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Abstract: The present paper deals with an economic order quantity (EOQ) model of an
inventory problem with alternating demand rate: (i) For a certain period, the demand rate
is a non linear function of the instantaneous inventory level. (ii) For the rest of the cycle,
the demand rate is time dependent. The time at which demand rate changes, may be
deterministic or uncertain. The deterioration rate of the item is time dependent. The
holding cost and shortage cost are taken as a linear function of time. The total cost
function per unit time is obtained. Finally, the model is solved using a gradient based
non-linear optimization technique (LINGO) and is illustrated by a numerical example.
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1. INTRODUCTION

In recent years, there is a spate of interest in studying the inventory systems with
an inventory-level-dependent demand rate. It is observed that large quantities of
consumer goods displayed in a supermarket generate higher demands. The impact of
shelf-space allocation on retail-product demand has been subject of investigation by
many researchers like Levin et al.[11], Silver[18], and Silver and Peterson[19].

An inventory model for stock-dependent consumption rate was discussed by
Gupta and Vrat[7]. However, their calculation of the average system cost was wrong.
Mandal and Phaujdar [12] suggested corrections to the average system cost in [7].
Another model for deteriorating items with stock-dependent consumption rate was
developed by Mandal and Phaujdar[13]. The first rigorous attempt at developing an
inventory level with a stock-dependent consumption rate was made by Baker and
Urban[1]. Their functional form for the demand rate is realistic and logical from practical
as well as economic viewpoints.

Deterioration can not be avoided in business scenarios. Rau et al[16] presented
the economic ordering policies of deteriorating items in a supply chain management
system. Dye et al[6] developed an EOQ model for deteriorating items allowing shortages
and backlogging. An EOQ model for deteriorating items with time varying demand and
shortages have been suggested by Chung et al[5]. Skouri et al[21] discussed about EOQ
for deteriorating items under delay in payments. Ghare and Schrader[8] categorized the
inventory deterioration into three types: direct spoilage, physical depletion and
deterioration. Direct spoilage refers to the unstable state of inventory items caused by
breakage during transaction or by sudden accidental events. For example quality and
effectiveness of some medicines might be reduced in the event of non-functioning of
refrigerator caused by sudden load shedding or absence of power supply for hours
together. Deterioration on the other hand, refers to the slow but gradual loss of qualitative
properties of an item with the passage of time. In fact no inventory item can avoid this
kind of deterioration. This is inevitable. Wee[23] considered an inventory problem for
deteriorating items with shortages. Reddy et al.[17] considered stock-dependent demand
rate in a periodic review inventory system. Subbaiah et al[20] developed an inventory
model with stock-dependent demand. Teng et al.[22] discussed an EPQ model for
deteriorating items where demand depends on stock and price. Inventory model with
stock-dependent demand is developed by Rao et al.[15]. In practice the demand depend
not only on stock but also on the types of customers. Pal et al.[14] made an investigation
on inventory system of two-component demand rate irrespective of shortages and price
breaks. Basu M and Sinha S[2] developed an ordering policy for deteriorating items with
two component demand and price breaks allowing shortages. Customers may be
classified into two categories:

(i) Those who are motivated by displayed stock level (DSL). They are floating.

(if) Those who are not motivated by DSL.

So the two-component demand rate is more applicable in real life..

Shortages can not be avoided in practical situations. Jamal et al.[9] presented an
EOQ model that focused on deteriorating items with allowable shortages. But they did
not consider two-component demand which would make it more applicable in real
situation.
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Chakrabarti and Sen[3] developed an order inventory model with variable rate
of deteriorating and alternating replenishing rates considering shortage. Also Chakrabarti
and Sen[4] presented an EOQ model for deteriorating items with quadratic time varying
demand and shortages in all cycles. An EOQ model for perishable item with stock and
price dependent demand rate was developed by Khanra et al[10].

The objective of the present paper is to determine the optimal order quantity
with a deteriorating item by the rate of deterioration as a time function of the on hand
inventory. This model will run with time-dependent holding and shortage cost. Here we
have taken two-component demand. At the beginning, the demand rate is directly related
to the amount of inventory displayed on the board. After a certain time, the demand
changes to time-dependent. The objective is to minimize the total average cost function
of the inventory system over a long period of time. A numerical example is discussed
to illustrate the procedure of solving the model.

2. NOTATIONS AND ASSUMPTIONS

Throughout the paper the following notations and assumptions are used.
2.1 Notations:

e q(t) Inventory level at any time t.
e S=0q(0) Stock level at the beginning of each cycle after fulfilling

backorders.
e S,=0(0) Stock level below which the demand rate is time dependent.

e Q Stock level at the beginning + the amount of shortages.
e T, Time epoch at which the demand rate changes.
e T, Time until shortage begins.

e T Length of the cycle time.

o J(t)=06t,0<0<1, is the time-proportional decay rate of the stock.
Since 6>0,(dg(t)/dt)=60>0. Hence, the decay-rate increases with
time at a rate 6.

e K Constant ordering cost per order.

e HC Holding cost per cycle where (h, +ht) is the holding cost at time t of

the on-hand inventory.

DC Deterioration cost.

SC Shortage cost where (c, +c;t) is the shortage cost at time t of the on-

hand inventory.
2.2 Assumptions:

e Item cost does not vary with order size.

e Lead time (the time between placing an order for replenishment stock and
its receipt) is assumed to be zero. This is a parameter depending on the
product as well as the source from which it is available.

e Replenishments are instantaneous.
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Inventory system consists of only one item.

The time horizon of the inventory system is infinite. Only a typical planning
schedule of length T is considered and all remaining cycles are identical.

A time dependent function €, (0 < @ <1)of the on-hand inventory
deteriorates per unit time and the deteriorated item is lost.

Shortages are allowed and fully backlogged.

Two component demand rate is considered here. Demand rate is
deterministic and is a known function of the instantaneous inventory level
up to a certain interval of time and after that the demand rate is time-
dependent. The demand rate D(t) is given by

D(t):{a{q(t)}ﬁ,OStSTo
(a+bt),T,<t<T

Where « and g are scale and shape parameters, respectively and a, b are
positive constants.

3. MATHEMATICAL MODEL AND ANALYSIS:

The inventory system developed is depicted by the following figure:

inventory

So T, T

Figure. 1

The inventory level will be depleted at a rate of a{q(t)}’ during the period

[0,T ] where T, will be determined by q(T,) =S, , the corresponding value of S; will

also be determined. During the period [T, T,] the inventory level will be depleted at a

rate of (a+bt). The inventory falls to zero level at time t=T,. Shortages are then

Time
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allowed for replenishment up to time t=T . Therefore, for a deterioration rate 6, , the
instantaneous inventory level will satisfy the following differential equations

%wtqlm - —afg, Y. 0<t<T, )

With the boundary conditions
Ch(o) =3, ql(TO) = So (13)

On the other hand, in the time interval (T,,T,), the system is affected by the

combined effect of demand and deterioration. Hence, the change in inventory level is
governed by the following differential equation

da (t)
dt

With the boundary conditions
0, (To) = S0,0,(T) =0 (2a)

In the time interval (T,,T), the system is affected by demand only. Hence, the
change in inventory level is governed by the following differential equation

%:—(amt),ﬂgtsT 3)

with the boundary conditions
05(T) =0,03(T) =-(Q-9) (32)

The solution of the differential equations (1) with the boundary condition (1a) is

+0tg, (t) =—(a+bt), T, <t <T, (2

NN 0 1 o 1,
GO = (8" —ap) Lt G apt -2 8] @)

(neglecting #° and higher power)
The boundary condition o, (T,) =S, gives

1

- o0 1 1
S, =(SP—apT,)P[l+————— (ZapT,>—=SPT2 4a
0= apTy)PL (Sp—apTo)(?:apo 5 o)l (43)

The solution of (2) with the help of the condition (2a) gives

q,(t) = (S, —at+aT, L +1bT02)+6r(1at3 +Lp —iaTot2 +1aTo3 —ithTo2
2 2 3 8 2 6 4 5)

1 1 1
+§bT04 _ESOtZ +ESOT02)
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(neglecting 6 and higher power)
The condition q(T,) =0 gives

(S, —aT, +aT, —lelz +1bT02) = —6’(l aT?® +£le4 —laToTl2 +£aT03 —lelzTo2
2 2 3 8 2 6 5
1 1 1 (5a)

+§bTO4 _ESOle +ESOT02)

The solution of (3) with the help of the condition (3a) gives

b

s (t) =—a(t-T,) —E(t2 ~T7) (6)

The condition (T) =—-(Q —S) gives

Q—s—a(T—T)+9(T2—T2) (6a)

- 1 2 1

This is the relation between T, and T .

The total variable cost comprises of the sum of the ordering cost, holding cost,
deterioration cost minus backorder cost.

For the moment, the individual costs are now evaluated before they are grouped
together.

(1) Annual ordering cost=—

(2) Annual holding cost

(HOY= 21 (h, +h)a, 0t + [ (8 +h)a, O

1 1 rp +2p 1+3p
_ [ hy (Sl+p Y pp) h, aé?p( T_YB 3Ty P BT P By P +631+3p
a d, d, d, d,
1 1+p 142p Lp 142p
h0S®  TSAYP 2TY P P +2p Ty P P 1+2p
_ 095 (_ 0 _ 0 _2Y +ZS )+hl(_ 0 _Y +S )
2 a d, d, d, d, d, d,
1 +p 1+2p 1+3p 1+4p
" hatp (- TOAY P _ 4T03Y P 3 12T02Y P B 24TY P B 24Y P . 24y 1+4p
3 4 d2 d3 d4 ds d5
1 rp 142p 143p
hlﬁs p ( Y P 3T02Y p ~ 6TOY p B 6Y p . 651+3p)
2 a d, d, d, d,

)
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a b b a
+h0{—E(T12 -T,%) —E(Tf -T,})+(S, +aT, +ET02)(T1 ~T)}+ H{E T -T1,4

b a b a b S
+E(Tl5 -T,°) ——T0 T2 -1 ——TOZ(Tf -T2+ (ETOS +§T04 +7°T02)(T1 -T,)

- (1 T+ T T T - S T -2 (T

a a b
‘Hg{E (Tls _Tos) + (T ° T ) T (Tl T04) + ET03 (le _Toz) - ETOZ (T14 _To4)

b 42 2 0 0 2
+ET° M -T )—g(Tl ~Toh)+ T (T =T}

where Y=(S? —apT,) , p =1—,B,
d, = a(l+p),d, = @*(1+ p),d; = &’ (L+ p)(L+2p),d, = & 1+ p)(1+2p)(1+3p),
ds =’ (L+ p)(L+2p)(L+3p)(L+4p)

(1) Annual shortage cost (SC) is given by

c= %{j (¢ + GG (elt]

=T1[c0{—a( —TT+K) b(E—T2T+ )}
T3 ) b T* TZTZ T2
+Cl{—a(?—5T1T —T )——( ? —)}]

(2) Annual cost of deterioration (DC) is given by
TO Tl
== a(0)~{[ a(a())’ dt+ [ (a+bt)dt |]
0 T

1 p 1+2p 1+3p
1+p 2 T3y P T2y P TY P p 1+3p
:_[S {{_Y L, S0y, @%0p YT 3T, 6T, ey * 68y
d, 3 "« d, d, d, d,
+p 1+2p
afS® TSP 2TY P2y P o8P

b 2 2
2 | a d2 - d3 + d3 }_{a(Tl_TO)_'_E(Tl _To )}}]

where Y=(S? —apT,) , p=1-4,

+p
p

\HQ.




270 A.Kundu, P.Chakrabarti and T.Chakrabarti / An EOQ Model

d, = a(l+ p),d, =’ 1+ p),d, = * @+ p)L+2p),d, =’ L+ p)(L+2p)(L+3p),
d; = a®(L+ p)(L+2p)(L+3p)(L+4p)
The total cost per unit time is given by

TC(T 5, T)=(OC+HC+DC-SC)

1+p 1+2p 1+3p
e 3 1 2 p T p 1+3p
:?.{_%[%(Slﬂ’ Yy P )+ hoasgp ( TO YP_ 3TodY _ GTOE _ 6Yd + GSd )
1 a 2 3 4 4
1 1+p 142p p 1+2p
p 2y p p p 1+2p p p 1+2p
hoazs ( T, _2T0;( _2Yd +2sd )+ h TO\; _Yd +sd )
a 2 3 3 1 2 2
1 1+p 1+2p 1+3p 1+4p
thaﬁp( TP 4T P 12TAY P 24Ty P 24y P +24Y1*‘”’)
"3 a d, d, d, d, d,
1 1+p 1+2p 1+3p
hlgsp ( TO3Y P B 3TOZY p B 6T0Y p B 6Y p . 681+3p)
2 a d, d, d, d,
e dmoty Ry s, var s 2T o e g (1 -1
0 2 1 0 6 1 0 0 0 2 0 1 0 12 1 0

b a b a b S
+4_0 (Tls - Tos) - ETO (T13 - To3) - ETOZ (T13 - T03) + (gTo3 + §T04 + 70T02)(T1 -T)

aT, b1/ a b
TO+_40 )(le _Toz) _E(Tf _Tog) _g(Tl4 _T04)}

a b a a b
+6v{E T2 -1 +4—8(T16 -T.9 —ETO T -1, JrETO3 T2-T,%) —ETOZ T -1,

S0
4

S (r3_T3 S
—€(T1 T )}+hl{(2 +

b S
""_1—04(-[-12 _Toz) __O(Tl4 _TOA) + T02 (le _Toz)}]
16 8

1+7p 1 1+7p 1+2p 1+3p
P 1+p 2 p 2y p p p 1+3p
+1[S_{a{ Y*.s 3+ 4 9p{T03Y S 6T " 6Y " 6S 3
T d, d, 3 a d, d, d, d,
1 l+p 1+2p
afS® . TPYP 2Ty P 2y P 28t b_,
- - + —{a(T,-T)+=(T2-T,
, 0, 0. 0. H{a(-To) 2(Tl o)
1 T? T2, b, T3 2
e fa(—-TT+1) - (—-T T +=T}
T[o{ (2 1 2) 2(3 1 31)}
T 1 1 b T* T2T* T2
rofa(—-STT2+ =T - (——L—+ L
of (3 2N 61) 2(4 > 4)}] 0

where Y=(S" —apT,) , p=1-7,
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d, =a(l+p),d, =a’(1+ p),d; =2’ L+ p)(1+2p),d, = a* (1+ p)(1+2p)(1+3p),
d; = a®(L+ p)(L+2p)(L+3p)(L+4p)

We now minimize the total cost per unit time TC(T,,T) under the situation
(1) T, isaknown point of time.
(2) T, isarandom point of time.

Case I T is a known point of time.

Hence total cost is given by equation (7).
ATCM0T) _ g ang

For minimum total cost, the necessary condition is
0

STC(T,,T) _ -
ST

Let T* be the positive real root of the equation (8), then T* is the optimal cycle
time. It can also be seen that the sufficient condition for minimum cost

0

o*TC(T,,T) &°TC(T,,T)
Tz oT, 0T

d°TC(T,,T) 6*TC(T,,T)
aTaT, oT?

>0 is satisfied.

Case II: T, is a random point of time.
In this case, the cost function TC(T,,T) is a random variable with respect to T,.

So the expected total cost per unit time is

+p 1+2p
K 1.h .. 22 habp, 1 1 O3E(TAY ") BE(Y P
R L U ST AR CULRR S S UL
T T, a d, d,
14+3p 1 1+p 1+2p
CBE(Y P )+63l+3p _hoas"(_ E(T,2YP) 2E(TY P) 2E(Y ° )+2sl*2'°)
d, d, 2 a d, d, d,
1+p 1+2p

P P 1+2p
+m@E“§ )_az )+: )
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1 1+p 1+2p 1+3p 1+4p
haOp , ETSYP) 4ETSY °) 12E(T2Y P ) 24E(TY P ) 24E(Y *)
+ (- - - - -
3 a d, d, d, d,
1+p 1+2p 1+3p
+24(sl+4p))_hlesp( E(T3YP) CBE(T,Y P) BE(T,Y P ) BE(Y *) esl+3p)
d, 2 a d, d, d, d,

PR ST~ E(T) g (1~ E(T) + (S + 8E(T) 2 EQ, )T, - ET, )}
HOL (T~ B, + 4 (1 (1) - SEM ) - E) - 2 EC)

(T —E(’° ))+(—E(T) EU0)+—°EU0 (T, - EUO))——°U1 E(T" )

+E(z;T) E(bT)

+h1[{(?° )T, - E(Toz))—E(Tl3 - |5(T03))—§(T14 -EM)}

a s 5 6 6 a 4 4
+9{E(T1 —-E(T, ))+@0} —-E(T, ))_EEUO)(E -E(,))
a 3y 2 2 b 2\ 4 4 b 42 2
+EE(T° (T —E(T, ))_EE(TO ([T —E(T, ))+EE(T° )T —E(7)

S S
—§°(F14—E(F04))+T°E(T02)(Ff—E(Foz))}]]
I+p 1 l+p 1+2p
P), S, a®0p E(TYP) BE(TLYY ") BE(TY P )

+ }+ U
N d, 3 a d, d,

1 E(Y
+T[S {A g
1+3p
_BE(Y ° )+63l+3p

d4 d4

}

1+p 1+2p
_abs® | E(TZYp) C2E(TY P) 2E(Y P )+2sl+2"}
> T, d, d, d,
Ha(T,-ET,) +%(Tf ~ET)H
1 T? T2, b T . 2,
—;[co{—a(7 —) ——( =TT +—T1 )}

TS 1 1 bT4 TAT? T2
+Cl{—a(?—§T1Tz =T )——(—— 5 —)}]

©)

Now assume that the distribution function of T, to be rectangular distribution.
Then its probability density function f(x) is given by
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f(x)= 1 J <x <,
|2_Il
=0, elsewhere
Then equation (9) reduces to
B2 L2p wp  Lp
P _ p 3 p_ p
=X Dloger L X )y Toedpy L L0 "% )
T T7d; al(l+2p) 3 al a(l+p)
1+2p 1+2p 1+3p 1+3p 1+4p 1+4p
3T02(X1 i —X% P )+ 6(X1 P - X% i ) + 6(X1 i —-X% i ) )
2+ p)A+2p) A+ p)A+2p)A+3p) a*(L+ p)(L+2p)L+3p)(L+4p)
1+2p 1+2p 1+3p 1+3p 1+4p 1+4p
3 T (% P =% ° )+2T0(X1 P % P )+ 2(% * =% ") )
dl, a(l+2p) a?(1+2p)A+3p) *(1+2p)A+3p)(L+4p)
1+3p 1+3p 1+4p 1+4p 1+4p 1+4p
P _ p P _ p P p 1+3p
_i TO(Xl XZ )+ (le XZ ) }_i{(xl XZ ))+ 65 }
d.l a(l+3p) a*(l+3p)A+4p)” d,l a(l+4p) d,
1+p I+p 1+2p 1+2p 1+3p 1+3p
_ho'gspr_i TOZ(X1 P —% g )+2T0(X1 P —-X P )+ 2(X1 P —% P ) )
2 ol a(l+p) 2?1+ p)A+2p) &1+ p)A+2p)1+3p)
1+2p 1+2p 1+3p 1+3p 1+3p 1+3p
2 T T %P )P %P ) 206 -x% ") 23”2”}
d,l a(l+2p) a’(1+2p)1+3p) d; al(l+3p) d,
1+2p 1+2p 1+3p 1+3p 1+3p 1+3p
P _ p P _ p P _ p 1+2p
+h1{_i(T0(x1 ) )+ (le X2 ) _i (Xl XZ ))+S }
dl a(l+2p) a“(1+2p)1+3p)° d, al(l+3p) d,
1+p L+p 1+2p 1+2p 1+3p 1+3p
+hlaep , 1 T04(X1 P %" )+4T03(X1 P X P )+ 12Toz(x1 P % ")
3 ' oal a(l+ p) al+p)A+2p)  &*(@+ p)AL+2p)(L+3p)
1+4p 1+4p 1+5p 1+5p
24To(x 7 =%, ) 240, P =%, P ) )
' (+ p)A+2p)A+3p)A+4p) &’ (+ p)(L+2p)A+3p)(L+4p)(L+5p)

+2p 1+2p 143p 1+3p 1+4p 1+4p
_i TOB(Xl P-x P )+3T02(X1 P—x, P )+ 6T (% P =%, P )
d,l a(l+2p) a?(1+2p)A+3p)  *(1+2p)(1+3p)(1+4p)
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1+5p 1+5p 1+3p 1+3p
. 6(x, P —-x, ") _E(Toz(xl Pox, )
a'@+2p)(L+3p)L+4p)L+5p)” dil a(l+3p)
1+4p 1+4p 1+5p 145p

RO D T (U )
a?(1+3p)A+4p) a*@+3p)(L+4p)(1+5p)

1+4p 1+4p 1+5p 1+5p
_ﬁ To(xl i —X% i )+ (X1 i — X, i )
d,l a(l+4p) a’(L+4p)(1+5p)

)

1+5p 1+5p

O D N )
d.l a(l+5p) d;
Lip p 1+2p 1+2p 14+3p 14+3p
_hlespf_i -[-03()(1p ) P )+3T02(X1 P —X% i )+ 6(X1 P ) i )
2 " oal a(l+ p) a?1+p)A+2p) @A+ p)A+2p)(1+3p)
1+4p 1+4p 2p +2p 1+3p 13
4 6(X1 P —X P ) _i Tol(xi i —X i )+2T0(X1 ’ —X P )
a' @+ p)L+2p)A+3p)A+4p)” d,l a(l+2p) a?(1+2p)(1+3p)
1+4p Lrdp L3p 1+3p 1+4p 1+4p
4 Z(Xip_xzp) _iTo(le_xzp)+(X1p_xzp)
a’(L+2p)A+3p)A+4p)” d,l a(l+3p) a?(1+3p)(1+4p)
L+rap Lrap
1+3
_i (Xi P —X P ))+65 p}

d,l a(l+4p) d,
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a 1 b 1 1 b_1
+h0{—5(|'12 _ﬁ(lzs - |13)) _g(T13 _E(Iz4 - |14)) +SpT; + aTl_(Izz - |12) +€T1T(|23 - |13)

2l
1 1 1 a 1
E(|22 - |12) - aa(lz3 - |13) - ba(lz4 - |14) + Q(E(Tl4 _a(lz5 - |15))

b s 1 .6 16 a-sl . . sl 5 13 1 6 6
+—(T == = 1)) -—=T°=(L* = 1) =bT° = (1,° - °) + b—(1.° -1
4O(T1 6|(2 1) 121|(2 W) 16|(2 1) 12|(z 1)

_SO

1 1 1 1 1
+aT1E(|24 - |14) + bT1H(|25 - |15) + SoTla(lzz - |12) - bﬁ(lz6 - |16) - Soa(lz4 - |14)

1 S 1 1 S
+805m( ~ WP BT 4 AT (7 1)+ 0T (= 1) =22 - 1)
1 1 a 1 b 1
—a—(L -1 -b—(° - 1) -=T2+a—(* -1 =T, +b—(L,° - I,°
8|(2 1) 20|(2 1) 31 12'(2 1) 81 40|(2 1)
a 1 b 1 a 1 a 1
+O(—=T° ==L = 1)) +— T ==, =) -=(T* ==L = 1°) +—=T>—(* -1
(e (0 =g =)+ (0 =2l =) = (1 = (= 1)+ T o )
a1 b 1 b 1 S S, 1
= =) - =T = (L =1+ =T =, = 1) = 2T + = = (15 -1}
12 el(2 v 1613I(2 ») 1615I(2 V) 8 ' 8 5|(2 »)
SO 2 1 3 3 SO 1 5 5
+2T°—(,° = 1°) - =2 —(1.> -1
2T (1) = 1))
r2p  L+2p e 1 12p  Le2p
P _ p 1+p 3 P p 2 P _ p
4{S+£(X1 X, )_(ZS +0‘0p T (% X )+3T02(X1 X ")
d,~ al@+2p) d, 3l al+p) a“(L+ p)1+2p)
1+3p 1+3p 1+4p 1+4p 1+2p 1+2p
LG D N 604 " =% ") )2 20P T’ (% " =% ° )
@+ p)A+2p)1+3p) 'L+ p)A+2p)(L+3p)1+4p) d,l a(l+2p)
1+3p 1+3p 1+4p 1+4p
VA % ) 2% % )
?(1+2p)(1+3p) &*@A+2p)1+3p)L+4p)
1+3p 1+3p 1+4p 1+4p
+20‘2‘9p Tox " =% ° )+ (" =% ")
d,l a(l+3p) a?(1+3p)A+4p)
Ldp  Ltdp Lp L
2a°0p (%, P =% P ) 22°0pS™**  6SP TA(x " -x, °)
d,l a(l+4p) d, 2l a(l+p)
1+2p 1+2p 1+3p 1+3p

ARG D B (R D

21+ p)l+2p)  A@+ p)(l+2p)(1+3p))

1+2p 1+2p 1+3p 1+3p
afS® To(x P % " )+ (" =% ") )
d,l a(l+2p) a?(L+2p)(L+3p)

1+3p 1+3p

abs® (4 %’ ))+aesl+3p L a07=1) b
1

b
TZ _|3_|3
d, . al(l+3p) d, a2 el bR

275



276 A.Kundu, P.Chakrabarti and T.Chakrabarti / An EOQ Model

2 2 3
+coa(T7—TlT +%) +£(T——T12T +§T13) +c,a(

3
2 3 ! 1T1T2+£T13)

R B0 (10)
+Cl_bT__l+L)]
2 4 2 4

where x, =(S? —apl), %, =(S"—apl,).

The necessary condition for £(T)to be minimum is that 6é;—_l(_r):o, and the

2
sufficient condition for &£(T) to be minimum is that ag—_l(_T) >0 is satisfied.

Hence, using a suitable computer program, we can solve numerically the
problem of Case | and Case Il.

4. NUMERICAL EXAMPLE

A numerical example is considered to illustrate the effect of the developed
model.
CaseI:
For this model let,
a=11,p5=03a=2b=7,
h, =1h =2,¢c,=1,¢, =2,k =100,Q =530, S =479, S, = 80,6 = 0.003

The model is now solved for the above parameter values using a gradient based
non-linear optimization technique (LINGO), which yields the following optimal solution:
TC =718.6391,T, =3.89849,T =11.06686 .

It is numerically verified that this solution satisfies the convexity condition.
Case II:
An equation(10) is now solved for the above parameter values(in Case I) using a gradient
based non-linear optimization technique (LINGO), which yields the Global optimal
solution:
Optimal cost(TC)=&(T) =621.541, Optimal Time(T*)= 9.348.

It is numerically verified that this solution satisfies the convexity condition for &(T).

5. CONCLUDING REMARKS

In this paper, a perishable inventory model with two components demand (stock
dependent and time dependent), and time dependent holding and shortage cost is
developed for an infinite planning horizon. This is justified for the products such as
electronic components, radioactive substances, volatile liquids etc. which are not only
costly but also require more sophisticated arrangements for their security and safety. The
effect of deterioration is also considered here.
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