2,181 research outputs found

    Optimal Ordering and Trade Credit Policy for EOQ Model

    Get PDF
    Trade credit is the most prevailing economic phenomena used by the suppliers for encouraging the retailers to increase their ordering quantity. In this article, an attempt is made to derive a mathematical model to find optimal credit policy and hence ordering quantity to minimize the cost. Even though, credit period is offered by the supplier, both parties (supplier and retailer) sit together to agree upon the permissible credit for settlement of the accounts by the retailer. A numerical example is given to support the analytical arguments.Trade Credit, Optimal ordering quantity, Lot-size

    The (r,q) policy for the lost-sales inventory system when more than one order may be outstanding

    Get PDF
    We study the continuous-review (r; q) system in which un_lled demands are treated as lost sales. The reorder point r is allowed to be equal to or larger than the order quantity q. Hence, we do not restrict our attention to the well-known case with at most one replenishment order outstanding, but our modeling streamlines exact analysis of that case. The cost structure is standard. We assume that demand is Poisson, that lead times are Erlangian and that orders do not cross in time (lead times are sequential). We determine the equilibrium distribution of the inventory on hand at the delivery instants from the solution (obtained by the Gauss-Seidel method) of the equilibrium equations of a Markov chain. To optimize r and q we develop an adapted version of the algorithm suggested by Federgruen and Zheng for the backorders model (BO). The results obtained in our numerical study show that the suggested procedure dominates standard textbook approximations. In particular, the reductions in the average cost of a simple Economic Order Quantity policy are in the range of 3-14%. Except when lead times are long and variable or when the unit cost of shortage is low, the optimal BO policy provides a fair approximation to the average cost of the best policy.inventory/production; operating characteristics; policies; probability; Markov processes; Area of review; Manufacturing; Service; Supply Chain Operations

    Simple heuristics for push and pull remanufacturing policies

    Get PDF
    Inventory policies for joint remanufacturing and manufacturing have recently received much attention. Most efforts, though, were related to (optimal) policy structures and numerical optimization, rather than closed form expressions for calculating near optimal policy parameters. The focus of this paper is on the latter. We analyze an inventory system with unit product returns and demands where remanufacturing is the cheaper alternative for manufacturing. Manufacturing is also needed, however, since there are less returns than demands. The cost structure consists of setup costs, holding costs, and backorder costs. Manufacturing and remanufacturing orders have non-zero lead times. To control the system we use certain extensions of the familiar (s,Q) policy, called push and pull remanufacturing policies. For all policies we present simple, closed form formulae for approximating the optimal policy parameters under a cost minimization objective. In an extensive numerical study we show that the proposed formulae lead to near-optimal policy parameters.inventory control;remanufacturing;heuristics

    Robust Optimization in Simulation: Taguchi and Response Surface Methodology

    Get PDF
    Optimization of simulated systems is tackled by many methods, but most methods assume known environments. This article, however, develops a 'robust' methodology for uncertain environments. This methodology uses Taguchi's view of the uncertain world, but replaces his statistical techniques by Response Surface Methodology (RSM). George Box originated RSM, and Douglas Montgomery recently extended RSM to robust optimization of real (non-simulated) systems. We combine Taguchi's view with RSM for simulated systems, and apply the resulting methodology to classic Economic Order Quantity (EOQ) inventory models. Our results demonstrate that in general robust optimization requires order quantities that differ from the classic EOQ.Pareto frontier;bootstrap;Latin hypercube sampling

    An EOQ model for time-dependent deteriorating items with alternating demand rates allowing shortages by considering time value of money

    Get PDF
    The present paper deals with an economic order quantity (EOQ) model of an inventory problem with alternating demand rate: (i) For a certain period, the demand rate is a non linear function of the instantaneous inventory level. (ii) For the rest of the cycle, the demand rate is time dependent. The time at which demand rate changes, may be deterministic or uncertain. The deterioration rate of the item is time dependent. The holding cost and shortage cost are taken as a linear function of time. The total cost function per unit time is obtained. Finally, the model is solved using a gradient based non-linear optimization technique (LINGO) and is illustrated by a numerical example

    Sustainable Inventory Management Model for High-Volume Material with Limited Storage Space under Stochastic Demand and Supply

    Get PDF
    Inventory management and control has become an important management function, which is vital in ensuring the efficiency and profitability of a company’s operations. Hence, several research studies attempted to develop models to be used to minimise the quantities of excess inventory, in order to reduce their associated costs without compromising both operational efficiency and customers’ needs. The Economic Order Quantity (EOQ) model is one of the most used of these models; however, this model has a number of limiting assumptions, which led to the development of a number of extensions for this model to increase its applicability to the modern-day business environment. Therefore, in this research study, a sustainable inventory management model is developed based on the EOQ concept to optimise the ordering and storage of large-volume inventory, which deteriorates over time, with limited storage space, such as steel, under stochastic demand, supply and backorders. Two control systems were developed and tested in this research study in order to select the most robust system: an open-loop system, based on direct control through which five different time series for each stochastic variable were generated, before an attempt to optimise the average profit was conducted; and a closed-loop system, which uses a neural network, depicting the different business and economic conditions associated with the steel manufacturing industry, to generate the optimal control parameters for each week across the entire planning horizon. A sensitivity analysis proved that the closed-loop neural network control system was more accurate in depicting real-life business conditions, and more robust in optimising the inventory management process for a large-volume, deteriorating item. Moreover, due to its advantages over other techniques, a meta-heuristic Particle Swarm Optimisation (PSO) algorithm was used to solve this model. This model is implemented throughout the research in the case of a steel manufacturing factory under different operational and extreme economic scenarios. As a result of the case study, the developed model proved its robustness and accuracy in managing the inventory of such a unique industry

    A holding cost bound for the economic lot-sizing problem with time-invariant cost parameters

    Get PDF
    In this paper we derive a new structural property for an optimal solution of the economic lot-sizing problem with time-invariant cost parameters. We show that the total holding cost in an order interval of an optimal solution is bounded from above by a quantity proportional to the setup cost and the logarithm of the number of periods in the interval. Since we can also show that this bound is tight, this is in contrast to the optimality property of the economic order quantity (EOQ) model, where setup cost and holding cost are perfectly balanced. Furthermore, we show that this property can be used for the design of a new heuristic and that the result may be useful in worst case analysis.

    An EOQ model with stock dependent demand and imperfect quality items

    Get PDF
    This paper deals with an economic order quantity model where demand is stock dependent. Items received are not of perfect quality and each lot received contains percentage defective imperfect quality items, which follow a probability distribution. Two cases are considered. 1) Imperfect quality items are held in stock and sold in a single batch after a 100 percent screening process. 2) A hundred percent screening process is performed but the imperfect quality items are sold as soon as they are detected. Approximate optimal solutions are derived in both cases. A numerical example is provided in order to illustrate the development of the model. Sensitivity analysis is also presented, indicating the effects of percentage imperfect quality items on the optimal order quantity and total profit
    corecore