuss our SCL decoder hardware architecture in

Section 2.2.2 and we leverage some useful properties of the LLR-based formulation in order to

simplify various metric sorters (implementing the sorting step of SCL decoding) by avoiding

unnecessary comparisons in Section 2.2.3. Next, in Section 2.3 we see that the LLR-based

implementation leads to a significant reduction of the size of our LL-based hardware archi-

tecture of Section 2.1, as well as to an increase of its maximum operating frequency. We also

30

2.2. LLR-Based SCL Decoder

compare our decoder with the recent SCL decoder architectures of [51, 52] and show that our

decoder can have more than 100% higher throughput per unit area than those architectures.

Finally, we show that a CRC-aided SCL decoder can be implemented by incorporating a CRC

unit into our decoder, with almost no additional hardware cost, in order to achieve significantly

lower block-error probabilities with respect to the original SCL decoding algorithm. As we

will see, for a fixed information rate, the choice of CRC length is critical in the design of the

modified polar code to be decoded by a CRC-aided SCL decoder. In Section 2.3.5 we provide

simulation results showing that for small list sizes a short CRC will improve the performance

of SCL decoder while larger CRCs will even degrade the performance compared to a polar

code without CRC. As the list size gets larger, one can increase the length of the CRC in order

to achieve considerably lower block-error probabilities.

An interesting question, which is, to the best of our knowledge, still unaddressed in the

literature, is whether it is better to use SC decoding with long polar codes or SCL decoding

with short polar codes. In Section 2.3.5.4 we study two examples of long polar codes that have

the same block-error probability under SC decoding as our (1024,512) modified polar codes

under CRC-aided SCL decoding. By comparing the synthesis results of the corresponding

decoders, we observe that, while the SCL decoders have a lower throughput due to the sorting

step, they also have a significantly lower decoding latency than the SC decoders.

2.2.1 LLR-Based Path Metric Computation

Algorithm 1 and Algorithm 2 of Section 1.3 are both valid high-level descriptions of SC and

SCL decoding, respectively. However, for implementing these algorithms, the stability of the

computations is crucial. The SCL algorithm summarized in Section 1.3.3.2 is described in

terms of likelihoods which are not safe quantities to work with; a decoder implemented using

the likelihoods is prone to underflow errors as they are typically very small numbers.1

Considering the binary tree picture of SC decoding provided in Section 1.3.3.1, the decision

LLRs LLR(i)
n (1.16) summarize all the necessary information for choosing the most likely child

among two children of the same parent node at level i . We also saw that having this type

of decisions in the conventional SC decoder allows to implement the computations in the

LLR domain using numerically stable operations. However the SCL decoder, in lines 10–18 of

Algorithm 2, has to choose the L most likely children out of 2L children of L different parents

(see [48, Figure 3] for an illustration). For these comparisons the decision log-likelihood ratios

LLR(i)
n alone are not sufficient.

Consequently, the software implementation of the decoder in [21] implements the decoder in

the likelihood domain by rewriting the LLR-based recursions of Section 1.3.3.1 to compute

pairs of likelihoods W (i)
n (y , ûi−1

0 |ui), ui ∈ {0,1} from pairs of channel likelihoods W (yi |xi), xi ∈
{0,1}, i ∈ {0, . . . , N −1}. To avoid underflows, at each intermediate step of the updates the likeli-

1As noticed in [21], it is not difficult to see that W (i)
n (y ,ui−1

0 |ui) ≤ 2−i .

31

Chapter 2. Hardware Decoders for Polar Codes

hoods are scaled by a common factor such that P�,u in line 10 of Algorithm 2 is proportional

to W (y , ûi−1
0 [�]|u) [21].

Alternatively, such a normalization step can be avoided by performing the computations in

the log-likelihood (LL) domain, i.e., by computing the pairs ln
(
W (i)

n (y , ûi−1[�]|u)
)
, u ∈ {0,1},

for i ∈ {0, . . . , N − 1}, as a function of channel log-likelihood pairs ln(W (yi |xi)), xi ∈ {0,1},

i ∈ {0, . . . , N −1}, as shown in Section 2.1. Log-likelihoods provide some numerical stability,

but still involve some issues compared to the log-likelihood ratios as we shall discuss in

Section 2.2.2.

Luckily, we shall see that the decoding paths can still be ordered according to their likelihoods

using all of the past decision LLRs LLR(j)
n , j ∈ {0,1 · · · , i }, and the trajectory of each path as

summarized in the following theorem.

Theorem 1. For each path � and each level i ∈ {0, . . . , N −1} let the path-metric be defined as:

PM(i)
�

�
i∑

j=0
ln
(
1+e−(1−2û j [�])·LLR(j)

n [�]), (2.12)

where

LLR(i)
n [�] = ln

(
W (i)

n (y , ûi−1
0 [�]|0)

W (i)
n (y , ûi−1

0 [�]|1)

)
,

is the log-likelihood ratio of bit ui given the channel output y and the past trajectory of the path

ûi−1
0 [�] from the root of the tree to the current node.

If all the information bits are uniformly distributed in {0,1}, for any pair of paths �1,�2,

W (i)
n (y , ûi−1

0 [�1]|ûi [�1]) <W (i)
n (y , ûi−1

0 [�2]|ûi [�2])

if and only if

PM(i)
�1

>PM(i)
�2

.

In view of Theorem 1, one can implement the SCL decoder using L parallel low-complexity

and stable LLR-based SC decoders as the underlying building blocks and, in addition, keep

track of L path-metrics. The metrics can be updated successively as the decoder proceeds by

setting

PM(i)
�

=φ
(
PM(i−1)

�
,LLR(i)

n [�], ûi [�]
)
, (2.13a)

where the function φ : R2+× {0,1} →R+ is defined as

φ(μ,λ,u)�μ+ ln
(
1+e−(1−2u)λ). (2.13b)

As shown in Algorithm 4, the paths can be compared based on their likelihood using the values

32

2.2. LLR-Based SCL Decoder

of the associated path metrics PM(i)
�

as a proxy.

Algorithm 4: LLR-based formulation of SCL Decoding

1 L← {0} ; // start with a single active path
2 PM(0)

0 ← 0 ;
3 for i = 0,1, . . . , N −1 do
4 Compute LLR(i)

n [�] for ∀� ∈L ; // parallel SC decoders
5 if i �∈A then // frozen bits
6

(
ûi [�],PM(i)

�

)←(ui ,φ(PM(i−1)
�

,LLR(i)
n [�],ui)

)
for ∀� ∈L ; // cf. (2.13b)

7 else // information bits
8 Set P�,u ←φ(PM(i−1)

�
,LLR(i)

n ,u) for ∀� ∈L and ∀u ∈ {0,1} ; // cf (2.13b)

9 if |L| < L then // duplicate all the paths
10 foreach � ∈L do
11 duplicatePath(�);

12 else
13 τ← the median of 2L numbers P�,u ;
14 foreach � ∈L such that P�,0 > τ and P�,1 > τ do
15 Kill the path � and set L←L\ {�};

16 for � ∈L do
17 if P�,u > τ while P�,u⊕1 < τ then
18

(
ûi [�],PM(i)

�

)← (u,P�,u);

19 else // both P�,0 and P�,1 are ≤ τ

20 duplicatePath(�);

21 �∗ ← argmin�∈LPM(N)
�

;

22 return ûA[�∗];

23 subroutine duplicatePath(�)
24 Copy the path � into a new path �′ �∈L;
25 L←L∪ {�′};

26
(
ûi [�],PM(i)

�

)← (0,P�,0);

27
(
ûi [�′],PM(i)

�′
)← (1,P�,1);

Before proving Theorem 1 let us provide an intuitive interpretation of our metric. Since

ln(1+ex) ≈
⎧⎨
⎩0 if x < 0,

x if x ≥ 0,
(2.14)

the update rule (2.13) is well-approximated if we replace φ with φ̃ : R2+× {0,1} →R+ defined as

φ̃(μ,λ,u)�

⎧⎨
⎩μ if u = 1

2 [1− sign(λ)],

μ+|λ| otherwise.
(2.15)

33

Chapter 2. Hardware Decoders for Polar Codes

We also note that 1
2 [1− sign(LLR(i)

n [�])] is the direction that the LLR (given the past trajectory

ûi−1
0 [�]) suggests. This is the same decision that a SC decoder would have taken if it were to

estimate the value of ui at step i given the past set of decisions ûi−1
0 [�] (cf. line 5 in Algorithm 1).

Equation (2.15) shows that if at step i the �th path does not follow the direction suggested by

LLR(i)
n [�] it will be penalized by an amount that is approximately equal to |LLR(i)

n [�]|.

With such an intuitive interpretation, one might immediately conclude that the path that

SC decoder would follow will always have the lowest penalty hence is always declared as

the output of the SCL decoder. However, this reasoning is correct only if all the elements of

u are information bits. As soon as the decoder encounters a frozen bit, the path metric is

updated based on the likelihood of that frozen bit, given the past trajectory of the path and

the a-priori known value of that bit (cf. line 6 in Algorithm 4). This can penalize the SC path by

a considerable amount, if the value of that frozen bit does not agree with the LLR given the

past trajectory (which is an indication of a preceding erroneous decision), while keeping some

other paths unpenalized.

We devote the rest of this section to the proof of Theorem 1.

Lemma 1. If Ui is uniformly distributed in {0,1}, then,

W (i)
n (y ,ui−1

0 |ui)

P[U i
0 = ui

0|Y = y]
= 2P[Y = y].

Proof. Since P[Ui = ui] = 1
2 for ∀ui ∈ {0,1},

W (i)
n (y ,ui−1

0 |ui)

P[U i
0 = ui

0|Y = y]
= P[Y = y ,U i

0 = ui
0]

P[Ui = ui]P[U i
0 = ui

0|Y = y]

= P[Y = y]P[U i
0 = ui

0|Y = y]

P[Ui = ui]P[U i
0 = ui

0|Y = y]
= 2P[Y = y].

Proof of Theorem 1. It is sufficient to show that

PM(i)
�

=− ln
(
P[U i

0 = ûi
0[�]|Y = y]

)
. (2.16)

Having shown (2.16), Theorem 1 will follow as an immediate corollary to Lemma 1 (since the

channel output y is fixed for all decoding paths). Since the path index � is fixed on both sides

of (2.12) we will drop it in the sequel. Let

Λ(i)
n �

W (i)
n (y , ûi−1

0 |0)

W (i)
n (y ,ui−1

0 |1)
= P[Y = y ,U i−1

0 = ûi−1
0 ,Ui = 0]

P[Y = y ,U i−1
0 = ûi−1

0 ,Ui = 1]

(the last equality follows since P[Ui = 0] = P[Ui = 1]), and observe that showing (2.16) is

34

2.2. LLR-Based SCL Decoder

equivalent to proving

P[U i = ûi
0|Y = y] =

i∏
j=0

(
1+ (Λ(j)

n)−(1−2û j))−1. (2.17)

Since

P[Y = y ,U i−1
0 = ûi−1

0] = ∑
ûi∈{0,1}

P[Y = y ,U i
0 = ûi

0]

=P[Y = y ,U i
0 = ûi

0]
(
1+ (Λ(i)

n)−(1−2ûi)),
P[Y = y ,U i

0 = ûi
0]

= (1+ (Λ(i)
n)−(1−2ûi))−1

P[Y = y ,U i−1
0 = ûi−1

0]. (2.18)

Repeated application of (2.18) (for i −1, i −2, . . . ,0) yields

P[Y = y ,U i
0 = ûi

0] =
i∏

j=0

(
1+ (Λ(j)

n)−(1−2ûi))−1
P[Y = y].

Dividing both sides by P[Y = y] proves (2.17).

2.2.2 LLR-Based SCL Decoder Hardware Architecture

In this section, we show how the LLR-based path metric derived in the previous section can be

exploited in order to derive a very efficient LLR-based SCL decoder hardware architecture. To

this end, we give a detailed description of each unit of our LLR-based SCL decoder architecture,

which, similarly to the LL-based decoder described in Section 2.1, essentially consists of L

parallel SC decoders along with a path management unit which coordinates the tree search.

Moreover, we highlight the advantages of an LLR-based SCL decoder hardware architecture

over the LL-based decoder architecture described in Section 2.1.

Our SCL decoder consists of five units: the memories unit, the metric computation unit (MCU),

the metric sorting unit, the address translation unit, and the control unit. An overview of the

SCL decoder is shown in Figure 2.3.

2.2.2.1 LLR and Path Metric Quantization

In principle, similarly to the LL-based decoder, the dynamic range of the internal LLRs also

increases slightly as the decoding process moves along the stages of the DDG. However, since

the LLRs are both positive and negative, the LLRs do not grow as rapidly as the LLs. Moreover,

saturations are not as critical when using LLRs as they are when using LLs. For this reason,

both the channel LLRs and the internal LLRs are quantized using a QLLR-bit signed uniform

quantizer with step size Δ= 1. The path metrics are unsigned numbers which are quantized

35

Chapter 2. Hardware Decoders for Polar Codes

Figure 2.3 – Overview of the SCL decoder architecture. Details on the i , s, ps , as well as the
func & stage and MemAddr components inside the control unit, which are not described in
this section, can be found in Section 2.1. The dashed green and the dotted red line show the
critical paths for L = 2 and L = 4,8 respectively.

using M bits. Since the path metrics are initialized to 0 and, in the worst case, they are

incremented by 2QLLR−1−1 for each bit index i , the maximum possible value of a path metric is

N (2QLLR−1 −1) = 2n+QLLR−1 −2n < 2n+QLLR−1. Hence, at most M = n +QLLR −1 bits are sufficient

to ensure that there will be no overflows in the path metric. In practice, any path that gets

continuously harshly penalized will most likely be discarded. Therefore, as we will see in

Section 2.3, much fewer bits are sufficient in practice for the quantization of the path metrics.

2.2.2.2 Decoder Building Blocks

Metric Computation Unit The computation of the L decision LLRs (line 4 of Algorithm 4),

which are required to update the path metrics PM(i)
�

, can be fully parallelized. Consequently,

the MCU consists of L parallel SC decoder cores which implement the LLR-based SC decoding

update rules and compute the L decision LLRs using the semi-parallel SC decoder architecture

of [38] with P PEs. Each decoder core reads its input LLRs from one of the L physical LLR

memory banks based on an address translation performed by the pointer memory (described

in more detail in Section 2.1.2.2). When the L decision LLRs have been computed, the MCUs

wait for one clock cycle. During this single clock cycle, the path metrics PM(i)
�

are updated

and sorted. Moreover, based on the result of metric sorting, the partial sum, path, and pointer

memories are also updated in the same clock cycle, as described in the sequel.

Memory Unit As in the LL-based SCL decoder of Section 2.1, the proposed LLR-based SCL

decoder contains a path memory, a partial sum memory, as well as an address translation unit

that implements the lazy copy mechanism of [21]. In the proposed LLR-based SCL decoder,

36

2.2. LLR-Based SCL Decoder

Figure 2.4 – Bit-cell copying mechanism controlled by the metric sorter.

these memories are identical to the LL-based SCL decoder and, thus, we do not describe them

again. The LL memory found in the LL-based decoder is replaced by an LLR memory in the

LLR-based SCL decoder of this section.

LLR Memory: The channel LLRs are fixed during the decoding process of a given codeword,

meaning that an SCL decoder requires only one copy of the channel LLRs. These are stored

in a memory which is N
P words deep and QLLRP bits wide. On the other hand, the internal

LLRs of the intermediate stages of the SC decoding (metric computation) process are different

for each path � ∈ {0, . . . ,L −1}. Hence we require L physical LLR memory banks with N −1

memory positions per bank. All LLR memories have two reads ports, so that all P PEs can read

their two QLLR-bit input LLRs simultaneously. Here, register based storage cells are used to

implement all the memories.

Metric Sorting Unit The metric sorting unit contains a path metric memory and a path

metric sorter. The path metric memory stores the L path metrics PM(i)
�

using M bits of

quantization for each metric. In order to find the median τ at each bit index i (line 13 of

Algorithm 4), the path metric sorter sorts the 2L candidate path metrics P�,u , � ∈ {0, . . . ,L−1},

u ∈ {0,1} (line 8 of Algorithm 4). The path metric sorter takes the 2L path metrics as an input

and produces the sorted path metrics, as well as the path indices � and bit values u which

correspond to the sorted path metrics as an output. Since decoding cannot continue before

the surviving paths have been selected, the metric sorter is a crucial component of the SCL

decoder. Hence, we will discuss various sorter architectures in detail in Section 2.2.3.

37

Chapter 2. Hardware Decoders for Polar Codes

Control Unit The control unit generates all memory read and write addresses as in [38].

Moreover, the control unit contains the codeword selection unit and the optional CRC unit.

The CRC unit contains L r -bit CRC memories, where r is the number of CRC bits. A bit-serial

implementation of a CRC computation unit is very efficient in terms of area and path delay, but

it requires a large number of clock cycles to produce the checksum. However, this computation

delay is masked by the bit-serial nature of the SCL decoder itself and, thus, has no impact

on the number of clock cycles required to decode each codeword. Before decoding each

codeword, all CRC memories are initialized to r -bit all-zero vectors. For each ûi [�], i ∈A, the

CRC unit is activated to update the CRC values. When decoding finishes, the CRC unit declares

which paths � ∈ {0, . . . ,L−1} pass the CRC.2 When a path is duplicated the corresponding CRC

memory is copied by means of L×L crossbars (like the partial sums and the path memory).

If the CRC unit is present, the codeword selection unit selects the most likely path (i.e., the

path with the smallest metric PM(i)
�

) out of the paths that pass the CRC. If the CRC unit is not

present or if all paths fail the CRC, the codeword selection unit simply chooses the most likely

path.

2.2.2.3 Decoding Schedule and Latency

The schedule of the LLR-based decoder is practically identical to the schedule of the LL-based

decoder. One small difference is that metric sorting may require a slightly higher number of

total clock cycles, depending on which metric sorter is used (cf. Section 2.2.3.5). Let the total

number of cycles required for metric sorting at all information indices i ∈A be denoted by

DMS(A). Then, our SCL decoder requires

DSCL(N ,P,A) = 2N + N

P
log

N

4P
+DMS(A) (2.19)

cycles to decode each codeword.

2.2.3 Path Metric Sorting

From our preliminary implementation results, we saw that, even for relatively modest list

sizes (e.g., L ≥ 4), the maximum (critical) delay path of our architecture passes through the

metric sorter, thus reducing the maximum operating frequency of the decoder described

in Section 2.1. Fortunately, it turns out that the LLR-based path metric we introduced in

Theorem 1 has some properties (which the LL-based path metric lacks) that can be used to

simplify the sorting task.

To this end, we note that the 2L real numbers that have to be sorted in line 13 of Algorithm 4

are not arbitrary. Half of them are the previously existing path-metrics (which are already

2We note that it is possible for multiple paths to pass the CRC, since a CRC cannot detect all possible error
patterns.

38

2.2. LLR-Based SCL Decoder

sorted as a result of decoding the preceding information bit) and the rest are obtained by

adding positive real values (the absolute value of the corresponding LLRs) to the existing path

metrics. Moreover, we do not need to sort all these 2L potential path metrics; a sorted list of

the L smallest path metrics is sufficient.

Hence, the sorting task of the SCL decoder can be formalized as follows. Given a sorted list of

L path metrics from the previous decoding step

μ0 ≤μ1 ≤ ·· · ≤μL−1, (2.20)

a list of metrics of size 2L, m = [m0,m1, · · · ,m2L−1], is created by setting

m2� :=μ� and m2�+1 :=μ�+a�, � ∈ {0, . . . ,L−1}, (2.21)

where a� ≥ 0, for ∀� ∈ {0, . . . ,L−1}. The path selection problem is equivalent to finding a sorted

list of L smallest elements of m when the elements of m have the following two properties: for

∀� ∈ {0,1, · · · ,L−2},

m2� ≤ m2(�+1), (2.22a)

m2� ≤ m2�+1, (2.22b)

for � ∈ {0,1, . . . ,L−2}.

Note that (2.22a) and (2.22b) imply that out of
(2L

2

) = L(2L −1) unknown pairwise relations

between the elements of m, L2 are known (every even-indexed element is smaller than all its

following elements). Hence, in principle the sorting complexity can be reduced by approxi-

mately a factor of two.

Remark. For LLR-based SCL decoding, in order for the assumptions on the list structure to

hold, besides the above mentioned problem, a general sorting problem of size L needs to

be solved infrequently in order to ensure that (2.22a) holds. This happens because the path

metrics are also updated when frozen bits are encountered, but these are not passed through

the metric sorter in order to keep them sorted.

We note that this problem can be solved by using a sorter that finds the L smallest elements of

a list with properties (2.22a) and (2.22b), L−1 times in a row. In particular, let a0, a1, . . . , aL−1

be arbitrary real numbers. For � = 0,1, . . . ,L −2, set m2� := −∞ and m2�+1 = a�. Finally set

m2L−2 := aL−1 and m2L−1 :=+∞. It is easy to check that (2.22a) and (2.22b) hold for the list m

and the ordered L smallest elements of this list are [−∞,−∞, . . . ,min0≤�≤L−1 a�]. Thus, we can

find the minimum of up to L arbitrary real numbers using such a sorter. Consequently, using

the sorter L−1 times in a row we can sort an arbitrary set of L real numbers. For the pruned

radix-2L sorter in particular, we show in Section 2.2.3.2 that it can be re-used in order to solve

a generic sorting problem of size L by simply carefully re-arranging the input values.

Another simple solution is to instantiate a generic sorter for the sorting problem of size L and

39

Chapter 2. Hardware Decoders for Polar Codes

Figure 2.5 – Radix-2L sorter for L = 2.

a more specialized sorter that fully utilizes (2.22a) and (2.22b) for the sorting problem of size

2L. As we show in Section 2.3.2, this solution still results in an overall area and maximum

operating frequency improvement with respect to the case where a generic sorter is used to

solve the sorting problem of size 2L (note that such a sorter can also trivially solve the sorting

problem of size L by setting the remaining L inputs to +∞). This result is not unexpected,

since the complexity of all the generic sorters that we consider scales super-linearly.

In the following, we first briefly review the existing path metric sorter architectures and we

then exploit the properties (2.22a) and (2.22b) in order to simplify existing sorters and also

introduce a modified version of the well-known bubble sort algorithm that can be efficiently

parallelized for the particular application of LLR-based SCL decoding.

2.2.3.1 Existing Metric Sorter Architectures

Radix-2L Sorter In Chapter 2.1, we used a radix-2L sorter, which blindly compares every

pair of elements (m�,m�′) and then combines the results to find the L smallest elements.

This solution requires
(2L

2

)= L(2L−1) comparators together with L 2L-to-1 multiplexers (see

Figure 2.5). The sorting logic combines the results of all comparators in order to generate

the control signal for the multiplexers (cf. [50] for details). The maximum path delay of the

radix-2L sorter is mainly determined by the complexity of the sorting logic, which in turn

depends on the number of comparator results that need to be processed.

Bitonic Sorter For the SCL decoder of [53], the authors used a bitonic sorter [54]. A bitonic

sorter that can sort 2L arbitrary numbers consists of (logL+1) super-stages. Each super-stage

s ∈ {1,2, . . . , logL+1} contains s stages. The total number of stages is therefore

sBT
tot =

logL+1∑
s=1

s = 1

2
(logL+1)(logL+2). (2.23)

40

2.2. LLR-Based SCL Decoder

Figure 2.6 – Bitonic sorter for L = 4.

The length of the critical path of the sorter is determined by the number of stages. Each stage

contains L compare-and-select (CAS) units consisting of one comparator and a 2-to-2 MUX.

Thus, the total number of CAS units in a bitonic sorter is

cBT
tot =

L

2
(logL+1)(logL+2). (2.24)

Thus, the scaling behavior of the bitonic sorter in terms of the number of comparators is

superior to the scaling behavior of the radix-2L sorter. An example of a bitonic sorting network

that can sort 2L = 8 numbers is given in Figure 2.6. Each vertical connection between two

horizontal lines denotes a CAS unit, whose two inputs are the values that can be found on

the two endpoints of the vertical connection. The bitonic sorter can sort its 2L inputs in an

ascending or in a descending order, depending on whether the individual CAS units sort their

two input values in an ascending or in a descending order.

2.2.3.2 Pruned Radix-2L Sorter

The pruned radix-2L sorter presented in this section reduces the complexity of the sorting

logic of the radix-2L sorter and, thus, also the maximum path delay, by eliminating some

pairwise comparisons whose results are either already known or irrelevant.

Proposition 1. In order to find the L smallest elements of m, it is sufficient to use a pruned

radix-2L sorter that involves only (L−1)2 comparators. This sorter is obtained by

(a) removing the comparisons between every even-indexed element of m and all following

elements, and

(b) removing the comparisons between m2L−1 and all other elements of m.

Proof. Properties (2.22a) and (2.22b) imply m2� ≤ m�′ for ∀�′ > 2�. Hence, the outputs of

these comparators are known. Furthermore, as we only need the first L elements of the list

41

Chapter 2. Hardware Decoders for Polar Codes

Figure 2.7 – Pruned radix-2L sorter for L = 2.

sorted and m2L−1 is never among the L smallest elements of m, we can always replace m2L−1

by +∞ (pretending the result of the comparisons involving m2L−1 is known) without affecting

the output of the sorter.

In step (a) we have removed
∑L−1

�=0(2L−1−2�) = L2 comparators and in step (b) (L−1) compara-

tors (note that in the full sorter m2L−1 is compared to all (2L−1) preceding elements, but L of

them correspond to even-indexed elements whose corresponding comparators have already

been removed in step (a)). Hence we have L(2L−1)−L2 − (L−1) = (L−1)2 comparators.

Besides the (L−1)2 comparators, the pruned radix-2L sorter requires L−1 (2L−2)-to-1 multi-

plexers (see Figure 2.7).

As discussed in Section 2.2.3, a general sorting problem of size L needs to be solved infrequently

in order to keep the L path metrics sorted when exiting a cluster of frozen bits. The existing

pruned radix-2L sorter can be used for sorting L arbitrary positive numbers as follows.

Proposition 2. Let a0, a1, . . . , aL−1 be L non-negative numbers. Create a list of size 2L as

b � [0, a0,0, a1, . . . ,0, aL−2, aL−1,+∞].

Feeding this list to the pruned radix-2L sorter will result in an output list of the form

[0,0, . . . ,0︸ ︷︷ ︸
L−1 zeros

, a(0), a(1), . . . , a(L−1),+∞]

where a(0) ≤ a(1) ≤ ·· · ≤ a(L−1) is the ordered permutation of a0, a1, . . . , aL−1.

Proof. It is clear that the assumptions (2.22a) and (2.22b) hold for b. The proof of Proposition 1

shows if the last element of the list is additionally known to be the largest element, the pruned

radix-2L sorter sorts the entire list.

42

2.2. LLR-Based SCL Decoder

Figure 2.8 – Pruned bitonic sorter for L = 4. The full bitonic sorter requires all the depicted
CAS units (cf. Figure 2.6), while in the pruned bitonic sorter all CAS units in red dotted lines
can be removed.

Note that while the same comparator network of a pruned radix-2L sorter is used for sorting L

numbers, L separate L-to-1 multiplexers are required to output the sorted list.

2.2.3.3 Pruned Bitonic Sorter

As was the case with the radix-2L sorter, the known relations between the elements can be

exploited to simplify the bitonic sorter. In particular, due to (2.22b), the results of all sorters in

stage 1 are already known. Thus, stage 1 can be removed completely from the sorting network.

Moreover, the result of all comparators whose one input is m0 are also known, since m0 is, by

construction, always the smallest element of m. Furthermore, since m2L−1 is never among

the L smallest elements of the list, all comparisons involving m2L−1 are irrelevant and the

corresponding CAS units can be removed. Finally, we can remove the L/2 last CAS units of

the logL final stages of super-stage logL+1, since they are responsible for sorting the last L

elements of m while we are only interested in its first L elements. The unnecessary CAS units

for 2L = 8 are illustrated with dotted red lines in Figure 2.8.

Since only stage 1 is completely removed from the sorting network, the number of stages in

the pruned bitonic sorter is,

sPBT
tot = sBT

tot −1 = 1

2
(logL+1)(logL+2)−1. (2.25)

Therefore, the delay of the pruned bitonic sorter is only slightly smaller than that of the full

bitonic sorter, especially for large list sizes L.

To compute the number of CAS units in a pruned bitonic sorter, we note that the first super-

stage is eliminated completely. In all remaining super-stages except the last one, the 2 CAS

units per stage that are connected to m0 and m2L−1 are removed, since m0 is always the

smallest element and m2L−1 is never among the L smallest elements. In the last super-stage,

we can remove the CAS units connected to m0 plus all the CAS units in the second half of the

43

Chapter 2. Hardware Decoders for Polar Codes

Algorithm 5: The Bubble Sort Algorithm

1 while exists � such that m� > m�+1 do
2 for �= 2L−1 to 1 do
3 if m� < m�−1 then
4 Swap m� and m�−1;

5 return m

last logL stages since they contribute in sorting the L largest elements of the list, which we are

not interested in. Hence, the total number of CAS units in the pruned bitonic sorter can be

shown to be equal to

cPBT
tot =

(L

2
−1
)
(logL)(logL+2)+1. (2.26)

By examining the ratio between cBT
tot and cPBT

tot we can conclude that, similarly to the maximum

delay, the relative reduction in the number of comparators also diminishes with increasing list

size L.

2.2.3.4 Bubble Sorter

Even though bubble sort [55, Chapter 2] is a generally inefficient sorting algorithm, it turns out

to be a suitable candidate for our particular problem. More precisely, properties (2.22a) and

(2.22b) result in a specific data dependency structure of the algorithm enabling an efficient

parallel hardware implementation of the sorter. Furthermore, since we only require the sorted

list of L smallest elements of m (rather than sorting the entire list m) we can simplify the sorter

by only implementing the first half of the rounds of the bubble sorting algorithm.

The bubble sort algorithm is formalized in Algorithm 5. It is clear that Algorithm 5 sorts the

full list of 2L inputs. By restricting the while condition as “exists � ∈ {0,1, . . . ,L−1} such that

m� > m�+1” one can simplify the algorithm to only output the first L ordered elements of the

list m.

Lemma 2. Let mt
�

denote the element at position � of the list at the beginning of round t of the

while loop in Algorithm 5 and,

Bt �
{
� ∈ {1,2, . . . ,2L−1} : mt

� < mt
�−1

}
. (2.27)

Then (2.22a) and (2.22b) imply that for all t ≥ 1,

(i) Bt does not contain adjacent indices,

(ii) the if body (line 4) is executed at round t iff � ∈Bt ,

(iii) Bt+1 ⊆Bt +1, where addition of a constant with a set is defined as X +a � {x+a : x ∈X }.

44

2.2. LLR-Based SCL Decoder

Proof. To prove the lemma, we will prove that for all t ≥ 1,

mt
� ≥ mt

�−2 for all � ∈Bt . (2.28)

We first show that (2.28) implies (i)–(iii) and then prove (2.28).

(i) Suppose � ∈ Bt , hence, mt
�
< mt

�−1 and (2.28) implies mt
�
≥ mt

�−2. Thus mt
�−1 > mt

�−2
which implies �−1 �∈Bt .

(ii) Note that the element at position � of the list is changed if and only if line 4 is executed

for indices � or �+1. We use strong induction on � to prove (2). Clearly line 4 is executed

for the first time for an index �∗ = maxBt .

Assume line 4 is executed for some index �. This implies m� < m�−1 before execution

of this line when m�−1 = mt
�−1 (since line 4 has not been executed for � nor for �−1

so far). Now if �+1 �∈ Bt , then mt
�
= m� as well by the induction assumption (since

line 4 is not executed for index �+1) hence mt
�
< mt

�−1 which means � ∈Bt . Otherwise,

�+ 1 ∈ Bt , implies line 4 is executed for �+ 1. Since Bt does not contain adjacent

elements, line 4 is not executed for �+2. This implies m� = mt
�+1 ≥ m�−1 = mt

�−1 by

(2.28) which contradicts the assumption of loop being executed for �.

Conversely, assume � ∈Bt . Since �+1 �∈Bt , line 4 is not executed for �+1 by assumption.

Hence once the for loop is executed for index �, m� = mt
�

and (as we justified before)

m�−1 = mt
�−1. Therefore, m� < m�−1 and line 4 is executed for �.

(iii) Using (i) and (ii), we can explicitly write the time-evolution of the list as

mt+1
� =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

mt
�−1, if � ∈Bt ,

mt
�

, if � �∈Bt and �+1 �∈Bt ,

mt
�+1 if �+1 ∈Bt .

(2.29)

Therefore, if � ∈ Bt , mt+1
�

= mt
�−1 > mt

�
= mt+1

�−1, and � �∈ Bt+1. Pick � ∈ Bt+1. We shall

show this requires �−1 ∈Bt . Since � �∈Bt as we just showed in (iii), (2.29) yields

mt+1
� =

⎧⎨
⎩mt

�
if �+1 �∈Bt ,

mt
�+1 if �+1 ∈Bt ,

(2.30)

mt+1
�−1 =

⎧⎨
⎩mt

�−2 if �−1 ∈Bt ,

mt
�−1 if �−1 �∈Bt .

(2.31)

Equation (2.30), together with (2.28) imply mt+1
�

≥ mt
�−1. Now if �−1 �∈ Bt , by (2.31),

mt+1
�−1 = mt

�−1 ≤ mt+1
�

. Hence � �∈Bt+1.

It remains to show (2.28) holds for all t ≥ 1 by induction. The claim holds for t = 1 by construc-

45

Chapter 2. Hardware Decoders for Polar Codes

Figure 2.9 – Bubble sorter for 2L = 8. The full bubble sorter requires all the depicted CAS units,
while in the simplified bubble sorter all CAS units in red dotted lines can be removed.

tion; B1 ⊆ {2,4, . . . ,2L−2} (because of (2.22b)) and (2.22a) is equivalent to (2.28) for t = 1.

Pick � ∈Bt+1. Assuming (2.28) holds for t , we know mt+1
�

≥ mt
�−1 (as we just showed). Further-

more, since �−1 ∈Bt (and �−2 �∈Bt due to (2)), (2.29) yields mt+1
�−2 = mt

�−1 ≤ mt+1
�

.

Property (ii) means we can replace the condition of the if block by mt
�
≤ mt

�−1 without changing

the algorithm. In other words, to determine whether we need to swap adjacent elements

or not we can take a look at the values stored at that positions at the beginning of each

round of the outer while loop. Furthermore, property (i) guarantees that each element, at

each round, participates in at most one swap operation. As a consequence the inner for

loop can be executed in parallel. Finally, property (iii) together with the initial condition

B1 ⊆ {2,4, . . . ,2L−2} implies that at odd rounds CAS operations take place only between the

even-indexed elements and their preceding elements while at even rounds CAS operations

take place only between the odd-indexed elements and their preceding elements.

Given the above considerations, we can implement the sorter in hardware as follows. The

sorter has 2L−2 stages, each of them implementing a round of bubble sort (i.e., an iteration

of the while loop in Algorithm 5).3 At round t of the bubble sort the first t elements are

unchanged and the sorter will have a triangular structure. Since in our setting, round 1

is already eliminated, each stage t , t = 1,2, . . . ,2L − 2 only moves the elements at indices

t , t +1, . . . ,2L−1. Each stage implements the execution of the inner for loop in parallel using

the required number of CAS units. In Figure 2.9 we show the structure of the sorter for 2L = 8.

Using simple counting arguments we can show that the full bubble sort requires L(L−1) CAS

units.

So far we have only discussed about the implementation of a sorter that sorts the entire list m.

However, we only need the first L ordered elements of the list. Hence, we can simplify the full

3In general the bubble sort terminates in up to 2L −1 rounds but in our particular problem instance, since
m0 =μ0 is the smallest element of the list, the first round is eliminated.

46

2.2. LLR-Based SCL Decoder

sorter as follows. The first obvious simplification is to eliminate all the stages L,L+1, . . . ,2L−2

since we know that after round L−1 of the bubble sort, the first L elements of the list correspond

to an ordered list of the L smallest elements of the original list. Thus, the total number of

required stages for this simplified bubble sorter is

sB
tot = L−1. (2.32)

Furthermore, we note that, due to property (i), each element of the list at each round of the

algorithm is moved at most by one position. Consider the elements at positions 2L− t ,2L−
t +1, . . . ,2L−1 at round t . Since at most L− t rounds of bubble sort are executed (including

the current round), these elements cannot be moved to the first half of the list. Hence, we can

eliminate the CAS units involving elements at indices 2L− t ,2L− t +1. . . ,2L−1 at each stage

t = 1,2, . . . ,L−1 as well. The simplified bubble sorter thus requires

cB
tot =

1

2
L(L−1) (2.33)

CAS units. In Figure 2.9 the parts of the sorter that can be eliminated are drawn with red dotted

lines.

2.2.3.5 Latency of Metric Sorting

We assume that the sorting procedure is carried out in a single clock cycle. A decoder based

on any of the full sorters that solve the generic sorting problem of size 2L, only needs to

sort the path metrics for the information indices. Hence, the total sorting latency of such an

implementation, measured in clock cycles, is

DMS(A) = |A| = N R. (2.34)

Using any of the pruned/simplified sorters, however, results in additional latency. This hap-

pens because additional sorting steps are required at the end of each contiguous set of frozen

indices in order to ensure that property (2.22a) holds, as described in Section 2.2.3. Let FC (A)

denote the number of clusters of frozen bits for a given information set A.4 The metric sorting

latency using any of the pruned/simplified sorters, measured in clock cycles, is then

DMS(A) = |A|+FC (A) = N R +FC (A). (2.35)

4 More precisely we assume F =⋃FC (A)
j=1 F j such that (i) F j ∩F j ′ = � if j �= j ′, i.e., {F j : j = 1, . . . ,FC (A)} is a

partition of F ; (ii) for every j , F j is a contiguous subset of {0, . . . , N −1}; and (iii) for every pair j �= j ′, F j ∪F j ′ is
not a contiguous subset of {0, . . . , N −1}. It can be easily checked that such a partition always exists and is unique.

47

Chapter 2. Hardware Decoders for Polar Codes

2.3 Hardware Implementation Results

In this section, we present synthesis results for the SCL decoder architectures described in this

chapter. For a fair comparison with [52], we use a TSMC 90 nm technology with a typical timing

library (1 V supply voltage, 25◦ C operating temperature). All synthesis runs are performed

with timing constraints that are not achievable, in order to assess the maximum achievable

operating frequency of each design, as reported by the synthesis tool. For our synthesis results,

we have used P = 64 PEs per SC decoder core, as in [38]. The hardware efficiency is defined as

the throughput per unit area and it is measured in Mbps/mm2. The decoding throughput of

all decoders is:

TSCL(N ,P,A, f) = f ·N

DSCL(N ,P,A)
, (2.36)

where f is the operating frequency of the decoder.

We first compare the various path metric sorters that were described in Section 2.2.3 in

isolation. Then, we examine the effect of using a simplified metric sorter on our LLR-based

SCL decoder and we compare our LLR-based decoder with our LL-based decoder in order

to demonstrate the improvements obtained by moving to an LLR-based formulation of SCL

decoding. Finally, we compare our LLR-based decoder with the LL-based decoder of [52] (since

[52] is an improved version of [53], we do not compare directly with [53]) and [51]. A direct

comparison with the SCL decoders of [56, 57] is unfortunately not possible, as the authors do

not report their synthesis results in terms of mm2. Finally, we provide some discussion on the

effectiveness of a CA-SCLD.

2.3.1 Quantization Parameters

Before we continue with the implementation results, we need to examine the quantization

bit-widths required by each type of decoder in order to ensure similar error-correcting perfor-

mance for a fair comparison. In Figure 2.10 and Figure 2.11, we present the FER of floating-

point and fixed-point implementations of an LL-based and an LLR-based SCL decoder for a

(1024,512) polar code as a function of SNR.5 For the floating-point simulations we have used

the exact implementation of the decoder, i.e., for computing the LLRs the update rule f− of

(1.19a) is used and the path metric is iteratively updated according to (2.13). In contrast, for

the fixed-point simulations we have used the MS approximation of the decoder given in (1.20))

and the approximated path metric update rule of (2.15).

We observe that the LL-based and the LLR-based SCL have practically indistinguishable FER

performance when quantizing the channel LLs and the channel LLRs with QLL = 4 bits and

QLLR = 6 bits respectively. Moreover, in our simulations we observe that the performance of

the LL and the LLR-based SCL decoder is degraded significantly when QLLR < 6 and QLL < 4,

5The code is optimized for Eb /N0 = 2 dB and constructed using the Monte-Carlo method of [6, Section IX].

48

2.3. Hardware Implementation Results

1.5 2 2.5 3 3.5 410−6

10−5

10−4

10−3

10−2

10−1

100

Eb /N0 (dB)

Fr
am

e
E

rr
o

r
R

at
e

SC Decoder, Q = 6
SC Decoder, Floating-Point
L = 2, LLR-based, Q = 6
L = 2, LL-based, Q = 4
L = 2, Floating-Point

Figure 2.10 – The performance of floating-point vs. fixed-point SCL decoders (L = 1, i.e., SC
decoding, and L = 2). M = 8 quantization bits are used for the path metric in fixed-point SCL
decoders.

respectively. As discussed in Section 2.2.2.1, metric quantization requires at most M = n +
QLLR −1 bits for the LLR-based SCL decoder. However, in practice, much fewer bits turn out to

be sufficient. For example, in our simulations for N = 1024 and QLLR = 6, setting M = 8 leads

to the same performance as the worst-case M = 15, while setting M = 7 results in a significant

performance degradation due to metric saturation. Thus, all synthesis results of this section

are obtained for QLL = 4 for the LL-based decoder of Section 2.1, and QLLR = 6 and M = 8 for

the LLR-based decoder of Section 2.2 for a fair (i.e., iso-FER) comparison.

The authors of [51] do not provide the FER curves for their fixed-point implementation of SCLD

and the authors of [52] only provide the FERs for a CA-SCLD [52, Figure 2]. Nevertheless, we

assume their quantization schemes will not result in a better FER performance for a standard

SCLD than that of [7] since they both implement exactly the same algorithm as in [7] (using a

different architecture than [7]).

2.3.2 Comparison of Path Metric Sorters

In this section, we compare the various path metric sorters described in Section 2.2.3 in

isolation and for various list sizes, ranging from L = 2 up to L = 32 and using a path metric

bit-width of M = 8 bits. We first compare the radix-2L sorter and the bitonic sorter with

their simplified counterparts, and then we compare all simplified sorters with each other.

These synthesis results are useful in order to decide which path metric sorter should be used

depending on the considered scenario. As we will see, the optimal decoder in terms of both

operating frequency and area strongly depends on the employed list size L.

49

Chapter 2. Hardware Decoders for Polar Codes

1.5 2 2.5 3 3.5 410−6

10−5

10−4

10−3

10−2

10−1

100

Eb /N0 (dB)

Fr
am

e
E

rr
o

r
R

at
e

L = 4, LLR-based, Q = 6
L = 4, LL-based, Q = 4
L = 4, Floating-Point
L = 8, LLR-based, Q = 6
L = 8, LL-based, Q = 4
L = 8, Floating-Point

Figure 2.11 – The performance of floating-point vs. fixed-point SCL decoders (L = 4 and L = 8).
M = 8 quantization bits are used for the path metric in fixed-point SCL decoders.

Table 2.1 – Synthesis Results for Radix-2L and Pruned
Radix-2L Sorters

Radix-2L Pruned Radix-2L
Freq. (MHz) Area (μm2) Freq. (MHz) Area (μm2)

L = 2 2128 3007 4545 608
L = 4 1111 12659 2083 3703
L = 8 526 50433 1031 18370
L = 16 229 238907 372 70746
L = 32 n/a* n/a* 145 376945
* For L = 32 the synthesis tool ran out of memory on a machine with

48GB of RAM, most likely due to the lack of structure in the circuits
that generate the control signals for the multiplexers in the radix-2L
sorter.

2.3.2.1 Radix-2L Sorter vs. Pruned Radix-2L Sorter

In Table 2.1 we present synthesis results for the radix-2L sorter and the pruned radix-2L sorter.

We observe that the pruned radix-2L sorter is at least 63% smaller and at least 56% faster than

the full radix-2L sorter for all considered list sizes.

2.3.2.2 Bitonic Sorter vs. Pruned Bitonic Sorter

In Table 2.2 we present synthesis results for the bitonic sorter of [53] and the pruned bitonic

sorter presented in this paper. We observe that, as discussed in Section 2.2.3.3, the improve-

ment in terms of both area and operating frequency are diminishing as the list size L is

increased. Nevertheless, even for L = 32 the pruned bitonic sorter is 5% faster and 14% smaller

than the full bitonic sorter.

50

2.3. Hardware Implementation Results

Table 2.2 – Synthesis Results for Bitonic and Pruned Bitonic Sorters

Bitonic Pruned Bitonic
Freq. (MHz) Area (μm2) Freq. (MHz) Area (μm2)

L = 2 1370 2109 4545 608
L = 4 676 8745 952 3965
L = 8 347 27159 478 20748
L = 16 214 82258 256 69769
L = 32 157 238721 166 205478

2.3.2.3 Simplified Bubble Sorter vs. Pruned Radix-2L and Pruned Bitonic Sorter

In Table 2.3 we present synthesis results for the simplified bubble sorter described in Sec-

tion 2.2.3.4. We observe that, for L ≤ 8, the simplified bubble sorter has a lower delay than

the pruned bitonic sorter. This happens because, as can be verified by evaluating (2.23) and

(2.32), for L ≤ 8 the bubble sorter has fewer stages than the pruned bitonic sorter while for

L > 8 the situation is reversed. A similar behavior can be observed for the area of the sorters,

where the bubble sorter remains smaller than the pruned bitonic sorter for L ≤ 16.

We also observe that, for L ≤ 16, the pruned radix-2L sorter is faster than the other two

sorters and similar in area to the pruned bitonic sorter, while the simplified bubble sorter is

significantly smaller. Thus, for L ≤ 16 the pruned bitonic sorter is not a viable option, while

trade-offs between speed and area can be made by using either the pruned radix-2L sorter

or the simplified bubble sorter. For L = 32, however, the pruned bitonic sorter has a higher

operating frequency and a smaller area than the other two sorters.

For the remainder of this section we only provide synthesis results for various SCL decoders

with list size up to L = 8, where the only simplified metric sorters of interest are the pruned

radix-2L sorter and the bubble sorter. Since the sorter area is generally small compared to the

rest of the decoder, we chose to only use the larger pruned radix-2L sorter which is, however,

significantly faster than the bubble sorter.

Recall that in Section 2.2.3 we mentioned that an LLR-based SCL decoder with a simplified

sorter needs to solve a general sorting problem of size L after exiting a group of frozen synthetic

channels. We have explained that a simple solution for this problem is to use a simplified

sorter for the problem of size 2L and a general sorter for the problem of size L. From Table 2.1

and Table 2.2 we observe that this solution results in a higher overall operating frequency and,

in most cases, a lower area compared to the case where we use a general sorter for the problem

of size 2L (in which case we do not need the smaller sorter of size L). For example, consider

an SCL decoder with L = 4 which requires a simplified sorter for L = 4 and a general sorter

for L = 2. Using a radix-2L sorter, the operating frequency is limited by the pruned radix-2L

sorter. Hence, adding the smaller full radix-2L sorter does not affect the maximum operating

frequency. Moreover, the combined area of the pruned radix-2L sorter for L = 4 and the full

radix-2L sorter for L = 2 is smaller than the area of the full radix-2L sorter for L = 4.

51

Chapter 2. Hardware Decoders for Polar Codes

Table 2.3 – Comparison of Pruned Radix-2L, Pruned Bitonic,
and Simplified Bubble Sorters

Pruned Radix-2L Pruned Bitonic Simplified Bubble
Freq. Area Freq. Area Freq. Area

(MHz) (μm2) (MHz) (μm2) (MHz) (μm2)

L = 2* 4545 608 4545 608 4545 608
L = 4 2083 3703 952 3965 1388 2756
L = 8 1031 18370 478 20748 534 11726
L = 16 372 70746 256 69769 247 51159
L = 32 145 376945 166 205478 127 212477
* For L = 2 it can easily be seen that all three sorters are equivalent.

Table 2.4 – LLR-based SCL Decoder: Radix-2L vs. Pruned Radix-2L Sorter

Radix-2L Sorter Pruned Radix-2L Sorter
L = 2 L = 4 L = 8 L = 2 L = 4 L = 8

Freq. (MHz) 847 758 415 848 794 637
Lat. (Cyc./bit) 2.53 2.53 2.53 2.59 2.59 2.59
T/P (Mbps) 335 299 164 328 307 246
Area (mm2) 0.88 1.75 3.87 0.9 1.78 3.85
Efficiency 380 171 42 364 172 64

2.3.3 LLR-based SCL Decoder: Radix-2L Sorter versus Pruned Radix-2L Sorter

One may expect an LLR-based SCL decoder using the pruned radix-2L sorter to always outper-

form an LLR-based SCL decoder using the non-pruned radix-2L sorter. However, the decoder

equipped with the pruned radix-2L sorter needs to stall slightly more often to perform the

additional sorting steps after groups of frozen bits. In particular, a (1024,512) polar code

contains FC (A) = 57 groups of frozen bits. Therefore, the total sorting latency for the pruned

radix-2L sorter is DMS(A) = |A|+FC (A) = 569 cycles (see (2.35)), while the total sorting latency

for the non-pruned radix-2L sorter is DMS(A) = |A| = 512 cycles (see (2.34)). Thus, the SCL

decoder with the pruned sorter exhibits a latency of DSCL(N ,P,A) = 2649 cycles, which is an

increase of approximately 2% compared to the decoder equipped with a full radix-2L sorter.

Therefore, if using the pruned radix-2L does not lead to a more than 2% higher clock frequency,

the decoding throughput will actually be reduced.

As can be observed in Table 2.4, this is exactly the case for L = 2, where the LLR-based SCL

decoder with the pruned radix-2L sorter has a 2% lower throughput than the LLR-based SCL

decoder with the full radix-2L sorter. However, for L ≥ 4 the metric sorter starts to lie on

the critical path of the decoder and therefore using the pruned radix-2L sorter results in a

significant increase in throughput of up to 50% for L = 8.

To provide more insight into the effect of the metric sorter on our SCL decoder, in Table 2.5

we present the metric sorter delay and the critical path start- and endpoints of each decoder

of Table 2.4. The critical paths for L = 2 and L = 4,8, are also annotated in Figure 2.3 with

green dashed lines and red dotted lines, respectively. We denote the register of the controller

which stores the internal LLR memory read address by RIM. Moreover, let DÛs
and DM denote

52

2.3. Hardware Implementation Results

Table 2.5 – Metric Sorter Delay and Critical Path Start-
and Endpoints for our LLR-Based SCL Decoder Using the
Radix-2L and the Pruned Radix-2L Sorters.

Radix-2L Sorter Pruned Radix-2L Sorter
L = 2 L = 4 L = 8 L = 2 L = 4 L = 8

Delay (ns) 0.50* 0.80 1.83 0.50* 0.54 1.09
CP Startpoint RIM DM DM RIM RIM DM
CP Endpoint DM DÛs

DÛs
DM DM DÛs

* Note that the true delay of the pruned radix-2L sorter is always
smaller than the delay of the radix-2L sorter. However, for L = 2,
both sorters meet the synthesis timing constraint, which was set
to 0.50 ns.

Table 2.6 – SCL Decoder Synthesis Results (R = 1
2 , N = 1024)

LLR-Based LL-Based LL-Based [52]a LL-Based [51]b

L = 2 L = 4 L = 8 L = 2 L = 4 L = 8 L = 2 L = 4 L = 8 L = 2 L = 4
Technology TSMC 90nm TSMC 90nm TSMC 90nm Scaled to 90nmc

Freq. (MHz) 847 794 637 794 730 408 507 492 462 361 289
Lat. (Cycles/bit) 2.53 2.59 2.59 2.53 2.53 2.53 2.53 2.53 3.03 1.00 1.00
T/P (Mbps) 335 307 246 314 288 161 200 194 153 362 290
Area (mm2) 0.88 1.78 3.58 1.38 2.62 5.38 1.23 2.46 5.28 2.03 4.10
Efficiency 380 172 69 227 110 30 163 79 29 178 71
a The synthesis results in [52] are provided with up to 16 PEs per path. The reported numbers in this table are

the corresponding synthesis results using 64 PEs per path and are courtesy of the authors of [52].
b The authors of [51] use 3 quantization bits for the channel LLs and a tree SC architecture, while [7, 52] use 4

quantization bits for the channel LLs and a semi-parallel architecture with P = 64 PEs per path.
c We use the standard assumption that area scales as s2 and frequency scales as 1/s, where s is the feature size.

a register of the partial sum memory and the metric memory, respectively. From Table 2.5, we

observe that, for L = 2, the radix-2L sorter does not lie on the critical path of the decoder, which

explains why using the pruned radix-2L sorter does not improve the operating frequency of

the decoder. For L ≥ 4 the metric sorter does lie on the critical path of the decoder and using

the pruned radix-2L sorter results in a significant increase in the operating frequency of up to

53%. It is interesting to note that using the pruned radix-2L sorter eliminates the metric sorter

completely from the critical path of the decoder for L = 4. For L = 8, even the pruned radix-2L

sorter lies on the critical path of the decoder, but the delay through the sorter is reduced by

40%.

2.3.4 LLR-based SCL Decoder: Comparison with LL-based SCL Decoders

In Table 2.6, we compare our LLR-based decoder with the LL-based decoders of [52] and [51]

along with our LL-based decoder of Section 2.1. For the comparisons, we pick our LLR-based

SCL decoder with the best hardware efficiency for each list size, i.e., for L = 2 we pick the SCL

decoder with the radix-2L sorter, while for L = 4,8, we pick the SCL decoder with the pruned

radix-2L sorter. Moreover, we pick the decoders with the best hardware efficiency from [51],

i.e., the 4b-rSCL decoders.

53

Chapter 2. Hardware Decoders for Polar Codes

Table 2.7 – Comparison of LLR-based implementation with existing LL-based implementations

LL-Based LLR-Based
L = 2 L = 4 L = 8 L = 2 L = 4 L = 8

Freq. (MHz) 794 730 408 847 758 415
Lat. (Cyc./bit) 2.53 2.53 2.53 2.53 2.53 2.53
T/P (Mbps) 314 288 161 335 299 164
Area (mm2) 1.38 2.62 5.38 0.88 1.75 3.87
Efficiency 227 110 30 380 171 42

Table 2.8 – Cell Area Breakdown for the LL-Based and the Radix-2L LLR-based SCL Decoders
(R = 1

2 , N = 1024)

LL-Based LLR-Based Reduction
List Size L = 2

Total Area (mm2) 1.38 0.88 36%
Memory (mm2) 1.07 0.80 25%

MCU (mm2) 0.28 0.06 79%
Metric Sorter (mm2) 1.34×10−3 0.75×10−3 44%

Other (mm2) 0.03 0.02 50%
List Size L = 4

Total Area (mm2) 2.62 1.75 33%
Memory (mm2) 1.92 1.57 18%

MCU (mm2) 0.54 0.11 80%
Metric Sorter (mm2) 13.92×10−3 9.23×10−3 33%

Other (mm2) 0.15 0.06 60%
List Size L = 8

Total Area (mm2) 5.38 3.87 28%
Memory (mm2) 4.08 3.46 15%

MCU (mm2) 0.82 0.18 78%
Metric Sorter (mm2) 70.65×10−3 54.05×10−3 24%

Other (mm2) 0.41 0.18 56%

2.3.4.1 Comparison with LL-Based Decoder of Section 2.1

Our LL-based architecture of Section 2.1 and the LLR-based architecture with the radix-2L

sorter presented in Section 2.2 are identical except that the former uses LLs while the latter

uses LLRs. Therefore, by comparing these two architectures we can specifically identify

the improvements in terms of area and decoding throughput that arise directly from the

reformulation of SCL decoding in the LLR domain.

We recall that the cycle count for our SCL decoder using the radix-2L sorter when decoding a

(1024,512) polar code is DSCL(N ,P,A) = 2592 cycles (see (2.19) and (2.34)).

From Table 2.7, we see that our LLR-based SCL decoder occupies 36%, 33%, and 28% less area

than our LL-based SCL decoder for L = 2, L = 4, and L = 8, respectively. We present the area

breakdown of the LL-based and the LLR-based decoders in Table 2.8 in order to identify where

the area reduction mainly comes from and why the relative reduction in area decreases with

increasing list size L. The memory area corresponds to the combined area of the LLR (or LL)

memory, the partial sum memory, and the path memory. We observe that, in absolute terms,

54

2.3. Hardware Implementation Results

the most significant savings in terms of area come from the memory for L = 2 and from the

MCU for L = 4,8. On the other hand, in relative terms, the biggest savings in terms of area

always come from the MCU with an average area reduction of 79%. The relative reduction in

the memory area decreases with increasing list size L. This happens because each bit-cell of

the partial sum memory and the path memory contains L-to-L crossbars, whose size grows

quadratically with L, while the LL (and LLR) memory grows only linearly in size with L. Thus,

the size of the partial sum memory and the path memory, which are not affected by the LLR-

based reformulation, becomes more significant as the list size is increased, and the relative

reduction due to the LLR-based formulation is decreased. Similarly, the relative reduction in

the metric sorter area decreases with increasing L, because the LLR-based formulation only

decreases the bit-width of the L(2L −1) comparators of the radix-2L sorter but it does not

affect the size of the sorting logic, which dominates the sorter area as the list size is increased.

From Table 2.7, we observe that the operating frequency (and, hence, the throughput) of our

LLR-based decoder is 7%, 3%, and 2% higher than that of our LL-based SCL decoder of [7]

for L = 2, L = 4, and L = 8, respectively. Even though in this comparison we did not use any

of the simplified sorters, the operating frequency of the LLR-based SCL decoder is increased

for all list sizes because the bit-width of all quantities involved in decoding is reduced quite

significantly due to the LLR-based reformulation of the SCL decoding algorithm.

Due to the aforementioned improvements in area and decoding throughput, we conclude that

the LLR-based reformulation of SCL decoding leads to hardware decoders with 67%, 55%, and

40% better hardware efficiency than their corresponding LL-based decoders, for L = 2, L = 4,

and L = 8, respectively.

2.3.4.2 Comparison with Other Existing Decoders

From Table 2.6 we observe that our LLR-based SCL decoder has an approximately 28% smaller

area than the LL-based SCL decoder of [52] for all list sizes. Moreover, the throughput of our

LLR-based SCL decoder is up to 70% higher than the throughput achieved by the LL-based

SCL decoder of [52], leading to a 137%, 118%, and 120% better hardware efficiency for L = 2,

L = 4 and L = 8, respectively. The synthesis results of [51] are given for a 65 nm technology,

which makes a fair comparison difficult. Nevertheless, in order to enable as fair a comparison

as possible, we scale the area and the frequency to a 90 nm technology in Table 2.6. Moreover,

the authors of [51] only provide synthesis results for L = 2 and L = 4. In terms of area, we

observe that our decoder is approximately 57% smaller than the decoder of [51] for all list

sizes. We also observe that for L = 2 our decoder has a 7% lower throughput than the decoder

of [51], but for L = 4 the throughput of our decoder is 6% higher than that of [51]. Overall, the

hardware efficiency of our LLR-based SCL decoder is 115% and 142% better than that of [51]

for L = 2 and L = 4 respectively.

55

Chapter 2. Hardware Decoders for Polar Codes

2.3.5 CRC-Aided SCL Decoder

As discussed in Section 1.3.3.2, the performance of the SCL decoder can be significantly

improved if it is assisted for its final choice by means of a CRC which rejects some incorrect

codewords from the final set of L candidates. However, there is a trade-off between the length

of the CRC and the performance gain. A longer CRC, rejects more incorrect codewords but, at

the same time, it degrades the performance of the inner polar code by increasing its rate [21].

Hence, the CRC improves the overall performance if the performance degradation of the inner

polar code is compensated by rejecting the incorrect codewords in the final list.

2.3.5.1 Choice of CRC

We picked three different CRCs of lengths r = 4, r = 8 and r = 16 from [58] with generator

polynomials:

g (x) = x4 +x +1, (2.37a)

g (x) = x8 +x7 +x6 +x4 +x2 +1, and (2.37b)

g (x) = x16 +x15 +x2 +1, (2.37c)

respectively and evaluated the empirical performance of the SCL decoders of list sizes of L = 2,

L = 4, L = 8, aided by each of these three CRCs in the regime of Eb/N0 = 1 dB to Eb/N0 = 4 dB.

The results are shown in Figure 2.12.

For L = 2, using either the CRC-4 or the CRC-8 (represented by generator polynomials (2.37a)

and (2.37b) respectively) improves the performance of the standard SCL decoder. In contrast,

for the CRC-16 the performance degradation of the inner polar code becomes dominant

at Eb/N0 ≤ 2.75 dB causing the CA-SCLD to perform slightly worse than the standard SCL

decoder. At higher SNRs the performance of the CA-SCLD with CRC-16 is better than a

standard SCL decoder but not better than that of a CA-SCLD with shorter CRCs. The CRC-

aided SCL decoders with CRC-4 and CRC-8 have almost the same block-error probability (the

block-error probability of the CA-SCLD with CRC-8 is only marginally better than that of the

CA-SCLD with CRC-4 at Eb/N0 ≥ 3.25 dB). Given this observation and the fact that increasing

the length of CRC decreases the throughput of the decoder (see Section 2.3.5.2), we conclude

that the CRC-4 of (2.37a) is a reasonable choice for a CA-SCLD with list size L = 2.

For L = 4, allocating r = 8 bits for the CRC of (2.37b) turns out to be the most beneficial option.

CRC-4 and CRC-8 will lead to almost identical FER at Eb/N0 ≤ 2.25 dB while CRC-8 improves

the FER significantly more than CRC-4 at higher SNRs. Furthermore, CRC-16 leads to the same

performance as CRC-8 at high SNRs and worse performance than CRC-8 in low-SNR regime.

Finally, for L = 8 we observe that CRC-16 of (2.37c) is the best candidate among the three

different CRCs in the sense that the performance of the CA-SCLD which uses this CRC is

significantly better than that of the decoders using CRC-4 or CRC-8 for Eb/N0 > 2.5 dB, while

56

2.3. Hardware Implementation Results

Table 2.9 – Throughput Reduction in CRC-Aided SCL Decoders

L = 2 L = 4 L = 8
Freq. (MHz) 847 794 637

SCLD

|A| 512 512 512
FC (A) 57 57 57

Lat. (Cycles) 2592 2649 2649
T/P (Mbits/s) 335 307 246

CA-SCLD

|A| 516 520 528
FC (A) 55 54 52

Lat. (Cycles) 2596 2654 2660
T/P (Mbits/s) 334 306 245

Reduction (%) 0.2 0.2 0.4

all three decoders have almost the same FER at lower SNRs (and they all perform better than a

standard SCL decoder).

2.3.5.2 Throughput Reduction

Adding r bits of CRC increases the number of information bits by r , while reducing the number

of groups of frozen channels by at most r . As a result, the sorting latency is generally increased,

resulting in a decrease in the throughput of the decoder. In Table 2.9 we have computed

this decrease in the throughput for different decoders and we see that the CRC-aided SCL

decoders have slightly (at most 0.4%) reduced throughput. For this table, we have picked the

best decoder at each list size in terms of hardware efficiency from Table 2.4.

2.3.5.3 Effectiveness of CRC

The area of the CRC unit for all synthesized decoders is in less than 1 μm2 for the employed

TSMC 90 nm technology. Moreover, the CRC unit does not lie on the critical path of the

decoder. Therefore, it does not affect the maximum achievable operating frequency. Thus

the incorporation of a CRC unit is a highly effective method of improving the performance

of an SCL decoder. For example, it is interesting to note that the CA-SCLD with L = 2 has a

somewhat lower FER than the standard SCL decoder with L = 8 (in both floating-point and

fixed-point versions) in the regime of Eb/N0 > 2.5 dB. Therefore, if a FER in the range of 10−3

to 10−6 is required by the application, using a CA-SCLD with list size L = 2 is preferable to

a standard SCL decoder with list size L = 8 as the former has more than five times higher

hardware efficiency.

2.3.5.4 SC Decoding or SCL Decoding?

Modern communication standards sometimes allow very long blocklengths to be used. For

example, the DVB-S2 standard [33] for digital video broadcasting over satellite links uses

LDPC codes of blocklength up to N = 64800. The error-rate performance of polar codes under

57

Chapter 2. Hardware Decoders for Polar Codes

1.5 2 2.5 3 3.5 4
10−7

10−6

10−5

10−4

10−3

10−2

10−1

Eb /N0 (dB)

Fr
am

e
E

rr
o

r
R

at
e

SCLD
SCLD + CRC-4
SCLD + CRC-8
SCLD + CRC-16

(a) L = 2

1.5 2 2.5 3 3.5 4
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Eb /N0 (dB)

Fr
am

e
E

rr
o

r
R

at
e

SCLD
SCLD + CRC-4
SCLD + CRC-8
SCLD + CRC-16

(b) L = 4

1.5 2 2.5 3 3.5 4
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Eb /N0 (dB)

Fr
am

e
E

rr
o

r
R

at
e

SCLD
SCLD + CRC-4
SCLD + CRC-8
SCLD + CRC-16

(c) L = 8

Figure 2.12 – The performance of LLR-based SCL decoders compared to that of CRC-aided
SCL decoders for L = 2,4,8.

58

2.3. Hardware Implementation Results

Table 2.10 – LLR-Based SC Decoder vs. SCL Decoder Synthesis Results

SC
CA-SCLD

SC
CA-SCLD

L = 2, CRC-4 L = 4, CRC-8
N 2048 1024 4096 1024

Freq. (MHz) 870 847 806 794
Lat. (Cyc./bit) 2.05 2.54 2.06 2.59

Lat. (Cyc.) 4192 2596 8448 2654
T/P (Mbps) 425 334 391 306
Area (mm2) 0.78 0.88 1.51 1.78

conventional SC decoding is significantly improved if the blocklength is increased. However,

a long blocklength implies long decoding latency and large decoders. Thus, an interesting

question is whether it is better to use a long polar code with SC decoding or a shorter one

with SCL decoding, for a given target block-error probability. In order to answer this question,

we first need to find some pairs of short and long polar codes which have approximately

the same block-error probability under SCL and SC decoding, respectively to carry out a fair

comparison.

In Figure 2.13a we see that a (2048,1024) polar code has almost the same FER under SC

decoding as a (1024,512) modified polar code under CA-SCLD with list size L = 2 and CRC-4

of (2.37a). Similarly, in Figure 2.13b we see that a (4096,2048) polar code has almost the same

FER under SC decoding as an (1024,512) modified polar code decoded under CA-SCLD with

list size L = 4 and CRC-8 of (2.37b).

As mentioned earlier, our SCL decoder architecture is based on the SC decoder of [38]. In

Table 2.10 we present the synthesis results for the SC decoder of [38] at block lengths N = 2048

and N = 4096 and compare them with that of our LLR-based SCL decoder, when using the

same TSMC 90nm technology and identical operating conditions. For all decoders, we use

P = 64 PEs per path and QLLR = 6 bits for the quantization of the LLRs.

First, we see that the SCL decoders occupy an approximately 15% larger area than their SC

decoder counterparts. This may seem surprising, as it can be verified that an SC decoder for

a code of length LN requires more memory (LLR and partial sum) than the memory (LLR,

partial sum, and path) required by an SCL decoder with list size L for a code of length N , and

we know that the memory occupies the largest fraction of both decoders. This discrepancy is

due to the fact that the copying mechanism for the partial sum memory and the path memory

still uses L×L crossbars, which occupy significant area. It is an interesting open problem to

develop an architecture that eliminates the need for these crossbars.

Moreover, we observe that both SC decoders can achieve a slightly higher operating frequency

than their corresponding SCL decoders, although the difference is less than 3%. However, the

per-bit latency of the SC decoders is about 20% smaller than that of the SCL decoders, due

to the sorting step involved in SCL decoding. The smaller per-bit latency of the SC decoders

combined with their slightly higher operating frequency, make the SC decoders have an almost

27% higher throughput than their corresponding SCL decoders.

59

Chapter 2. Hardware Decoders for Polar Codes

1.5 2 2.5 3 3.5 4
10−6

10−5

10−4

10−3

10−2

10−1

Eb /N0 (dB)

Fr
am

e
E

rr
o

r
R

at
e

N = 2048, SC, Floating Point
N = 2048, SC, Q = 6
N = 1024, CA-SCLD, Floating-Point
N = 1024, CA-SCLD, Q = 6, M = 8

(a) A (2048,1024) polar code under SC decoding versus a (1024,512) modified
polar code under CA-SCLD with L = 2 and CRC-4 with generator polynomial
(2.37a).

1.5 2 2.5 3 3.5 4
10−7

10−6

10−5

10−4

10−3

10−2

10−1

Eb /N0 (dB)

Fr
am

e
E

rr
o

r
R

at
e

N = 4096, SC, Floating Point
N = 4096, SC, Q = 6
N = 1024, CA-SCLD, Floating-Point
N = 1024, CA-SCLD, Q = 6, M = 8

(b) A (4096,2048) polar code under SC decoding versus a (1024,512) modified
polar code under CA-SCLD with L = 4 and CRC-8 with generator polynomial
(2.37b).

Figure 2.13 – CA-SCLD with L = 2,4, results in the same performance at blocklength N = 1024
as the conventional SC decoding with N = 2048 and N = 4096, respectively.

60

2.3. Hardware Implementation Results

However, from Table 2.10 we see that the SCL decoders have a significantly lower per-codeword

latency. More specifically, the SCL decoder with N = 1024 and L = 2 has a 38% lower per-

codeword latency than the SC decoder with N = 2048, and the SCL decoder with N = 1024

and L = 4 has a 68% lower per-codeword latency than the SC decoder with N = 4096. Thus, for

a fixed FER, our LLR-based SCL decoders provide a solution of reducing the per-codeword

latency at a small cost in terms of area, rendering them more suitable for low-latency applica-

tions than their corresponding SC decoders.

61

Chapter 2. Hardware Decoders for Polar Codes

2.4 Polar Decoder Survey and Comparison with Existing Decoders

In the previous section, we have presented two hardware architectures for SCL decoding of

polar codes. However, there also exist several other decoding algorithms for polar codes, where

the most popular are the standard SC decoding algorithm and the BP decoding algorithm,

which are both described in Section 1.3. Over the past few years, significant advances have

been made in the hardware implementation of SC, BP, as well as SCL decoders for polar codes,

leading to improvements in both the achievable throughput and in the area requirements.

Most hardware implementations target application-specific integrated circuits (ASICs), but

there also exist several implementations of polar decoders on field-programmable gate arrays

(FPGAs) and even some high-speed software implementations for software-defined radio

(SDR) applications.

In this section, we summarize and systematically categorize the techniques that have been

used and the results that have been presented in the polar hardware decoder literature, mainly

focusing on the ASIC implementations. Moreover, we compare the error-correcting perfor-

mance and hardware efficiency of polar decoders with several LDPC and Turbo hardware

decoders that are used in current standards. More specifically, in Section 2.4.1, we sum-

marize the techniques that lead to the advances in the implementation of hardware polar

decoders and we compare the resulting decoders in terms of their area and energy efficiency.

Section 2.4.2, on the other hand, focuses on a comparison of the error-correcting perfor-

mance and the hardware efficiency of polar decoders with LDPC and Turbo codes used in

existing telecommunications standards. More specifically, we present an in-depth compari-

son with the LDPC codes used in the IEEE 802.11ad (WiGig) [32], IEEE 802.11n (Wi-Fi) [31],

and IEEE 802.3an (10 Gb/s Ethernet) [30] standards, as well as the Turbo code used in the

3GPP LTE [59] standard.

We note that error-correcting performance comparisons can sporadically already be found in

the literature. For example, [60] compared an FPGA-based BP polar decoder with an FPGA-

based decoder for the Turbo code of the IEEE 802.16e standard. Moreover, [40] compared an

FPGA-based SC decoder with an FPGA-based decoder for the LDPC code of the IEEE 802.3an

standard. The authors of [21] compared the error-correcting performance of SCL decoding

with the error-correcting performance of the LDPC code used in the IEEE 802.16e standard.

Finally, [61] compared SCL decoding with the LDPC codes used in the IEEE 802.11n and

IEEE 802.3an standards. However, these comparisons were not systematic and no comparison

of the corresponding hardware implementations was made.

2.4.1 Polar Hardware Decoders

2.4.1.1 Successive Cancellation Hardware Decoders

In this section, we provide an overview of the evolution of SC decoder hardware implementa-

tion over the past years. A summary of all SC decoder VLSI implementation results, along with

62

2.4. Polar Decoder Survey and Comparison with Existing Decoders

Table 2.11 – SC Decoder Hardware Implementations

Work Main Contribution N Tech. Area Freq. T/P Power
(nm) (mm2) (MHz) (Mb/s) (mW)

Leroux et al. [62] Linear memory requirement. 1024 65 0.36 500 239 n/a
Mishra et al. [42] First ASIC, two-bit decoding. 1024 180 1.71 150 98 67
Leroux et al. [38] Semi-parallel architecture. 1024 65 0.31 500 246 n/a

Fan et al. [41] Efficient partial sum computation. 1024 65 0.07 1010 497 n/a
Yuan et al. [63] Two-bit decoding with precomputation. 1024 45 0.64 750 500 n/a

Lin et al. [64] SCAN decoder. 1024 90 0.97 571 958 n/a
Che et al. [65] Implementation of fast-SSC decoding. 1024 45 0.28 1040 2001 n/a

Dizdar et al. [66] Single-cycle implementation. 1024 90 3.21 2 2560 191
Giard et al. [67] Fast-SSC decoding for low-rate codes. 1024 65 0.69 600 1860 215
Giard et al. [68] Unrolled decoder implementation. 1024 65 3.22 361 18489 534

Lin et al. [69] Fast-SSC SCAN decoder. 1024 90 1.01 471 1435 n/a

the main contribution of each work, is given in Table 2.11.

First Steps In his original paper, Arıkan already alluded to a high-level isomorphic SC de-

coder architecture, where each of the N log N nodes of the DDG is directly mapped to a

processing element (PE) in hardware. The output of each PE is stored in a register, meaning

that N log N registers are required for storage. Assuming that each node operation requires a

single clock cycle, it can be shown that such an architecture requires 2N −2 clock cycles to

decode a single codeword [20] (i.e., it has a latency of 2N −2 clock cycles). Since each node

only needs to be activated once to decode a single codeword, almost all of the nodes are idle

throughout most of the decoding procedure.

More efficient SC decoder hardware architectures were proposed in [20, 62]. More specifically,

it was pointed out that at stage s of the DDG, only 2s PEs can be activated simultaneously.

Thus, a tree architecture with a full binary tree of PEs of depth n −1 has the same latency

as an isomorphic architecture with N log N PEs. We note that the PEs of the tree decoder

need to support both the f+ and the f− update functions and it was assumed in [20, 62] that

their complexity is two times larger than the complexity of the PEs used in the isomorphic

architecture. Through a similar resource sharing argument, it can be shown that 2N − 1

registers are sufficient to store the intermediate values produced by the PEs. Furthermore,

since only a single stage of the DDG is activated at each clock cycle and the maximum number

of nodes that are activated at once is 2n−1, the tree decoder can be further simplified to a line

decoder architecture with only 2n−1 PEs, which has the same latency as a tree decoder.

It was observed in [38] that the stages that need the fewest PEs (i.e., they are the least par-

allelizable) actually account for most of the decoding latency, as they are activated most

often. Thus, using a semi-parallel decoder architecture that only instantiates P < 2n−1 PEs

has a small impact on the decoding latency, provided that P is not too small, while providing

significant savings in terms of hardware resources. More specifically, the decoding latency for

the semi-parallel architecture with P PEs is 2N + N
P log

(N
4P

)
clock cycles.

The aforementioned SC decoder architectures are summarized in Table 2.12. We observe that

63

Chapter 2. Hardware Decoders for Polar Codes

Table 2.12 – Complexity and Decoding Latency of Different SC Decoder Architectures

PEs Registers Latency (Cycles)
Isomorphic [6, 20, 62] N log N N (log N +1) 2N −2
Tree [20, 62] 2N −2 2N −1 2N −2
Line [20, 62] N 2N −1 2N −2

Semi-parallel [38] P 2N −1 2N + N
P log

(
N
4P

)

the line architecture has the same decoding latency as the isomorphic and tree architectures,

but with a much lower cost in terms of hardware. Moreover, the semi-parallel architecture

provides meaningful trade-offs between hardware complexity and decoding latency. Thus, it

is not surprising that practically all of the SC (and SCL) decoders that followed [20, 62, 38] use

either the line architecture of the semi-parallel architecture.

Multi-Bit Hardware Decoders The successive nature of the SC decoding algorithm makes

large-scale parallelization, which is necessary for high-throughput decoding, challenging.

Hence, the line and semi-parallel SC decoder architectures suffer from relatively high decoding

latency and, thus, low decoding throughput. One way to reduce the decoding latency is to

decode multiple bits simultaneously. For example, in the work of [42], which presented the

first ASIC implementation of an SC decoder, two bits are decoded simultaneously. In particular

u2i+1 can be decoded in parallel with u2i by pre-computing both possible outcomes of the

f− function (i.e., for u2i = 0 and for u2i = 1) and selecting the appropriate result when û2i

becomes available. For two-bit decoding, the additional cost for the pre-computation and the

selection of u2i+1 is negligible both in terms of hardware resources and in terms of the critical

path. Moreover, the decoding latency is reduced by N /2 clock cycles, effectively increasing

the throughput of the SC decoder by 25%. Two-bit decoding was also considered in [63]. This

approach can be generalized to decode more than two bits simultaneously, as described in

the context of SCL decoding in [51]. However, the returns are diminishing as the hardware

cost increases exponentially in the number of simultaneously decoded bits, but the decoding

latency only decreases linearly.

Fast-SSC Hardware Decoders It is possible to reduce the complexity of multi-bit decoders

by exploiting the pattern of frozen and non-frozen bit channels. As a simple example, if we

know that u2i is a frozen bit, then we do not need to pre-compute two values to decode u2i+1,

since we know that u2i = 0. As a more involved example, consider a polar code of length

N = 4 where only u3 is an information bit. It can easily be verified from the encoding process

that this is in fact a repetition code of length N = 4, where the only two valid codewords

are c 1 =
[

0 0 0 0
]

and c 2 =
[

1 1 1 1
]

. Instead of traversing the DDG using the standard SC

decoding algorithm, which would take 7 clock cycles with a semi-parallel architecture with

P = 2, it is possible to directly decode this repetition code by summing up all the input

LLRs and taking a hard decision on the sum in a single clock cycle. Other patterns, such

as single parity-check codes, can be identified and decoded efficiently, saving a significant

64

2.4. Polar Decoder Survey and Comparison with Existing Decoders

Table 2.13 – BP Decoder Hardware Implementations

Work Main Contribution N Tech. Area Freq. Max. Max. T/P Sust. T/P Power
(nm) (mm2) (MHz) Iter. (Mb/s) (Mb/s) (mW)

Park et al. [72] Unidirectional schedule. 1024 65 1.48 300 15 4676 2048 478
Yuan et al. [73] Early termination. 1024 45 1.04 500 40 4500 2588 990

Abbas et al. [74] Sub-graph freezing. 1024 45 0.75 197 15 1683 1683 n/a
Lin et al. [75] Adaptive quantization. 1024 65 1.40 769 5 7870 7870 442

amount of clock cycles. This is the main idea behind the fast-simplified SC (fast-SSC) decoding

algorithm [40], where dedicated decoders are used in order to simultaneously decode groups

of bits that have various frozen and non-frozen bit patterns.

Unrolled Hardware Decoders The main idea behind unrolled decoders is that the SC de-

coding recursion can be (completely or partially) unrolled and mapped to hardware. The

first fully unrolled SC decoder, based on the fast-SSC decoding algorithm, was presented

in [70] and it achieves a decoding throughput of 237 Gb/s, but at a significant cost in terms

of hardware complexity and power.6 Partially unrolled fast-SSC decoders were presented

in [67], which reduce the hardware complexity while still achieving multi-Gb/s throughputs. A

disadvantage of the standard unrolled decoders of [70, 67] is that they can only decode a single

polar code (i.e., only a fixed code rate and blocklength), while non-unrolled SC decoders are

inherently flexible. However, there may still be practical applications since there are examples

of standards (e.g., IEEE 802.3an) that only define a single code. However, a flexible unrolled

decoder architecture was also presented in [68]. This decoder can decode a master polar

code and several shorter polar codes of various rates with a small penalty in terms of the

area requirements with respect to a non-flexible decoder. Moreover, a single-cycle unrolled

decoder that remains flexible by not applying any code-specific simplifications was presented

in [66].

SCAN Hardware Decoders As explained in Section 1.3.3.4, a SCAN decoder is essentially a

BP decoder with an SC schedule. An FPGA implementation of SCAN decoding was presented

in [71]. A SCAN decoder that also includes ideas from fast-SSC decoding was presented in [64],

leading to a soft-output decoder with significantly lower area requirements than conventional

BP decoders. Some more ideas from fast-SSC decoding were added to the same decoder in the

work of [69], further increasing the decoding throughput.

2.4.1.2 Belief Propagation Hardware Decoders

In this section, we describe the main ideas behind VLSI implementations of BP polar decoders

in the literature. The main contributions and results of each paper are summarized in Ta-

ble 2.13. We note that in Table 2.13 we make a distinction between the maximum throughput

6We note that the decoder of [70] was implemented on an FPGA and is thus not directly included in our
comparison.

65

Chapter 2. Hardware Decoders for Polar Codes

and the sustained throughput of each BP decoder. All presented BP decoders use some form of

early termination, meaning that the average number of iterations is lowered, but the runtime

of the BP decoder becomes variable. Thus, some codeword buffers are needed in order for

the decoder to be able to sustain its maximum throughput, but all presented area results

exclude these buffers. Thus, for fair comparison with SC and SCL decoders, we also present

the sustained throughput, which is the throughput of the BP decoder when it always uses its

maximum decoding iterations.

First Steps The first ASIC of a BP polar decoder was presented in [72]. This decoder uses a

single column of N bi-directional PEs that calculate both the left-to-right and the right-to-

left messages at the same time. This allows the decoder to process all N log N nodes of the

DDG in log N clock cycles, thus effectively performing one BP iteration per log N clock cycles.

Furthermore, using bidirectional PEs also reduces the message storage memory requirements

by 50%. Moreover, the authors of [72] use a latch-based memory and a bit-splitting register

file with logic-in-memory circuits, which reduce congestion and lead to a high area utilization

of 85%.

Early Termination When decoding LDPC codes, early termination is performed using the

parity-check matrix H, since for any valid codeword c we have Hc = 0, and decoding is usually

terminated when Hĉ = 0, where ĉ denotes the codeword estimate produced by the LDPC

decoder. However, with polar codes the decoder output is an estimate of the information

vector û, which cannot directly be used to detect a valid codeword. For this reason, other early

termination methods have been explored in the literature. For example, the authors of [72]

already used a simple early termination scheme, where decoding halts when the bit-decisions

do not change for three consecutive BP iterations. More early termination methods were

explored in [73], where a G N matrix based and a minimum LLR based early termination

method is proposed. In the G N matrix based early termination method, hard decisions are

taken on both sides of the DDG, leading to an estimate of û and an estimate of ĉ and if ûG = ĉ

holds, decoding halts. The minimum LLR criterion examines all the decision LLRs and if

the minimum absolute value of the decision LLRs is above some predefined threshold β,

then the decisions are assumed to be sufficiently reliable and decoding halts. A method

to adapt the threshold β to the channel SNR is also presented in [72]. An alternative early

termination method, which is based on subgraph freezing, was presented in [74]. In this

early termination method, hard decisions are taken on sub-vectors of ĉ, which correspond

to constituent codes of the polar code. These sub-vector decisions are frozen (i.e., no longer

updated in the BP schedule) if re-encoding them leads to an information sub-vector where

the frozen bit positions have the correct frozen values. Decoding halts when all sub-vectors of

ĉ have been frozen.

66

2.4. Polar Decoder Survey and Comparison with Existing Decoders

2.4.1.3 Successive Cancellation List Hardware Decoders

In this section, we provide an overview of the evolution of SCL decoder hardware implementa-

tion over the past years. A summary of all SCL decoder VLSI implementation results, along

with the main contribution of each work, is given in Table 2.14.

First Steps The first log-likelihood (LL) based hardware implementation of an SCL decoder

was presented in [7]. We note that this decoder is part of our work and it was described in

detail in Section 2.1. The proposed architecture essentially consists of L semi-parallel SC

decoders that compute the L path metrics in parallel. The L paths only interact when stage n

of the DDG is reached, at which point the 2L candidate path metrics need to be sorted and

each of the L active paths is either duplicated, discarded, or just kept active. A smart copying

is used, which copies pointers to banks of LLs instead of copying the LLs themselves, thus

saving saving a large amounts of crossbars that would be needed to directly copy the LL banks

from one path to another. A similar architecture that also supports CRC-aided decoding, but

does not use the smart copying mechanism, was presented in [53, 52].

LLR-Based SCL Decoders As explained in Section 1.3.3.2, the original SCL decoding algo-

rithm was described using likelihoods. While this description is mathematically valid, it causes

significant numerical problems and leads to costly hardware implementations. For this reason,

the first hardware implementations of [7, 53, 76] reformulated the SCL decoding algorithm in

the log-likelihood domain. While this reformulation provides increased numerical stability

with respect to the likelihood based formulation, it still requires large amounts of storage and

complex message update rules.

SC decoding can be reformulated in the LLR domain in a straightforward manner, but the

reformulation of the SCL decoding algorithm turns out to be more complicated. To this end,

the authors of [8, 9] introduced a cumulative path metric that is updated iteratively based on

the decision LLRs. This enables the hardware implementation of the SCL decoding algorithm

using L parallel LLR-based SC decoder cores, which are both more compact and faster than

their log-likelihood based counterparts. We note that this decoder is also part of our work and

it was described in detail in Section 2.2. The same LLR-based cumulative path metric was later

derived independently in [77].

Path Metric Sorting In SCL decoding, when reaching a node of stage n of the DDG that

corresponds to an information bit, the L active paths are expanded into 2L candidate paths,

out of which the L paths with the best path metric are kept and the rest are discarded. The most

common approach in the literature is to sort the 2L paths with respect to their path metrics

and to simply select the L first paths. We note that sorting can be ascending or descending,

depending on the exact definition of the path metric, but the sorting procedure is essentially

the same in both cases. This step of the SCL decoding algorithm becomes increasingly complex

67

Chapter 2. Hardware Decoders for Polar Codes

as the list size L is increased and, in most hardware architectures, the path metric sorting unit

is the limiting factor in terms of the critical path.

The first SCL decoder hardware architecture of [7] used a simple radix-2L sorting network,

while subsequent implementations used more sophisticated sorting networks, such as the

bitonic sorting network [53, 51, 52] and the Batcher odd–even mergesort network [77]. The

LLR-based path metric introduced in [7, 77] has some properties that can also simplify the task

of path metric sorting. These properties were exploited in [10, 78] in order to derive sorting

networks that are tailored to SCL decoding, which have lower hardware complexity and shorter

critical paths than their more generic counterparts. Finally, the authors of [79, 80] considered

approximating the path sorting step, leading to simplified hardware implementations at the

cost of some error correction performance degradation.

Multi-bit Hardware SCL Decoders The multi-bit decoding approaches of [42, 63] can be

readily extended to SCL decoding. For example, [51] considered multi-bit decoding and

presented a hardware architecture for LL-based SCL decoding. The multi-bit approach was

later extended to LLR-based SCL decoding for two [81] and multiple [82] simultaneously

decoded bits. A similar approach, which groups multiple bits into symbols and transforms

the SCL decoder to a symbol-based SCL decoder was presented in [83] and is shown to offer

similar decoding throughput improvements compared to standard multi-bit decoding, but

with lower decoding complexity.

Fast-SSC Based Hardware SCL Decoders The family of fast-SSC decoders is not applicable

verbatim to the LLR-based SCL decoder. The reason for this complication is that, the path

metric must be updated even when frozen bits are encountered. Nevertheless, an SCL decoder

hardware implementation based on fast-SSC with some approximations of the path metric

updates was presented in [80]. An additional important algorithmic step in the direction of

incorporating more techniques from fast-SSC into SCL decoding was recently made in [61].

However, the authors of [61] did not provide a hardware implementation of their described

algorithm.

2.4.1.4 Polar Decoder Comparison

For the hardware comparison, the main metrics of interest are: area (mm2), decoding through-

put (Mb/s), and power (mW). Unfortunately, as can be seen in Tables 2.11–2.14, power results

for polar decoders are scarce, making a useful comparison with existing decoders difficult.

Thus, for the comparison of polar decoders with LDPC and Turbo decoders we mainly consider

the area and the decoding time complexity (which is the inverse of the decoding throughput).

These metrics are shown on a double-logarithmic plot where the area is on the vertical axis

and the time complexity is on the horizontal axis. We note that hardware efficiency is defined

as unit area per decoded bit and is measured in mm2/bits/s. Thus, on the aforementioned plot,

68

2.4. Polar Decoder Survey and Comparison with Existing Decoders

Table 2.14 – SCL Decoder Hardware Implementations (L = 4)

Work Main Contribution N Tech. Area Freq. T/P
(nm) (mm2) (MHz) (Mb/s)

Balatsoukas-Stimming et al. [7] First architecture, efficient path copying. 1024 90 2.62 730 288
Lin et al. [53] First CRC-aided decoder. 1024 90 3.02 657 216

Balatsoukas-Stimming et al. [9] LLR-based implementation. 1024 90 1.78 794 307
Fan et al. [79] Low-complexity path metric sorting. 1024 90 n/a n/a n/a

Hashemi et al. [84] Reduced memory requirements. 2048 90 1.36 500 164
Lin et al. [52] Efficient memory and metric sorting. 1024 90 1.13 476 173
Lin et al. [80] Fast-SSC decoding with approximations. 1024 90 3.83 403 1140

Xiong et al. [85] Partial ML decoding, flexibility. 1024 90 1.89 409 1094
Yuan et al. [51] Multi-bit decision LL-based decoding. 1024 65 2.14 400 401

Xiong et al. [83] Symbol-based SCL decoding. 1024 90 1.21 500 313
Yuan et al. [82] Multi-bit decision LLR-based decoding. 1024 65 1.18 360 675

10−1 100 10110−1

100

101

Constant HW
Efficiency

ns

Better HW

Efficiency

Higher T/P

Low
er

A
rea

[72]

[73]

[74]
[75]

[62]

[42]
[38]

[41]

[63]

[64]
[65]

[66]

[67]
[68]

[69]

[7][53]

[9]
[79]

[84]

[80]

[52]

[85]

[51]

[83]

[82]

Time Complexity (ns/bit)

A
re

a
(m

m
2

) BP
SC
SCL

Figure 2.14 – Time complexity vs. area for various decoders for polar codes. All decoders
are given for N = 1024. The SCL decoder implementations are given for L = 4. The area and
operating frequency are normalized to 90 nm CMOS technology using standard technology
scaling rules.

lines with a slope of −1 correspond to iso-hardware efficiency lines. In Figure 2.14, we provide

a summary of the area and time complexity of VLSI implementations of SC, BP, and SCL polar

decoders. All synthesis results are scaled to a 90 nm CMOS technology. We use standard

Dennard scaling laws [86], so that the area scales as s2 and the operating frequency scales as

1/s, where s is the technology feature size. We observe that BP decoders generally provide

very high throughputs, although they are matched by some of the most recent fast-SSC based

SC decoders. We note, however, that some fast-SSC decoders only work for a specific rate

and that BP decoding provides soft output values, which are required for iterative receivers.

Moreover, the BP decoders also generally have the highest area requirements of all decoders.

SCL decoders generally have the lowest throughput of all decoders, as well as higher area

requirements than SC decoders and similar area requirements to BP decoders. However, they

provide significantly improved error-correcting performance with respect to both SC and BP

69

Chapter 2. Hardware Decoders for Polar Codes

102 103 104 105101

102

103

Constant Power (m
w

)

Higher T/P

Lo
w

er
E

n
-

er
gy

Lower

Power

[72] [73]

[75]

[42]

[66]

[67]

[68]

Throughput (Mb/s)

E
n

er
gy

E
ffi

ci
en

cy
(n

J/
b

it
)

BP
SC

Figure 2.15 – Throughput vs. power for various decoders for polar codes. The power and
operating frequency are normalized to 90 nm CMOS and 1 V using standard technology scaling
rules.

Table 2.15 – Properties of the LDPC and Turbo codes used for comparison.

Blocklength Throughput Performance Rates
IEEE 802.11n Short-medium Medium Medium Medium-high
IEEE 802.11ad Short High Medium Medium-high
IEEE 802.3an Medium Very high Good High
3GPP LTE Short-long Medium Very Good Low-high

decoding.

In Figure 2.15, we plot the energy efficiency of the few SC and BP decoder implementations

that report power results as a function of the decoding throughput. We note that the lines with

slope −1 in this plot correspond to iso-power lines. We observe that the SC decoders have

significantly lower power requirements than the BP decoders. However, the throughput of

the reported SC decoders is also significantly lower than the throughput of the BP decoders,

leading to similar energy efficiency numbers of both types of decoders.

2.4.2 Comparison of Polar Codes with LDPC and Turbo Codes

In this section, we compare polar code decoders with decoder for the LDPC and Turbo codes

used in some current communications standards, both in terms of error-correcting perfor-

mance and in terms of their corresponding hardware implementations. More specifically, we

perform a comparison with the LDPC codes used in the IEEE 802.11ad (WiGig) [32], IEEE

802.11n (Wi-Fi) [31], and IEEE 802.3an (10 Gb/s Ethernet) [30] standards, as well as the Turbo

code used in the 3GPP LTE [59] standard. These codes were selected to cover a wide range of

70

2.4. Polar Decoder Survey and Comparison with Existing Decoders

scenarios in terms of blocklength, throughput, and error-correcting performance, as summa-

rized in Table 2.15.

2.4.2.1 Comparison Setup

For the comparison of the error-correcting performance we use floating-point versions of

the decoding algorithms, since the quantization parameters of the hardware decoders are

usually chosen so that the performance loss with respect to the floating-point implementation

is negligible. Moreover, for all simulations the encoded codewords are modulated using BPSK

and they are transmitted over an AWGN channel. For almost all decoders for polar codes and

LDPC codes we use the (scaled or offset) min-sum approximation for check node updates. The

scaling and/or offset factor is given, whenever applicable. The Turbo decoder for the Turbo

code of the LTE standard also uses the corresponding log-likelihood domain approximation,

which we refer to as the max-log approximation. All polar codes are designed using the Monte

Carlo based method of Arıkan [6]. In order to speed up our simulations of BP decoding for

polar codes, we used the G matrix based early termination method of [73], which has negligible

impact on the error-correcting performance. For the SCL decoders, we use the following CRC

polynomials

CRC-8 : g8(x) = x8 +x5 +x4 +x3 +1, (2.38)

CRC-16 : g16(x) = x16 +x15 +x2 +1, (2.39)

CRC-32 : g32(x) = x32 +x26 +x23 +x22 +x16+ (2.40)

+x12 +x11 +x10 +x8 +x7 ++x5 +x4 +x3 +1.

The comparison of hardware decoders is performed in two stages. First, we compare the

existing polar decoders with the decoders for the LDPC or Turbo code in question by only

considering technology scaling to normalize the area and operating frequency. All decoders

are scaled to a 90 nm CMOS technology. As previously, we use Dennard scaling laws [86], so

that the area scales as s2 and the operating frequency scales as 1/s, where s is the technology

feature size. For all comparisons, we also provide tables with the original (unscaled) results as

found in the literature for completeness.

In the second stage, we perform a hardware comparison by selecting parameters for the polar

decoders (e.g., blocklength, list size, number of iterations) that lead to an error-correcting

performance that is as close as possible to that of the competing LDPC or Turbo codes. In other

words, the second stage is an iso-FER comparison. In order to scale the area of the reference

polar decoders with the blocklength and list size (in addition to technology scaling), we make

the following assumptions: The area of the SC and SCL decoders scales linearly with the

blocklength, and the area of the BP decoders scales as N log N . The area of the SCL decoders

scales linearly with the list size. The decoding latency of the BP decoders scales linearly with

the maximum number of iterations. As it is very difficult to predict the frequency scaling

71

Chapter 2. Hardware Decoders for Polar Codes

1 2 3 4 510−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

Fr
am

e
E

rr
o

r
R

at
e

R = 1/2

2 3 4 5 6 710−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

R = 13/16

LDPC (N = 672): 802.11ad (I = 5)
Polar (N = 1024): BP (I = 20) SC SCL (L = 2)

Figure 2.16 – Performance of the LDPC code of the IEEE 802.11ad standard compared to polar
codes under SC decoding, BP decoding, and SCL decoding (8-bit CRC).

with respect to the aforementioned parameters, we use the original, non-scaled, operating

frequency results.

2.4.2.2 Polar Codes vs. IEEE 802.11ad LDPC Codes

The IEEE 802.11ad standard [32] uses quasi-cyclic (QC) LDPC codes with a blocklength of

N = 672 and code rates R ∈ {1
2 , 5

8 , 3
4 , 13

16

}
. We simulated the performance of this LDPC code

using a layered offset min-sum decoding algorithm with a maximum of I = 5 iterations and an

offset of β= 0.2, which are numbers commonly found in the literature, as can be seen in in

Table 2.16. We provide a comparison for the lowest rate
(
R = 1

2

)
and the highest rate

(
R = 13

16

)
found in the IEEE 802.11ad standard.

Plain Comparison We first compare the performance of the IEEE 802.11ad LDPC code with

the performance of polar codes with blocklength N = 1024. The polar codes are decoded using

BP decoding with I = 20 maximum iterations and a scaling factor of α= 0.9375, SC decoding,

and SCL decoding with L = 2 and a CRC of 8 bits. The codes for R = 1
2 and R = 13

16 were designed

for an SNR of 1 dB and 4 dB, respectively. In Figure 2.16, we observe that SC decoding has

similar performance to the IEEE 802.11ad LDPC code for both R = 1
2 and R = 13

16 . BP decoding,

on the other hand, has approximately 0.75 dB worse performance than the IEEE 802.11ad

LDPC codes for R = 1
2 at a FER of 10−5, while for R = 13

16 the performance of polar codes and

72

2.4. Polar Decoder Survey and Comparison with Existing Decoders

10−1 100 10110−1

100

101

Constant HW
Efficiency

Better HW

Efficiency

Higher T/P

Low
er

A
rea

[87]

[88]

[89]

[90]

[91][92]
[93]

[94]

[95]

[96]

[97]

[98]

Time Complexity (ns/bit)

A
re

a
(m

m
2

) 802.11ad
BP
SC
SCL

Figure 2.17 – Hardware efficiency of IEEE 802.11ad LDPC decoder implementations and SC,
BP, and SCL polar decoder implementations when only considering technology scaling.

the IEEE 802.11ad LDPC code is very similar. Finally, SCL decoding with L = 2 has better

performance than the IEEE 802.11ad LDPC codes, resulting in a gain of approximately 0.25 dB

at a FER of 10−5 for both R = 1
2 and R = 13

16 .

In Figure 2.17, we compare the hardware efficiency of several IEEE 802.11ad LDPC decoders

with the hardware efficiency of SC, BP, and SCL decoders for polar codes, when only consider-

ing technology scaling and not the iso-FER case. The original results for the LDPC decoders

are summarized in Table 2.16. We observe that the best SC and all BP based polar decoders

compete well in terms of area, throughput, and hardware efficiency with the LDPC decoders.

SCL decoders, on the other hand, have lower hardware efficiency in general, mainly due to

their lower throughput.

Iso-FER Comparison The iso-FER comparison in this case is relatively simple, since SC and

BP decoding with N = 1024 already perform very similarly to the LDPC codes of the IEEE

802.11ad standard. SCL decoding with N = 1024 and L = 2, on the other hand, performs better

than the LDPC code of the IEEE 802.11ad standard, meaning that the blocklength of the polar

code can potentially be reduced. In Figure 2.18, we observe that SCL decoding with L = 2, a

CRC of 8 bits, and a blocklength of N = 512 is indeed sufficient to match the error-correcting

performance of the longer LDPC code. We note that the N = 512 codes used for SCL decoding

for R = 1
2 and R = 13

16 were designed for an SNR of 1 dB and 4 dB, respectively.

In Figure 2.19 we observe that, when considering the iso-FER case, the hardware efficiency of

SC and BP decoders is unaffected, while the SCL decoders have an improved area efficiency,

due to the reduced area requirements from the shorter blocklength, which is, in some cases,

73

Chapter 2. Hardware Decoders for Polar Codes

1 2 3 410−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

Fr
am

e
E

rr
o

r
R

at
e

R = 1/2

2 3 4 5 6 710−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

R = 13/16

LDPC (N = 672): 802.11ad (I = 5)
Polar (N = 1024): BP (I = 20) SC

Polar (N = 512): SCL (L = 2)

Figure 2.18 – Performance of the LDPC code of the IEEE 802.11ad standard compared to
polar codes under SC decoding and BP decoding, and a polar code with N = 512 under SCL
decoding (8-bit CRC).

10−1 100 10110−1

100

101

Constant HW
Efficiency

Better HW

Efficiency

Higher T/P

Low
er

A
rea

[87]

[88]

[89]

[90]

[91][92]
[93]

[94]

[95]

[96]

[97]

[98]

Time Complexity (ns/bit)

A
re

a
(m

m
2

) 802.11ad
BP
SC
SCL

Figure 2.19 – Hardware efficiency of IEEE 802.11ad LDPC decoder implementations and SC,
BP, and SCL polar decoder implementations when scaling for iso-FER.

74

2.4. Polar Decoder Survey and Comparison with Existing Decoders

1 2 3 410−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

Fr
am

e
E

rr
o

r
R

at
e

R = 1/2

2 3 4 5 610−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

R = 5/6

LDPC (N = 1944): 802.11n (I = 12)
Polar (N = 1024): BP (I = 20) SC SCL (L = 4)

Figure 2.20 – Performance of the LDPC code of IEEE 802.11n standard compared to polar
codes with N = 1024 under SC decoding, BP decoding, and SCL decoding (8-bit CRC).

comparable to that of the IEEE 802.11ad LDPC decoders. However, the throughput of most

SCL decoders is still not comparable to that of the IEEE 802.11ad LDPC decoders.

2.4.2.3 Polar Codes vs. IEEE 802.11n LDPC Codes

The IEEE 802.11n standard [31] uses QC-LDPC codes with blocklengths of N ∈ {648,1296,1944}

and code rates R ∈ {1
2 , 2

3 , 3
4 , 5

6

}
. We simulated the performance of this LDPC code using a

layered offset min-sum decoding algorithm with a maximum of I = 12 iterations and an offset

of β= 0.5, which are numbers commonly found in the literature as can be seen in Table 2.17.

We provide a comparison for N = 1944 and for the lowest rate
(
R = 1

2

)
and the highest rate(

R = 5
6

)
found in the IEEE 802.11n standard.

Plain Comparison We first compare the performance of the IEEE 802.11n LDPC code with

the performance of polar codes with blocklength N = 1024. The polar codes are decoded using

BP decoding with I = 20 maximum iterations and a scaling factor of α= 0.9375, SC decoding,

and SCL decoding with L = 4 and a CRC of 8 bits. The polar codes for R = 1
2 and R = 5

6 were

designed for an SNR of 1 dB and 5 dB, respectively. In Figure 2.20, we observe that polar codes

under BP decoding have a 2.25 dB and 1.5 dB loss at a FER of 10−5 with respect to the LDPC

code of the IEEE 802.11n standard for R = 1
2 and R = 5

6 , respectively. Polar codes under SC

decoding perform slightly better at low FERs, having a loss of 1.5 dB and 1 dB compared to the

LDPC code at a FER of 10−5 for R = 1
2 and R = 5

6 , respectively. Polar codes under SCL decoding

75

Chapter 2. Hardware Decoders for Polar Codes

10−2 10−1 100 101 10210−1

100

101

102

Constant H
W

Efficiency

W
E

H

Better HW

Efficiency

Higher T/P

Low
er

A
rea

[99] [100]
[101]

[35]

[102]

[103]

[104]

[105]

[106]

Time Complexity (ns/bit)

A
re

a
(m

m
2

) 802.11n
BP
SC
SCL

Figure 2.21 – Hardware efficiency of IEEE 802.11n LDPC decoder implementations and SC, BP,
and SCL polar decoder implementations when only considering technology scaling.

with L = 4 provide the best performance with a loss of only 0.75 dB and 0.5 dB at a FER of 10−5

for R = 1
2 and R = 5

6 , respectively.

In Figure 2.21, we compare the hardware efficiency of several IEEE 802.11n LDPC decoders with

the hardware efficiency of SC, BP, and SCL decoders for polar codes, when only considering

technology scaling and not the iso-FER case. The original results for the IEEE 802.11n LDPC

decoders are summarized in Table 2.17. We observe that the best SC and BP decoders have

practically the same hardware efficiency with the best IEEE 802.11n LDPC decoders. Moreover,

the SCL decoders, which can more closely match the IEEE 802.11n LDPC decoders in terms

of the error-correcting performance, also have hardware efficiencies that are close to several

IEEE 802.11n LDPC decoders.

Iso-FER Comparison In Figure 2.22, we observe that a polar code with N = 8192 under SC

decoding has a small loss of 0.5 dB with respect to the IEEE 802.11n LDPC code with N = 1944

at a FER of 10−5 for R = 1
2 , while the error-correcting performance for R = 5

6 is very similar.

Moreover, a polar code with N = 1024 under SCL decoding with L = 8 and an 8-bit CRC has

practically identical performance with the aforementioned polar code with N = 8192 under

SC decoding for both R = 1
2 and R = 5

6 . Unfortunately, the polar code with N = 8192 under

BP decoding cannot reach the performance of the IEEE 802.11n LDPC code, even when a

maximum of I = 40 iterations are performed. We note that the polar codes with N = 8192 used

for SC and BP decoding were designed for an SNR of −1 dB 3 dB for R = 1
2 and 5

6 , respectively,

while the polar codes with N = 1024 used for SCL decoding with L = 8 were designed for an

SNR of 0 dB and 4 dB for R = 1
2 and 5

6 , respectively.

76

2.4. Polar Decoder Survey and Comparison with Existing Decoders

1 1.5 2 2.5 310−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

Fr
am

e
E

rr
o

r
R

at
e

R = 1/2

2 3 4 510−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

R = 5/6

LDPC (N = 1944): 802.11n (I = 12)
Polar (N = 8192): BP (I = 40) SC

Polar (N = 1024): SCL (L = 8)

Figure 2.22 – Performance of the LDPC code of IEEE 802.11n standard compared to polar
codes with N = 1024 under SC decoding, BP decoding (I = 40), and SCL decoding (8-bit CRC).

10−2 10−1 100 101 10210−1

100

101

102

Constant H
W

Efficiency

W
E

H

Better HW

Efficiency

Higher T/P

Low
er

A
rea

[99] [100]
[101]

[35]

[102]

[103]

[104]

[105]

[106]

Time Complexity (ns/bit)

A
re

a
(m

m
2

) 802.11n
BP
SC
SCL

Figure 2.23 – Hardware efficiency of IEEE 802.11n LDPC decoder implementations and SC, BP,
and SCL polar decoder implementations when scaling for iso-FER.

77

Chapter 2. Hardware Decoders for Polar Codes

2.5 3 3.5 4 4.5 5 5.5 610−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

Fr
am

e
E

rr
o

r
R

at
e

R = 13/16

LDPC (N = 2048):
802.3an (I = 8)

Polar (N = 1024):
BP (I = 20)
SC
SCL (L = 4)

Figure 2.24 – Performance of the LDPC code of the IEEE 802.3an standard compared to polar
codes with N = 1024 under SC decoding, BP decoding, and SCL decoding (8-bit CRC).

In Figure 2.23, we compare the hardware efficiency of several IEEE 802.11n LDPC decoders

found in the literature with the hardware efficiency of SC, BP, and SCL decoders for polar

codes, which have been scaled in order to attempt to match the FER performance of the

LDPC decoders. In the iso-FER case, we observe that, on average, the SCL decoders have the

highest hardware efficiency out of the polar decoders. Both the SC and the BP decoders have

significantly higher area requirements when trying to match the FER performance of the IEEE

802.11n LDPC codes. Finally, we observe that, on average, the IEEE 802.11n LDPC decoders

have a slightly higher hardware efficiency than the polar decoders.

2.4.2.4 Polar Codes vs. IEEE 802.3an LDPC Codes

The IEEE 802.3an standard [30] uses a (6,32)-regular LDPC code with blocklength N = 2048

and code design rate R = 13
16 . In our simulations, the LDPC code is decoded using a flooding

sum-product decoder with I = 8 maximum decoding iterations, which is a number that is

commonly found in the literature as can be seen in Table 2.18 (we note that 4-5 layered

iterations provide similar error-correcting performance to 8-10 flooding iterations).

Plain Comparison We first compare the performance of the IEEE 802.3an LDPC code with

the performance of polar codes with blocklength N = 1024. The polar codes are decoded using

BP decoding with I = 20 maximum iterations and a scaling factor of α= 0.9375, SC decoding,

and SCL decoding with L = 4 and CRC of 8 bits. The polar code for R = 13
16 was designed for

an SNR of 4 dB. In Figure 2.24, we observe that the polar code under SC and BP decoding has

78

2.4. Polar Decoder Survey and Comparison with Existing Decoders

10−2 10−1 100 101 10210−1

100

101

102

Constant H
W

Efficiency

W
E

H

Better HW

Efficiency

Higher T/P

Low
er

A
rea

[107]

[108]

[108]
[109]

Time Complexity (ns/bit)

A
re

a
(m

m
2

) 802.3an
BP
SC
SCL

Figure 2.25 – Hardware efficiency of IEEE 802.3an LDPC decoder implementations and SC, BP,
and SCL polar decoder implementations when only considering technology scaling.

a loss of approximately 0.75 dB and 1.25 dB with respect to the LDPC code at a FER of 10−5,

respectively. SCL decoding, on the other hand, provides slightly superior performance than

the IEEE 802.3an LDPC code for FERs down to 10−6.

In Figure 2.25, we compare the hardware efficiency of several IEEE 802.3an LDPC decoders with

the hardware efficiency of SC, BP, and SCL decoders for polar codes, when only considering

technology scaling and not the iso-FER case. The original results for the LDPC decoders are

summarized in Table 2.18. Even though the SC and BP polar decoders have lower throughput

than the IEEE 802.3an LDPC decoders, they also have significantly lower area requirements,

leading to similar hardware efficiency. SCL decoders, on the other hand, have lower hardware

efficiency in general, mainly due to their lower throughput.

Iso-FER Comparison SCL decoding with N = 1024, L = 4, and an 8-bit CRC already performs

better than the IEEE 802.3an LDPC code down to a FER of 10−6. In Figure 2.26, we observe

that a polar code with N = 4096 under SC decoding has better error-correcting performance

than the IEEE 802.3an LDPC code down to a FER of 10−6. BP decoding with I = 40 for the

same polar code, however, has a small loss of 0.5 dB with respect to the IEEE 802.3an LDPC

code at a FER of 10−5. We note that the polar code for N = 4096 and R = 13
16 used for SC and BP

decoding was designed for an SNR of 3 dB.

In Figure 2.27, we compare the hardware efficiency of several IEEE 802.3an LDPC decoders

found in the literature with the hardware efficiency of SC, BP, and SCL decoders for polar

codes, which have been scaled in order to attempt to match the FER performance of the LDPC

decoders. In the iso-FER case, we observe that, on average, the polar decoders have lower

79

Chapter 2. Hardware Decoders for Polar Codes

2.5 3 3.5 4 4.5 510−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

Fr
am

e
E

rr
o

r
R

at
e

R = 13/16

LDPC (N = 2048):
802.3an (I = 8)

Polar (N = 4096):
BP (I = 40)
SC

Polar (N = 1024):
SCL (L = 4)

Figure 2.26 – Performance of the LDPC code of the IEEE 802.3an standard compared to polar
codes with N = 4096 under SC and BP decoding, and N = 1024 under SCL decoding (8-bit
CRC).

10−2 10−1 100 101 10210−1

100

101

102

Constant H
W

Efficiency

W
E

H

Better HW

Efficiency

Higher T/P

Low
er

A
rea

[107]

[108]

[108]
[109]

Time Complexity (ns/bit)

A
re

a
(m

m
2

) 802.3an
BP
SC
SCL

Figure 2.27 – Hardware efficiency of IEEE 802.3an LDPC decoder implementations and SC, BP,
and SCL polar decoder implementations when scaling for iso-FER.

80

2.4. Polar Decoder Survey and Comparison with Existing Decoders

0 1 2 3 410−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

Fr
am

e
E

rr
o

r
R

at
e

R = 1/3

1 2 3 410−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

R = 1/2

Turbo (N = 6144): LTE (I = 6)

Polar (N = 1024): BP (I = 20) SC SCL (L = 4)

Figure 2.28 – Performance of Turbo code of LTE standard compared to polar codes with
N = 1024 under SC decoding, BP decoding (I = 15), and SCL decoding (L = 4, 8-bit CRC).

hardware efficiency than the IEEE 802.3an LDPC decoders, while all of the polar decoders

have very similar hardware efficiency. In terms of decoding throughput, only the BP decoders

and a few SC decoders can approach the IEEE 802.3an LDPC decoders, albeit with slightly

higher area requirements.

2.4.2.5 Polar Codes vs. 3GPP LTE Turbo Codes

The 3GPP LTE standard [59] defines a baseline Turbo code with rate R = 1
3 and information

bit interleaver block sizes ranging from K = 40 to K = 6144 bits. Multiple code rates are

supported, both higher and lower than R = 1
3 , which are obtained by puncturing and parity

bit repetition, respectively. We simulated the performance of this Turbo code for the largest

supported interleaver length K = 6144 under max-log decoding with I = 6 iterations, which is

a number that is commonly found in the hardware implementation literature, as can be seen

in Table 2.19. We note that an interleaver length of K = 6144 leads to a codeword blocklength

N = 12288 for rate R = 1
2 and a codeword blocklength of N = 18432 for rate R = 1

3 . We provide

a comparison for R = 1
3 and R = 1

2 .

Plain Comparison We first compare the performance of the 3GPP LTE Turbo code with the

performance of a polar code with blocklength N = 1024. The polar codes for R = 1
3 and R = 1

2

were designed for an SNR of −2 dB and 1 dB, respectively. The polar codes are decoded using

81

Chapter 2. Hardware Decoders for Polar Codes

10−2 10−1 100 101 10210−1

100

101

102

Constant H
W

Efficiency

W
E

H

Better HW

Efficiency

Higher T/P

Low
er

A
rea

[110]

[111]

[112]

[113]
[114]

[115]

[116]

[116]

Time Complexity (ns/bit)

A
re

a
(m

m
2

) LTE
BP
SC
SCL

Figure 2.29 – Hardware efficiency of LTE Turbo decoder implementations and SC, BP, and SCL
polar decoder implementations when only considering technology scaling.

BP decoding with I = 20 maximum iterations and a scaling factor of α= 0.9375, SC decoding,

and SCL decoding with L = 4 and CRC of 8 bits. In Figure 2.28, we observe that, for both

examined rates, polar codes under SC and BP decoding have a loss of approximately 2 dB with

respect to the 3GPP LTE Turbo code at a FER of 10−5. Polar codes under SCL decoding, on the

other hand, have a lower loss of approximately 1 dB with respect to the 3GPP LTE Turbo code

at a FER of 10−5.

In Figure 2.29, we compare the hardware efficiency of several 3GPP LTE Turbo decoders found

in the literature with the hardware efficiency of SC, BP, and SCL decoders (L = 4) for polar

codes, when only considering technology scaling and not the iso-FER case. The original

non-scaled results for the LTE decoders are summarized in Table 2.19. We observe that most

SC and BP decoders are faster and have better area efficiency than the LTE decoders. Moreover,

most SCL decoders have lower decoding throughput but also lower area requirements than

their LTE decoder counterparts, leading to slightly better hardware efficiency on average.

Iso-FER Comparison In Figure 2.30, we observe that a polar code with N = 16384 under

SC decoding provides similar error-correcting performance with the LTE Turbo code with

K = 6144 at a FER of 10−5 for both R = 1
3 and R = 1

2 and a polar code with N = 2048 under SCL

decoding with L = 8 and an 8-bit CRC provides similar error-correcting performance with the

LTE Turbo code with K = 6144 at a FER of 10−5 for both R = 1
3 and R = 1

2 . We note, however,

that at higher FERs the LTE Turbo code has better performance than the polar codes. The

polar codes only match the performance of the LTE Turbo code at low FERs because the latter

exhibits a relatively high error floor. Unfortunately, the polar code with N = 16384 under BP

decoding cannot reach the performance of the LTE Turbo code, even when a maximum of

82

2.4. Polar Decoder Survey and Comparison with Existing Decoders

0 1 2 310−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

Fr
am

e
E

rr
o

r
R

at
e

R = 1/3

0.5 1 1.5 2 2.5 310−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)
Fr

am
e

E
rr

o
r

R
at

e

R = 1/2

Turbo (K = 6144): LTE (I = 6)

Polar (N = 16384): BP (I = 30) SC

Polar (N = 2048): SCL (L = 8)

Figure 2.30 – Performance of Turbo code of LTE standard compared to polar codes with
N = 32768 under SC decoding and BP decoding (I = 30), and polar codes with N = 4096 under
SCL decoding (L = 4, 16-bit CRC).

10−2 10−1 100 101 10210−1

100

101

102

103

Constant HW
Efficiency

W
E

t H

Better HW

Efficiency

Higher T/P

Low
er

A
rea

[110]

[111]

[112]

[113][114]
[115]

[116]

[116]

Time Complexity (ns/bit)

A
re

a
(m

m
2

) LTE
BP
SC
SCL

Figure 2.31 – Hardware efficiency of 3GPP LTE Turbo decoder implementations and SC, BP,
and SCL polar decoder implementations which have been scaled in order to match the FER
performance of the 3GPP LTE Turbo decoders.

83

Chapter 2. Hardware Decoders for Polar Codes

I = 30 iterations are performed.

In Figure 2.30, we compare the hardware efficiency of several 3GPP LTE Turbo decoders found

in the literature with the hardware efficiency of scaled SC, BP, and SCL decoders for polar

codes, which have been scaled in order to attempt to match the FER performance of the 3GPP

LTE Turbo decoders. In the iso-FER case, we observe that, on average, the SCL decoders have

the best hardware efficiency among the polar decoders. Both the SC and BP decoders have

high area requirements when trying to match the FER performance of the LTE Turbo codes.

We also observe that, on average, the LTE Turbo decoders have a similar hardware efficiency

to the polar decoders.

2.4.2.6 Original LDPC and LTE Decoder Results

This section contains tables with the original (unscaled) results from the papers which were

used in our comparison of LDPC and Turbo decoders with polar decoders.

Table 2.16 – IEEE 802.11ad LDPC Decoder Implementations.

Work N Tech. Area Freq. Schedule Iter. T/P Voltage Power
(nm) (mm2) (MHz) (Mb/s) (V) (mw)

Shrirani-Mehr et al. [87] 672 65 0.72 235 Layered 5 7900 n/a n/a
Weiner et al. [88] 672 65 1.30 150 Flooding 15 3080 0.8 84

Yen et al. [89] 672 65 1.56 197 Layered 5 5790 1.0 361
Ajaz et al. [90] 672 65 1.10 215 Layered 6 6000 1.1 210

Balatsoukas-Stimming et al. [91] 672 40 0.18 850 Layered 5 3120 n/a n/a
Li et al. [92] 672 40 0.16 500 Layered 5 5600 0.9 99
Li et al. [93] 672 40 0.22 500 Layered 5 5300 0.9 136

Park et al. [94] 672 65 1.60 540 Flooding 10 9000 1.1 783
Ajaz et al. [95] 672 65 0.57 400 Layered 7 9250 1.1 273

Weiner et al. [96] 672 28 0.63 65 Flooding 15 6000 0.7 38
Li et al. [97] 672 28 0.13 400 Layered 3 7070 0.8 54
Li et al. [98] 672 28 0.78 470 Layered 5 18400 0.9 166

Table 2.17 – IEEE 802.11n LDPC Decoder Implementations.

Work N Tech. Area Freq. Schedule Iter. T/P Voltage Power
(nm) (mm2) (MHz) (Mb/s) (V) (mW)

Gunnam et al. [99] 1944 130 1.85 500 Layered 15 1618 n/a 238
Rovini et al. [100] 1944 65 0.48 240 Layered 12 196 1.2 168
Rovini et al. [101] 1944 65 0.74 240 Layered 12 178 1.2 234
Studer et al. [35] 1944 180 3.39 208 Layered 5 780 n/a 2886

Sun et al. [102] 2304 65 1.20 400 Layered 10 415 0.9 180
Jin et al. [103] 1944 180 2.67 250 Layered 10 503 1.8 463

Roth et al. [104] 1944 90 1.77 346 Layered 10 679 1.0 107
Sun et al. [105] 1944 45 0.81 815 Layered 15 3000 n/a n/a

Meinerzhagen et al. [106] 1944 90 1.00 307 Layered 10 600 1.0 88

2.5 Summary

In Section 2.1 we have reformulated the SCL decoding algorithm for polar codes in the LL-

domain, improving its numerical stability and also significantly reducing the required bit-

84

2.5. Summary

Table 2.18 – IEEE 802.3an LDPC Decoder Implementations.

Work N Tech. Area Freq. Schedule Iter. T/P Voltage Power
(nm) (mm2) (MHz) (Mb/s) (V) (mW)

Cevrero et al. [107] 2048 90 5.35 137 Layered 4 11690 1.2 1559
Zhang et al. [108] 2048 65 5.35 100 Flooding 8 6670 0.7 144
Zhang et al. [108] 2048 65 5.35 700 Flooding 8 47700 1.2 2800

Bao et al. [109] 2048 130 18.40 278 Layered 5 9480 1.2 774

Table 2.19 – 3GPP LTE Turbo Decoder Implementations.

Work K Tech. Area Freq. Iter. T/P Voltage Power
(nm) (mm2) (MHz) (Mb/s) (V) (mW)

Studer et al. [110] 6144 130 3.57 n/a 6 391 1.2 789
Ilnseher et al. [111] 6144 65 7.70 450 6 2150 1.1 n/a

Chen et al. [112] 6144 65 1.39 512 6 692 1.2 635
Lin et al. [113] 6144 40 1.27 252 6 535 0.9 218

Belfanti et al. [114] 6144 65 2.49 410 6 1013 1.2 966
Shrestha et al. [115] 6144 45 2.43 600 6 1067 0.8 870

Wang et al. [116] 6144 90 6.10 625 8 438 1.0 272
Wang et al. [116] 6144 90 19.75 625 8 2274 1.0 1450

width for a fixed-point hardware implementation. Moreover, we have presented the first SCL

decoder hardware implementation in the literature which uses a smart copying mechanism

to avoid copying the path LLs. In Section 2.2, we have introduced an LLR-based path metric

for SCL decoding of polar codes, which enables the implementation of an LLR-based SCL

decoder that is even more numerically stable than its LL-based counterpart. We note that

the LLR-based path metric is not specific to SCL decoding and can be applied to any other

tree-search based decoder (e.g., stack SC decoding [48]). Moreover, we have shown that we can

simplify the sorting task of the SCL decoder by using various simplified sorters which exploit

the properties of the LLR-based path metric. We have also described an efficient hardware

architecture for an LLR-based SCL decoder that significantly outperforms the existing LL-

based hardware decoders both in terms of throughput and in terms of area, leading to a

substantial increase in hardware efficiency of up to 137%. Finally, we have shown that adding

the CRC unit to the decoder and using CA-SCLD is an easy way of increasing the hardware

efficiency of our SCL decoder at a given block-error probability as the list size can be decreased.

Specifically, our CA-SCLD at list size L = 2 has somewhat lower block-error probability and

more than five times better hardware efficiency than our standard SCLD at list size L = 8.

Path metric sorting is an important aspect of SCL decoding, especially when considering

polar codes with relatively short blocklength (e.g., N ≤ 256) and large list sizes (e.g., L ≥ 16)

for use in low-latency and/or low-power and low-rate applications, as the sorting step can

dominate the overall complexity of the decoder. Even though we used the properties of the

LLR-based path metric to simplify various sorters in Section 2.2, it was recently shown in [78]

that further simplifications are in fact possible. It remains an important open problem to fully

optimize the path metric sorting step of SCL decoding. As can be seen from the comparison of

Section 2.4.2, SCL decoders cannot yet match the high throughput numbers reported for SC

and BP decoders. This is partly due to the fact that fast-SSC decoding [40] has not yet been

fully applied to SCL decoding. Since our LLR-based SCL decoder uses L SC decoders, it seems

85

Chapter 2. Hardware Decoders for Polar Codes

evident that any architectural and algorithmic improvements made to the SC decoder itself will

be beneficial to the LLR-based SCL decoder as well. However, the family of fast-SSC decoders

is not applicable verbatim to the LLR-based SCL decoder. This happens because, in order

to keep the path metric updated, we need to calculate the LLRs even for the frozen bits. An

important step in this direction was recently made in [61], but the hardware implementation

of a fast-SSC based SCL decoder is an essential next step.

In Section 2.4.2 we have presented a literature survey on hardware decoders for polar codes

that included BP, SC, and SCL decoders in which we outlined the most important algorithmic

and architectural techniques that have been used to date. Moreover, we have compared the

polar codes with LDPC and Turbo decoders for existing communications standards, such as

IEEE 802.11ad [32], IEEE 802.11n [31], and IEEE 802.3an [30], and 3GPP LTE [59]. In most

cases, BP and SC decoding are not powerful enough and more complex algorithms, such as

SCL decoding, are needed in order to match the error-correcting performance of the LDPC

and Turbo codes. Moreover, we have seen that the polar decoders that can match the error-

correcting performance of LDPC and Turbo codes usually have lower hardware efficiency than

their LDPC and Turbo decoder counterparts. The low hardware efficiency stems mainly from

the low throughput that these decoders achieve, and not so much from their area requirements.

In conclusion, while significant improvements have been achieved over the past few years

in the polar decoding literature, further work is required in order to match and surpass

existing channel coding solutions. In particular, the direction of increasing the throughput of

SCL decoders seems promising, since SCL decoders have the lowest area requirements and

generally the best hardware efficiency out of the polar decoders in all iso-FER comparisons of

Section 2.4.1.4.

86

3 Faulty Polar and LDPC Channel De-
coders

3.1 Approximate Computing

Approximate computing [117] is a computing paradigm in which the requirements for reliable

and predictable operation of integrated circuits and software are relaxed. This approach is

motivated by the observation that, for many applications, exact computations are not always

necessary and that allowing for a small and acceptable degradation in the quality of the

produced output can result in disproportionately large computation energy savings. Moreover,

allowing for some faults in integrated circuits can improved their production yield significantly,

since faulty dies do not necessarily have to be discarded.

An important distinction has to be made between intentionally approximate and uninten-

tionally faulty operation since, even though these two modes of operation are fundamentally

different, they are often treated similarly by researchers in the field. Unintentionally faulty

operation results from factors that are difficult to control, such as radiation or manufacturing

defects and unintentional side-effects of energy-saving techniques (such as aggressive voltage

scaling [118]), that affect the correct operation of integrated circuits. Intentionally approx-

imate operation, on the other hand, is controllable and it may be caused by circuit design

techniques, such as using approximate adders and multipliers [119], or even algorithmic

modifications that simplify the operation of a circuit on a much higher level [120]. Almost

all signal processing systems are intentionally approximate on at least one level, since they

mostly operate on quantized and often approximated versions of the algorithms that they

implement. Intentional and unintentional factors are, of course, not mutually exclusive and

they may co-exist in an approximate computing system.

In this chapter, we examine three approximate computing scenarios in the context of channel

coding, which involve both intentionally approximate and unintentionally faulty operation.

More specifically, in Section 3.2 we present a modified construction for polar codes that aims

to reduce the complexity of SC decoding while sacrificing the error-correcting performance

of the code in a highly controlled and systematic fashion. Then, in Section 3.3 we study SC

decoding of polar codes when the memories that are used to store the messages involved in

87

Chapter 3. Faulty Polar and LDPC Channel Decoders

the decoding process are unintentionally faulty. Finally, in Section 3.4 we provide a similar

analysis for MS decoding of LDPC codes under unintentionally faulty message storage.

3.2 Successive Cancellation Decoding with Intentionally Mismatched

Polar Codes

As explained in Section 1.3.3.1, the complexity of SC decoding scales like O(N log N) since

the DDG of the algorithm contains N log N nodes and each node is activated exactly once.

However, complexity reduction of SC decoding can be achieved by not activating the nodes

in the DDG that are only connected to frozen synthetic channels, since the results of these

computations are never used by the decoder. This technique, called simplified SC decoding,

was first proposed in [121] and later improved in several works (e.g., [40]).

In all simplified SC decoders, the amount of complexity reduction that can be achieved by

skipping unnecessary node computations highly depends on the distribution of frozen and

information bit locations in the polar code. Arıkan’s original polar code construction [6] only

focuses on maximizing the reliability of the information bits. A few altered polar-like code

constructions to support low-complexity decoding based on [121] have already been proposed

in the literature [122, 123] and their objective is also to trade error-correction performance for

decoding complexity by slightly changing the set of information bits A, while keeping the code

rate fixed. The main idea behind all the altered code constructions is to exchange the locations

of a few frozen bits and information bits in order to get more bit patterns that are favorable in

terms of decoding latency. The polar code construction method in [122] first defines a small

set of bit locations which contains the ns −h least reliable information bit locations along with

the h most reliable frozen bit locations. Then, in order to keep the rate fixed, it performs an

exhaustive search over all
(ns

h

)
possible combinations of the ns elements containing exactly h

frozen bit locations and selects the combination that leads to the smallest decoding latency. A

similar greedy algorithm is presented in [123] for polar codes with more general code lengths

of the form N = l n , l ≥ 2.

In this chapter, we first formalize the altered polar code construction problem as a binary

integer linear program. Consequently, we show that finding the polar code with the lowest

decoding complexity under an error-correction performance constraint is an NP-hard problem.

For this reason, we describe a greedy approximation algorithm which provides reasonable

complexity-performance trade-offs at low complexity even for polar codes with very large

blocklengths.

3.2.1 Complexity-Performance Trade-Offs for SC Decoding of Polar Codes

In this section, we first introduce the metrics that are used in order to quantify the error-

correcting performance and the complexity of a polar code with a given set of information

indicesA. Then, we use these metrics in order to formulate an optimization problem that aims

88

3.2. Successive Cancellation Decoding with Intentionally Mismatched Polar Codes

to maximize the complexity reduction while satisfying a given error-correcting performance

constraint. By varying the performance constraint, various complexity-performance trade-offs

can be achieved.

3.2.1.1 Complexity and Performance Metrics

Complexity metric: We use the total number of computations that can be saved by pruning the

DDG, denoted by c, as a complexity metric. As explained previously, the value of this metric

depends on the set of information indices A and we explain how it can be computed as part

of the formulation of the optimization problem.

Let the blocklength N and the rate R = k
N , k ∈ {0, . . . , N }, be fixed. In order to simplify notation,

in this section we denote the mutual information values of the N synthetic channels by

Ii , i = 0. . . , N −1, meaning that

Ii = I
(
W (i)

n

)
, i = 0. . . , N −1. (3.1)

Performance metric: We use the sum mutual information of the set of non-frozen channels as

a performance metric, i.e.,

m = ∑
i∈A

Ii = N · I (W)− ∑
i∈Ac

Ii . (3.2)

Note that the polar code construction originally proposed by Arıkan [6] essentially maximizes

m under the constraint |A| = k and let mmax denote this maximum, i.e.,

mmax = max
A:|A|=k

∑
i∈A

Ii . (3.3)

Since Ii ≥ 0, 0 ≤ i ≤ N −1, the maximization amounts to selecting the channel indices with

the k largest Ii values.

Our choice of performance metric requires some intuitive justification. Let Z (W) denote the

Bhattacharyya parameter of a channel W and let Zi = Z (W (i)). It is known that
∑

i∈A Zi is an

upper bound on the probability of block error [6]. It was shown in [124] that, for the BEC, this

upper bound is tight. Moreover, for the BEC we have Ii = 1−Zi , hence by maximizing
∑

i∈A Ii

one can minimize the block-error probability. Similarly, by placing a constraint on
∑

i∈A Ii ,

we are implicitly placing a constraint on
∑

i∈A Zi , which is directly related to the block-error

probability. So, for the case of the BEC, the metric that we use has an explicit relation with

the probability of block error. For more general channels, one intuitively expects that there

is at least an implicit relation between the two quantities. Ideally, one would like to use the

probability of block error itself as a metric, but, to the best of our knowledge, this cannot be

described analytically as a function of A, and especially not in a linear way which is necessary

to enable a simple formulation of the optimization problem. Moreover, as we will show in

Section 3.2.3.3, the error-correcting performance of the various altered polar codes that we

89

Chapter 3. Faulty Polar and LDPC Channel Decoders

s = 0 s = 1 s = 2

y3

y1

y2

y0

û3

û2

û1

û0

LLR(3)
0

LLR(1)
0

LLR(2)
0

LLR(0)
0

LLR(6)
1

LLR(2)
1

LLR(4)
1

LLR(0)
1

LLR(3)
2

LLR(2)
2

LLR(1)
2

LLR(0)
2

x0

x1

x2

x3

x4

x5

x6

Figure 3.1 – Decoding graph for N = 4 with channel groups. An optimization variable xi is
associated with each group gi . Setting xi = 1 corresponds to freezing all channels in gi .

construct degrades gracefully with increasing complexity reduction.

3.2.1.2 Optimization Problem Formulation

From a complexity perspective, it is favorable to form clusters of 2l , l ∈N, frozen channels

in order to maximize pruning of node computations according to [121]. In this section, we

describe an optimization problem which constructs a polar code of rate R, in a way that

maximizes c while ensuring that m is larger than a pre-defined performance constraint m′ ≥ 0.

To this end, the indices of the N channels are grouped into clusters of 1,2, . . . , N , consecutive

channels as illustrated in Fig. 3.1, where the illustration of the groups has been spread across

the stages of the data dependency graph to reduce congestion. Let the set of all the groups be

denoted by G. We have

|G| = N
n∑

j=0
2− j = 2N −1. (3.4)

We associate each of the groups gi ∈G with a binary optimization variable xi , i = 0, . . . ,2N −2.

The assignment xi = 1 means that all synthetic channels contained in group i are frozen. Each

group also has a rate cost, denoted by fi , i = 0, . . . ,2N −2. This rate cost is equal to the number

of channel indices that are contained in gi , i.e., fi = |gi |, and it reflects the rate loss incurred

by setting xi = 1. This leads to the rate constraint

2N−2∑
i=0

fi xi = N −k. (3.5)

Observe that, if in the example of Fig. 3.1, say, x6 = 1, then the rate cost f6 is paid. However,

90

3.2. Successive Cancellation Decoding with Intentionally Mismatched Polar Codes

Figure 3.2 – Tree structure of channel groups with descendants of g6, i.e., D(g6), and their
corresponding optimization variables. If x6 = 1, then xi = 0 has to be enforced for all xi : gi ∈
D(g6).

due to the tree structure of the groups, f6 includes the rate costs for freezing the channels

in groups g0 to g5, So, when xi = 1 for any non-leaf group, xi = 0 has to be enforced for all

the descendants of this group in order not to count any rate costs more than once. Let the

descendants of group gi ∈ G be denoted by D(gi). An example is illustrated in Fig. 3.2. Let

X = {(i , j) : gi ∈ G\{leaves}, g j ∈ D(gi)}. Since xi ∈ {0,1}, the mutual exclusiveness constraint

can be formalized as

xi +x j ≤ 1, ∀(i , j) ∈X . (3.6)

Moreover, we have

|X | = N
log N−1∑

i=1
(log N − i)2−i = 2(log N −1)N +2. (3.7)

From (3.4) and (3.7), it can be seen that the number of variables grows linearly with the code

length and the number of constraints in (3.6) grows as N log N . Each group gi ∈ G has an

associated gain in the number of computations, denoted by ci , i = 0, . . . ,2N −2. This gain is

the number of computations that is saved via pruning if all the channels in this group are

frozen. Let s(gi) ∈ {0, . . . , log N −1} denote the stage to which group gi ∈ G corresponds. For

example, in Fig. 3.1, group g4 corresponds to stage 1. Then, we have

ci = (n − s(gi)+1)2n−s(gi), i = 0, . . . ,2N −2. (3.8)

Due to (3.6), no complexity gain is counted more than once. Finally, freezing the channels in

group gi ∈G results in a loss in total mutual information, denoted by mi , with

mi =
∑
j∈gi

I j , i = 0, . . . ,2N −2. (3.9)

again, due to (3.6), no mutual information loss is counted more than once. A performance

91

Chapter 3. Faulty Polar and LDPC Channel Decoders

constraint m ≥ m′, m′ ≥ 0, is enforced, which can equivalently be written as

2N−2∑
i=0

xi mi ≤ N · I (W)−m′. (3.10)

An optimization problem which maximizes the complexity gain, while ensuring that the

resulting code has rate R and satisfies the performance constraint, can be formulated as

maximize
2N−2∑

i=0
ci xi

subject to
2N−2∑

i=0
fi xi = N −k

2N−2∑
i=0

xi mi ≤ N · I (W)−m′ (3.11)

xi +x j ≤ 1, ∀(i , j) ∈X
xi ∈ {0,1}, i = 0, . . . ,2N −2

The above problem is an instance of the multidimensional 0–1 knapsack problem [125],

which is known to be NP-hard in general. If m′ is chosen carefully so that m′ ≤ mmax, then

(3.11) is always feasible. Moreover, for m′ = mmax, the optimization problem reduces to

the construction proposed by Arıkan, while m′ = 0 results in a construction that maximizes

the number of saved computations while completely disregarding performance. By varying

m′ between these two extremal values, various complexity-performance trade-offs can be

achieved.

3.2.2 Greedy Optimization Algorithm

In order to solve (3.11) for practically relevant blocklengths, like 210 ≤ N ≤ 220, in reasonable

time, we present a greedy algorithm that takes advantage of the structure of the problem to

provide useful solutions with negligible runtime.

3.2.2.1 Greedy Algorithm Description

Our greedy algorithm consists of three steps, namely the greedy maximization step, the feasi-

bility step, and the post-processing step. In the first step, the goal is to greedily maximize the

objective function while satisfying all inequality constraints. The second step ensures that

the equality constraint is also satisfied, while the last step finalizes and improves the solution.

Recall that k ′ = N −k is the number of bits that need to be frozen. Let k ′
bin denote the log N +1

bit left-MSB binary representation of k ′ and let k ′
bin(j), 0 ≤ j ≤ log N −1, denote the j -th bit of

k ′
bin. The greedy maximization step is inspired by the following observation.

Proposition 1. If there were no performance constraint present in (3.11), the problem could be

solved exactly as follows.

92

3.2. Successive Cancellation Decoding with Intentionally Mismatched Polar Codes

1. Set j = 0 and xi = 0, 0 ≤ i ≤ 2N −2.

2. If k ′
bin(j) = 1, then set xi = 1 for one gi : s(gi) = j , denoted by gi ′ , and set xi = 0 for all

remaining gi : s(gi) = j . Remove all xi : gi ∈ D(gi ′) from the problem.

3. Set j = j +1 and go to 2. until j > log N .

Proof. By eliminating all xi : gi ∈ D(gi ′) from the problem at step 2, we guarantee that the

mutual exclusiveness constraint is not violated. If k ′
0(j) = 1 then the k ′ required bits are frozen

in the first iteration of the above loop and the algorithm can safely terminate. Moreover, stage

1 contains two groups, of which only one can be frozen, and for each group in stage j there

are two groups in stage j +1, so that step 2 can always be executed. We now show that any

optimal solution must freeze at most one group per stage. Suppose that, for some solution,

more than one groups were frozen in some stage j . Then, it is possible to replace any two

frozen groups at stage j with some frozen group at stage j +1 without violating any constraint.

Based on (3.8), for the complexity gains we have

2 ·
(
(n − j +1)2n− j

)
= (n − j +1)2n− j+1 < (n − j +2)2n− j+1, ∀ j ≥ 0, (3.12)

so this would strictly increase the objective function, meaning that the original solution

could not have been optimal. Since all groups in stage j contain 2(n− j) bits and the binary

representation of k ′ is unique, it follows that the only way to freeze exactly k ′ channels by

freezing at most one group per stage, thus satisfying the rate constraint, is to freeze the groups

according to the pattern dictated by k ′
bin.

3.2.2.2 Greedy maximization step

The greedy maximization step is different than the procedure of Proposition 1 in that it ensures

that the performance constraint is satisfied. In the following procedure, k ′
bin is again initialized

to log N bit right-MSB binary representation of k ′, but k ′
bin(j) ∈N.

1. Set j = 0 and xi = 0, 0 ≤ i ≤ 2N −2.

2. If k ′
bin(j) ≥ 1, then try the following.

2.1. Find the gi : s(gi) = j with the smallest mi in stage j and set xi = 1.

2.2. If
∑

i xi mi ≤ N · I (W)−m′, then remove all xi : gi ∈ D(gi ′) from the problem, set

k ′
bin(j) = k ′

bin(j)−1, and go to 2.

2.3. Else, set k ′
bin(j +1) = k ′

bin(j +1)+2, set xi = 0, and go to 3.

3. Set j = j +1 and go to 2. until j > log N .

At step 2.3., we set k ′
bin(j +1) = k ′

bin(j +1)+2 because for each group that could not be frozen

at stage j due to the performance constraint, we need to freeze two groups at stage (j +1) in

93

Chapter 3. Faulty Polar and LDPC Channel Decoders

order to (hopefully) satisfy the rate constraint. Unfortunately, there is no longer a guarantee

that the procedure will be able to freeze exactly k ′ bits as required to satisfy the rate constraint.

However, the mutual exclusiveness and performance constraints are guaranteed to be met.

3.2.2.3 Feasibility step

The second step of the algorithm sacrifices the objective function in a systematic step-by-step

fashion until the solution is feasible, i.e., until the rate constraint is satisfied. Let k ′′ denote the

number of additional bits that need to be frozen after the greedy maximization step is finished

so that the rate constraint is satisfied, i.e., k ′′ = k ′ −∑i fi xi .

If k ′′ > 0, then the feasibility step starts greedily unfreezing frozen groups to free up mutual

information. More and more groups are unfrozen until the total number of unfrozen groups

that can be frozen at stage n is equal to k ′′ plus the number of variables in the groups that

were unfrozen so far. Since during this step only groups at stage n are refrozen which provide

the smallest complexity gain, no direct effort is made to minimize the loss in the objective

function. The feasibility step starts at stage �logk ′′�+1, because by unfreezing a group in this

stage it is possible to satisfy the rate constraint in a single step, thus making an indirect effort

to minimize the objective function loss. Subsequently, all stages up to n are visited, and the

procedure continues with stages 0 to �logk ′′�, thus visiting all stages, if required. If m′ ≤ mmax,

the feasibility step is guaranteed to find a feasible solution.

3.2.2.4 Post-processing step

The post-processing step identifies pairs of consecutive frozen groups at each stage j and

replaces them with their parent group at stage j −1, which strictly improves the objective

function as we saw in (3.12) without violating any of the constraints.

3.2.3 Numerical Results

3.2.3.1 Exact Reference Solution for Short Polar Codes

Even though (3.11) is NP-hard, relatively small instances can still be solved by using standard

branch-and-bound methods. For simplicity in calculating the mutual information values

Ii , i = 0, . . . , N −1, we present results only for the BEC(p), where p denotes the erasure proba-

bility. However, the proposed approach can be used for any other channel and input distri-

bution, provided that Ii , i = 0, . . . , N −1, are available. Moreover, given Ii , i = 0, . . . , N −1, the

complexity of (3.11) and of the greedy algorithm presented in Section 3.2.2 does not depend

on the type of channel. We assume that the capacity achieving input distribution is used, so

that I (W) = 1−p.

The solutions obtained by solving (3.11) for various 0 ≤ m′ ≤ mmax exactly as well as by using

94

3.2. Successive Cancellation Decoding with Intentionally Mismatched Polar Codes

0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94
1

2

3

4

5

Average Non-Frozen Channel Mutual Information (bits/ch. use)

C
o

m
p

le
xi

ty
(o

p
er

at
io

n
s/

b
it

)

N = 16 (full) N = 16 (greedy)

N = 32 (full) N = 32 (greedy)

N = 64 (full) N = 64 (greedy)

N = 128 (full) N = 128 (greedy)

Figure 3.3 – Results from exact solution of (3.11) and of the greedy algorithm for R = 0.5,
N = 2n , n = 4,5,6,7, and transmission over a BEC(0.5).

the greedy algorithm for various constraints and blocklength up to N = 27 and for R = 0.50 are

compared in Fig. 3.3. We use the complexity in operations per bit on the vertical axis and the

average mutual information on the horizontal axis. The former can be easily obtained from

any solution x∗ as 1
N

(
N log N −∑2N−2

i=0 ci x∗
i

)
, while the latter is equal to 1+ 1

RN

∑2N−2
i=0 mi x∗

i .

We observe that the greedy algorithm is able to find most of the optimal solutions for small

instances of the problem.

3.2.3.2 Greedy Algorithm for Long Polar Codes

The solutions found by the greedy algorithm are presented in Fig. 3.4 for various blocklengths

and for R = 0.50. For N = 220 the average running time of the greedy algorithm is less than

102 seconds on an Intel Core i7 870 processor running at 2.93 GHz, which is negligible given

that the optimization is carried out offline. We observe that the rightmost part of the curve

is relatively steep, thus providing favorable trade-offs. For a fixed blocklength, the codes

corresponding to some solution points can be chosen and stored in order to provide the

system with online performance-complexity trade-offs. Moreover, during the design phase

one can choose the solution with the best performance among all blocklengths that satisfies a

given complexity constraint.

3.2.3.3 Error-Correcting Performance Degradation

In principle, it is possible that a solution of (3.11) contains a very bad channel in A. This would

lead to a catastrophic failure of the code, resulting in a block error rate (BLER) close to 1. This

95

Chapter 3. Faulty Polar and LDPC Channel Decoders

0.75 0.8 0.85 0.9 0.95 1
4

6

8

10

Average Non-Frozen Channel Mutual Information (bits/ch. use)

C
o

m
p

le
xi

ty
(o

p
er

at
io

n
s/

b
it

)

N = 512 N = 1024
N = 2048 N = 4096
N = 8192 N = 32768

Figure 3.4 – Solutions of greedy algorithm for R = 0.5, N = 2n , n = 9,10,11,12,13,15, over a
BEC(0.5).

0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.4410−2

10−1

100

Erasure Probability (p)

Fr
am

e
E

ra
su

re
R

at
e

Code 1 (m = 489.95)

Code 2 (m = 489.54)

Code 3 (m = 488.55)

Code 4 (m = 488.46)

Code 5 (m = 487.65)

Code 6 (m = 487.26)

Code 7 (m = 486.33)

Figure 3.5 – Frame erasure rate performance and performance metric of the useful codes for
R = 0.5 and N = 210.

96

3.3. Successive Cancellation Decoding of Polar Codes with Faulty Memories

problem can be circumvented by adding the following additional constraints to (3.11)

(1−xi) ·hi = 0, i = 1, . . . ,2N −1, (3.13)

where hi = 1 if gi ∈ G contains a channel with Ii ≤ m′′, where m′′ is chosen as the lowest

acceptable mutual information of the channels used for the information bits, and hi = 0

otherwise. However, we have observed in simulations that the useful codes (a code is said to

be useful if it lies on the Pareto frontier of the set of obtained solutions) have a performance

which degrades gracefully with decreasing values of the performance metric. An example of

this behavior for N = 210 can be seen in Fig. 3.5, where code 1 corresponds to the standard

construction of [6], while codes 2 to 8 provide different performance-complexity trade-offs.

3.3 Successive Cancellation Decoding of Polar Codes with Faulty Mem-

ories

Uncertainties in the manufacturing process of integrated circuits are expected to play a

significant role in the design of very-large-scale integration systems in the nanoscale era

[126, 127, 128]. Due to these uncertainties, it will become increasingly difficult to guarantee

the correct behavior of integrated circuits at the gate level, meaning that the hardware may

become faulty in the sense that data is not always processed or stored correctly. Moreover,

aggressive voltage scaling, which is commonly used to reduce the energy consumption of

integrated circuits, can increase the occurrence of undesired faulty behavior [129]. Traditional

methods to ensure accurate hardware behavior, such as using larger transistors or circuit-level

error correcting codes, are costly both in terms of area and power.

In this section we study successive cancellation decoding of polar codes for transmission

over the BEC under an erasure-based fault model for the internal storage elements in the

decoder hardware. Contrary to the previous section, in this section the faulty behavior is

unintentional. We show that, under this fault model, fully reliable communication is no longer

possible. Furthermore, by studying the polarization process, we show that synthetic channel

ordering with respect to both the channel erasure probability and the internal decoder erasure

probability still holds. We also adapt the lower bound on the FER derived in [124] to the case

of such faulty decoding, and we use it in order to derive the FER-optimal blocklength for a

polar code of a given rate, and for a given channel and decoder erasure (i.e., fault) probability.

Finally, we introduce a simple unequal error protection method, which is shown to re-enable

asymptotically fully reliable communication by protecting only a constant fraction of the

decoder. In the finite blocklength regime, our proposed fault-tolerance method significantly

improves the FER performance with very low hardware protection overhead.

97

Chapter 3. Faulty Polar and LDPC Channel Decoders

3.3.1 Faulty Successive Cancellation Decoding of Polar Codes for the BEC

Successive cancellation decoding of polar codes can be greatly simplified for the case of the

BEC as follows. Without loss of generality, we assume the output alphabet of the BEC W to be

Y = {−1,0,+1}, where 0 denotes an erasure, while −1 corresponds to the binary input 1 and

+1 corresponds to the binary input 0. For transmission over the BEC, the update functions f+
and f− can be re-defined as

f−(a,b) = ab, (3.14)

f+(a,b,u) =
⌊

(−1)u a +b

2

⌉
, (3.15)

where u denotes a partial sum, which is the modulo-2 sum of some of the previously decoded

bits, �·� denotes the rounding operation, and we use �−0.5� =−1 and �0.5� = 1 for tie-breaking.

When level n is reached, the output message will either be correct (i.e., −1 or +1), or an

erasure. If the final output message is correct, we can derive the corresponding bit value for ûi

and proceed with decoding. If the final output message is an erasure, the decoder halts and

declares a block erasure. We note that in the latter case the decoder could make a random

decision and attempt to continue decoding.

3.3.1.1 Erasure Probability of Synthetic Channels

Let Z (s)
s,k � Z

(
W (s)

s,k

)
denote the Bhattacharyya parameter of the synthetic channel W (s)

s,k . When

W is a BEC(p), its Bhattacharyya parameter is equal to the erasure probability, i.e., Z
(
W (�)

0,k

)
=

Z (W) = p. Moreover, all synthetic channels generated at step s are also BECs and their Bhat-

tacharyya parameters (equivalently, their erasure probabilities) can be calculated recursively

based on the Bhattacharyya parameters of the channels at step (s −1) as [6]

Z (s−)
s,k = Z (s)

s−1,k +Z (s)
s−1,k+2n−s −Z (s)

s−1,k Z (s)
s−1,k+2n−s , (3.16)

Z (s+)
s,k = Z (s)

s−1,k Z (s)
s−1,k+2n−s , (3.17)

where s = 1, . . . ,n, k = 0, . . . ,2n−s −1. The channels W (s)
s,k , k = 0, . . . ,2n−s −1, are independent

copies of the same type of channel, meaning that their erasure probabilities are identical.

Thus, if we are only interested in the erasure probability of a specific type s of channel we can

simplify (3.16) and (3.17) by omitting the index k as

Z (s−)
s = T −

(
Z (s)

s−1

)
� 2Z (s)

s−1 −
(

Z (s)
s−1

)2
, (3.18)

Z (s+)
s = T +

(
Z (s)

s−1

)
�
(

Z (s)
s−1

)2
, (3.19)

with Z (�)
0 = p. The vector containing all Z (s)

s , s ∈ {+,−}s , variables is denoted by Zs .

98

3.3. Successive Cancellation Decoding of Polar Codes with Faulty Memories

Moreover, as in [6, 130], we define the polarization random process εn as

εs = Z (s)
s , (3.20)

with P [S = s] = 1
2s , i.e., εs is equally likely to be equal to the erasure probability of any of the 2s

distinct types of synthetic channels at step s of the polarizing transformation. The random

process εs can be written equivalently as

εs =
{

T −(εs−1) w.p. 1/2,

T +(εs−1) w.p. 1/2,
(3.21)

with ε0 = Z (W) = p. It was shown in [6] that εs converges almost surely to a random variable

ε∞ ∈ {0,1}, with P (ε∞ = 0) = I (W) = 1−p, where I (W) denotes the symmetric capacity of the

BEC W.

Finally, let us define a binary erasure indicator variable E (s)
s,k for which E (s)

s,k = 1 if and only if

the output of the synthetic channel W (s)
s,k is an erasure and E (s)

s,k = 0 otherwise. It is clear that

E
[

E (s)
s,k

]
= Z (s)

s,k . The indicator variables can also be determined recursively as follows [124]

E (s−)
s,k = E (s)

s−1,k +E (s)
s−1,k+2n−s −E (s)

s−1,k E (s)
s−1,k+2n−s , (3.22)

E (s+)
s,k = E (s)

s−1,k E (s)
s−1,k+2n−s . (3.23)

Similarly to the Bhattacharyya parameters, if we are only interested in the statistics of the

indicator variable for a channel of a specific type s, we can simplify (3.22) and (3.23) as

E (s−)
s = E (s)

s−1
′ +E (s)

s−1
′′ −E (s)

s−1
′
E (s)

s−1
′′

, (3.24)

E (s+)
s = E (s)

s−1
′
E (s)

s−1
′′

, (3.25)

where E (s)
s−1

′
and E (s)

s−1
′′

denote two independent realizations of E (s)
s−1 [124]. The vector contain-

ing all E (s)
s indicator variables is denoted by Es .

3.3.1.2 Faulty SC Decoding of Polar Codes for the BEC

All current SC decoder hardware implementations (e.g., [20, 42, 131, 38]) require a full binary

tree of memory elements (MEs) of depth n, which store the messages that result from the

update rules at each level of the decoder tree. The total number of MEs required by such

decoders is

NME =
n∑

s=0
2n−s = 2n+1 −1 = 2N −1 ∈O(N). (3.26)

The processing elements (PEs), which apply the update rules, can also have a full binary tree

structure for a fully-parallel implementation [20], although semi-parallel implementations are

also possible [38]. A fully-parallel implementation requires N −1 PEs, while in a semi-parallel

99

Chapter 3. Faulty Polar and LDPC Channel Decoders

W (�)
0,3

W (�)
0,2

W (�)
0,1

W (�)
0,0

W (+)
1,1

W (+)
1,0

W (−)
1,1

W (−)
1,0

TEC

TEC

TEC

TEC

W (++)
2,0

W (+−)
2,0

W (−+)
2,0

W (−−)
2,0

TEC

TEC

TEC

TEC

Figure 3.6 – Synthetic channel construction for a polar code of length N = 22 = 4 under faulty
SC decoding. Solid lines represent the + transformation and dashed lines represent the −
transformation.

implementation the number of PEs is restricted to P < N −1.

We model faulty decoding as additional internal erasures within the memory elements of the

decoder that store the messages between the decoding stages, which may be caused either

by faulty PEs or by faulty MEs (or both) and we assume, without loss of generality, that they

manifest themselves when an output message is written to an ME. Moreover, we assume

that these erasures are transient in the sense that whenever an ME is written to, the internal

erasures occur independently of any previous internal erasures. The partial sums, which are

required by the f + update rule, also need to be stored in a memory, which however is typically

smaller than the memory required to store the messages. Moreover, due to the partial sum

recursive update rules [6], a single erasure in a partial sum will result in erasures in all following

partial sums and we can intuitively see that the sensitivity of the SC decoder with respect to

faults in the partial sum memory is high. Thus, in this work we assume that the partial sum

memory is fault-free.

Under the above assumptions, the internal erasures can occur at the output of all synthetic

channels of a polar code of blocklength n, i.e., W (s)
s,k , s = 1, . . . ,n, s ∈ {+,−}s , k = 0, . . . ,2n−s −1.

Moreover, the internal erasures occur independently of the message value and with probability

δ. Let us define a ternary-input erasure channel (TEC) with input alphabet X = {−1,0,+1} and

output alphabet Y =X and the following transition probabilities

P [0|0] = 1, (3.27)

P [0|−1] =P [0|+1] = δ, (3.28)

P [+1|+1] =P [−1|−1] = 1−δ, (3.29)

where the probabilities of all remaining transitions are equal to zero.

Using the above TEC, our error model can be represented as a cascade of a BEC with a TEC, as

shown in Figure 3.6, where W (s)
s,k results from the non-faulty polarizing channel transforma-

tion applied to a pair of channels W (t)
s−1,k and W (t)

s−1,k+2n−s (where t is a prefix of s) and “TEC”

represents the internal erasures caused by the faulty SC decoder. We denote this cascaded

compound channel by W (s)
s,k,δ in order to make the dependence on δ explicit. It is easy to check

100

3.3. Successive Cancellation Decoding of Polar Codes with Faulty Memories

that for δ = 0 we get a non-faulty decoder, while for δ = 1 all messages are always erasures

leading to a fully faulty decoder. Thus, it is mainly interesting to study the decoder for δ ∈ (0,1).

In order to have a more rigorous definition of the internal erasure fault model, let us define

the binary erasure indicator variable Δ(s)
s,k , where Δ(s)

s,k = 1 iff the TEC that comes after W (s)
s,k in

Figure 3.6 causes an internal erasure at channel W (s)
s,k , and Δ(s)

s,k = 0 otherwise. By definition,

we have P
[
Δ(s)

s,k = 1
]
= δ, thus E

[
Δ(s)

s,k

]
= δ and var

[
Δ(s)

s,k

]
= δ(1−δ). Since the internal erasures

are assumed to be transient, all Δ(s)
s,k are independent. Due to the cascaded BEC-TEC structure,

we can rewrite (3.22) and (3.23) using Δ(s)
s,k as

E (s−)
s,k,δ = E (s)

s−1,k,δ+E (s)
s−1,k+2n−s ,δ−E (s)

s−1,k,δE (s)
s−1,k+2n−s ,δ

+
(
E (s)

s−1,k,δ+E (s)
s−1,k+2n−s ,δ−E (s)

s−1,k,δE (s)
s−1,k+2n−s ,δ

)
Δ(s−)

s,k , (3.30)

E (s+)
s,k,δ = E (s)

s−1,k,δE (s)
s−1,k+2n−s ,δ+

(
E (s)

s−1,k,δE (s)
s−1,k+2n−s ,δ

)
Δ(s+)

s,k . (3.31)

Again, if we are only interested in the statistics of the indicator variable for a channel of a

specific type s, we can simplify (3.30) and (3.31) as

E (s−)
s,δ = E (s)

s−1,δ

′ +E (s)
s−1,δ

′′ −E (s)
s−1,δ

′
E (s)

s−1,δ

′′

+
(
E (s)

s−1,δ

′ +E (s)
s−1,δ

′′ −E (s)
s−1,δ

′
E (s)

s−1,δ

′′
)
Δ(s−)

s , (3.32)

E (s+)
s,δ = E (s)

s−1,δ

′
E (s)

s−1,δ

′′ +
(
E (s)

s−1,δ

′
E (s)

s−1,δ

′′
)
Δ(s+)

s . (3.33)

where E (s)
s−1,δ

′
and E (s)

s−1,δ

′′
denote two independent realizations of E (s)

s−1,δ and Δ(s−)
s and Δ(s+)

s

denote a realization of Δ(s−)
s,k and Δ(s+)

s,k , respectively. The vector containing all E (s)
s,δ indicator

variables is denoted by Es,δ.

We note that in a fully-parallel implementation, each ME has a corresponding PE, and our

erasure-based fault model can take erasures in both the MEs and the PEs into account simul-

taneously. In a semi-parallel implementation, on the other hand, the MEs are significantly

more than the PEs (i.e., typically P � 2N −1, as in [38] where N = 1024 and P = 64), so it is

reasonable to assume that faults stem only from the MEs, as the PEs can be made reliable with

circuit-level protection techniques at a relatively low cost.

3.3.2 Erasure Probability of Synthetic Channels Under Faulty SC Decoding

Using the fault model introduced in the previous section, we can rewrite the recursive expres-

sions for Z (s)
s,k (i.e., (3.16) and (3.17)) in order to obtain a recursive expression for the erasure

probability of the synthetic channels in the faulty case, which we denote by Z (s)
s,k,δ � E

[
E (s)

s,k,δ

]
.

101

Chapter 3. Faulty Polar and LDPC Channel Decoders

Specifically, we have

Z (s−)
s,k,δ = Z (s)

s−1,k,δ+Z (s)
s−1,k+2n−s ,δ−Z (s)

s−1,k Z (s)
s−1,k+2n−s ,δ,

+
(

Z (s)
s−1,k,δ+Z (s)

s−1,k+2n−s ,δ−Z (s)
s,k Z (s)

s−1,k+2n−s ,δ

)
δ (3.34)

Z (s+)
s,k,δ = Z (s)

s−1,k,δZ (s)
s−1,k+2n−s ,δ+

(
Z (s)

s−1,k,δZ (s)
s−1,k+2n−s ,δ

)
δ, (3.35)

with Z (�)
0,k,δ = p, k = 0, . . . ,2n − 1. The channels W (s)

s,k,δ, k = 0, . . . ,2n−s − 1, are independent

copies of the same type of channel, meaning that their erasure probabilities are identical.

Thus, if we are only interested in the erasure probability of a specific type s of channel we can

simplify (3.16) and (3.17) by omitting the index k as

Z (s−)
s,δ = T −

δ

(
Z (s)

s−1,δ

)
� 2Z (s)

s−1,δ−
(

Z (s)
s−1,δ

)2

+
(
2Z (s)

s−1,δ−
(

Z (s)
s−1,δ

)2
)
δ, (3.36)

Z (s+)
s,δ = T +

δ

(
Z (s)

s−1,δ

)
�
(

Z (s)
s−1,δ

)2 +
(

Z (s)
s−1,δ

)2
δ, (3.37)

with Z (�)
0,δ = p. The vector containing all Z (s)

s,δ, s ∈ {+,−}s , variables is denoted by Zs,δ. The

random process εs can be rewritten for the faulty case as

εs,δ =
{

T +
δ

(εs−1,δ) w.p. 1/2,

T −
δ

(εs−1,δ) w.p. 1/2,
(3.38)

with ε0,δ = Z (W) = p.

3.3.2.1 Properties of T +
δ

and T −
δ

In this section, we show some properties of the T +
δ

and T −
δ

transformations, which will be

useful to prove two negative results in the following section, as well as to interpret some of the

numerical results of Section 3.3.6.

Property 1. For T +
δ

(ε) and T −
δ

(ε), we have

(i) T +
δ

(ε) ≥ δ, ∀ε,δ ∈ [0,1],

(ii) T −
δ

(ε) ≥ δ, ∀ε,δ ∈ [0,1],

Proof. For T +
δ

(ε), we have

ε2 + (1−ε2)δ≥ δ⇔ (3.39)

(1−δ)ε2 ≥ 0, (3.40)

102

3.3. Successive Cancellation Decoding of Polar Codes with Faulty Memories

which indeed holds for any ε,δ ∈ [0,1]. Similarly, for T −
δ

(ε), we have

2ε−ε2 + (1−2ε+ε2)δ≥ δ⇔ (3.41)

(1−δ)(2ε−ε2) ≥ 0, (3.42)

which indeed holds for any ε,δ ∈ [0,1].

Property 2. The fixed points of T +
δ

(ε) are ε= 1 and ε= δ
1−δ . The unique fixed point of T −

δ
(ε) for

ε ∈ [0,1] is ε= 1.

Proof. The above property can easily be shown by solving T +
δ

(ε) = ε and T −
δ

(ε) = ε for ε,

respectively, and noting that one solution of T −
δ

(ε) = ε is negative.

Moreover, the following two properties of the process εs,δ give us some first insight into the

effect that the faulty decoder has on the decoding process.

Property 3. The process εs,δ, s = 0,1, . . . , defined in (3.38) is a submartingale.

Proof. Since εs,δ is bounded, it holds that E(|εs,δ|) <∞. Moreover we have

E(εs,δ|εs−1,δ) = 1

2

(
T +
δ (εs−1,δ)+T −

δ (εs−1,δ)
)

(3.43)

= 1

2

(
(1−ε2

s−1,δ)δ+2εs−1,δ

+ (1−2εs−1,δ+ε2
s−1,δ)δ

)
(3.44)

= εs−1,δ+ (1−εs−1,δ)δ≥ εs−1,δ. (3.45)

Property 4. For the expectation of the process εs,δ, s = 0,1, . . . , defined in (3.38) we have

E(εs,δ) = 1− (1−ε0)(1−δ)s , (3.46)

Proof. From the proof of Property 3, we know that

E(εs,δ|εs−1,δ) = εs−1,δ+ (1−εs−1,δ)δ. (3.47)

By taking the expectation with respect to εs−1,δ on both sides of (3.47), we have

E(εs,δ) = E(εs−1,δ)+ (1−E((εs−1,δ))δ (3.48)

= (1−δ)E(εs−1,δ)+δ, (3.49)

103

Chapter 3. Faulty Polar and LDPC Channel Decoders

with E(ε0,δ) = ε0,δ = p. The solution of this recurrence relation is

E(εs,δ) = 1− (1−p)(1−δ)s . (3.50)

Specifically, this tells us that, contrary to [6], the average erasure probability is not preserved by

T +
δ

(ε) and T −
δ

(ε). Thus, even if fully reliable transmission were possible in the limit of infinite

blocklength, the polar code would not be capacity achieving since P
[
εs,δ = 0

]< 1−p, meaning

that the fraction of noiseless channels would be strictly smaller than the capacity of the BEC.

3.3.2.2 Impact on Synthetic Channel Polarization

Unfortunately, as the following proposition asserts, fully reliable transmission under faulty

decoding is not possible.

Proposition 3. Let Q denote the sample space of the process εs,δ and let εs,δ(q), q ∈S , denote a

specific realization of εs,δ. Polarization does not happen under faulty SC decoding for the BEC

in the sense that �q ∈Q such that εs,δ(q)
s→∞−→ 0.

Proof. This is a direct consequence of Property 1, since all εs,δ(q) are produced by repeated

applications of T +
δ

and T −
δ

to ε0,δ = p, so that εs,δ(q) ≥ δ, ∀q ∈Q.

It turns out that we can prove the following stronger result, which states that, under faulty SC

decoding over the BEC, almost all channels become asymptotically useless.

Proposition 4. For the process εs,δ, s = 0,1, . . . , defined in (3.38), we have εs,δ
a.s.−−→ 1.

Proof. From Property 3, we know that εs,δ is a bounded submartingale. Thus, it converges a.s.

to some limiting random variable ε∞. Moreover, from Property 4 we have

E(εs,δ) = 1− (1−p)(1−δ)s , (3.51)

which directly implies that lims→∞E(εs,δ) = 1, since, by assumption, δ ∈ (0,1). Equivalently,

and since εs,δ ∈ [0,1], we can write

lim
s→∞E(|εs,δ−1|) = 0, (3.52)

which means, by definition, that εs,δ
L1

−→ 1. Moreover, εs,δ
L1

−→ 1 implies that εs,δ
P−→ 1. Since we

know, due to the submartingale property, that εs,δ also converges almost surely and almost

sure convergence implies convergence in probability, all the aforementioned limits must be

identical and we can conclude that εs,δ
a.s.−−→ 1.

104

3.3. Successive Cancellation Decoding of Polar Codes with Faulty Memories

3.3.2.3 Synthetic Channel Ordering

In the case of non-faulty decoding, there exists a partial ordering of the synthetic channels

with respect to the BEC erasure probability p. In order to explain this ordering, we first need

to define the notion of “η-goodness”.

Definition 1. A synthetic channel W (s)
s is said to be “η-good” if Z (s)

s ≤ η.

In the non-faulty case, it is easy to see that both T +(ε) and T −(ε) are increasing in ε, ∀ε ∈ [0,1].

Thus, a synthetic channel that is η-good for a BEC with erasure probability p1, will also be

η-good for a BEC with erasure probability p2 when p2 ≤ p1.

In this section, we show that under faulty decoding the partial ordering with respect to the

BEC parameter p is preserved and we show that a similar partial ordering exists with respect

to the decoder erasure probability δ. To this end, in the following two properties we examine

the monotonicity of T −
δ

(ε) and T +
δ

(ε) with respect to ε and δ.

Property 5. Both T −
δ

(ε) and T +
δ

(ε) are

(i) Increasing in ε, ∀ε ∈ [0,1].

(ii) Increasing in δ, ∀δ ∈ [0,1].

Proof. (i) T +
δ

(ε) can be re-written as

T +
δ (ε) = ε2 + (1−ε2)δ (3.53)

= ε2(1−δ)+δ. (3.54)

Thus, for any fixed δ ∈ [0,1], T +
δ

(ε) is clearly increasing in ε for any ε ∈ [0,1]. Similarly, T −
δ

(ε)

can be re-written as

T −
δ (ε) = 2ε−ε2 + (1−2ε+ε2)δ (3.55)

= (2ε−ε2)(1−δ)+δ. (3.56)

Thus, the partial derivative of T −
δ

(ε) with respect to ε can easily be calculated as

∂T −
δ

(ε)

∂ε
= 2(1−ε)(1−δ), (3.57)

which, for any fixed δ ∈ [0,1], is non-negative ∀ε ∈ [0,1].

(ii) Both T −
δ

(ε) and T +
δ

(ε) are linear functions of δ with a non-negative coefficient, so they are

increasing ∀δ ∈R.

Proposition 5 (Monotonicity with respect to p). Let p1, p2 ∈ (0,1), p2 ≤ p1 and δ ∈ (0,1). A

synthetic channel that is η-good for a decoder with a fixed erasure probability δ over a BEC with

105

Chapter 3. Faulty Polar and LDPC Channel Decoders

erasure probability p1 is also η-good for the same decoder over a BEC with erasure probability

p2.

Proof. The erasure probability of any synthetic channel W (s)
s,δ can be calculated by repeated

applications of T −
δ

and T +
δ

starting from p as

Z (s)
s,δ(p) = T ss

δ

(
T ss−1

δ

(· · ·(T s1

δ
(p)
)))

, (3.58)

where s = [ss , ss−1, . . . , s1] and si ∈ {+,−}, i = 1, . . . , s. Since from Property 5(i) we know that both

T −
δ

(ε) and T +
δ

(ε) are increasing with respect to ε, any composition of the two functions will

also be increasing. Thus

Z (s)
s,δ(p2) ≤ Z (s)

s,δ(p1) ≤ η. (3.59)

The following proposition states that there also exists a partial ordering of the synthetic

channels with respect to the decoder erasure probability δ. This is a useful property, as it

ensures that, for any given polar code, a decoder with internal erasure probability δ2 will not

perform worse than a decoder with internal erasure probability δ1, where δ2 ≤ δ1.

Proposition 6 (Monotonicity with respect to δ). Let δ1,δ2 ∈ (0,1), δ2 ≤ δ1 and ε ∈ (0,1). A

synthetic channel that is η-good for a decoder with erasure probability δ1 over a BEC with a

fixed erasure probability ε is also η-good for a decoder with erasure probability δ2 over the same

channel.

Proof. Similarly to the proof of Proposition 5, the proof stems directly from the monotonicity

of T −
δ

(ε) and T +
δ

(ε) with respect to δ shown in Property 5(ii).

3.3.3 Frame Erasure Rate Under Faulty SC Decoding

In this section, we adapt the framework of [124] to the case of faulty decoding in order to derive

a lower bound on the frame erasure probability under faulty decoding. Let Pe (An) denote the

frame erasure rate (FER) of a polar code of length 2n with information set An . From [6], we

have the general upper bound

Pe (An) ≤ ∑
s∈An

Z (s)
n � P UB

e . (3.60)

Furthermore, from [124] we have the lower bound

Pe (An) ≥ ∑
s∈An

Z (s)
n − 1

2

∑
s,t∈An :

s�=t

(
Z (s)

n Z (t)
n +C (s,t)

n

)
� P LB

e (3.61)

106

3.3. Successive Cancellation Decoding of Polar Codes with Faulty Memories

where Cn � [C (s,t)
n : s,t ∈ {+,−}n] denotes the covariance matrix of the random vector En ,

where C (s,t)
n � cov[E (s)

n E (t)
n]. It was shown in [124] that, in the non-faulty case, the elements of

Cs , s = 1, . . . ,n, can be calculated recursively from the elements of Cs−1 and Z (s)
s−1 as follows

C (s−,t−)
s = 2Z (s)

s−1Z (t)
s−1C (s,t)

s−1 +C (s,t)
s−1

2
, (3.62)

C (s−,t+)
s = 2Z (s)

s−1Z (t)
s−1C (s,t)

s−1 −C (s,t)
s−1

2
, (3.63)

C (s+,t−)
s = 2Z (s)

s−1Z (t)
s−1C (s,t)

s−1 −C (s,t)
s−1

2
, (3.64)

C (s+,t+)
s = 2Z (s)

s−1Z (t)
s−1C (s,t)

s−1 +C (s,t)
s−1

2
, (3.65)

with C (�,�)
0 = p(1−p). In the case of reliable decoding, the second sum in (3.61) goes to zero

as n is increased [124] if R = |An |
2n < 1−p, so that

Pe (An) ≈ ∑
s∈An

Z (s)
n . (3.66)

We can use the upper and lower bounds of (3.61) and (3.60) for the case of faulty decoding

by replacing Z (s)
n with Z (s)

n,δ, and C (s,t)
n with C (s,t)

n,δ , where C(s,t)
n,δ � [C (s,t)

n,δ : s,t ∈ {+,−}n], is the

covariance matrix of the random vector En,δ. In the case of faulty decoding, as n is increased,

we know from Proposition 4 that almost all Z (s)
n,δZ (t)

n,δ, s,t ∈An , are equal to 1. Moreover, the

non-diagonal elements of C (s,t)
n,δ still converge to 0 for any s,t, as almost all indicator variables

become deterministic like in the fault-free case. Thus, for some n the lower bound of (3.61)

becomes negative and can be replaced by the trivial lower bound Pe (An) ≥ maxs∈An Z (s)
n,δ.

Similarly, for some n the upper bound of (3.60) becomes greater than 1, so it can be replaced

by the trivial upper bound Pe (An) ≤ 1. Clearly though, since Z (s)
n,δ converges to 1 as n grows for

almost all s ∈ {+,−}n , we have limn→∞ Pe (An) = 1 for any An such that limn→∞ |An |
2n � 0.

3.3.3.1 Lower Bound on Pe (An) Under Faulty SC Decoding

We already have an efficient way to calculate Z (s)
n,δ recursively (i.e., (3.36) and (3.37)), but, in

order to evaluate P LB
e , we still need to find an efficient way to calculate Cn,δ. To this end, we

first introduce a property which we then combine with the results of [124] in order to obtain a

recursive expression for Cs,δ, s = 1, . . . ,n.

Property 6. Let X ,Y denote two arbitrary random variables. Let Δ1,Δ2 denote two random

variables with Δ1,Δ2 ∈ {0,1} and E [Δ1] = E [Δ2] = δ that are independent of X ,Y and of each

other. Then, we have

cov [X + (1−X)Δ1,Y + (1−Y)Δ2] = (1−δ)2cov [X ,Y] . (3.67)

Proof. For simpler notation, let us define X ′ � X + (1−X)Δ1 and Y ′ � Y + (1−Y)Δ2. We then

107

Chapter 3. Faulty Polar and LDPC Channel Decoders

have

cov
[

X ′,Y ′]= E[X ′Y ′]−E[X ′]E[Y ′] (3.68)

= E[(1−Δ1)X +Δ1)((1−Δ2)Y +Δ2)]

−E[(1−Δ1)X +Δ1]E[(1−Δ2)Y +Δ2] (3.69)

(∗)= E [(1−Δ1)(1−Δ2)] (E[X Y]−E[X]E[Y]) (3.70)

(∗∗)= (1−δ)2cov[X ,Y] , (3.71)

where for (∗) we have used the independence of Δ1 and Δ2 from X and Y , while for (∗∗) we

have used the independence between Δ1 and Δ2.

Proposition 7. The covariance matrix of the random vector Es,δ, denoted by Cs,δ � [C (s,t)
s,δ : s,t ∈

{+,−}s], where Cs,δ � cov
[

E (s)
s,δE (t)

s,δ

]
, can be computed in terms of Cs−1,δ and Zs−1,δ as follows:

C (s−,t−)
s,δ = (1−δ)2

(
2Z (s)

s−1,δZ (t)
s−1,δC (s,t)

s−1,δ+C (s,t)
s−1,δ

2
)

, (3.72)

C (s−,t+)
s,δ = (1−δ)2

(
2Z (s)

s−1,δZ (t)
s−1,δC (s,t)

s−1,δ−C (s,t)
s−1,δ

2
)

, (3.73)

C (s+,t−)
s,δ = (1−δ)2

(
2Z (s)

s−1,δZ (t)
s−1,δC (s,t)

s−1,δ−C (s,t)
s−1,δ

2
)

, (3.74)

C (s+,t+)
s,δ = (1−δ)2

(
2Z (s)

s−1,δZ (t)
s−1,δC (s,t)

s−1,δ+C (s,t)
s−1,δ

2
)

, (3.75)

with C (�,�)
0 = p(1−p).

Proof. To avoid unnecessary repetition, we prove the result only for (3.75), as the remaining re-

lations (3.72)–(3.74) can be derived in the same way. Recall that, in the case of faulty decoding,

from (3.33) we have

E (s+)
s,δ = E (s)

s−1,δ

′
E (s)

s−1,δ

′′ +
(
1−E (s)

s−1,δ

′
E (s)

s−1,δ

′′)
Δ(s+)

s , (3.76)

E (t+)
s,δ = E (t)

s−1,δ

′
E (t)

s−1,δ

′′ +
(
1−E (t)

s−1,δ

′
E (t)

s−1,δ

′′)
Δ(t+)

s . (3.77)

Let us define X � E (s)
s−1,δ

′
E (s)

s−1,δ

′′
, Y � E (t)

s−1,δ

′
E (t)

s−1,δ

′′
, Δ(s+)

s �Δ1, and Δ(t+)
s �Δ2. Then, we can

rewrite (3.76) as

E (s+)
n,δ = X + (1−X)Δ1, (3.78)

E (t+)
n,δ = Y + (1−Y)Δ2, (3.79)

where X and Y are identical to the update rule for E (s+)
s and E (t+)

s in the fault-free case given in

(3.25), respectively. Using E
[
Δ(s+)

s

]
= E

[
Δ(t+)

s

]
= δ, along with the fact that Δ(s+)

s and Δ(t+)
s are

independent by assumption, we can apply Proposition 6 to the update formula for cov[X ,Y]

from [124] given in (3.65), in order to obtain (3.75).

108

3.3. Successive Cancellation Decoding of Polar Codes with Faulty Memories

It is intuitively pleasing to note that, for δ= 0 (i.e., for fault-free decoding), the expressions

in (3.72)–(3.75) become identical to the expressions in (3.62)–(3.65).

3.3.4 Unequal Error Protection

As mentioned in Section 3.3, standard methods employed to enhance the fault tolerance of

circuits, such as using larger transistors or circuit-level error correcting codes, are costly in

terms of both area and power if the entire circuit needs to be protected. With this in mind,

we note that in SC decoding of polar codes not all levels in the tree of MEs are of equal

importance, meaning that it may suffice to employ partial protection of the decoder against

hardware-induced errors. In fact, we shall see in Proposition 8, a careful application of such a

protection method allows polarization to happen even in a faulty decoder while protecting

only a constant fraction of the total decoder MEs.

Let np denote the number of levels that are protected, starting from level n of the tree (i.e., the

root) and going towards the leaves. We assume that for these np levels we have δ= 0. Let Np

denote the total number of protected MEs, where

Np =
{∑np−1

j=0 2 j = 2np −1, np > 0,

0, np = 0.
(3.80)

If we set np = (n + 1)−nu, where nu > 0 is a fixed number of unprotected levels, then the

fraction of the decoder that is protected converges to a constant as n grows. Indeed, we have

lim
n→∞

Np

NME
= lim

n→∞
2(n+1)−nu −1

2n+1 −1
= 2−nu . (3.81)

In this case, the process εs,δ can be rewritten as

εs,δ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T +
δ

(εs−1,δ), w.p. 1/2,
if s = 1, . . . ,nu,

T −
δ

(εs−1,δ), w.p. 1/2,

T +(εs−1,δ), w.p. 1/2,
if s = nu +1, . . . ,n.

T −(εs−1,δ), w.p. 1/2,

(3.82)

The following proposition asserts that the protection of a constant fraction of the decoder is

sufficient to ensure that polarization happens as n grows.

Proposition 8. Setting np = s −nu for any fixed nu suffices to ensure that εs,δ converges almost

surely to a random variable ε∞ ∈ {0,1}. However, the unprotected levels result in a rate loss

ΔR(δ, p,nu), in the sense that P (ε∞ = 0) = 1−p−ΔR(δ, p,nu), which can be calculated in closed

form as

ΔR(δ, p,nu) = (1− (1−δ)nu)(1−p). (3.83)

Proof. The process εs,δ as defined in (3.82) is a submartingale for s ≤ nu, but it becomes a

109

Chapter 3. Faulty Polar and LDPC Channel Decoders

martingale for s > nu. Thus, for s > nu we have E(εs,δ) = E(εnu,δ). Using the arguments from

[6], we can show that εs,δ converges almost surely to a random variable ε∞ ∈ {0,1} with P (ε∞ =
0) = 1−E(εnu) ≤ 1−p. Equivalently, P (ε∞ = 0) = 1−p −ΔR(δ,ε,nu) for ΔR(δ,ε,nu) = E(εnu)−p.

Using the closed form expression for E(εs,δ) from Property 4, we get

ΔR(δ, p,nu) = E(εnu)−p (3.84)

= 1− (1−p)(1−δ)nu −p (3.85)

= (1− (1−δ)nu
)

(1−p). (3.86)

Proposition 8 implies that, when partial protection of the decoder is employed, polar codes

are still not capacity achieving, but they can nevertheless be used for reliable transmission at

any rate R such that R < 1−p −ΔR(δ, p,nu).

3.3.5 Optimal Blocklength Under Faulty SC Decoding

In the finite blocklength regime, which is of practical interest, there are two clashing effects

occurring. On one side, we have the polarization process, which tends to decrease the FER of

the code as the blocklength is increased, but on the other side we have the internal erasures of

the decoder which tend to increase the FER of the code as the blocklength is increased. From

Proposition 4 we already know that, as the blocklength is increased towards infinity, the latter

effect dominates and the resulting polar code becomes asymptotically useless. However, there

must exist at least one blocklength which minimizes the FER and it is of great practical interest

to identify this length.

Since this is a finite-length problem with practical applications, there will usually be a pre-

defined maximum blocklength nmax for which a decoder is implementable with acceptable

complexity. Thus, for a given nmax, we define N = {0, . . . ,nmax} as the set of n values of interest.

For a given code rate R, we define the n∗ which leads to the blocklength with the lowest FER

under faulty decoding N∗ = 2n∗
as

n∗ = argmin
n∈N

Pe (An). (3.87)

A simple way to identify the optimal blocklength is to perform extensive Monte-Carlo simula-

tions of the codes for all n ∈N . However, we can find the solution more efficiently by using

the bounds on Pe (An) given by (3.60) and (3.61). First, we study the special case where p < δ.

More specifically, the following proposition shows that, when p < δ, it is optimal in terms of

the FER to use uncoded transmission, as the faulty decoder can only increase the FER.

Proposition 9. If p < δ, then n∗ = 0.

110

3.3. Successive Cancellation Decoding of Polar Codes with Faulty Memories

Proof. The FER for n = 0 (i.e., uncoded transmission) over a BEC(p) is equal to p. From

Property 1, we know that Z (s)
n,δ ≥ δ, ∀s ∈ {+,−}n . Since p < δ by assumption, we have Z (s)

n,δ >
p, ∀s ∈ {+,−}n . Thus, using the trivial lower bound on the FER, i.e., P LB

e = maxs∈An Z (s)
n,δ, we can

see that P LB
e > p for any An such that |An | > 0. Thus, in this special case coded transmission

with any blocklength such that n > 0 and at any rate R > 0, leads to a higher FER than uncoded

transmission.

In general, we can efficiently evaluate P UB
e (An) and P LB

e (An) for all n ∈N for a given rate

R [124]. Using these values, we can deduce whether there exists a single n ∈N satisfying the

following inequality

P UB
e (An) ≤ P LB

e (An′), ∀n′ ∈N . (3.88)

If there exists such a unique n ∈N , then clearly this is the optimal n∗. Otherwise, we need to

examine (via Monte-Carlo simulations) all n ∈N for which P UB
e (An) and P LB

e (An) overlap, i.e.,

for which ∃n′ ∈N and ∃B ∈ {UB,LB} such that

P LB
e (An′) ≤ P B

e (An) ≤ P UB
e (An′). (3.89)

3.3.6 Numerical results

In this section we provide some numerical results to explore the process εs,δ, as well as the

FER performance of polar codes constructed based on this process. Moreover, we use the FER

bounds derived in Section 3.3.3 in order to find the optimal blocklength for polar a polar code

under faulty SC decoding and we explore the effectiveness of the unequal error protection

scheme described in Section 3.3.4.

Remark Most of the results in this section are presented for a decoder erasure probability

of δ= 10−6. From Property 1, we know that the erasure probability of the synthetic channels

is lower bounded by δ. Moreover, from (3.60), we know that the frame error rate is upper

bounded by the sum of the erasure probabilities of the synthetic channels used to transmit

information. In the numerical experiments we did, we saw that the same number also provides

a good lower bound for most code rates. Thus, have we selected δ= 10−6 as this leads to frame

error rates that are practically relevant for the blocklengths that we have considered.

3.3.6.1 Bhattacharyya Parameters

In Figure 3.7, we show the sorted values Z (s)
n,δ, s ∈ {+,−}n , for polar codes with n = 8,10,12,

designed for the BEC(0.5) under faulty SC decoding with δ= 10−6. We observe that we always

have Z (s)
n,δ ≥ δ, as predicted by Property 1. Moreover, ε= δ

1−δ is a fixed point of T +
δ

(ε), but it is

not a fixed point of T −
δ

(ε) (whereas ε= 1 is a fixed point for both), resulting in the staircase-like

111

Chapter 3. Faulty Polar and LDPC Channel Decoders

0 0.2 0.4 0.6 0.810−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Normalized Channel Index

Z
(s

)
n

,δ

N = 28 (faulty)

N = 210 (faulty)

N = 212 (faulty)

N = 28 (non-faulty)

N = 210 (non-faulty)

N = 212 (non-faulty)

Figure 3.7 – Sorted Z (s)
n,δ, s ∈ {+,−}n and Z (s)

n , s ∈ {+,−}n , values for polar codes of length

N = 256,1024,4096, designed for the BEC(0.5) under faulty SC decoding with δ = 10−6 and
non-faulty decoding, respectively.

structure that we can observe in Figure 3.7.

3.3.6.2 Frame Erasure Rate

In Figure 3.8, we present the evaluation of P UB
e and P LB

e as a function of R and for N =
256,1024,2048, for a faulty SC decoder with δ= 10−6 and transmission over the BEC(0.5). We

observe that, especially for low rates, P UB
e and P LB

e are practically indistinguishable. For rates

R > 0.30 we start observing a difference between the lower bound and the upper bound, while

for R > 0.40 both the upper bound and the lower bound break down and should be replaced

by their trivial versions P UB
e = 1 and P LB

e = maxs∈An Z (s)
n,δ. Moreover, we observe that over a

wide range of rates the FER under SC decoding actually increases when the blocklength is

increased, contrary to the fault-free case where increasing the blocklength generally decreases

the FER. This can be explained if we recall that Z (s)
n,δ ≥ δ. Thus, by increasing the blocklength

while keeping the rate fixed, we are increasing the number of terms in (3.66), and since some

of these terms do not decrease beyond some point, the value of the sum can increase.

3.3.6.3 Optimal Blocklength

An example of the evaluation of P UB
e and P LB

e for N = 2n , n = 4, . . . ,12, and code rates R ∈
{0.1250,0.1875,0.2500} (where K = �RN�) is shown in Figure 3.9 under faulty SC decoding with

δ= 10−6 over a BEC(0.5). We observe that the bounds are tight enough in this case so that there

always exists a unique n ∈N that satisfies (3.88). Thus, for R = 0.1250 the optimal blocklength

is N = 128, for R = 0.1875 the optimal blocklength is N = 256, and finally for R = 0.2500 the

112

3.3. Successive Cancellation Decoding of Polar Codes with Faulty Memories

0.1 0.2 0.3 0.4 0.510−6

10−5

10−4

10−3

10−2

10−1

100

Rate

Fr
am

e
E

ra
su

re
R

at
e

P UB
e (N = 28)

P LB
e (N = 28)

P UB
e (N = 210)

P LB
e (N = 210)

P UB
e (N = 212)

P LB
e (N = 212)

Figure 3.8 – Evaluation of P UB
e and P LB

e for polar codes of lengths N = 256,1024,4096, designed
for the BEC(0.5) with δ= 10−6.

4 5 6 7 8 9 10 11 1210−5

10−4

10−3

10−2

10−1

100

Blocklength (n)

Fr
am

e
E

ra
su

re
R

at
e

R = 0.1250 (UB)

R = 0.1250 (LB)

R = 0.1875 (UB)

R = 0.1875 (LB)

R = 0.2500 (UB)

R = 0.2500 (LB)

Figure 3.9 – Evaluation of P UB
e and P LB

e for N = 2n , n = 0, . . . ,12, and various code rates
R ∈ {0.1250,0.1875,0.2500} for transmission over a BEC with erasure probability 0.5 under
faulty SC decoding with δ= 10−6.

113

Chapter 3. Faulty Polar and LDPC Channel Decoders

0 5 ·10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.410−20

10−15

10−10

10−5

100

Rate

Fr
am

e
E

ra
su

re
R

at
e

np = 0
np = 1
np = 2
np = 3
np = 4
np = 5
np = n +1

Figure 3.10 – FER for a polar code of length N = 1024 designed for the BEC(0.5) under faulty
SC decoding with δ= 10−6 and np = 0, . . . ,5, protected decoding levels. Protecting np = n +1
levels is equivalent to using a non-faulty decoder.

optimal blocklength is N = 512.

3.3.6.4 Unequal Error Protection

The effect of the partial protection for a finite length code is illustrated in Figure 3.10, where

we present P UB
e (An) for N = 210 = 1024 and δ= 10−6 when np = 0, . . . ,5, levels of the tree are

protected. To improve readability, we intentionally omit P LB
e (An) from the figure. However,

we have already seen that the bounds are tight, especially for low rates, so using only the

upper bound is sufficient to illustrate the effect of unequal error protection. We observe that

protecting only the root node already improves the performance significantly, especially for

the lower rates. When np = 5, the performance of the faulty SC decoder is almost identical to

the non-faulty decoder in the examined FER region and it is remarkable that this performance

improvement is achieved by protecting only
Np

NME
= 31

2047 ≈ 1.5% of the decoder. Moreover, in

Figure 3.11, we present P UB
e (An) for N = 512,1024,2048, and δ= 10−6 with np = n −5, so that

the protected part for each N is fixed to approximately 1.5% of the decoder. We observe that,

contrary to the results of Section 3.3.6, increasing the blocklength actually decreases Pe (An)

in the examined FER region, as in the case of the non-faulty decoder.

3.4 Min-Sum Decoding of LDPC Codes with Faulty Memories

Apart from polar codes, there has also been significant interest in studying the performance

of LDPC codes under decoding where messages are not always computed or stored correctly.

An important reason for this interest is that LDPC decoders are dominated by memory which

114

3.4. Min-Sum Decoding of LDPC Codes with Faulty Memories

0.1 0.2 0.3 0.4 0.510−20

10−15

10−10

10−5

100

Rate

Fr
am

e
E

ra
su

re
R

at
e

N = 28 (faulty)

N = 28 (non-faulty)

N = 210 (faulty)

N = 210 (non-faulty)

N = 212 (faulty)

N = 212 (non-faulty)

Figure 3.11 – FER for polar codes of length N = 512,1024,2048, designed for the BEC(0.5) under
faulty SC decoding with δ= 10−6 and np = n −5 protected decoding levels.

is error prone. Moreover, LDPC codes can be studied analytically using a technique called

density evolution (DE). Density evolution tracks the average probability density functions of

the messages exchanged between the variable and check nodes at each decoding iteration in

the limit of infinite blocklength [132]. DE operates under the assumption that all messages are

independent because it can be shown that the Tanner graph of a randomly constructed LDPC

code is asymptotically cycle-free. A concentration result guarantees that the performance of

individual codes chosen from an ensemble is close to the ensemble average performance with

high probability [132].

In [133] the Gallager A and the sum-product algorithms are analyzed under faulty decoding and

an important concentration result is proven that makes the DE analysis valid and meaningful

in the case of faulty decoding. Similar analyses are provided in [134, 135] for the Gallager B

algorithm, while more general finite-alphabet decoders were considered in [136].

The aforementioned studies provide important insight into the behavior of LDPC codes

under unreliable iterative decoding. However, since the study of faulty decoders is practically

motivated, it is also important to study specific decoders which are widely used in practice,

such as the min-sum decoder [137]. Moreover, the distribution of the faults for the non-binary

message alphabet decoders studied in [133, 136] is not chosen based on a model that could

describe a hardware implementation reasonably well. Thus, in this section we introduce a

bit-level memory fault model and we derive the corresponding density evolution analysis for

faulty decoding of LDPC codes using a quantized version of the min-sum decoding algorithm.

115

Chapter 3. Faulty Polar and LDPC Channel Decoders

Figure 3.12 – Message fault model: an incoming b-bit noiseless message of value m is passed
through b independent BSC(δ) channels, resulting in the faulty message e(m).

3.4.1 Channel Model and Memory Fault Model

3.4.1.1 Channel Model

We assume that transmission of each codeword c ∈ C takes place over an additive white

Gaussian noise (AWGN) channel using binary phase-shift keying (BPSK) modulation, which

can be modeled as

yi = xi +wi , wi ∼N (
0,σ2) , i = 1, . . . , N , (3.90)

where xi = 1−2ci . Moreover, for an AWGN channel the channel LLR is computed as

L(yi)� ln
p(yi |xi =+1)

p(yi |xi =−1)
= ln

p(yi |ci = 0)

p(yi |ci = 1)
=−2yi

σ2 . (3.91)

3.4.1.2 Fault Model

We assume quantized MS decoding as described in Section 1.4.2.3 using a sign-magnitude

binary representation for all message values m ∈M. The memory read errors are modeled as

independent and identically distributed (i.i.d.) random bit-flips. Thus, all faults are transient,

as in [133], and independent of the stored message. More precisely, at each iteration, each bit

of the binary representation of the messages used to compute (1.41)–(1.43) is passed through

a binary symmetric channel (BSC) with crossover probability δ, denoted by BSC(δ). We denote

the set of all possible binary error patterns by E and the resulting faulty message after applying

e ∈ E to a message of value m by e(m). The distribution of the error patterns is

P(e) = δwH(e) (1−δ)b−wH(e) , e ∈ E , (3.92)

where wH(e) denotes the Hamming weight of e. The fault model and its application to quan-

tized MS decoding are illustrated in Figure 3.12, Figure 3.13, and Figure 3.14.

116

3.4. Min-Sum Decoding of LDPC Codes with Faulty Memories

m1 . . . mdv−1 m

n
Φv

e(·)
μ̄1

e(·) e(·)
μ̄dv−1

μn→m

e(·)
Ln

(a)

n1 . . . ndc−1 n

m
Φc

e(·)
μ1

e(·) e(·)

μdc−1

μ̄m→nμ̄m→n

(b)

Figure 3.13 – Faulty variable node update for N (n) = {m,m1, . . . ,mdv−1} (a) and faulty check
node update (b) for N (m) = {n,n1, . . . ,ndc−1}.

m1 . . . mdv−1 mdv

n
Φd

e(·)
μ̄1

e(·) e(·)

μ̄dv−1

e(·)
μdv

ĉn

e(·)
Ln

Figure 3.14 – Faulty decision node update for N (n) = {m,m1, . . . ,mdv }.

3.4.2 Density Evolution for Faulty Quantized MS Decoding

In this section, we derive the DE equations for faulty quantized MS decoding of (dv ,dc)-

regular LDPC codes. First, we need to ensure that some important properties that make the

DE analysis valid and meaningful still hold in the case of faulty decoding. Specifically, the

existence of transient errors using the error model introduced in Section 3.4.1.2 does not affect

the asymptotic cycle-free property of the decoding graph and with our error model the faulty

messages are independent, because the corresponding non-faulty messages from which they

are derived are independent and the errors affecting a specific message are independent of

the message value.

3.4.2.1 Restriction to the All-One Modulated BPSK Codeword

An additional important property that makes the DE analysis tractable is channel symmetry

and decoder update rule symmetry. If both the channel and the decoder are symmetric (in

a sense that will be explained in the sequel), then the DE analysis can be restricted to the

all-zero LDPC codeword, or, equivalently, the all-one modulated BPSK codeword [132]. We

will now show that both symmetries hold in faulty quantized MS decoding.

117

Chapter 3. Faulty Polar and LDPC Channel Decoders

The AWGN channel is symmetric in the sense that

L(−yi) =−L(yi). (3.93)

It can easily be seen that the following symmetries hold for the MS update rules

ΦMS
v (−L,−μ̄1, . . . ,−μ̄dv−1) =−ΦMS

v (L, μ̄1, . . . , μ̄dv−1), (3.94)

ΦMS
c (b1μ1, . . . ,bdc−1μdc−1) =

dc−1∏
i=1

biΦ
MS
c (μ1, . . . ,μdc−1), (3.95)

where bi ∈ {±1}, i = 1, . . . ,dc −1. Under the update rule symmetry defined in (3.94) and (3.95)

and under channel symmetry, as defined in (3.93), the probability of bit error is independent

of the transmitted codeword [132]. Thus, the asymptotic analysis of MS decoding can be

restricted to the all-one BPSK codeword. The following proposition ensures that the same

simplification can be applied to faulty quantized MS decoding with our error model.

Proposition 2. When messages are represented in sign-magnitude form, MS decoder symmetry

is preserved under faulty decoding with read errors modeled as i.i.d. bit-flips.

Proof. Due to quantizer symmetry, we have qΔ

(
L(−yi)

)= qΔ(−L(yi)) =−qΔ(L(yi)), so channel

symmetry holds. Moreover, when using sign-magnitude representation where “+0” and “−0”

exist as distinct values, it holds that

e(−m) =−e(m), ∀e ∈ E , m ∈M. (3.96)

Thus, for the variable node update rule, we have

ΦMS
v

(−e(L),−e(μ̄1), . . . ,−e(μ̄dv−1)
)=−ΦMS

v

(
e(L),e(μ̄1), . . . ,e(μ̄dv−1)

)
(3.97)

Similarly, for bi ∈ {±1}, i = 1, . . . ,dc −1, we have

ΦMS
c

(
e(b1μ1), . . . ,e(bdc−1μdc−1)

)= dc−1∏
i=1

biΦ
MS
c

(
e(μ1), . . . ,e(μdc−1)

)
(3.98)

meaning that update rule symmetry holds for both variable nodes and check nodes. Moreover,

we assume that, whenever m = 0 appears, a uniform random choice between “+0” and “−0” is

made, so that the bit error rate when m = 0 is always 1/2 independently of the codeword bit

value.

3.4.2.2 Density Evolution for Quantized MS Decoding

Since we have shown that all required properties hold for the DE analysis to be valid, we can

now proceed with the formulation of the DE equations. We first describe DE for non-faulty

MS decoding and we then extend it to the case of faulty decoding.

118

3.4. Min-Sum Decoding of LDPC Codes with Faulty Memories

Let p�(m) and q�(m) denote the probability mass functions (PMFs) of the VN-to-CN and

the CN-to-VN messages at iteration �≥ 1, respectively, and let p0(m) denote the PMF of the

channel LLR messages assuming that the all-one BPSK codeword was transmitted. We have

p0 (li) = 1�
8πσ−2

∫
ti

e
−
(
x− 2

σ2

)2· σ2

4 d x, ∀li ∈M, (3.99)

where ti denotes the quantization interval corresponding to mi , as defined in (1.45). The

CN-to-VN message density is given by

q�(m) =

⎧⎪⎨
⎪⎩

Φ�−(m)−Φ�−(m −1), m < 0,

1− (1−p�(0)
)dc−1

, m = 0,

Φ�+(m +1)−Φ�+(m), m > 0,

(3.100)

where Φ�−(m) and Φ�+(m) are defined as

Φ�
+(m) =

dc−1∑
k=0,

k even

(
dc −1

k

)(
A�
+(m)

)k (
A�
−(m)

)dc−k−1
(3.101)

Φ�
−(m) =

dc−1∑
k=0,

k odd

(
dc −1

k

)(
A�
+(m)

)k (
A�
−(m)

)dc−k−1
(3.102)

and

A�
+(m) =

l2b−2∑
x=m

p�(x), m > 0, (3.103)

A�
−(m) =

m∑
x=l0

p�(x), m < 0. (3.104)

The VN-to-CN message density is given by

p�(m) = p0(m)⊗
(
q (�−1)(m)

)⊗(dv−1)
, (3.105)

where ⊗ denotes the convolution and q0(m) = δ[m], where δ[m] is the Kronecker delta func-

tion. The density of the quantity used for bit decisions is given by

d�(m) = p0(m)⊗
(
q (�−1)(m)

)⊗dv
. (3.106)

When applying (3.105) and (3.106), any probability mass that corresponds to values smaller

than l0 or larger than l2b−2 is added to the mass corresponding to l0 or l2b−2, respectively.

119

Chapter 3. Faulty Polar and LDPC Channel Decoders

3.4.2.3 Density Evolution for Faulty Quantized MS Decoding

Let fδ(P)(m) denote the probability of a faulty message m, m ∈M, where P is the distribution

of the non-faulty messages m′, i.e., P can be p� or q�. We have

fδ(P)(m) = ∑
e∈E ,m′∈M:

e(m′)=m

P (m′)P(e). (3.107)

For each value m, there are 2b pairs (e,m′) such that e(m′) = m. Since there are 2b −1 values

for m,1 evaluating fδ(P) requires the calculation of approximately 2b+1 terms.

Unreliable memory reads cause errors in the input messages of (1.41)–(1.43). Thus, DE for

faulty MS decoding with transient memory read errors can be formulated by replacing the

p� and q� distributions that appear on the right-hand side of (3.100)–(3.106) with fδ
(
p�
)

and

fδ
(
q�
)
, respectively.

3.4.3 Bit-Error Probability and Decoding Threshold

Let P�
e (σ2) denote the bit-error probability at iteration � when transmission takes place over an

AWGN channel with noise variance σ2. Under the all-zero codeword assumption, a bit-error

occurs when the bit-decision taken by (1.43) is equal to 1, or, equivalently, when the decision

LLR is negative. We note that when the decision LLR is exactly equal to zero, the bit is decoded

as 0 or 1 randomly and with equal probability. Since the PMF of the decision LLRs is known

from the DE analysis, the bit-error probability P�
e (σ2) can be easily computed as follows

P�
e (σ2)� 1

2
d�(0)+

l2b−1−2∑
m=l0

d�(m). (3.108)

In non-faulty decoding, the decoding threshold corresponds to the worst channel parameter

for which asymptotically error-free transmission is possible in the sense that the bit-error

probability converges to zero. More specifically, for the AWGN channel the decoding threshold

is defined as [132]

σ2
∗ � sup

{
σ2 ≥ 0 : lim

�→∞
P�

e (σ2) = 0

}
. (3.109)

Under faulty decoding, in some cases the bit-error probability is lower bounded by a strictly

non-zero quantity [133], making the threshold definition of (3.109) meaningless. Thus, the

threshold for faulty decoding was re-defined in [133] as

σ2
∗(η)� sup

{
σ2 ≥ 0 : lim

�→∞
P�

e (σ2) ≤ η

}
, (3.110)

1Recall that the decimal value 0 corresponds to two binary patterns (i.e., "+0" and "−0").

120

3.4. Min-Sum Decoding of LDPC Codes with Faulty Memories

50 100 150 20010−7

10−6

10−5

10−4

10−3

10−2

10−1

Iterations

B
it

E
rr

o
r

R
at

e
δ= 10−5

MS (σ2 = 0.6575)

Faulty MS (σ2 = 0.6575)

Faulty MS (σ2 = 0.6577)

64 iterations

50 100 150 20010−7

10−6

10−5

10−4

10−3

10−2

10−1

Iterations

δ= 10−6

MS (σ2 = 0.6581)

Faulty MS (σ2 = 0.6581)

Faulty MS (σ2 = 0.6583)

20 iterations

Figure 3.15 – Error probability for a (3,6)-regular LDPC code under faulty MS and MS de-
coding for δ = 10−5 and δ = 10−6. The calculated thresholds are σ2∗(10,10−5) = 0.6576 and
σ2∗(10,10−6) = 0.6582.

where η is some target bit-error probability.

3.4.4 Numerical Results

For all examined (dv ,dc)-regular ensembles and σ2, our numerical results consistently show

that P�
e

(
σ2
)≥ δ. This observation can help us in choosing a meaningful value for η. Specifically,

we choose η=αδ, for some α> 1. If α is chosen so that αδ lies within the waterfall region of

the code, then the value of α does not have a significant effect on the computed threshold. To

make the dependence on α and δ explicit, we denote the threshold by σ2∗(α,δ).

3.4.4.1 Bit Error Rate

The evolution of P�
e (σ2) as a function of � for the (3,6)-regular ensemble and for two indicative

cases of δ = 10−5 and δ = 10−6 under MS and faulty MS decoding is presented in Fig. 3.15.

The error floor for faulty MS decoding is very apparent. This visualization also enables us to

calculate the overhead, in terms of additional iterations, introduced by faulty decoding. In

Fig. 3.15, the faulty MS decoder for δ= 10−5 requires 64 more iterations than the MS decoder

to achieve the same bit error probability when operating slightly below the faulty MS decoder’s

threshold, which is σ2∗(10,10−5) = 0.6576. Moreover, the faulty MS decoder for δ = 10−6

requires 20 more iterations than the MS decoder to achieve the same bit error probability

121

Chapter 3. Faulty Polar and LDPC Channel Decoders

2 3 4 5 6

0.5

0.6

0.7

Quantization Bits

T
h

re
sh

o
ld

(σ
2

)

Non-Faulty, PR Faulty, PR

Non-Faulty, DR Faulty, DR

Figure 3.16 – Decoding threshold for a (3,6)-regular LDPC code under faulty MS and MS
decoding for δ= 10−3 for different numbers of quantization bits.

Table 3.1 – Thresholds of various (dv ,dc)-regular codes under MS and faulty MS decoding for
α= 10 and b = 5 bits.

(dv ,dc) δ 10−3 10−4 10−5 10−6

(3,6)
MS σ2∗(α,δ) 0.6579 0.6579 0.6579 0.6582

F-MS σ2∗(α,δ) 0.5703 0.6518 0.6576 0.6582

(4,8)
MS σ2∗(α,δ) 0.5486 0.5486 0.5486 0.5486

F-MS σ2∗(α,δ) 0.5077 0.5446 0.5482 0.5486

(5,10)
MS σ2∗(α,δ) 0.4793 0.4793 0.4793 0.4793

F-MS σ2∗(α,δ) 0.4473 0.4761 0.4790 0.4792

(6,12)
MS σ2∗(α,δ) 0.4320 0.4320 0.4320 0.4320

F-MS σ2∗(α,δ) 0.4041 0.4292 0.4317 0.4320

when operating slightly below the faulty MS decoder’s threshold, which is σ2∗(10,10−6) = 0.6582.

In Fig. 3.15, we see that for a smaller δ, the difference in iterations is smaller, as intuitively

expected. Finally, for both δ= 10−5 and δ= 10−6 when operating above the corresponding

threshold, the bit-error rate very quickly floors at very high value.

3.4.4.2 Decoding Threshold

In Table 3.1, we present σ2∗(α,δ) under MS and faulty MS decoding for various (dv ,dc)-regular

ensembles of rate 0.5 and for various values of δ, with α= 10 and b = 5 bits. The maximum

number of iterations is set to �max = 200. Quantization is performed with Δ = 1. For fair

comparison, the definition in (3.110) was used for both MS and faulty MS decoding.

It is interesting to note that the threshold generally decreases when dv and dc are increased,

but the resulting code ensembles seem to be more resilient to errors. The loss in σ2∗(α,δ) as δ

is increased is smaller for larger (dv ,dc) pairs.

122

3.5. Summary

3.4.4.3 Are More Quantization Bits Always Better?

In faulty decoding it cannot be claimed in advance that increasing the number of quantization

bits b will result in better performance, since by increasing b we also increase the number of

faults in the decoder. The additional bits can be used either to increase the dynamic range (DR)

or to increase the precision (PR) of the messages. The DR case corresponds to quantization

with a fixed step size, while in the PR case the quantization step is a function of b.

In Fig. 3.16 we present indicative threshold results for the DR case with ΔDR = 1, as used in

Section 3.4.4.2, and for the PR case with ΔPR = 23−b , which we empirically found to provide

good performance with fault-free decoding in both cases, and δ= 10−3 and α= 10. We observe

that increasing the dynamic range does not offer any benefits after b = 3 for fault-free decoding

in the examined scenario, and that PR quantization provides better performance than DR

quantization. More importantly, however, in the DR case the performance actually degrades

for b ≥ 3. This behavior can be explained intuitively as follows. In the DR case, bit-flips in the

additional bits cause increasingly larger errors in the message values, whereas in the PR case

these errors become smaller when b is increased.

3.5 Summary

In this chapter we have studied the application of approximate computing concepts to channel

coding applications. We have examined applications that are both intentionally approximate

and unintentionally faulty.

More specifically, in Section 3.2.1, we have shown how to achieve fine-grained trade-offs

between complexity and performance of SC decoding of polar codes by reformulating the

frozen channel selection step of the standard polar code construction procedure as a 0-1

knapsack problem. Moreover, we have described a low-complexity greedy algorithm, which

is tailored to fit our specific knapsack problem instance. This greedy algorithm was used to

approximately solve the optimization problem in order to construct polar codes of blocklength

up to N = 220 that provide varying levels of performance-complexity trade-offs.

In Section 3.3, we have studied faulty SC decoding of polar codes for the BEC, where the

hardware-induced errors are modeled as additional erasures within the decoder. We have

shown that, under this model, fully reliable communication is not possible at any rate. Fur-

thermore, we have shown that, in order for partial ordering of the synthetic channels with

respect to the BEC parameter p to hold, the internal erasure probability of the decoder has to

be approximately smaller than the erasure probability of the BEC. Moreover, we have derived

a lower bound on the frame erasure rate and we used this lower bound in order to optimize

the blocklength of polar codes under faulty SC decoding. Finally, we have proposed an error

protection scheme which re-enables asymptotically error-free transmission by protecting only

a constant fraction of the decoder. Finally, our unequal error protection scheme was shown

to significantly improve the performance of the faulty SC decoder for finite-length codes by

123

Chapter 3. Faulty Polar and LDPC Channel Decoders

protecting as little as 1.5% of the decoder.

In Section 3.4, we have studied MS decoding of LDPC codes under unreliable message storage,

where the hardware-induced errors in the memory are modeled as i.i.d. bit-flips. We have

derived the DE equations for an MS decoder using our fault model, and we have provided

numerical results on the threshold and the BER of a faulty MS decoder with various fault rates.

Moreover, we have demonstrated that, in the context of faulty MS decoding, increasing the

number of quantization bits only leads to improved performance when the additional bits are

used in order to enhance the precision of the decoder and not the dynamic range. We have

also observed that the decoding threshold decreases when the variable node and check node

degrees are increased, but the resulting LDPC code ensembles seem to be more resilient to

errors.

124

4 Hardware Decoders for Ultra High-
Speed Decoding of LDPC Codes

The excellent error-correcting performance of low-density parity-check (LDPC) codes, along

with the availability of low-complexity and highly parallel decoding algorithms and corre-

sponding hardware architectures makes them an attractive choice for many high throughput

communication systems. LDPC codes are usually decoded using message-passing (MP)

schemes such as the sum-product (SP) and the min-sum (MS) algorithms, as explained in

Section 1.4. Both of the aforementioned decoding algorithms involve real-valued infinite-

precision messages. However, practical implementations require finite-precision message

representations in order to keep the implementation complexity at acceptable levels. To this

end, the decoder messages are typically uniformly quantized and represented using 4 to 7

bits per message (see, e.g., [35] and references therein). Lower message resolutions tend to

deteriorate the error rate performance of the code severely, especially in the error floor regime

at high signal-to-noise ratios (SNRs) [138].

Instead of starting from a decoding algorithm and using uniform quantization of a given

bit-width, it is also possible to start from a given bit-width and design a decoding algorithm

specifically for that bit-width. We call this approach quantized decoding. Previous work on

quantized MP algorithms for LDPC decoding has shown that decoders which are designed to

operate directly on message alphabets of finite size can lead to improved performance. There

are numerous different approaches towards the design of such decoders. For example, the

authors of [139], [140] and [141] consider look-up table (LUT) based update rules that are

designed such that the resulting decoders can correct most of the error events contributing to

the error floor. However, their design is restricted to codes with column weight 3 and to binary

output channels. In [138] a quasi-uniform quantization was proposed which extends the

dynamic range of the messages at later iterations and improves the error floor performance.

Unfortunately, the design of [138] still relies on the conventional message update rules and

therefore does not reduce the required message bit-width. Furthermore, the authors of

[142, 143] consider message updates based on an information theoretic fidelity criterion.

While [139], [140], and [138] analyze the performance of their decoding schemes by means of

FER simulations, [142] only provides density evolution results and [143] focuses solely on the

125

Chapter 4. Hardware Decoders for Ultra High-Speed Decoding of LDPC Codes

algorithm for designing the message update rules. To the best of our knowledge, none of the

above schemes have been assessed in terms of their impact on hardware implementations.

In this chapter, we use the idea of operating on messages that are not directly associated with

numerical values in order to present a novel min-LUT algorithm that replaces the variable

node (VN) update of the MS algorithm with a look-up table (LUT) designed to maximize the

local information flow through the code’s Tanner graph as in [143]. Moreover, we examine

the effects of the design SNR on the error-correcting performance and we develop several

complexity reduction techniques, such as using a tree structure for the LUTs, LUT re-use,

and alphabet downsizing. We demonstrate the various design and performance trade-offs by

means of both density evolution (DE) analysis and frame error rate (FER) simulations. Finally,

we design, implement, and synthesize a fully unrolled LDPC decoder based on our LUT design

algorithm and compare our results with our re-implementation of the only other existing fully

unrolled LDPC decoder architecture [144], which is based on the conventional MS algorithm.

4.1 Mutual Information Based Message Quantization

Since floating-point arithmetic is too complex for most practical hardware implementations

of LDPC decoders, the real-valued messages of the MS algorithm are usually discretized using

a small number of uniformly spaced quantization levels. Together with the well-established

two’s complement and sign-magnitude binary encoding, the uniform quantization leads to

highly efficient arithmetic circuits. However, this kind of quantization is not necessarily the

best choice in terms of the error-correcting performance of the resulting decoder, as several

other (non-uniform) quantization options are available.

Recently, efforts have been made to design decoders that explicitly account for finite message

and channel log-likelihood ratio (LLR) alphabets [139, 142]. Instead of arithmetic computa-

tions such as (1.41) and (1.42), the update rules for these decoders are implemented as LUTs.

There are numerous approaches to the design of such LUTs. In the following, we present an

algorithm that combines the conventional MS algorithm and the purely LUT-based approach

of [142]. In this min-LUT algorithm, the VN updates are realized as LUTs, whereas the CN

updates follow the standard MS update rule of (1.42). Our choice is motivated by the following

three observations: First, the CN degree can be much larger than the VN degree, especially

for high code rates. Consequently, without further simplifications, CN LUTs are far more

complex than VN LUTs as the size of a single LUT implementing the node update rule grows

exponentially in the number of inputs. Second, for the MS algorithm, the VN update (1.41)

typically increases the dynamic range of the messages whereas the CN update (1.42) preserves

the dynamic range, so that message saturation is not an issue at CNs. Moreover, replacing

the VN update (1.41) with a LUT eliminates the need for a message representation that can

be interpreted as a numeric value. However, as will be explained in (4.1.1), the outputs of

the LUT-based VN can be sorted in such a way that the CN update (1.41) can be performed

based on the LUT output labels, making the actual numerical values of the messages irrelevant

126

4.1. Mutual Information Based Message Quantization

and enabling the use of a conventional MS-based CN. The LUT design for the VN updates is

based on the method of [142] and it is based on density evolution. More specifically, as will be

explained in the sequel, given the CN-to-VN message distributions of the previous iterations,

one can design the VN LUTs for each iteration in a way that maximizes the mutual information

between the VN output messages and the codeword bit corresponding to the VN in question.

4.1.1 Channel Model and Symmetry Conditions

As explained in Section 3.4, LDPC codes can be studied analytically using a technique called

density evolution (DE), which tracks the average probability density functions of the messages

exchanged between the variable and check nodes at each decoding iteration in the limit

of infinite blocklength [132]. There are two main properties that make the DE procedure

tractable. First, the incoming messages at check nodes and variable nodes are assumed to

be independent so that their evolution can be tracked more easily. It can be shown that

the Tanner graph of a randomly constructed LDPC code is asymptotically cycle-free, so this

assumption is in fact true. The second property is that the conventional decoding algorithms,

such as SP and MS decoding, have certain symmetry properties which, when paired with a

symmetric transmission channel, mean that the error probability of the decoding algorithms

is independent of the transmitted codeword. Thus, the DE analysis can be restricted to the

all-zero codeword, greatly reducing its complexity. In the remainder of this section, we will

formalize these properties.

In order to initialize the DE procedure, the LLR distribution at the decoder input needs to be

known. Similarly to Section 3.4, we assume that transmission of each codeword c ∈ C takes

place over an additive white Gaussian noise (AWGN) channel using binary phase-shift keying

(BPSK) modulation, which can be modeled as

yi = xi +wi , wi ∼N (
0,σ2) , i = 1, . . . , N , (4.1)

where xi = 1−2ci . We note that, since xi and ci are equivalent, they can be used interchange-

ably. Moreover, for an AWGN channel the quantized channel LLRs are computed as

LLR(yi)� qΔ

(
ln

p(yi |xi =+1)

p(yi |xi =−1)

)
= qΔ

(
ln

p(yi |ci = 0)

p(yi |ci = 1)

)
= qΔ

(
−2yi

σ2

)
, (4.2)

where the uniform symmetric b-bit quantizer qΔ is defined in Section 1.4.2.3. We note that,

while our decoder design is exemplified for the BI-AWGN channel, it applies to any symmetric

binary input channel that is followed by a symmetric quantizer. The quantizer qΔ induces a

symmetric PMF pLLR|X (l |x) that can in turn be used to define the reproducer values of the

quantized LLRs as

L � log
pLLR|X (l |0)

pLLR|X (l |1)
, (4.3)

127

Chapter 4. Hardware Decoders for Ultra High-Speed Decoding of LDPC Codes

hence pL|X (−l |0) = pL|X (l |1). Similarly, we can assign reproducer values

μ� log
p(�)

M |X (μ|0)

p(�)
M |X (μ|1)

(4.4)

to the output message labels of the VN LUTs at iteration �. We assume that the number |L| and

|M| of channel and internal messages is even. When the reproducer values are in ascending

order, i.e.,

L1 < L2 < ·· · < L|L|, and μ1 <μ2 < ·· · <μ|M|, (4.5)

for Li ∈L, i = 1, . . . , |L|, and μi ∈M, i = 1, . . . , |M|, the identities

Lk ≡−L|L|−k+1, μ j ≡−μ|M|− j+1, (4.6)

follow from the symmetry of pL|X (l |x) and the MP algorithm (cf. [132], Definition 1) and

they associate each label k ∈ {1, . . . , |L|} and j ∈ {1, . . . , |M|} with a sign. Specifically, Lk , k ∈{
1, . . . , |L|

2

}
and L j , j ∈

{
1, . . . , |M|

2

}
can be said to have a negative sign, while the remaining

values have positive signs. Based on this association and the ordering (4.5), the MS CN update

(1.42) can be performed directly on the message labels; the reproducer values (4.3)–(4.4) are

not needed for decoding. However, (4.4) bears an interesting interpretation: As the messages

become more informative over the course of iterations, implying more concentrated densities

p(�)
M |X (μ|x), the reproducer values grow in magnitude. Using different LUTs for different

iterations is thus similar to using different message representations for different iterations, an

approach which has already been used successfully in [138].

The symmetry of the MP algorithm discussed above is guaranteed, if the designed VN LUT at

any iteration � satisfies

Φ(�)
v (−L,−μ̄1, . . . ,−μ̄dv−1) =−Φ(�)

v (L, μ̄1, . . . , μ̄dv−1). (4.7)

This identity can be reformulated based on (4.6) as a symmetry relation involving only labels.

4.1.2 LUT Design via Density Evolution

In this section, we show how the VN update rules for a finite-alphabet LDPC decoder can

be optimized by tracking the evolution of the message distributions over the course of the

decoding iterations for a (dv ,dc)-regular LDPC code. We first describe how the distribution of

the CN-to-VN messages can be computed based on the distribution of the incoming VN-to-CN

messages. We then use the joint distribution of the CN-to-VN messages in order to design a

locally optimal VN update rule. Using this rule, the distribution of the VN-to-CN messages

can be computed based on the distribution of the incoming CN-to-VN messages. We note

that the derivation of the VN-to-CN messages and the CN-to-VN messages is similar to the

128

4.1. Mutual Information Based Message Quantization

derivation of Section 3.4. However, there is one important difference: in order to design the

VN LUTs we need to calculated the joint distribution of the VN input messages, whereas in

Section 3.4 it sufficed to directly calculated the distribution of the output messages. For this

reason, the notation in this section is slightly more involved that the notation of Section 3.4.

4.1.2.1 CN-to-VN Messages

Let μ=
(
μ1, . . . ,μdc−1

)
denote the (dc −1) incident VN-to-CN messages that are involved in

the update of a certain CN k. We wish to calculate the distribution of the CN-to-VN message

from CN k to a particular VN n, which is associated with a codeword bit cn . If the Tanner

graph is cycle-free, then the individual input messages μ j of the CN at iteration � are i.i.d.

conditioned on their corresponding transmitted bit c j , and their distributions are denoted by

p(�)
M |X (μ j |c j). The joint distribution of the (dc −1) incoming messages at CN k conditioned on

the transmitted bit value cn corresponding to the recipient VN n (cf. Figure 1.8) thus reads

p(�)
M |C (μ|cn) =

(
1

2

)dc−2 ∑
c :
⊕dc−1

j=1 c j=cn

(
dc−1∏
j=1

p(�)
M |C (μ j |c j)

)
. (4.8)

Using the MS update rule (1.42), the distribution of the outgoing CN-to-VN message is then

given by

C p(�)
M |C (μ̄|cn) = ∑

μ: sign(μ)min |μ|=μ̄
p(�)

M |C (μ|cn), (4.9)

which was already calculated in detail in (3.100) of Section 3.4.

4.1.2.2 VN-to-CN Messages

Let μ̄=
(
μ̄1, . . . , μ̄dv−1

)
denote the (dv −1) incident CN-to-VN messages that are involved in

the update of a certain VN n, which is in turn associated with a codeword bit cn . Then, the

joint distribution of the VN input messages and the channel LLR is given by

p(�)
L,M |C (l ,μ̄|cn) = pL|C (l |cn)

∑
c :c1=···=cdv −1=cn

(
dv−1∏
j=1

p(�)
M |X (μ̄ j |c j)

)
. (4.10)

Given this joint input distribution, we want to construct an update rule Φ(�)
v that maximizes

the mutual information I (�)
(
Φ(L, M);C

)
� I (M (�);C), i.e.,

Φ(�)
v = argmax

Φ
I (�)(Φ(L, M);C

)
, (4.11)

where M (�) is a random variable describing any one the variable node output messages (note

that all dv output messages have the same distribution) and the maximization is performed

over all deterministic mappings Φ in the form of (1.35) that respect the symmetry condition

129

Chapter 4. Hardware Decoders for Ultra High-Speed Decoding of LDPC Codes

(4.7). Hence, the resulting update rule Φ(�)
v maximizes the local information flow between the

VN and the CN. We use a dynamic programming algorithm that solves (4.11) with complexity

O
(|M|3dv

)
which was provided in [143]. Using the update rule (4.11), we can compute the

conditional distribution of the VN-to-CN message in the next iteration

p(�+1)
M |C (μn |cn) = ∑

(l ,μ̄):Φ(�)
v (l ,μ̄)=μn

p(�)
L,M |C (l ,μ̄|cn). (4.12)

Using the distribution p(�+1)
M |C (μn |cn), we can in turn calculate the distribution of the CN-to-VN

messages at iteration (�+1) and design the VN update rule Φ(�+1)
v . This procedure is repeated

until the update rules for all �max iterations are designed.

4.2 LUT Design Considerations for Practical Decoders

In the previous section, we have described our proposed LUT design method on a relatively

abstract level. However, there are several issues that need to be addressed from a practical

point of view in order to enable the implementation of efficient hardware LDPC decoders

using the proposed min-LUT algorithm. In particular, one significant issue with LUT-based

decoders is that the circuit complexity of LUTs can be significantly higher than that of conven-

tional arithmetic circuits, such as adders and comparators, especially when many inputs are

involved. Thus, in this section we focus mainly on methods for complexity reduction of the

LUT implementation. The various complexity-performance trade-offs are illustrated in this

section by Monte Carlo simulations for the frame-error rate (FER). We use the parity-check

matrix of the LDPC code defined in the IEEE 802.3an standard [30], which is a (6,32)-regular

LDPC code of design rate R = 13
16 and blocklength N = 2048.

4.2.1 Performance of Min-LUT Decoding

In this section, we first briefly demonstrate the error-correcting performance that can be

achieved using our proposed min-LUT decoder, skipping some of the practical details on

how the examined min-LUT decoder was actually designed, as these details are thoroughly

treated in the following sections. To this end, in Figure 4.1 we compare the error-correcting

performance of both floating point and fixed point versions of the standard MS decoding

algorithm with the error-correcting performance of our proposed min-LUT decoder when

performing a maximum of �max = 5 decoding iterations. We observe that the fixed point

MS decoder needs a message alphabet size of at least |M| = 25 in order to closely match

the performance of the floating point MS decoder.1 Moreover, we can see that the min-

LUT decoder with channel LLR alphabet size |L| = 24 and message alphabet size |M| = 23

outperforms even the floating point version of the MS decoder. Finally, we observe the min-

LUT decoder with channel LLR alphabet size |L| = 24 and message alphabet size |M| = 23 is

1We note that this should not be unexpected, since the MS algorithm is sub-optimal while the min-LUT
decoding algorithm is highly optimized.

130

4.2. LUT Design Considerations for Practical Decoders

3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.410−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb /N0 (dB)

Fr
am

e
E

rr
o

r
R

at
e

Sum-Product (float)
Min-Sum (float)

Min-Sum (|M| = 24)

Min-Sum (|M| = 25)

Min-LUT (|L| = 24, |M| = 23)

Figure 4.1 – Performance comparison of floating point and fixed point min-sum decoding
with our proposed min-LUT decoder for the IEEE 802.3an LDPC code (�max = 5).

only 0.2 dB worse than the floating point SP decoder.

4.2.2 Reduced Complexity LUT Structure

Since the number of input configurations for the VN update Φ(�)
v equals |M(�)|dv , a single-stage

LUT would be prohibitively complex for codes with even moderate VN degree dv . A similar

problem occurs with the decision LUT that implements (1.37). To overcome this limitation, we

propose to use nested (i.e., multi-level LUT) update rules. For example, for dv = 6 a possible

LUT decomposition could take the form

Φ(L, μ̄1, . . . , μ̄5) =Φ1
(
L,Φ2(μ̄1, μ̄2, μ̄3),Φ3(μ̄4, μ̄5)

)
. (4.13)

Any such nesting can be represented graphically by a tree, e.g., tree T2 in Figure 4.2 for the

example of (4.13). The LUT design procedure for this tree starts by designing the LUTs for the

leaves and progressively moves towards the root of the tree. Since we assume i.i.d. messages,

the ordering of the arguments in the nesting is irrelevant for the mutual information and we

consider nestings that differ only in the ordering as equivalent. While the nested structure

clearly reduces complexity, it is not clear a priori which tree structure to prefer over another. In

what follows, we provide guidelines on how to choose the tree structure based on information-

theoretic arguments as well as on a heuristic metric.

131

Chapter 4. Hardware Decoders for Ultra High-Speed Decoding of LDPC Codes

Φ

Φ

μ μ

Φ

μ μ

μ L

Φ

Φ

μ μ μ

Φ

μ μ

L

Φ

Φ

μ μ μ μ μ

L

T1 T2 T3

Φ

Φ

Φ

μ μ

Φ

μ μ

μ L

Φ

Φ

Φ

μ μ μ

Φ

μ μ

L

Φ

Φ

Φ

Φ

μ μ

Φ

μ μ

μ

L

T4 T5 T6

Figure 4.2 – Six different LUT tree structures. Note that T1 ≥T T4 ≥T T6, T2 ≥T T5, T3 ≥T T5,
and T3 ≥T T6. However, we cannot compare T2 with T3 or T5 with T6 using the relation ≥T .

Table 4.1 – Comparison of cumulative depth and DE threshold for various tree structures
(cf. Figure 4.2).

T T1 T2 T3 T4 T5 T6

λ 10 11 11 14 16 19
σ∗ 0.5330 0.5328 0.5327 0.5313 0.5309 0.5305

A Partial Ordering

Let the tree T1 represent a specific nesting and let T2 be a refinement of T1. Graphically, a

refinement of nesting corresponds to the placement of new nodes between parent and child

nodes. Furthermore, let Q j denote the set of all LUTs that respect the nesting induced by

some tree T j . By construction, any LUT in Q2 also conforms with the nesting associated with

T1. Thus, Q1 ⊇Q2 and

max
Φ∈Q1

I (�)(Φ(L, M);C
)≥ max

Φ∈Q2

I (�)(Φ(L, M);C
)
.

Consequently, tree refinement defines a partial ordering ≥T , effectively inducing a hierarchy

in terms of maximum information flow. Clearly, not all tree structures can be compared in

terms of the relation ≥T . An example of various LUT trees and their corresponding ordering

with respect to ≥T is given in Figure 4.2.

A Heuristic Metric

The data processing inequality states that processing can only reduce mutual information.

Intuitively, for maximum information flow the paths from the input leaves to the root output

should be as short as possible. We thus define the cumulative depth λ(T) of a tree T as the sum

132

4.2. LUT Design Considerations for Practical Decoders

of distances of all leaf nodes to the root node. DE simulations confirmed that cumulative depth

is in our case useful for ranking tree structures. More specifically, Table 4.1 shows how a larger

λ corresponds with a lower DE threshold (cf. Section 4.2.5.1 on how the decoding threshold

can be calculated). However, the threshold differences are small and our simulations have

shown that all the trees presented here perform similarly in terms of error rate. While there

were small differences conforming with the ordering discussed above, they are not significant

enough to serve as a basis for choosing the tree structure. Rather, we recommend choosing

the tree based on its silicon complexity. Trees that are close to full binary trees are preferable

because they have short critical paths with low complexity LUTs and at the same time have

small cumulative depth λ.

Position of the Channel LLR in the VN Tree

The mutual information between the CN-to-VN messages and the coded bits is initially zero

and increases over the course of iterations until at some iteration I (�′)(M ;C) ≥ I (L;C). Using a

similar argument as before, we can conclude that until iteration �′ the channel LLR should

be placed close to the root node to ensure a large information flow. After iteration �′, the

CN-to-VN messages tend to carry more information than the channel LLR an thus should be

gradually placed closer to the root node. Our simulations indeed showed that this strategy

provides the best FER performance. However, the loss as compared to the case where the

channel LLR stays at the root node is only relevant for a large number of iterations (e.g.,

�max > 20), meaning that, in order to simplify the design procedure by reducing the number of

possible parameters, we recommend to place the channel LLR at the root of the tree for all

iterations.

4.2.3 Design SNR

In order to design the VN LUTs with our proposed method, the channel LLR distribution

pL|C (l |c) needs to be known as a starting point for the DE process. In general, the channel

LLR distribution usually depends on some channel parameter, such as the noise variance σ2

(equivalently, the SNR) for AWGN channels. Thus, a decoder that is designed for a specific

design SNR γ may not necessarily work well for other SNRs.

To illustrate this behavior, we plot the FER performance of the LDPC code used in the IEEE

802.3an standard for various design SNRs γ in Figure 4.3. The examined decoder performs

�max = 5 decoding iterations using a channel LLR alphabet of size |L| = 24 and a message

alphabet of size |M| = 23. We observe that, by increasing the design SNR, we can trade

off performance in the waterfall region against performance in the error floor region. The

explanation is straight-forward, as we intuitively expect, decoders that are designed for bad

channels to work better for bad channels (i.e., low SNR) and decoders that are designed for

good channels to work better for good channels (i.e., high SNR). More specifically, when

designing a decoder for a low SNR, at each decoding iteration the message densities computed

133

Chapter 4. Hardware Decoders for Ultra High-Speed Decoding of LDPC Codes

3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.410−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb /N0 (dB)

Fr
am

e
E

rr
o

r
R

at
e

Min-LUT (γ= 3.8 dB)
Min-LUT (γ= 3.9 dB)
Min-LUT (γ= 4.0 dB)
Min-LUT (γ= 4.1 dB)
Min-LUT (γ= 4.2 dB)

Figure 4.3 – FER versus channel SNR for min-LUT decoder at different design SNRs γ for the
IEEE 802.3an LDPC code (�max = 5, |L| = 4, |M| = 3).

by DE are concentrated around smaller values than when designing a decoder for a higher

SNR. Thus, when operating a decoder that is designed for a low SNR at a much higher SNR,

significant message saturation occurs which can lead to the pronounced error floors observed

in Figure 4.3. Our simulations also indicate that, if the design SNR γ is chosen carefully,

then excellent error-correcting performance is maintained over a wide range of actual SNR

values. Re-designing the LLR quantizer or the entire decoder for different SNRs would of

course improve the error-correcting performance, but it would also substantially increase

the decoder hardware implementation cost as many more distinct LUTs would need to be

implemented.

4.2.4 LUT Re-use

The method described in Section 4.1.2 produces a distinct VN LUT for each iteration. While

this does not affect silicon complexity for a decoder in which the individual iterations are

unrolled (cf. Section 4.3), standard non-unrolled decoders would need to implement multiple

distinct LUTs in the hardware that computes the message updates for all iterations. In order

to reduce the hardware complexity, it would be desirable to re-use the LUTs for a particular

iteration in order to also compute the message updates for a few of the following iterations.

Since the message distributions usually do not change drastically from one iteration to the

next, this approach is actually possible. Let us define a re-use pattern r as follows

r =
[

r (1) r (2) . . . r (�max)
]

, (4.14)

134

4.2. LUT Design Considerations for Practical Decoders

3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.410−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb /N0 (dB)

Fr
am

e
E

rr
o

r
R

at
e

Min-Sum (|M| = 25)

Min-LUT (|R| = [0 0 0 0 0
]
)

Min-LUT (|R| = [0 0 1 0 0
]
)

Min-LUT (|R| = [0 1 0 0 0
]
)

Min-LUT (|R| = [0 1 0 1 0
]
)

Min-LUT (|R| = [0 1 1 1 0
]
)

Figure 4.4 – Performance comparison of floating point and fixed point min-sum decoding
with our proposed min-LUT decoder for the IEEE 802.3an LDPC code and various LUT re-use
patterns r (�max = 5, |L| = 24, |M| = 23,γ= 4.2 dB).

where r (�) = 1 if at iteration � the VN LUT from iteration (�−1) is re-used, and r (�) = 0 if a

new VN LUT is to be designed for iteration �. Clearly, r (1) = 0 must always hold as there is

no VN LUT from iteration �= 0 to be re-used at iteration �= 1. Moreover, r (�max) = 1 is only

permissible in conjunction with LUT downsizing (cf. Section 4.2.5), as the output of the last

VN LUT has to be binary by definition of the decision rule (1.37).

In Figure 4.4 we compare the error-correcting performance of both floating point and fixed

point versions of the standard MS decoding algorithm with the error-correcting performance of

our proposed min-LUT decoder when performing a maximum of �max = 5 decoding iterations

and using various LUT re-use patterns r . We observe that re-using one LUT (i.e., patterns

r =
[

0 0 1 0 0
]

and r =
[

0 1 0 0 0
]

where four distinct LUTs are used) does not degrade the

error-correcting performance of the min-LUT decoder significantly. In fact, for some SNR

values the performance with LUT re-use can even be slightly better than the performance

without LUT re-use. The explanation of this effect is an open question, but we conjecture

that it originates from the overly optimistic message distributions of DE, which tends to

overestimate the speed of convergence with respect to finite-length codes that are not cycle-

free. Even when employing a LUT re-use pattern that leads to three distinct LUTs being used

(i.e., |r | =
[

0 1 0 1 0
]

), the error-correcting performance degradation of the resulting min-LUT

decoder is negligible. However, we observe that, when moving to the most extreme re-use

pattern that is admissible for �= 5, i.e., r =
[

0 1 1 1 0
]

where only two distinct LUTs are used,

the error-correcting performance degradation is detrimental.

135

Chapter 4. Hardware Decoders for Ultra High-Speed Decoding of LDPC Codes

3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.410−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb /N0 (dB)

Fr
am

e
E

rr
o

r
R

at
e

Min-Sum (|M| = 25)

Min-LUT (|D| = [3 3 3 3 3
]
)

Min-LUT (|D| = [3 3 3 3 2
]
)

Min-LUT (|D| = [3 3 3 2 2
]
)

Min-LUT (|D| = [3 3 2 2 2
]
)

Figure 4.5 – Performance comparison of floating point and fixed point min-sum decoding with
our proposed min-LUT decoder for the IEEE 802.3an LDPC code and various LUT downsizing
patterns d (�max = 5, |L| = 24,γ= 4.2 dB).

4.2.5 LUT Input/Output Alphabet Downsizing

As already mentioned in Section 1.4.2, in general the size of the message alphabets can change

over the course of the decoding iterations. Thus, another means of reducing LUT complexity

is LUT alphabet downsizing, i.e., |M(�′)| ≤ |M(�)| for �′ > �. The idea here is that the messages

undergo a gradual hardening while being passed through the decoder before culminating into

the binary-output decision mapping (1.37). Let us define a downsizing pattern d as follows

d =
[

d (1) d (2) . . . d (�max)
]

, (4.15)

where d (�) = log
∣∣M(�)

∣∣. For the VN LUTs of iteration �, the bit-width of the input messages is

d (�), while the bit-width of the output messages is d (�+1) to ensure compatibility with the VN

LUT of iteration (�+1). Finally, the VN LUT of iteration �max, also called a decision node (DN)

LUT, has an output bit-width of one bit by definition of the decision mapping (1.37).

In Figure 4.5 we compare the error-correcting performance of both floating point and fixed

point versions of the standard MS decoding algorithm with the error-correcting performance of

our proposed min-LUT decoder when performing a maximum of �max = 5 decoding iterations

and using various LUT downsizing patterns d . We observe that downsizing the LUT alphabet

size only during the last iteration from |M(4)| = 23 to |M(4)| = 22, i.e., d =
[

3 3 3 3 2
]

, has

practically no impact on the error-correcting performance of the resulting min-LUT decoder.

When d =
[

3 3 3 2 2
]

, on the other hand, the degradation in the error-correcting performance

is more visible, although the resulting min-LUT decoder still performs similarly to the floating

point MS decoder. Finally, when more aggressive downscaling is performed, as in the case

136

4.2. LUT Design Considerations for Practical Decoders

of the downscaling pattern d =
[

3 3 2 2 2
]

, the error-correcting performance degradation

becomes very apparent and an error floor starts to appear at a FER of 10−3.

We note that LUT re-use and LUT alphabet downsizing can be combined, but not in an

arbitrary fashion as, e.g., reducing the message resolution at a certain iteration � prevents

re-use of the LUT of iteration (�−1). More formally, we call a pair of LUT re-use and LUT

downsizing patterns compatible if for any � ∈ {2, . . . ,�max −1} such that d (�−1) �= d (�) or d (�) �=
d (�+1), we have r (�) = 0. Finally, r (�max) = 1 is only permissible if d (�max−1) = d (�max) = 1, as the

last VN is always a special DN with binary output.

4.2.5.1 Decoding Threshold and Decoder Design Procedure

In the previous sections, we have demonstrated the performance of the min-LUT decoder

and we have examined the effect of various design parameter choices on the error-correcting

performance of the resulting min-LUT decoder. In this section, we describe the LUT design

procedure in more detail. To this end, let us first define the noise threshold σ∗ of a (dv ,dc)-

regular LDPC code ensemble with at most �max decoding iterations as

σ∗ = sup
{
σ≥0: I (M (�);C) > 1−ε for some �≤ �max

}
, (4.16)

where ε> 0 is pre-defined tolerance parameter.

Algorithm 6 summarizes the individual steps of a bisection algorithm that uses DE to design the

VN LUTs for each decoding iteration and to calculate the corresponding decoding threshold

σ∗. The following parameters need to be defined in order to run Algorithm 6.

1. The desired number of maximum iterations �max and the VN and CN degrees (dv ,dc)

2. The LUT downsizing pattern d (cf. Section 4.2.5) and a compatible LUT re-use pattern r

(cf. Section 4.2.4).

3. The LUT tree structure for the variable nodes and the decision nodes (cf. Section 4.2.2).

4. The search interval [σmin,σmax], the desired accuracy Δσ> 0 for the bisection search

procedure, and the tolerance parameter ε for the threshold calculation (cf. (4.16)).

Algorithm 6 produces the threshold σ∗ of the considered (dv ,dc)-regular LDPC code under the

designed min-LUT decoding algorithm, as well as the sequence of VN LUTs that lead to this

decoding threshold. If one is only interested in designing a VN LUT sequence for a particular

design SNR γ (equivalently, for a particular σ2), it suffices to run lines (3)-(14) of Algorithm 6

for the particular value of σ2.

137

Chapter 4. Hardware Decoders for Ultra High-Speed Decoding of LDPC Codes

Algorithm 6: Density Evolution based LUT design

Data: Search interval �max, (dv ,dc), d , r , [σmin,σmax], Δσ, ε
1 while σmax −σmin >Δσ do
2 σ← (σmax −σmin)/2;
3 Get pL|C (l |c) corresponding to BI-AWGN(σ2);
4 achievable ← false;
5 for �= 1, . . . ,�max do
6 Update CN-to-VN distribution (4.8)–(4.9);
7 Build the product distribution (4.10);
8 if r � == 0 then
9 Design LUT update Φ(�)

v (4.11) with input bit-width d� and output bit-width d�+1;

10 else
11 Re-use LUT from iteration (�−1), i.e., Φ(�)

v =Φ(�−1)
v ;

12 Update VN-to-CN distribution (4.12);

13 if I (M (�);C) > 1−ε then
14 achievable ← true;

15 if achievable then
16 σmin ←σ

17 else
18 σmax ←σ

19 σ∗ ←σ;

Result: Threshold σ∗, LUT sequence Φ(1)
v , . . . ,Φ(�)

v

4.3 LUT-Based Fully Unrolled Decoder Hardware Architecture

In the previous sections, we have described an algorithm that can construct locally optimal

VN update rules in the form of LUTs for a given message bit-width for each iteration for any

given (dv ,dc)-regular LDPC code. In this section, we describe an LDPC decoder hardware

architecture that takes full advantage of the min-LUT decoding algorithm in order to signif-

icantly increase the hardware efficiency and the throughput of the decoder with respect to

similar existing LDPC decoders.

Most LDPC decoder architectures are either partially parallel, meaning that fewer than N VNs

and M CNs are instantiated, or fully parallel, meaning that N VNs and M CNs are instantiated

and re-used several times in order to perform all �max decoding iterations. Using a LUT-based

decoder with a carefully designed quantization scheme can significantly reduce the memory

required to store the messages exchanged by the VNs and CNs in both of these LDPC decoder

architecture types, mainly due to the reduced message bit-width required to achieve the same

FER performance with a conventional quantized MS decoder. However, both for partially

parallel and for fully parallel decoders, separate LUTs would be required within each VN for

each one of the performed decoding iterations, significantly increasing the area requirements

of each VN, and thus possibly outweighing the gain in the memory area.

138

4.3. LUT-Based Fully Unrolled Decoder Hardware Architecture

Figure 4.6 – Top level decoder architecture processing pipeline. The channel LLRs are the input
of the left-hand side and the decoded codeword is obtained as the output of the right-hand
side.

An additional degree of parallelism was recently explored in [144], where a fully unrolled

LDPC decoder was presented. This decoder instantiates N VNs and M CNs for each and every

iteration of the decoding algorithm, leading to a total of N�max instantiated VNs and M�max

instantiated CNs. While such a fully unrolled decoder requires significant hardware resources,

it also has a very high throughput since it is possible to output one decoded codeword in each

clock cycle and the clock period can be made arbitrarily small with appropriate pipelining.

Thus, the hardware efficiency (i.e., throughput per unit area) of the fully unrolled decoder

presented in [144] turns out to be significantly better than the hardware efficiency of partially

parallel and fully parallel (non-unrolled) approaches. Since in a fully unrolled LDPC decoder

architecture dedicated VNs and CNs are instantiated for each iteration, it is a very suitable

candidate for the application of our LUT-based decoding algorithm, where distinct VN LUTs

are required for each decoding iteration. In this section, we describe the hardware architecture

of our proposed fully unrolled LUT-based LDPC decoder. This hardware architecture is

similar to the architecture used in [144]. However, the most important difference are the

optimized LUT-based variable node and the significantly reduced bit-width of all quantities

involved in the decoding process that lead to reduced memory and routing requirements,

while maintaining similar error-correcting performance.

4.3.1 Decoder Architecture

An overview of our decoder architecture is shown in Figure 4.6. Each decoding iteration

� ∈ {1, . . . ,�max} is mapped to a distinct set of N VNS and M CNs, which then form a processing

pipeline. In essence, a fully unrolled LDPC decoder is a systolic array in which data flows

from left to right. A new set of N channel LLRs can be read in each clock cycle, and a new

decoded codeword is output in each clock cycle. The decoding latency as well as the maximum

frequency depend on the number of performed iterations as well as the number of pipeline

registers present in the decoder. Our decoder consist of three types of stages, namely the CN

stage, the VN stage, and the DN stage, which are described in detail in the following sections.

As long as a steady flow of input channel LLRs can be provided to the decoder, there is no

139

Chapter 4. Hardware Decoders for Ultra High-Speed Decoding of LDPC Codes

control logic required apart from the clock and reset signals.

4.3.1.1 Check Node Stage

Each CN stage contains M check node units, as well as Mdc d (�)-bit registers which store

the CN output messages, where d (�) denotes the number of bits used to represent the CN

output messages at iteration � (cf. Section 4.2.5). Moreover, each CN stage contains N d (0)-bit

channel LLR registers which are used to forward the channel LLRs required by the following

variable node stages, where d (0) denotes the number of bits used to represent the channel

LLRs.

As already discussed in Section 4.1.1, due to (4.6), the CN update can be performed directly on

the message labels instead of the message values. If we use the natural numbering {0, . . . ,2d (�) −
1} for the message labels and a sign-magnitude binary representation, we can use a check

node architecture which is practically identical to the check node architecture used in [144]

if we consider the MSB to be the sign bit. In this case, when the MSB is 0 the number is

negative, while when the MSB is 1 the number is positive (cf. Section 4.1.1). More specifically,

each check node consists of a sorting unit that identifies the two smallest messages among

the absolute values of all dc input messages and an output unit which selects the first or

the second minimum for each output, along with the appropriate sign in order to efficiently

implement the CN update rule (1.42). The sorting unit contains 4-input compare-and-select

(CS) units in a tree structure, which identify and output the two smallest values out of the four

input values [144].

4.3.1.2 Variable Node Stage

The VN stage for iteration � contains N variable node units, as well as N dv d (�)-bit registers

that store the variable node output messages. Moreover, each VN stage contains N d (0)-bit

channel LLR registers which are used to forward the channel LLRs to the following CN stage,

so that they can then be used by the VN stage for iteration (�+1).

In the reference variable node architecture used in the adder-based decoder of [144], all input

messages are added up using an adder tree and then the input message corresponding to

each output is subtracted from the sum in order to form the output message, thus efficiently

implementing the conventional MS update rule given in (1.41). In order to avoid overflows, in

our implementation of [144] the bit-width of the internal signals is increased by one bit for

each addition. The final result is then saturated so that the output has the same bit-width as

the input.

For our LUT-based decoder the adder tree is replaced by dv LUT trees, each of which computes

one of the dv outputs of the variable node. One possible LUT-tree structure for a code with

dv = 6 is shown in Figure 4.7a, where μ denotes an internal message from a check node and

L denotes the channel LLR. Keeping the number of inputs of each LUT as low as possible

140

4.3. LUT-Based Fully Unrolled Decoder Hardware Architecture

Φ

Φ

Φ

Φ

μ μ

Φ

μ μ

μ

L

(a)

Φ

Φ

Φ

μ μ μ

Φ

μ μ μ

L

(b)

Figure 4.7 – (a) The variable node LUT tree that is used in the hardware implementation for
the calculation of one output of a variable node of degree dv = 6. This tree is identical to
T6 of Figure 4.2. Each LUT-based variable node contains dv such LUT trees, one for each
combination of (dv −1) input messages.
(b) The decision node LUT tree that is used in the hardware implementation for the hard
decisions taken by each variable node of degree dv = 6. This tree is similar to T5 of Figure 4.2
with an additional input added to the right LUT of the lowest level. Each LUT-based decision
node contains a single decision tree.

ensures that the size of the LUTs, which grows exponentially with the number of inputs, is

manageable for the automated logic synthesis process.

4.3.1.3 Decision Node Stage

The VN that corresponds to the final decoding iteration is called a decision node (DN). The DN

stage contains N decision nodes, as well N single-bit registers that store the decoded codeword

bits. The DN stage does not contain channel LLR registers, as there are no subsequent decoding

stages where the channel LLRs would be used. The architecture of a decision node is generally

simpler than that of a variable node, as a single output value (i.e., the decoded bit) is calculated

instead of dv distinct outputs.

More specifically, in the reference architecture of [144], the decision metric of (1.37) is already

calculated as part of the variable node update rule. However, for the decision node, there

is no need to subtract each input message from the sum in order to generate dv distinct

output messages. It suffices to check whether the sum is positive or negative, and output the

corresponding decoded codeword bit.

In our LUT-based decoder a LUT tree is designed whose tree node has an output bit-width of a

single bit, which is the corresponding decoded codeword bit. An example of a decision LUT

tree for a decision node that corresponds to a code with dv = 6 is shown in Figure 4.7b. Each

decision node contains a single LUT tree, in contrast with the variable nodes which contain

dv LUT trees.

141

Chapter 4. Hardware Decoders for Ultra High-Speed Decoding of LDPC Codes

4.3.2 Decoding Latency and Throughput

Our LUT-based architecture contains pipeline registers at the output of each stage (VN, CN,

and DN). Thus, for a given maximum number of decoding iterations �max, the decoding

latency is 2�max clock cycles. Since one decoded codeword is output in each clock cycle, the

decoding throughput of the decoder, measured in Gbits/s, is given by

T = N f , (4.17)

where f denotes the operating frequency of the decoder measured in GHz. The operating

frequency of the decoder is limited by the combinational path with the highest delay

4.3.3 Memory Requirements

Each pipeline stage except the DN stage requires N d (0) channel LLR registers. Since there are

(2�−1) stages when excluding the DN stage, the total number of registers required to store

and forward the channel LLRs is (2�−1)N d (0). Moreover, the VN and CN stages for iteration

� require N dv d (�) and Mdc d (�) registers to store their output messages, respectively. Finally,

the DN stage requires N registers to store the decoded codeword bits. Thus, the total number

of register bits required by our LUT-based decoder can be calculated as

Btot = (2�max −1)N d (0) +
(
�max−1∑
�=1

(
N dv d (�) +Mdc d (�)

))
+
(
Mdc d (�max) +N

)
. (4.18)

In the case where d (1) = d (2) = . . . = d (�max) = d and taking into account the fact that N dv d (�) =
Mdc d (�), (4.18) can be simplified to

Btot = (2�max −1)N (dv d +d (0))+N . (4.19)

Naturally, both (4.18) and (4.19) can also be used to calculate the register bits required by an

adder-based MS architecture with the same pipeline register structure.

4.4 Implementation Results

In this section, we present synthesis results for a fully unrolled LUT-based LDPC decoder and

we compare them with synthesis results of our implementation of a fully unrolled adder-based

MS LDPC decoder. As for the simulations of Section 4.2, we have used the parity-check matrix

of the LDPC code defined in the IEEE 802.3an standard [30], which is a (6,32)-regular LDPC

code of design rate R = 13
16 and blocklength N = 2048. For the adder-based MS decoder and the

LUT-based decoder, a total of �max = 5 decoding iterations are performed, as we can observe

from Figure 4.8 that no significant gain is achieved when increasing the number of iterations

to, e.g., �max = 10. All synthesis results are obtained by using a TSMC 90nm CMOS library

under typical operating conditions (1 V supply voltage, 25◦C operating temperature).

142

4.4. Implementation Results

3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.410−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb /N0 (dB)

Fr
am

e
E

rr
o

r
R

at
e

Min-Sum (float, I = 5)
Min-Sum (float, I = 10)

Min-Sum (|M| = 25)

Min-LUT (|L| = 24, |M| = 23)

Figure 4.8 – FER vs Eb/N0 for the N = 2048 (6,32)-regular LDPC code defined in IEEE 802.3an
under various decoding algorithms.

Table 4.2 – Synthesis Results for the Adder-based and the LUT-based Decoders

Adder-based MS LUT-based
Logic Area 35.63 mm2 33.79 mm2

Operating Frequency 495 MHz 813 MHz
Decoding Latency 20.20 ns 12.30 ns

Coded Throughput 1014 Gbps 1665 Gbps
Area Efficiency 28.46 Gbps/mm2 49.27 Gbps/mm2

4.4.1 Quantization Parameters

For the LUT-based decoder, we have used d (0) = 4 bits for the representation of the channel

LLRs and d(1) = d(2) = . . . = d(�max) = 3 bits for the representation of the internal messages, as

this leads to an error correction performance that is very close the floating-point MS decoder

(cf. Figure 4.8). Both decoders perform �max = 5 decoding iterations. For the variable nodes,

we use the LUT tree structure of Figure 4.7a and for the decision nodes we use the LUT tree

structure of Figure 4.7b. The design SNR is set to 4.2 dB. For the adder-based MS decoder

which serves as a reference, we use d (0) = 5 bits for the representation of the channel LLRs and

d(1) = d(2) = . . . = d(�max) = 5 bits for the representation of the internal messages, as this leads to

practically the same FER performance for the LUT-based and the adder-based MS decoder, as

can be seen in Figure 4.8.

4.4.2 Adder-based vs. LUT-based Decoder

We present synthesis results for the adder-based and the LUT-based decoders in Table 4.2. For

fair comparison, we synthesized both designs for various clock constraints and selected the

143

Chapter 4. Hardware Decoders for Ultra High-Speed Decoding of LDPC Codes

Table 4.3 – Area Breakdown

Adder-based MS LUT-based
Check Node Stage

Check Nodes 2.77 mm2 1.11 mm2

Pipeline Registers 1.11 mm2 0.70 mm2

Total 3.88 mm2 1.81 mm2

Variable Node Stage
Variable Nodes �1 2.35 mm2 4.62 mm2

Variable Nodes �2 2.35 mm2 4.78 mm2

Variable Nodes �3 2.35 mm2 4.64 mm2

Variable Nodes �4 2.35 mm2 4.68 mm2

Pipeline Registers 1.11 mm2 0.57 mm2

Total �1 3.46 mm2 5.32 mm2

Total �2 3.46 mm2 5.48 mm2

Total �3 3.46 mm2 5.34 mm2

Total �4 3.46 mm2 5.38 mm2

Decision Node Stage
Decision Nodes 2.35 mm2 3.21 mm2

Pipeline Registers 0.03 mm2 0.03 mm2

Total 2.38 mm2 3.24 mm2

Top-Level Decoder
Logic Area 25.58 mm2 27.46 mm2

Register Area 10.05 mm2 6.33 mm2

Total Area 35.63 mm2 33.79 mm2

result with the highest hardware efficiency (Gbps/mm2) for each design. These results should

not be regarded in absolute terms, as the placement and routing of such a large design is highly

non-trivial and will increase the area and the delay of both designs significantly. However, it is

safe to make relative comparisons, especially when considering the fact that the LUT-based

decoder will be easier to place and route due to the fact that it requires approximately 40%

fewer wires for the interconnect between the VN, CN, and DN stages. We observe that the

LUT-based decoder is approximately 8% smaller as well as 64% faster than the adder-based

MS decoder. As a result, the area efficiency of the LUT-based decoder is 73% higher than that

of the adder-based MS decoder. For both designs, the critical path goes through the CN, but in

the LUT-based decoder the delay is smaller due to the reduced bit-width.

We show the area breakdown of the LUT-based and the adder-based decoders in Table 4.3.

We observe that the VN stage area of the LUT-based decoder varies significantly over the

iterations, even though the LUT tree structures are identical. This is not unexpected, since the

contents of the LUTs are different for different iterations and the resulting logic circuits can

have very different complexities. We also see that the VN stage of the LUT-based decoder is

larger than the VN stage of the adder-based decoder. Moreover, we observe that the CN stage

of the LUT-based decoder is approximately 53% smaller than the CN stage of the adder-based

144

4.5. Summary

decoder due to the bit-width reduction enabled by the optimized LUT design. The reduction

in the CN stage is larger than the increase in the VN stage, leading to an overall reduction in

area for our proposed LUT-based decoder. From Table 4.3 we can see that this reduction stems

mainly from the reduced number of required registers, as the area occupied by the logic of

each decoder is similar.

4.5 Summary

In this chapter, we have described a method that can be applied to design a discrete message-

passing decoder for LDPC codes by replacing the standard VN update rules with locally

optimal LUT-based update rules which are designed using an information-theoretic criterion.

Moreover, we have examined the effect of various LUT design parameters, such as the design

SNR and the LUT tree structure, on the error-correcting performance of the resulting min-

LUT decoder. Using the IEEE 802.3an LDPC code, we have demonstrated that the min-LUT

error-correcting performance can be superior to that of standard MS decoding even with

40% smaller message resolutions. Moreover, we have presented a hardware architecture

for a LUT-based fully unrolled LDPC decoder which can reduce the area and increase the

operating frequency compared to a conventional adder-based unrolled MS decoder by 8%

and 64%, respectively, due to the significantly reduced bit-width required to achieve identical

error correction performance. Finally, the LUT-based decoder requires approximately 40%

fewer wires, which simplifies the routing step, which is a known problem in fully parallel

architectures.

145

5 Conclusion & Outlook

In this thesis, we have investigated some topics that form an interplay between abstract

information theoretic concepts and hardware implementation. More specifically, in Chapter 2

we have examined the hardware implementation of decoders for polar codes, where we have

shown that a high-level algorithmic transformation leads to significant improvements and

optimization opportunities in the hardware implementation of a successive cancellation

list decoder for polar codes. Moreover, in Chapter 3 we have analyzed the performance of

channel decoders under various approximate computing scenarios by using various tools

from information and coding theory, such as density evolution. Finally, in Chapter 4 we

have implemented an ultra high-speed fully unrolled decoder for LDPC codes by using an

optimized message quantization scheme that maximizes the transfer of information between

the variable nodes and the check nodes of the LDPC code.

In the remainder of this concluding chapter, we will describe some interesting open prob-

lems and future research directions that we have identified for each of the topics that were

investigated in this thesis.

Chapter 2: Hardware Decoders for Polar Codes

Path metric sorting is an important aspect of SCL decoding, especially when considering polar

codes with relatively short blocklength (e.g., N ≤ 256) and large list sizes (e.g., L ≥ 16) for use

in low-latency and/or low-power and low-rate applications, as the sorting step can dominate

the overall complexity of the decoder. Even though we used the properties of the LLR-based

path metric to simplify various sorters in Section 2.2, it was recently shown in [78] that further

simplifications are in fact possible. It remains an important open problem to fully optimize

the path metric sorting step of SCL decoding.

As can be seen from the comparison of Section 2.4.2, SCL decoders cannot yet match the

high throughput numbers reported for SC and BP decoders. This is partly due to the fact that

fast-SSC decoding [40] has not yet been fully applied to SCL decoding. Since our LLR-based

SCL decoder uses L SC decoders, it seems evident that any architectural and algorithmic

147

Chapter 5. Conclusion & Outlook

improvements made to the SC decoder itself will be beneficial to the LLR-based SCL decoder

as well. However, the family of fast-SSC decoders is not applicable verbatim to the LLR-based

SCL decoder. This happens because, in order to keep the path metric updated, we need to

calculate the LLRs even for the frozen bits. An important step in this direction was recently

made in [61], but the hardware implementation of a fast-SSC based SCL decoder is an essential

next step. In particular, the direction of increasing the throughput of SCL decoders seems

promising, since SCL decoders have the lowest area requirements and generally the best

hardware efficiency out of the polar decoders in all iso-FER comparisons of Section 2.4.1.4.

It may also be interesting to identify different operating regimes such as where polar codes

may be able to compete better with existing channel coding solutions. Short blocklengths are

of particular interest for low-latency communications, and both Turbo and LDPC codes are

known to exhibit poor performance at short blocklengths, both in the waterfall and in the the

error floor region.

Chapter 3: Faulty Polar and LDPC Channel Decoders

It would be beneficial to extend the modified polar code construction of Section 3.2 to other

decoding algorithms that further simplify SC decoding, such as fast-SSC [40]. An attempt in

this direction was recently made in [67], where a human-guided exhaustive search approach

was used in order to use a modified polar code in conjunction with the fast-SSC decoding

algorithm. A more systematic solution of this problem that is similar to the approach of

Section 3.2 remains an interesting open problem.

Another interesting open problem is to study the faulty SC decoder of Section 3.3 over more

general channels, such as the AWGN channel. In order to achieve this, the lower bound

of [124] would have to be extended to more general channels, which is a very challenging open

problem in itself that has with wide applications. Moreover, a suitable error model, such as

the one we used in Section 3.4, would have to be introduced and analyzed.

In Section 3.4 we saw that the decoding threshold for a (dv ,dc)-regular LDPC code ensemble

decreases when the variable node and check node degrees are increased, but the resulting

LDPC code ensembles seem to be more resilient to errors. This interesting trade-off between

threshold and error resilience motivates the design of irregular LDPC codes that are tailored to

faulty MS decoding, which is an open problem worth pursuing.

Moreover, we note that, while the fault models that we have used in Section 3.3 an Section 3.4

are quite accurate for faults of a transient nature, like radiation-induced faults, they are most

likely not the best way to model other kinds of failures. For example, manufacturing defects

often lead to “stuck-at” faults, where the value of a particular bit is always either 0 or 1. These

errors can be converted to random bit-flips easily by randomly flipping the value that is

stored in the faulty bit-cell and then flipping it again when it is read. However, their nature

is not generally transient, meaning that a faulty bit-cell will always be faulty. It is possible to

148

randomize the physical write addresses in order to make the faults appear transient, but this

may incur significant hardware overhead for the address randomization. The introduction

of more comprehensive and realistic fault models is an important next step in the general

field of approximate computing. A particularly interesting problem in this direction is to

investigate whether it is better to use more sophisticated models in order to describe the

operation of faulty hardware or to slightly modify the faulty hardware itself (e.g., by using

address randomization as described previously) in order to make it behave more closely to

simple fault models like, for example, the random bit-flip models used in this thesis, which

are more manageable from an analytical perspective.

Chapter 4: Hardware Decoders for Ultra High-Speed Decoding of LDPC Codes

In Chapter 4 we have only considered regular LDPC codes and it would be beneficial to

extend the LUT design method to irregular LDPC codes, which are known to generally exhibit

better performance than regular LDPC codes [34]. Moreover, it would be useful to examine

the performance of the min-LUT decoding algorithm for LDPC codes that are shorter than

the code used in the IEEE 802.3an standard, as the LUT design method assumes message

independence and this assumption is usually violated more strongly in short LDPC codes

than in longer LDPC codes. While the unrolled LDPC decoder presented in this chapter is a

very good match for the constraints of the min-LUT decoding algorithm, it is an architecture

that is quite specialized to ultra high-throughput applications. Thus, it would be useful to

identify other kinds of LDPC decoder architectures which could also benefit from the reduced

quantization bit-width offered by our min-LUT decoding algorithm. Finally, in Chapter 4

we have only presented synthesis results for the designed fully unrolled LDPC decoder. We

note that the physical design of such a large architecture, and particularly the placement and

routing step, is also a highly non-trivial and important problem if such a decoder is to be

implemented in silicon.

149

Bibliography

[1] C. E. Shannon, “A mathematical theory of communication,” Bell System Technical Jour-

nal, vol. 27, pp. 379–423, 623–656, 1948.

[2] T. Richardson and R. Urbanke, Modern Coding Theory. New York, NY, USA: Cambridge

University Press, 2008.

[3] C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding: turbo-

codes,” IEEE Trans. Commun., vol. 44, no. 10, pp. 1261–1271, Oct. 1996.

[4] R. Gallager, “Low-density parity-check codes,” IRE Trans. Inform. Theory, vol. 8, no. 1,

pp. 21–28, Jan. 1962.

[5] D. J. C. MacKay and R. M. Neal, “Near shannon limit performance of low density parity

check codes,” Electronics Letters, vol. 33, no. 6, pp. 457–458, Mar 1997.

[6] E. Arıkan, “Channel polarization: A method for constructing capacity-achieving codes

for symmetric binary-input memoryless channels,” IEEE Trans. Inform. Theory, vol. 55,

no. 7, pp. 3051–3073, July 2009.

[7] A. Balatsoukas-Stimming, A. J. Raymond, W. J. Gross, and A. Burg, “Hardware architec-

ture for list successive cancellation decoding of polar codes,” IEEE Trans. Circuits Syst.

II, vol. 61, no. 8, pp. 609–613, May 2014.

[8] A. Balatsoukas-Stimming, M. Bastani Parizi, and A. Burg, “LLR-based successive can-

cellation list decoding of polar codes,” in IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), May 2014, pp. 3903–3907.

[9] A. Balatsoukas-Stimming, M. Bastani Parizi, and A. Burg, “LLR-based successive can-

cellation list decoding of polar codes,” IEEE Trans. Signal Processing, vol. 63, no. 19, pp.

5165–5179, Oct 2015.

[10] A. Balatsoukas-Stimming, M. B. Parizi, and A. Burg, “On metric sorting for successive

cancellation list decoding of polar codes,” in 2015 IEEE International Symposium on

Circuits and Systems (ISCAS), May 2015, pp. 1993–1996.

151

Bibliography

[11] A. Balatsoukas-Stimming, G. Karakonstantis, and A. Burg, “Enabling complexity-

performance trade-offs for successive cancellation decoding of polar codes,” in IEEE

International Symposium on Information Theory, June 2014, pp. 2977–2981.

[12] A. Balatsoukas-Stimming and A. Burg, “Density evolution for min-sum decoding of

LDPC codes under unreliable message storage,” IEEE Commun. Lett., vol. 18, no. 5, pp.

849–852, May 2014.

[13] A. Balatsoukas-Stimming and A. Burg, “Faulty successive cancellation decoding of polar

codes for the binary erasure channel,” in International Symposium on Information

Theory and its Applications (ISITA), Oct 2014, pp. 448–452.

[14] A. Balatsoukas-Stimming and A. Burg, “Faulty successive cancellation decoding of polar

codes for the binary erasure channel,” IEEE Trans. Inform. Theory, 2016 (under review).

[15] A. Balatsoukas-Stimming, M. Meidlinger, R. Ghanaatian, G. Matz, and A. Burg, “A fully-

unrolled LDPC decoder based on quantized message passing,” in IEEE Workshop on

Signal Processing Systems (SiPS), Oct 2015, pp. 1–6.

[16] M. Meidlinger, A. Balatsoukas-Stimming, A. Burg, and G. Matz, “Quantized message

passing for LDPC codes,” in 2015 49th Asilomar Conference on Signals, Systems and

Computers, Nov 2015, pp. 1606–1610.

[17] I. Tal and A. Vardy, “How to construct polar codes,” IEEE Trans. Inform. Theory, vol. 59,

no. 10, Oct. 2013.

[18] R. Pedarsani, S. H. Hassani, I. Tal, and E. Telatar, “On the construction of polar codes,”

in IEEE International Symposium on Information Theory (ISIT), Jul. 2011, pp. 11–15.

[19] I. Tal, “On the construction of polar codes for channels with moderate input alphabet

sizes,” in IEEE International Symposium on Information Theory (ISIT), June 2015, pp.

1297–1301.

[20] C. Leroux, I. Tal, A. Vardy, and W. J. Gross, “Hardware architectures for successive

cancellation decoding of polar codes,” in IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), May 2011, pp. 1665–1668.

[21] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Trans. Inform. Theory, vol. 61,

no. 5, pp. 2213–2226, May 2015.

[22] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error Correcting Codes, ser. North-

Holland Mathematical Library. North-Holland, 1978.

[23] “IEEE standard for air interface for broadband wireless access systems,” IEEE Std

802.16TM-2012, Aug. 2012.

[24] J. Hagenauer, “The Turbo principle: Tutorial introduction and state of the art,” in

International Symposium on Turbo Codes, Sep. 1997, pp. 1–11.

152

Bibliography

[25] U. U. Fayyaz and J. R. Barry, “Low-complexity soft-output decoding of polar codes,”

IEEE J. Select. Areas Commun., vol. 32, no. 5, pp. 958–966, May 2014.

[26] K. Niu and K. Chen, “CRC-aided decoding of polar codes,” IEEE Commun. Lett., vol. 16,

no. 10, pp. 1668–1671, Oct. 2012.

[27] O. Afisiadis, A. Balatsoukas-Stimming, and A. Burg, “A low-complexity improved succes-

sive cancellation decoder for polar codes,” in Asilomar Conference on Signals, Systems

and Computers, Nov. 2014, pp. 2116–2120.

[28] K. Niu, K. Chen, and J. Lin, “Low-complexity sphere decoding of polar codes based on

optimum path metric,” IEEE Commun. Lett., vol. 18, no. 2, pp. 332–335, Feb. 2014.

[29] S. A. Hashemi, C. Condo, and W. J. Gross, “List sphere decoding of polar codes,” in

Asilomar Conference on Signals, Systems and Computers, Nov. 2015, pp. 1346–1350.

[30] “IEEE Standard for Information Technology-Telecommunications and Information

Exchange Between Systems-Local and Metropolitan Area Networks-Specific Require-

ments Part 3: Carrier Sense Multiple Access With Collision Detection (CSMA/CD) Access

Method and Physical Layer Specifications,” IEEE Std 802.3an-2006 (Amendment to IEEE

Std 802.3-2005), pp. 1–167, 2006.

[31] “IEEE Standard for Information technology– Local and metropolitan area networks–

Specific requirements– Part 11: Wireless LAN Medium Access Control (MAC)and Physi-

cal Layer (PHY) Specifications Amendment 5: Enhancements for Higher Throughput,”

IEEE Std 802.11n-2009 (Amendment to IEEE Std 802.11-2007 as amended by IEEE Std

802.11k-2008, IEEE Std 802.11r-2008, IEEE Std 802.11y-2008, and IEEE Std 802.11w-2009),

pp. 1–565, 2009.

[32] “ISO/IEC/IEEE International Standard for Information technology–

Telecommunications and information exchange between systems–Local and

metropolitan area networks–Specific requirements-Part 11: Wireless LAN Medium

Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 3: En-

hancements for Very High Throughput in the 60 GHz Band (adoption of IEEE Std

802.11ad-2012),” ISO/IEC/IEEE 8802-11:2012/Amd.3:2014(E), pp. 1–634, 2014.

[33] “Digital Video Broadcasting (DVB); Second generation framing structure, channel cod-

ing and modulation systems for Broadcasting, Interactive Services, News Gathering and

other broadband satellite applications (DVB-S2),” ETSI EN 302 307 V1.2.1 (2009-08), pp.

1–78, 2009.

[34] T. J. Richardson, M. A. Shokrollahi, and R. Urbanke, “Design of capacity-approaching

irregular low-density parity-check codes,” IEEE Trans. Inform. Theory, vol. 47, no. 2, pp.

619–637, Feb 2001.

153

Bibliography

[35] C. Studer, N. Preyss, C. Roth, and A. Burg, “Configurable high-throughput decoder

architecture for quasi-cyclic LDPC codes,” in Asilomar Conference on Signals, Systems

and Computers, Oct. 2008, pp. 1137–1142.

[36] A. J. Raymond and W. J. Gross, “Scalable successive-cancellation hardware decoder for

polar codes,” in IEEE Global Conference on Signal and Information Processing (Global-

SIP), Dec. 2013, pp. 1282–1285.

[37] A. Pamuk and E. Arıkan, “A two phase successive cancellation decoder architecture for

polar codes,” in IEEE International Symposium on Information Theory (ISIT), Jul. 2013,

pp. 957–961.

[38] C. Leroux, A. Raymond, G. Sarkis, and W. J. Gross, “A semi-parallel successive-

cancellation decoder for polar codes,” IEEE Trans. Signal Processing, vol. 61, no. 2,

pp. 289–299, Jan. 2013.

[39] C. Zhang and K. K. Parhi, “Low-latency sequential and overlapped architectures for

successive cancellation polar decoder,” IEEE Trans. Signal Processing, vol. 61, no. 10, pp.

2429–2441, Mar. 2013.

[40] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Fast polar decoders: Algorithm

and implementation,” IEEE J. Select. Areas Commun., vol. 32, no. 5, pp. 946–957, May

2014.

[41] Y. Fan and C.-Y. Tsui, “An efficient partial-sum network architecture for semi-parallel

polar codes decoder implementation,” IEEE Trans. Signal Processing, vol. 62, no. 12, pp.

3165–3179, Jun. 2014.

[42] A. Mishra, A. J. Raymond, L. Amaru, G. Sarkis, C. Leroux, P. Meinerzhagen, A. Burg, and

W. J. Gross, “A successive cancellation decoder ASIC for a 1024-bit polar code in 180nm

CMOS,” in IEEE Asian Solid State CircuitsConference (A-SSCC), Nov. 2012, pp. 205–208.

[43] A. Alamdar-Yazdi and F. R. Kschischang, “A simplified successive-cancellation decoder

for polar codes,” IEEE Commun. Lett., vol. 15, no. 12, pp. 1378–1380, Oct. 2011.

[44] C. Zhang, B. Yuan, and K. K. Parhi, “Reduced-latency SC polar decoder architectures,” in

IEEE International Conference on Communications (ICC), Jun. 2012, pp. 3471–3475.

[45] G. Sarkis and W. J. Gross, “Increasing the throughput of polar decoders,” IEEE Commun.

Lett., vol. 17, no. 4, pp. 725–728, Apr. 2013.

[46] C. Zhang and K. K. Parhi, “Latency analysis and architecture design of simplified SC

polar decoders,” IEEE Trans. Circuits Syst. II, vol. 61, no. 2, pp. 115–119, Feb. 2014.

[47] B. Li, H. Shen, and D. Tse, “An adaptive successive cancellation list decoder for polar

codes with cyclic redundancy check,” IEEE Commun. Lett., vol. 16, no. 12, pp. 2044–2047,

Dec. 2012.

154

Bibliography

[48] K. Chen, K. Niu, and J. Lin, “Improved successive cancellation decoding of polar codes,”

IEEE Trans. Commun., vol. 61, no. 8, pp. 3100–3107, Aug. 2013.

[49] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and sub-optimal

MAP decoding algorithms operating in the log domain,” in IEEE International Confer-

ence on Communications, vol. 2, Jun. 1995, pp. 1009–1013.

[50] L. G. Amaru, M. Martina, and G. Masera, “High speed architectures for finding the first

two maximum/minimum values,” IEEE Trans. VLSI Syst., vol. 20, no. 12, pp. 2342–2346,

Dec. 2012.

[51] B. Yuan and K. K. Parhi, “Low-latency successive-cancellation list decoders for polar

codes with multibit decision,” IEEE Trans. VLSI Syst., vol. 23, no. 10, pp. 2268–2280, 2015.

[52] J. Lin and Z. Yan, “An efficient list decoder architecture for polar codes,” IEEE Trans.

VLSI Syst., vol. 23, no. 11, pp. 2508–2518, Nov. 2015.

[53] J. Lin and Z. Yan, “Efficient list decoder architecture for polar codes,” in IEEE Interna-

tional Symposium on Circuits and Systems (ISCAS), Jun. 2014, pp. 1022–1025.

[54] K. E. Batcher, “Sorting networks and their applications,” in Proc. AFIPS Spring Joint

Comput. Conf., vol. 32, 1968, pp. 307–314.

[55] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction To Algorithms,

2nd ed. MIT Press, 2001.

[56] C. Zhang, X. You, and J. Sha, “Hardware architecture for list successive cancellation

polar decoder,” in IEEE International Symposium on Circuits and Systems (ISCAS), Jun.

2014, pp. 209–212.

[57] J. Lin, C. Xiong, and Z. Yan, “A reduced latency list decoding algorithm for polar codes,”

in IEEE Workshop on Signal Processing Systems (SiPS), Oct. 2014, pp. 1–6.

[58] Wikipedia. (2016, Jul.) Polynomial representations of cyclic redundancy checks —

wikipedia, the free encyclopedia. [Online]. Available: https://en.wikipedia.org/wiki/

Polynomial_representations_of_cyclic_redundancy_checks

[59] “Technical Specification Group Radio Access Network; E-UTRA; Multiplexing and Chan-

nel Coding (Release 10) 3GPP, TS36.212, Rev. 10.0.0,” 3GPP, 2011.

[60] A. Pamuk, “An FPGA implementation architecture for decoding of polar codes,” in

International Symposium on Wireless Communication Systems (ISWCS), Nov. 2011, pp.

437–441.

[61] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. Gross, “Fast list decoders for polar

codes,” IEEE J. Select. Areas Commun., vol. 34, no. 2, pp. 318–328, Feb. 2016.

155

Bibliography

[62] C. Leroux, A. J. Raymond, G. Sarkis, I. Tal, A. Vardy, and W. J. Gross, “Hardware implemen-

tation of successive-cancellation decoders for polar codes,” Journal of Signal Processing

Systems, vol. 69, no. 3, pp. 305–315, Jul. 2012.

[63] B. Yuan and K. K. Parhi, “Low-latency successive-cancellation polar decoder architec-

tures using 2-bit decoding,” IEEE Trans. Circuits Syst. I, vol. 61, no. 4, pp. 1241–1254, Apr.

2014.

[64] J. Lin, C. Xiong, and Z. Yan, “Reduced complexity belief propagation decoders for polar

codes,” in IEEE Workshop on Signal Processing Systems (SiPS), Oct. 2015, pp. 1–6.

[65] T. Che, J. Xu, and G. Choi, “TC: Throughput centric successive cancellation decoder hard-

ware implementation for polar codes,” in IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), Mar. 2016, pp. 991–995.

[66] O. Dizdar and E. Arıkan, “A high-throughput energy-efficient implementation of

successive-cancellation decoder for polar codes using combinational logic,” IEEE Trans.

Circuits Syst. I, vol. 63, no. 3, pp. 436–447, Mar. 2016.

[67] P. Giard, A. Balatsoukas-Stimming, G. Sarkis, C. Thibeault, and W. J. Gross, “Fast

low-complexity decoders for low-rate polar codes,” arXiv:1603.05273 [cs, math], Mar.

2016, arXiv: 1603.05273. [Online]. Available: http://arxiv.org/abs/1603.05273

[68] P. Giard, G. Sarkis, C. Thibeault, and W. J. Gross, “Multi-mode unrolled architectures for

polar decoders,” arXiv:1505.01459 [cs], May 2016, arXiv: 1505.01459. [Online]. Available:

http://arxiv.org/abs/1505.01459

[69] J. Lin, J. Sha, L. Li, C. Xiong, Z. Yan, and Z. Wang, “A high throughput belief propagation

decoder architecture for polar codes,” in IEEE International Symposium on Circuits and

Systems (ISCAS), May 2016, pp. 153–156.

[70] P. Giard, G. Sarkis, C. Thibeault, and W. Gross, “237 Gbit/s unrolled hardware polar

decoder,” Electronics Letters, vol. 51, no. 10, pp. 762–763, 2015.

[71] G. Berhault, C. Leroux, C. Jego, and D. Dallet, “Hardware implementation of a soft

cancellation decoder for polar codes,” in Conference on Design and Architectures for

Signal and Image Processing (DASIP), Sep. 2015, pp. 1–8.

[72] Y. S. Park, Y. Tao, S. Sun, and Z. Zhang, “A 4.68Gb/s belief propagation polar decoder

with bit-splitting register file,” in IEEE Symposium on VLSI Circuits, Jun. 2014, pp. 1–2.

[73] B. Yuan and K. Parhi, “Early stopping criteria for energy-efficient low-latency belief-

propagation polar code decoders,” IEEE Trans. Signal Processing, vol. 62, no. 24, pp.

6496–6506, Dec. 2014.

[74] S. M. Abbas, Y. Fan, J. Chen, and C.-Y. Tsui, “Low complexity belief propagation polar

code decoder,” in IEEE Workshop on Signal Processing Systems (SiPS), Oct. 2015, pp. 1–6.

156

Bibliography

[75] S. Sun and Z. Zhang, “Architecture and optimization of high-throughput belief propaga-

tion decoding of polar codes,” in IEEE International Symposium on Circuits and Systems

(ISCAS), May 2016, pp. 165–168.

[76] C. Zhang, X. You, and J. Sha, “Hardware architecture for list successive cancellation

polar decoder,” in IEEE International Symposium on Circuits and Systems (ISCAS), Jun.

2014, pp. 209–212.

[77] B. Yuan and K. K. Parhi, “Successive cancellation list polar decoder using log-likelihood

ratios,” in Asilomar Conference on Signals, Systems and Computers, Nov. 2014, pp. 548–

552.

[78] B. Kong, H. Yoo, and I. C. Park, “Efficient sorting architecture for successive cancellation

list decoding of polar codes,” IEEE Trans. Circuits Syst. II, vol. 63, no. 7, pp. 673–677,

2016.

[79] Y. Fan, J. Chen, C. Xia, C.-Y. Tsui, J. Jin, H. Shen, and B. Li, “Low-latency list decoding of

polar codes with double thresholding,” in IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), Apr. 2015, pp. 1042–1046.

[80] J. Lin, C. Xiong, and Z. Yan, “A high throughput list decoder architecture for polar codes,”

IEEE Trans. VLSI Syst., vol. 24, no. 6, pp. 2378–2391, Jun. 2016.

[81] B. Yuan and K. K. Parhi, “Reduced-latency LLR-based SC list decoder for polar codes,”

in Great Lakes Symposium on VLSI (GLSVLSI), 2015, pp. 107–110.

[82] B. Yuan and K. K. Parhi, “LLR-based successive-cancellation list decoder for polar codes

with multi-bit decision,” IEEE Trans. Circuits Syst. II, vol. PP, no. 99, pp. 1–1, 2016.

[83] C. Xiong, J. Lin, and Z. Yan, “Symbol-decision successive cancellation list decoder for

polar codes,” IEEE Trans. Signal Processing, vol. 64, no. 3, pp. 675–687, Feb. 2016.

[84] S. A. Hashemi, A. Balatsoukas-Stimming, P. Giard, C. Thibeault, and W. J. Gross, “Par-

titioned successive-cancellation list decoding of polar codes,” in IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2016, pp. 957–960.

[85] C. Xiong, J. Lin, and Z. Yan, “A multimode area-efficient SCL polar decoder,” IEEE Trans.

VLSI Syst., vol. PP, no. 99, May 2016.

[86] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc, “Design

of ion-implanted MOSFET’s with very small physical dimensions,” IEEE J. Solid-State

Circuits, vol. 9, no. 5, pp. 256–268, Oct. 1974.

[87] H. Shirani-Mehr, T. Mohsenin, and B. Baas, “A reduced routing network architecture

for partial parallel LDPC decoders,” in Asilomar Conference on Signals, Systems and

Computers, Nov. 2011, pp. 2192–2196.

157

Bibliography

[88] M. Weiner, B. Nikolic, and Z. Zhang, “LDPC decoder architecture for high-data rate

personal-area networks,” in IEEE International Symposium on Circuits and Systems

(ISCAS), May 2011, pp. 1784–1787.

[89] S.-W. Yen, S.-Y. Hung, C.-L. Chen, H.-C. Chang, S.-J. Jou, and C.-Y. Lee, “A 5.79-Gb/s

energy-efficient multirate LDPC codec chip for IEEE 802.15.3c applications,” IEEE J.

Solid-State Circuits, vol. 47, no. 9, pp. 2246–2257, Sep. 2012.

[90] S. Ajaz and H. Lee, “Reduced-complexity local switch based multi-mode QC-LDPC

decoder architecture for Gbit wireless communication,” Electronics Letters, vol. 49,

no. 19, pp. 1246–1248, Sep. 2013.

[91] A. Balatsoukas-Stimming, N. Preyss, A. Cevrero, A. Burg, and C. Roth, “A parallelized

layered QC-LDPC decoder for IEEE 802.11ad,” in IEEE International New Circuits and

Systems Conference (NEWCAS), Jun. 2013, pp. 1–4.

[92] M. Li, F. Naessens, P. Debacker, P. Raghavan, C. Desset, M. Li, A. Dejonghe, and L. Van der

Perre, “An area and energy efficient half-row-paralleled layer LDPC decoder for the

802.11ad standard,” in IEEE Workshop on Signal Processing Systems (SiPS), Oct. 2013, pp.

112–117.

[93] M. Li, F. Naessens, M. Li, P. Debacker, C. Desset, P. Raghavan, A. Dejonghe, and L. Van der

Perre, “A processor based multi-standard low-power LDPC engine for multi-Gbps wire-

less communication,” in IEEE Global Conference on Signal and Information Processing

(GlobalSIP), Dec. 2013, pp. 1254–1257.

[94] Y. S. Park, D. Blaauw, D. Sylvester, and Z. Zhang, “Low-power high-throughput LDPC

decoder using non-refresh embedded DRAM,” IEEE J. Solid-State Circuits, vol. 49, no. 3,

pp. 783–794, Mar. 2014.

[95] S. Ajaz and H. Lee, “Multi-Gb/s multi-mode LDPC decoder architecture for IEEE

802.11ad standard,” in IEEE Asia Pacific Conference on Circuits and Systems (APCCAS),

Nov. 2014, pp. 153–156.

[96] M. Weiner, M. Blagojevic, S. Skotnikov, A. Burg, P. Flatresse, and B. Nikolic, “A scalable

1.5-to-6Gb/s 6.2-to-38.1mW LDPC decoder for 60GHz wireless networks in 28nm UTBB

FDSOI,” in IEEE International Solid-State Circuits Conference (ISSCC), Feb. 2014, pp.

464–465.

[97] M. Li, Y. Lee, Y. Huang, and L. Van der Perre, “Area and energy efficient 802.11ad LDPC

decoding processor,” Electronics Letters, vol. 51, no. 4, pp. 339–341, 2015.

[98] M. Li, J. W. Weijers, V. Derudder, I. Vos, M. Rykunov, S. Dupont, P. Debacker, A. Dewilde,

Y. Huang, L. V. d. Perre, and W. V. Thillo, “An energy efficient 18Gbps LDPC decoding

processor for 802.11ad in 28nm CMOS,” in IEEE Asian Solid-State Circuits Conference

(A-SSCC), Nov. 2015, pp. 1–5.

158

Bibliography

[99] K. Gunnam, G. Choi, W. Wang, and M. Yeary, “Multi-rate layered decoder architecture

for block LDPC codes of the IEEE 802.11n wireless standard,” in IEEE International

Symposium on Circuits and Systems (ISCAS), May 2007, pp. 1645–1648.

[100] M. Rovini, G. Gentile, F. Rossi, and L. Fanucci, “A minimum-latency block-serial archi-

tecture of a decoder for IEEE 802.11n LDPC codes,” in IFIP International Conference on

Very Large Scale Integration, Oct. 2007, pp. 236–241.

[101] M. Rovini, G. Gentile, F. Rossi, and L. Fanucci, “A scalable decoder architecture for IEEE

802.11n LDPC codes,” in IEEE Global Telecommunications Conference (GLOBECOM),

Nov. 2007, pp. 3270–3274.

[102] Y. Sun, J. R. Cavallaro, and T. Ly, “Scalable and low power LDPC decoder design using

high level algorithmic synthesis,” in IEEE International SOC Conference (SOCC), Sep.

2009, pp. 267–270.

[103] J. Jin and C. y. Tsui, “An energy efficient layered decoding architecture for LDPC decoder,”

IEEE Trans. VLSI Syst., vol. 18, no. 8, pp. 1185–1195, Aug. 2010.

[104] C. Roth, P. Meinerzhagen, C. Studer, and A. Burg, “A 15.8 pJ/bit/iter quasi-cyclic LDPC

decoder for IEEE 802.11n in 90 nm CMOS,” in IEEE Asian Solid State Circuits Conference

(A-SSCC), Nov. 2010, pp. 1–4.

[105] Y. Sun, G. Wang, and J. R. Cavallaro, “Multi-layer parallel decoding algorithm and VLSI

architecture for quasi-cyclic LDPC codes,” in IEEE International Symposium of Circuits

and Systems (ISCAS), May 2011, pp. 1776–1779.

[106] P. Meinerzhagen, A. Bonetti, G. Karakonstantis, C. Roth, F. Gürkaynak, and A. Burg,

“Refresh-free dynamic standard-cell based memories: Application to a QC-LDPC de-

coder,” in IEEE International Symposium on Circuits and Systems (ISCAS), May 2015, pp.

1426–1429.

[107] A. Cevrero, Y. Leblebici, P. Ienne, and A. Burg, “A 5.35 mm2 10GBASE-T Ethernet LDPC

decoder chip in 90 nm CMOS,” in IEEE Asian Solid State Circuits Conference (A-SSCC),

Nov. 2010, pp. 1–4.

[108] Z. Zhang, V. Anantharam, M. Wainwright, and B. Nikolic, “An efficient 10GBASE-T

Ethernet LDPC decoder design with low error floors,” IEEE J. Solid-State Circuits, vol. 45,

no. 4, pp. 843–855, Apr. 2010.

[109] D. Bao, X. Chen, Y. Huang, C. Wu, Y. Chen, and X. Y. Zeng, “A single-routing layered LDPC

decoder for 10GBASE-T Ethernet in 130nm CMOS,” in Asia and South Pacific Design

Automation Conference (ASP-DAC), Jan. 2012, pp. 565–566.

[110] C. Studer, C. Benkeser, S. Belfanti, and Q. Huang, “Design and implementation of a

parallel turbo-decoder ASIC for 3GPP-LTE,” IEEE J. Solid-State Circuits, vol. 46, no. 1, pp.

8–17, Jan. 2011.

159

Bibliography

[111] T. Ilnseher, F. Kienle, C. Weis, and N. Wehn, “A 2.15GBit/s turbo code decoder for LTE

advanced base station applications,” in International Symposium on Turbo Codes and

Iterative Information Processing (ISTC), Aug. 2012, pp. 21–25.

[112] X. Chen, Y. Chen, Y. Li, Y. Huang, and X. Zeng, “A 691 Mbps 1.392mm2 configurable

radix-16 turbo decoder ASIC for 3GPP-LTE and WiMAX systems in 65nm CMOS,” in

IEEE Asian Solid-State Circuits Conference (A-SSCC), Nov. 2013, pp. 157–160.

[113] C.-Y. Lin, C.-C. Wong, and H.-C. Chang, “A 40 nm 535 Mbps multiple code-rate turbo

decoder chip using reciprocal dual trellis,” IEEE J. Solid-State Circuits, vol. 48, no. 11, pp.

2662–2670, Nov. 2013.

[114] S. Belfanti, C. Roth, M. Gautschi, C. Benkeser, and Q. Huang, “A 1Gbps LTE-advanced

turbo-decoder ASIC in 65nm CMOS,” in Symposium on VLSI Circuits (VLSIC), Jun. 2013,

pp. 284–285.

[115] R. Shrestha and R. Paily, “High-throughput turbo decoder with parallel architecture for

LTE wireless communication standards,” IEEE Trans. Circuits Syst. I, vol. 61, no. 9, pp.

2699–2710, Sep. 2014.

[116] G. Wang, H. Shen, Y. Sun, J. Cavallaro, A. Vosoughi, and Y. Guo, “Parallel interleaver

design for a high throughput HSPA+/LTE multi-standard turbo decoder,” IEEE Trans.

Circuits Syst. I, vol. 61, no. 5, pp. 1376–1389, May 2014.

[117] J. Han and M. Orshansky, “Approximate computing: An emerging paradigm for energy-

efficient design,” in IEEE European Test Symposium (ETS), May 2013, pp. 1–6.

[118] R. Gonzalez, B. Gordon, and M. Horowitz, “Supply and threshold voltage scaling for low

power CMOS,” IEEE J. Solid-State Circuits, vol. 32, no. 8, pp. 1210–1216, Aug. 1997.

[119] S.-L. Lu, “Speeding up processing with approximation circuits,” Computer, vol. 37, no. 3,

pp. 67–73, Mar. 2004.

[120] Y. Emre and C. Chakrabarti, “Energy and quality-aware multimedia signal processing,”

IEEE Trans. Multimedia, vol. 15, no. 7, pp. 1579–1593, Nov. 2013.

[121] A. Alamdar-Yazdi and F. Kschischang, “A simplified successive-cancellation decoder for

polar codes,” IEEE Commun. Lett., vol. 15, no. 12, pp. 1378–1380, Dec. 2011.

[122] Z. Huang, C. Diao, and M. Chen, “Latency reduced method for modified successive

cancellation decoding of polar codes,” Electronics Letters, vol. 48, no. 23, pp. 1505–1506,

Nov 2012.

[123] L. Zhang, Z. Zhang, X. Wang, C. Zhong, and L. Ping, “Simplified successive-cancellation

decoding using information set reselection for polar codes with arbitrary blocklength,”

IET Communications, vol. 9, no. 11, pp. 1380–1387, Jul. 2015.

160

Bibliography

[124] M. Bastani Parizi and E. Telatar, “On the correlation between polarized BECs,” in IEEE

International Symposium on Informtion Theory (ISIT), Jul. 2013, pp. 784–788.

[125] A. Fréville, “The multidimensional 0–1 knapsack problem: An overview,” European

Journal of Operational Research, vol. 155, no. 1, pp. 1–21, May 2004.

[126] S. Borkar, “Designing reliable systems from unreliable components: the challenges of

transistor variability and degradation,” IEEE Micro, vol. 25, no. 6, pp. 10–16, Nov. 2005.

[127] O. S. Unsal, J. W. Tschanz, K. Bowman, V. De, X. Vera, A. Gonzalez, and O. Ergin, “Impact

of parameter variations on circuits and microarchitecture,” IEEE Micro, vol. 26, no. 6, pp.

30–39, Nov. 2006.

[128] S. Ghosh and K. Roy, “Parameter variation tolerance and error resiliency: new design

paradigm for the nanoscale era,” Proc. IEEE, vol. 98, no. 10, pp. 1718–1751, 2010.

[129] A. Bhavnagarwala, S. Kosonocky, C. Radens, K. Stawiasz, R. Mann, Q. Ye, and K. Chin,

“Fluctuation limits & scaling opportunities for CMOS SRAM cells,” in IEEE International

Electron Devices Meeting, Dec. 2005, pp. 659–662.

[130] S. H. Hassani and R. Urbanke, “Polar codes: robustness of the successive cancellation

decoder with respect to quantization,” in IEEE International Symposium on Information

Theory, July 2012, pp. 1–6.

[131] C. Zhang and K. Parhi, “Low-latency sequential and overlapped architectures for suc-

cessive cancellation polar decoder,” IEEE Trans. Signal Processing, vol. 61, no. 10, pp.

2429–2441, May 2013.

[132] T. J. Richardson and R. Urbanke, “The capacity of low-density parity-check codes under

message-passing decoding,” IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 599–618, Feb

2001.

[133] L. R. Varshney, “Performance of LDPC codes under faulty iterative decoding,” IEEE

Trans. Inform. Theory, vol. 57, no. 7, pp. 4427–4444, Jul. 2011.

[134] S. M. Tabatabaei Yazdi, H. Cho, and L. Dolecek, “Gallager B decoder on noisy hardware,”

IEEE Trans. Commun., vol. 61, no. 5, pp. 1660–1672, May 2013.

[135] F. Leduc-Primeau and W. J. Gross, “Faulty Gallager-B decoding with optimal message

repetition,” in Allerton Conference on Communication, Control, and Computing, Oct.

2012, pp. 549–556.

[136] C. H. Huang and L. Dolecek, “Analysis of finite-alphabet iterative decoders under pro-

cessing errors,” in IEEE International Conference on Acoustics, Speech, and Signal Pro-

cessing (ICASSP), May 2013, pp. 5085–5089.

[137] N. Wiberg, “Codes and decoding on general graphs,” Ph.D. dissertation, Linköping

University, Linköping, Sweden, 1996.

161

Bibliography

[138] X. Zhang and P. Siegel, “Quantized iterative message passing decoders with low error

floor for LDPC codes,” IEEE Trans. Commun., vol. 62, no. 1, pp. 1–14, Jan. 2014.

[139] S. Planjery, D. Declercq, L. Danjean, and B. Vasic, “Finite alphabet iterative decoders—

Part I: Decoding beyond belief propagation on the binary symmetric channel,” IEEE

Trans. Commun., vol. 61, no. 10, pp. 4033–4045, Oct. 2013.

[140] D. Declercq, B. Vasic, S. Planjery, and E. Li, “Finite alphabet iterative decoders – Part

II: Towards guaranteed error correction of LDPC codes via iterative decoder diversity,”

IEEE Trans. Commun., vol. 61, no. 10, pp. 4046–4057, October 2013.

[141] F. Cai, X. Zhang, D. Declercq, S. Planjery, and B. Vasić, “Finite alphabet iterative decoders

for LDPC codes: Optimization, architecture and analysis,” IEEE Trans. Circuits Syst. I,

vol. 61, no. 5, pp. 1366–1375, May 2014.

[142] B. Kurkoski, K. Yamaguchi, and K. Kobayashi, “Noise thresholds for discrete LDPC

decoding mappings,” in IEEE Global Telecommunications Conference (GLOBECOM),

Nov. 2008.

[143] B. Kurkoski and H. Yagi, “Quantization of binary-input discrete memoryless channels,”

IEEE Trans. Inform. Theory, vol. 60, no. 8, pp. 4544–4552, Aug. 2014.

[144] P. Schläfer, N. Wehn, M. Alles, and T. Lehnigk-Emden, “A new dimension of parallelism in

ultra high throughput LDPC decoding,” in IEEE Workshop on Signal Processing Systems

(SiPS), Oct. 2013, pp. 153–158.

162

Alexios Balatsoukas-Stimming

Telecommunications Circuits Laboratory
EPFL-STI-IEL-TCL
Office ELG 011, Station 11
1015 Lausanne, Switzerland
http://tcl.epfl.ch

Citizenship: Greek, German
Date of Birth: May 4th, 1986

Phone: +41 767 39 68 20
E-mail: alexios.balatsoukas@epfl.ch

Website: http://people.epfl.ch/alexios.balatsoukas

Research Interests

Coding theory and practice, hardware for signal processing and communications, full-duplex communications.

Education

2016 PhD, Computer and Communication Sciences, École Polytechnique Fédérale de Lausanne
(EPFL), Switzerland.

2012 MSc, Electronic and Computer Engineering, Technical University of Crete (TUC), Greece.

2010 Diploma, Electronic and Computer Engineering, Technical University of Crete, Greece.

Research Experience

Jul 2012– Research Assistant, Telecommunications Circuits Lab, EPFL, Switzerland.
today • Conceived algorithms and VLSI architectures for decoding of polar codes.

• Designed a Tbps LDPC decoder via optimized quantization.
• Analyzed decoding of error-correcting codes with faulty hardware.
• Measured and mitigated RF and baseband impairments on a full-duplex MIMO testbed.
• Authored 26 peer-reviewed publications with 162 citations to date (Google Scholar profile).
Tools: MATLAB, C, VHDL, ModelSim, Design Compiler, perl, LabVIEW, LATEX.

Jun 2015– Graduate Technical Intern, Intel Labs, Hillsboro, USA.
Aug 2015 • Worked on large-scale MIMO detection for next-generation 5G systems.

• Filed one U.S. patent and authored one conference publication.
• Recognized by manager for making and meeting commitments, fostering innovation and
creative thinking, as well as flawless execution.
Tools: MATLAB, Verilog, ModelSim, Design Compiler.

Mar 2010– Research Assistant, Telecommunications Lab, TUC, Greece.
Jun 2012 • Designed LDPC codes for the relay and multiple access channels.

• Designed and implemented an FPGA-based fully-parallel LDPC decoder.
Tools: MATLAB, C, VHDL, Xilinx EDK, LATEX.

Jul 2011– Intern, Algorithmic Research in Network Information Lab, EPFL, Switzerland.
Aug 2011 • Explored subtree decomposition for network coding and developed relevant MATLAB code.

Tools: MATLAB, LATEX.

1

Teaching Experience

2012–today Teaching Assistant, EPFL.
EE442 – Wireless Receivers: Algorithms and Architectures (2012-2015).
EE542 – Advanced Wireless Receivers: Algorithms and Architectures (2013-2015).

2010–2012 Teaching Assistant, TUC.
TEL301 – Digital Telecommunication Systems I (2010, 2011).
TEL311 – Digital Telecommunication Systems II (2010).
TEL313 – Sound and Music Processing (2010, 2012).
TEL413 – Introduction to Optimization Theory (2011).
TEL415 – Wireless Communications (2011).

Student Supervision

Cristina Teodorescu MSc semester project, 2016, “A low-power and low-throughput LUT-based LDPC
decoder”

Johannes Wüthrich BSc internship, 2015, “An FPGA-based accelerator for rapid simulation of SC decod-
ing of polar codes.”

Orion Afisiadis MSc thesis, 2014, “A low-complexity improved successive cancellation decoder for
polar codes.”

Afshin Mardani MSc thesis, 2014, “Exploiting the resilience of error correcting codes under reliability
constraints,” co-supervised with Dr. Georgios Karakonstantis.

Hamedeh Jafari MSc semester project, 2013, “Exploiting the error-resilience of polar decoders under
unreliable silicon,” co-supervised with Dr. Georgios Karakonstantis.

Honors and Awards

2016 Invited poster at Graduation Day event, ITA 2016.

2015 Best student paper award (2nd prize), IEEE ICECS 2015.

2015 Best student paper award finalist, IEEE ISCAS 2015.

2014 Exemplary reviewer, IEEE Wireless Communications Letters.

2013 Best student paper award (2nd prize), IEEE ICECS 2013.

2013 Exemplary reviewer, IEEE Wireless Communications Letters.

2011 Special Graduate Studies Scholarship, Technical University of Crete.

2010 Two-year Scholarship for Graduate Studies in Greece, Onassis Foundation.

Special Graduate Studies Scholarship, Technical University of Crete.

2009 Scholarship of Academic Excellence (top of class), State Scholarships Foundation of Greece.

Scholarship of Academic Excellence (top of class), Technical University of Crete.

2

Professional Service

Reviewer IEEE Transactions on Communications
IEEE Transactions on Wireless Communications
IEEE Transactions on Signal Processing
IEEE Journal on Selected Areas in Communications
IEEE Wireless Communications Letters
IEEE Communications Letters
IEEE Transactions on Circuits and Systems I: Regular Papers
IEEE Transactions on Circuits and Systems II: Express Briefs
EURASIP Journal on Wireless Communications and Networking
AIMS Advances in Mathematics of Communications
IEEE ICC 2012, FPL 2013, IEEE ICECS (2013, 2015), IEEE SAM 2014, IEEE ISCAS (2015,
2016), IEEE ISIT (2015).

TPC EUSIPCO (2014, 2015)
Web Chair IEEE WoWMoM 2012, 2013, 2014 & 2015 ViDEv workshops.

Select Graduate Coursework

EPFL Information Theory and Coding, Advanced Probability, Statistical Physics for Communications
and Computer Science.

TUC Probability and Random Processes, Information Theory and Coding, Detection and Estimation
Theory, Convex Optimization, Reconfigurable Digital Systems.

Languages

Greek Mother tongue.
German Mother tongue.
English Fluent (Cambridge CPE).
French Fair (DELF B1).

Personal Interests

Arts Part of a hobbyist band with four self-produced albums, British comedy aficionado.

Sports Alpine skiing & snowboard, tennis, jogging, and motorcycling.

List of Publications

Journals

J1. A. Balatsoukas-Stimming and A. Burg, “Faulty successive cancellation decoding of polar codes for
the binary erasure channel,” IEEE Transactions on Information Theory, Feb. 2016 (submitted)

J2. P. Giard, A. Balatsoukas-Stimming, G. Sarkis, C. Thibeault, and W. J. Gross, “Low-complexity polar
decoders for low-rate codes,” Springer Journal of Signal Processing Systems, Mar. 2016

J3. A. Balatsoukas-Stimming, A. C. M. Austin, P. Belanovic, and A. Burg, “Baseband and RF hardware
impairments in full-duplex wireless systems: Experimental characterisation and suppression,” EURASIP
Journal on Wireless Communications and Networking (Special Issue on Experimental Evaluation in
Wireless Communications), May 2015

J4. A. Balatsoukas-Stimming, M. Bastani Parizi, and A. Burg, “LLR-based successive cancellation list
decoding of polar codes,” IEEE Transactions on Signal Processing, Mar. 2015

J5. A. Balatsoukas-Stimming, A. J. Raymond, W. J. Gross, and A. Burg, “Hardware architecture for list
successive cancellation decoding of polar codes,” IEEE Transactions on Circuits and Systems II: Express
Briefs, Aug. 2014

3

J6. A. Balatsoukas-Stimming and A. Burg, “Density evolution for min-sum decoding of LDPC codes
under faulty message storage,” IEEE Communications Letters, May 2014

Conferences

C1. O. Afisiadis, A. C. M. Austin, A. Balatsoukas-Stimming, and A. Burg, “Analysis of full-duplex
wireless links with asymmetric capacity requirements,” in IEEE Vehicular Technology Conference, May
2017 (submitted)

C2. P. Giard, A. Balatsoukas-Stimming, T. C. Müller, A. Burg, C. Thibeault, and W. Gross, “A multi-
Gbps unrolled hardware list decoder,” in Asilomar Conference on Signals, Systems, and Computers,
Nov. 2016 (accepted)

C3. A. C. M. Austin, A. Balatsoukas-Stimming, and A. Burg, “Digital predistortion of power ampli-
fier non-linearities for full-duplex transceivers,” in IEEE International workshop on Signal Processing
advances in Wireless Communications (SPAWC), Jul. 2016

C4. F. Sheikh, A. Balatsoukas-Stimming, and C.-H. Chen, “High-throughput lattice reduction for large-
scale MIMO systems based on Seysen’s algorithm,” in IEEE International Conference on Communica-
tions (ICC), May 2016

C5. O. Afisiadis, A. C. M. Austin, A. Balatsoukas-Stimming, and A. Burg, “Sliding window spectrum
sensing for full-duplex cognitive radios with low access-latency,” in IEEE Vehicular Technology Confer-
ence, May 2016

C6. S. A. Hashemi, A. Balatsoukas-Stimming, P. Giard, C. Thibeault, and W. J. Gross, “Partitioned
successive-cancellation list decoding of polar codes,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Mar. 2016

C7. P. Giard, G. Sarkis, A. Balatsoukas-Stimming, Y. Fan, C.-Y. Tsui, A. Burg, C. Thibeault, and W. J.
Gross, “Hardware decoders for polar codes: An overview,” in IEEE International Symposium on Circuits
and Systems (ISCAS), May 2016

C8. J. Wüthrich, A. Balatsoukas-Stimming, and A. Burg, “An FPGA-based accelerator for rapid simu-
lation of SC decoding of polar codes,” in IEEE International Conference on Electronics, Circuits, and
Systems (ICECS), Dec. 2015 (best paper award, 2nd prize)

C9. M. Meidlinger, A. Balatsoukas-Stimming, A. Burg, and G. Matz, “Quantized message passing for
LDPC codes,” in Asilomar Conference on Signals, Systems, and Computers, Nov. 2015

C10. J. Mu, A. Vosoughi, J. Andrade, A. Balatsoukas-Stimming, G. Karakonstantis, A. Burg, G. Falcao,
V. Silva, and J. R. Cavallaro, “The impact of faulty memory bit cells on the decoding of spatially-coupled
LDPC codes,” in Asilomar Conference on Signals, Systems, and Computers, Nov. 2015

C11. A. Balatsoukas-Stimming, M. Meidlinger, R. Ghanaatian, G. Matz, and A. Burg, “A fully-unrolled
LDPC decoder based on quantized message passing,” in IEEE International Workshop on Signal Pro-
cessing Systems (SiPS), Oct. 2015

C12. A. Balatsoukas-Stimming, M. Bastani Parizi, and A. Burg, “On metric sorter architectures for list
successive cancellation decoding of polar codes,” in IEEE International Symposium on Circuits and
Systems (ISCAS), May 2015 (best paper award finalist)

C13. O. Afisiadis, A. Balatsoukas-Stimming, and A. Burg, “A low-complexity improved successive cancel-
lation decoder for polar codes,” in Asilomar Conference on Signals, Systems, and Computers, Nov. 2014

C14. A. Balatsoukas-Stimming and A. Burg, “Faulty successive cancellation decoding of polar codes for the
binary erasure channel,” in International Symposium on Information Theory and Applications (ISITA),
Oct. 2014

C15. A. Balatsoukas-Stimming, G. Karakonstantis, and A. Burg, “Enabling complexity-performance trade-
offs for successive cancellation decoding of polar codes,” in IEEE International Symposium on Informa-
tion Theory (ISIT), Jun. 2014

C16. K. Alexandris, A. Balatsoukas-Stimming, and A. Burg, “Measurement-based characterization of
residual self-interference on a full-duplex MIMO testbed,” in IEEE Sensor Array and Multichannel
Signal Processing Workshop (SAM), Jun. 2014

4

C17. A. Balatsoukas-Stimming, M. Bastani Parizi, and A. Burg, “LLR-based successive cancellation list
decoding of polar codes,” in IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), May 2014

C18. A. Balatsoukas-Stimming, P. Belanovic, K. Alexandris, and A. Burg, “On self-interference suppres-
sion methods for low-complexity full-duplex MIMO,” in Asilomar Conference on Signals, Systems, and
Computers, Nov. 2013

C19. A. Balatsoukas-Stimming, N. Preyss, A. Cevrero, A. Burg, and C. Studer, “A parallelized layered QC-
LDPC decoder for IEEE 802.11ad in 40 nm CMOS,” in IEEE International New Circuits and Systems
Conference (NEWCAS), Jun. 2013

C20. A. Balatsoukas-Stimming and A. Dollas, “FPGA-based design and implementation of a multi-Gbps
LDPC decoder,” in International Conference on Field Programmable Logic and Applications (FPL), Aug.
2012

Posters, Demos & Invited Talks

I1. A. Balatsoukas-Stimming, R. Ghanaatian, and A. Burg, “Complexity and energy efficiency of LDPC
decoders and an initial comparison to polar codes.” Workshop on energy-efficiency in error-correction
coding, Télécom ParisTech, Paris, France, Jun. 2016

I2. A. Balatsoukas-Stimming, “Faulty successive cancellation decoding of polar codes for the binary
erasure channel.” McGill University, Montréal, Canada, May 2016

I3. A. Burg, A. Balatsoukas-Stimming, M. Meidlinger, and G. Matz, “Information optimized quantized
message passing to enable ultra-high-speed (Tbps) LDPC decoding,” in Information Theory and Appli-
cations (ITA) Workshop, Feb. 2016

P4. A. Balatsoukas-Stimming, “From coding theory to coding practice: Hardware implementation of
polar decoders and Terabit/s LDPC decoders,” in Information Theory and Applications (ITA) Workshop
Graduation Day Poster, Feb. 2016

D5. A. C. M. Austin, O. Afisiadis, A. Balatsoukas-Stimming, and A. Burg, “Concurrent spectrum sensing
and transmission for cognitive radio using self-interference cancellation,” in ACM International Sympo-
sium on Mobile Ad Hoc Networking and Computing (MobiHOC), Jun. 2015

I6. A. Balatsoukas-Stimming and A. Burg, “Polar decoding with unreliable memories,” in Information
Theory and Applications (ITA) Workshop, Feb. 2015

I7. A. Balatsoukas-Stimming, C. Studer, and A. Burg, “Characterization of min-sum decoding of LDPC
codes on unreliable silicon,” in Information Theory and Applications (ITA), Feb. 2014

D8. P. Belanovic,A. Balatsoukas-Stimming, and A. Burg, “A multipurpose testbed for full-duplex wireless
communications,” in IEEE International Conference on Electronics, Circuits, and Systems (ICECS),
Dec. 2013 (best paper award, 2nd prize)

5

