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Abstract

Optimization of simulated systems is tackled by many methods, but most methods
assume known environments. This article, however, develops a �robust�methodology
for uncertain environments. This methodology uses Taguchi�s view of the uncertain
world, but replaces his statistical techniques by Response Surface Methodology
(RSM). George Box originated RSM, and Douglas Montgomery recently extended
RSM to robust optimization of real (non-simulated) systems. We combine Taguchi�s
view with RSM for simulated systems, and apply the resulting methodology to
classic Economic Order Quantity (EOQ) inventory models. Our results demonstrate
that in general robust optimization requires order quantities that di¤er from the
classic EOQ.

Key words: Pareto frontier, bootstrap, Latin hypercube sampling

1 Introduction

The importance of optimizing engineered systems (artifacts) is emphasized in
the 2006 NSF panel reported in Oden (2006). That report also points out the
crucial role of simulation in engineering science. The simulation model may

Preprint submitted to Elsevier Science



be either deterministic or random (stochastic, discrete event). In this article,
however, we focus on deterministic simulation. Nevertheless, we expect that
our newmethodology can also be applied to �nd the optimal inputs for random
simulation models and real-world systems.

In practice, some inputs of the given simulation model are uncertain so the
optimum solution that is derived� ignoring these uncertainties� may be com-
pletely wrong. In a di¤erent context� namely Linear Programming (LP)�
Ben-Tal mentions that 13 of the approximately 100 LP models in the NETLIB
Library give constraint violations (infeasibility) when perturbing the input
data by only 0.01% (see also Ben-Tal and Nemirovski (2008)). Simulation
models are more di¢ cult compared with LP and Non-Linear Programming
(NLP) models:

� Simulation models treated as black boxes imply implicit functions for the
goal and constrained outputs.

� Simulation models are dynamic (whereas LP and NLP models are usually
static).

A well-known distinction in the management literature (see the many refer-
ences in Kleijnen (1980)) is

� Operational decisions: repetitive decisions (e.g., daily inventory manage-
ment)

� Strategic decisions: one-shot decisions (e.g., designing a computerized in-
ventory management system).

We focus on strategic decisions (for operational decisions, Control Theory
seems more appropriate). These decisions may concern the design of either
products or processes (for manufacturing these products). Robust design is
important for engineers, in many disciplines. Actually, these engineers should
work together, which results inMultidisciplinary Design Optimization (MDO);
see Alexandrov and Hussaini (1997) and Beyer and Sendho¤ (2007). Products
of Computer Aided Design (CAD) and Computer Aided Engineering (CAE)
are airplanes, automobiles, TV sets, chemical plants, computer chips, etc.�
developed at companies such as Boeing, General Motors, and Philips. Recent
surveys are Chen et al. (2003), Chen et al. (2006), Meckesheimer et al. (2001),
Oden (2006), and Simpson et al. (2001).

Furthermore, we focus on decision variables that are continuous (like Myers
and Montgomery (1995, p. 486) do for RSM); i.e., we do not consider integer
(discrete) or qualitative decision variables (e.g. priority rules).

The literature (see Beyer and Sendho¤ (2007) and Kleijnen (2008)) distin-
guishes the following two approaches to strategic decision-making in an un-
certain world (Park et al. (2006) also detail the �rst approach, and discuss
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more approaches):

� Taguchi�s approach, originally developed to help Toyota design �robust�cars;
i.e., cars that perform reasonably well in many circumstances (from the
snows in Alaska to the sands in the Sahara). Taguchi is a Japanese engineer
and statistician; see Taguchi (1987) and Wu and Hamada (2000).

� Robust Optimization (RO)� developed by Ben-Tal, Nemirovsky, Bertsimas
and others� to make the original Mathematical Programming (MP) solu-
tions less sensitive to perturbations in the coe¢ cients of the MP models;
see Ben-Tal and Nemirovski (2008) and also Beyer and Sendho¤ (2007) and
Greenberg and Morrison (2008). (Stochastic MP is a related yet di¤erent
approach; see Mulvey, Vanderbei, and Zenios (1995) and also Beyer and
Sendho¤ (2007), Greenberg and Morrison (2008), and Sahinidis (2004).)

We do not use RO in the sense of Ben-Tal et al.; instead, we adapt Taguchi�s
approach and combine it with RSM. This RSM uses low-order polynomial
regression metamodels (metamodels are also called response surfaces, surro-
gates, emulators, auxiliary models, repromodels, etc.). These metamodels run
much faster than the� possibly computationally expensive� simulation mod-
els. RSM was introduced by Box and Wilson (1951) as an iterative heuristic
for optimizing real (non-simulated) systems. RSM was further developed for
robust optimization of such systems by Myers and Montgomery (1995). In
this article, we further develop RSM for RO of simulated systems, including
bootstrapping for a simple statistical analysis of the estimated Pareto frontier.

Note: In practice, classic (standard) optimization may be counterproductive!
Indeed, the French say (in translation): �the best is the enemy of the better�;
and Marczyk (2000, p. 3) states: �Optimization is actually just the opposite
of robustness�.

The rest of this article is organized as follows. Section 2 summarizes Taguchi�s
worldview. Section 3 summarizes and extends Myers and Montgomery (1995)�s
approach that uses RSM for robust optimization. Section 4 illustrates the new
methodology through the classic EOQ simulation (which is closely related to
the Economic Production Quantity or EPQ� see Darwish (2008)� and is a
building block for more complicated and realistic supply chain simulations).
Section 5 presents our conclusions and possible topics for future research.
Appendices gives technical details. An extensive list of references enables the
reader to study robust simulation-optimization in more detail. Hasty readers
may skip appendices and paragraphs that start with �Note:�(an example is
the immediately preceding paragraph).
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Fig. 1. Taguchi�s view

2 Taguchi�s worldview

Based on Kleijnen (2008, pp. 130-137), we summarize Taguchi�s view (but
not his techniques, which include experimental designs such as �orthogonal
arrays�) as follows. As Figure 1 illustrates, Taguchi distinguishes between two
types of variables:

� Decision (or control) factors, which we denote by dj (j = 1; : : : ; k).
� Environmental (or noise) factors, which we denote by eg (g = 1; : : : ; c).

Taguchi assumes a single output, which we denote by w. Taguchians focus on
the mean and the variance of this output (see below).

The �rst type of factors are under the control of the users; e.g., in inventory
management, the Order Quantity (OQ) may be controllable. The second type
of factors are not controlled by the users; an example is the demand rate in
inventory management. In practice, the controllability of a factor depends on
the speci�c situation; e.g., the users may change the demand rate through an
advertising campaign.

Note: Other authors distinguish between environmental uncertainty (e.g., de-
mand uncertainty) and system uncertainty (e.g., yield uncertainty); see Mula
et al. (2006) and also Beyer and Sendho¤ (2007). Implementation errors may
also be a source of uncertainty. These errors occur whenever recommended
(optimal) values of control factors are to be realized in practice; see Stinstra
and Den Hertog (2007). Continuous values are hard to realize in practice, be-
cause only limited accuracy is then possible; e.g., the EOQ turns out to be the
square root of some expression, but in practice only a discrete number of units
can be ordered. Besides implementation errors, there are validation errors of
the simulation model (compared with the real system) and the metamodel
(compared with the simulation model); see Kleijnen and Sargent (2000).
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As we mentioned above, we do not use Taguchi�s statistical methods. Our main
reason is that simulation experiments enable the exploration of many more fac-
tors, factor levels, and combinations of factor levels than real-life (physical)
experiments do. Moreover, we do not use Taguchi�s scalar output (such as
the signal-to-noise or mean-to-variance ratio); instead we allow each output
to have a statistical distribution (or density function), which we characterize
through its mean and standard deviation; also see Beyer and Sendho¤ (2007),
Lee and Nelder (2003), and Myers and Montgomery (1995, p. 491). So we feel
that a Taguchian loss function (see, e.g., Park et al. (2006)) is too restric-
tive. We solve the resulting bi-objective problem through the Pareto-optimal
e¢ ciency frontier� brie�y called the Pareto frontier.

Note: The relevant problem formulation depends on the risk attitude of the
users (they might be risk-seeking optimists), which may vary with the appli-
cation. We conjecture that our heuristic also applies to alternative problem
formulations, but in this article we do not investigate these alternatives. Many
references on supply-chain risk-management are given in Wu et al. (2008), who
focus on the mean-variance trade-o¤ in the newsvendor�s inventory problem.
The mean-variance trade-o¤ for simulation models is also examined by Apley,
Liu, and Chen (2006) and Chen, Jin, and Sudjianto (2006).

3 RSM and robust optimization

To design and analyze our simulation experiments; we use RSM following
Myers and Montgomery (1995). RSM extends Taguchi�s simpler statistical
techniques. The simplest RSM metamodel is a polynomial of a degree as low
as possible:

� Because we wish to estimate the optimal combination(s) of the decision
factors dj (j = 1; : : : ; k), we �t a second-order polynomial for these factors.

� Moreover, we wish to model possible e¤ects of the environmental factors eg
(g = 1; : : : ; c); we �t a �rst-order polynomial for these factors.

� Finally, we wish to estimate interactions between the two types of factors,
so we �t �control-by-noise�two-factor interactions. (Interaction between dj
and eg implies nonparallel response surfaces for dj� given di¤erent values
for eg.)
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Altogether we �t the following metamodel proposed by Myers and Mont-
gomery (1995, p. 218, 492):

y = �0 +
kX
j=1

�jdj +
kX
j=1

kX
j0�j

�j;j0djdj0 +
cX
g=1

jej +
kX
j=1

cX
g=1

�j;gdjeg + �

= �0 + �
0d+ d0Bd+  0e+ d0�e+ �;

(1)

where y denotes the regression predictor of the simulation output w, � denotes
the residual with E(�) = 0 if this metamodel has no lack of �t (this zero mean
should be tested; see cross-validation below) and constant variance �2� (an
unrealistic assumption in simulation experimentation), and the bold symbols
are the vectors and matrices that are de�ned in the obvious way (e.g., � =
(�1; : : : ; �k)

0 and B denotes the k � k symmetric matrix with main-diagonal
elements �j;j and o¤-diagonal elements �j;j0=2).

It is convenient and traditional in Design Of Experiments (DOE) to use
coded� also called standardized or scaled� factor values. Let the experiment
consist of n factor combinations of the �original� factors zj (zj corresponds
with dj or eg in (1)); furthermore, let lj denote the lowest value of zj in the
experiment, and uj the highest (�upper�) value. Then the coded variable xj
use the linear transformation

xj = aj + bjzj with aj =
lj + uj
lj � uj

and bj =
2

uj � lj
. (2)

The term (uj � lj) is the range of input j. If z is a random variable (like e),
then this coding implies var(x) = b2var(e). The numerical accuracy of the
estimates may be a¤ected by coding; we focus on the estimated e¤ects of the
coded variables. Coding is further discussed by Kleijnen (2008, p. 29).

Assuming a model like (1), Myers and Montgomery (1995, p. 493-494) derive
the mean and the variance of y (the regression predictor of the simulation
output w), after averaging over the noise factors� and assuming that the en-
vironmental variables e satisfy

E(e) = 0 and cov(e) = �2eI. (3)

Obviously, assuming zero means and constant variances is unrealistic, so we
shall replace (3) by (11). Given (3), they derive

E(y) = �0 + �
0d+ d0Bd (4)

and
var(y) = �2e(

0 + d0�)( +�0d)+�2� = �
2
el
0l+�2� ; (5)

where l = (+�0d)= (@y=@e1; : : : ; @y=@ec)0; i.e., l is the gradient with respect
to the environmental factors� which follows directly from (1). So, the larger
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the gradient�s elements are, the larger the variance of the predicted simulation
output is� which stands to reason. Furthermore, if� = 0 (no control-by-noise
interactions), then var(y) cannot be controlled through the control variables
d.

Equation (5) implies that the predicted simulation output y has heterogeneous
variances� even if �2e and �

2
� were constants� because changing the control fac-

tors d changes var(y). Whereas Myers and Montgomery (1995, p. ...) present
examples with �2e = �2�=2, Kleijnen (2008, p. 136) gives a supply-chain sim-
ulation with �2e = 10�2� . Most important is the gradient l, because it shows
the key role played by the control-by-noise interactions; i.e., to reduce the
predicted output�s variance var(y)(or �2y) the analysts should take advantage
of the interactions�; they cannot control the main e¤ects of the noise factors
() and the variances of the noise factors and the residuals (�2e and �

2
�). For

example, if a particular decision factor (say, d1) has no e¤ects on the mean
output (so �1 = �1;1 = �1;2 = : : : = �1;k = 0) but has important interactions
with the noise factors (e.g., �1;2 >> 0), then this interaction can be utilized to
decrease the output variance (e.g., decrease �2y by decreasing d1). If there are
multiple decision factors, then the following solution method may be tried:

(1) select the values of some decision factors such that l = 0, so var(y) in (5)
is minimized;

(2) select the remaining decision factors such that the predicted mean output
E(y) in (4) gets the desired value.

Myers and Montgomery (1995, p. 495) also discuss constrained optimization,
which minimizes (e.g.) the variance (5) subject to a constraint on the mean
(4). Often those authors simply superimpose contour plots for the mean and
variance, to select an appropriate compromise or �robust�solution. We shall
use Mathematical Programming, which is more general and �exible.

To estimate the unknown (regression) parameters in (1)� which also gives the
parameters in the mean and variance equations (4) and (5)� we reformulate
(1) as the following linear regression model :

y = � 0x+ � (6)

with � = (�0;�;b;; �)
0 where b denotes the vector with the k � (k � 1)=2

interactions between the decision factors plus their k purely quadratic e¤ects,
and � denotes the k�c control-by-noise interactions; x is de�ned in the obvious
way (e.g., the element corresponding with the interaction e¤ect �1;2 is d1d2).

If we use the Least Squares (LS) criterion, then (6) gives the Ordinary LS
(OLS) estimator b� = (X0X)�1X0w; (7)
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where X is the n � q matrix of explanatory variables with n denoting the
number of scenarios (combinations of decision and environmental factors) de-
termined by DOE that are actually simulated, and q denotes the number of
parameters collected in �; this X is assumed not to be collinear (otherwise,
(X0X)�1 would not exist). So a necessary but not su¢ cient condition for X is
n > q. The vector w consists of the n simulation outputs.

The covariance matrix of the OLS estimator, cov(b�), is needed to test the
importance of the estimated e¤ects. If �2w were constant, then (7) would imply

cov(b�) =(X0X)�1�2w: (8)

Note: We might use this equation to �nd a design that is �D-optimal�; i.e., a
design that minimizes the determinant of cov(b�); see Chung, Goldfarb, and
Montgomery (2007).

In order to apply classic OLS results, we assume that �2w is constant, the out-
puts for di¤erent scenarios are independent, and the environmental factors are
�xed (Myers and Montgomery (1995, p. 490) do not make these assumptions
explicit; in our EOQ application we can derive the true Pareto optimum, so
we can verify how sensitive our analysis is to these assumptions). Then the
classic estimator of �2� is the Mean Squared Residuals (MSR)

MSR =
(by �w)0(by �w)

n� q (9)

where by = b� 0x; also see Kleijnen (2000, p. 23). Note that �2e is known because
the environmental factors are sampled from a known distribution. So var(y)
can be estimated through substitution of the estimator MSR for �2� into (5).

Moreover, we assume that the simulation outputs w are normally distributed;
i.e., we assume that the environmental variables e and the noise � in (1)
are normally distributed. The OLS estimator b� in (7) is then also normally
distributed. Consequently, the individual estimated regression parameters c�j
may be tested through the following t statistic with n� q degrees of freedom:

tn�q =
c�j � �j
s(c�j) with j = 1; : : : ; q (10)

where s(c�j) is the square root of the jth element on the main diagonal of
the covariance matrix for b� given in (8) with �2w estimated through the MSR
de�ned in (9). It is well-known that the t statistic is not very sensitive to
nonnormality; see Kleijnen (1987).
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Myers and Montgomery (1995, p. 488) keep only the signi�cant e¤ects in
their response model. We agree that when estimating the robust optimum,
we should use the reduced metamodel, which eliminates all non-signi�cant
e¤ects in the full model� except for those non-signi�cant e¤ects that involve
factors that have signi�cant higher-order e¤ects; e.g., if the estimated main
e¤ect c�1 is not signi�cant but the estimated quadratic e¤ect d�1;1 is, thenc�1 is not set to zero. We point out that the (possibly non-signi�cant) OLS
estimator is the Best Linear Unbiased Estimator (BLUE) so we must have
good reasons to replace it by zero (also see the �strong heredity�assumption
in Wu and Hamada (2000)). The reduced metamodel may imply a unique
optimum, whereas the full metamodel may suggest (say) a saddlepoint. To �nd
the unimportant e¤ects, Myers and Montgomery (1995, p. 487) use ANalysis
Of VAriance (ANOVA). Note that t2n�q = F1;n�q; the F statistic is used in
ANOVA.

To construct con�dence intervals for the robust optimum Myers and Mont-
gomery (1995, p. 498) assume normality, which results in an F statistic. Myers
and Montgomery (1995, p. 504) notice that the analysis becomes complicated
when the noise factors do not have constant variances. We shall therefore use
parametric bootstrapping for RSM applied to the EOQ examples; by de�ni-
tion, parametric bootstrapping assumes that the distribution of the relevant
random variable is known (in the EOQ examples, we assume that the distribu-
tion is Gaussian). In general bootstrapping is a simple numerical/computerized
method for obtaining the Estimated Density Function (EDF) of a� possibly
complicated� statistic for a� possibly non-Gaussian� parent distribution. Ex-
amples are the well-known Student statistic for a non-Gaussian parent distri-
bution, and the statistic that is formed by the solution of a Nonlinear Pro-
gramming problem with Gaussian inputs (as is the case for our study). More
details are given by Efron and Tibshirani (1993), Kleijnen (2008, p. 86), and
Kleijnen, Van Beers, and Van Nieuwenhuyse (2008).

Note: Myers and Montgomery (1995, p. 508) discuss the use of transformations
of the dependent variable, before performing the regression analysis; also see
Kleijnen (2008, p. 98).

Finally, we replace Myers and Montgomery�s assumption formulated in (3) by

E(e) = �e and cov(e) = 
e: (11)

Then (4) becomes

E(y) = �0 + �
0d+ d0Bd+  0�e + d

0��e (12)

and (5) becomes

var(y) = ( 0 + d0�)
e( +�
0d)+�2� = l

0
el+�
2
� : (13)
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To estimate the left-hand side of (12), we simply plug in the estimators for �0,
�, B, , and � in the right-hand side (the factors d and �e are known). To
estimate the left-hand side of (13), we again use plug-in estimators� now for
, �, and �2� (the factor 
e is known); see Myers and Montgomery (1995, p.
495). However, we point out that (13) has products of unknown parameters,

so it implies a nonlinear estimator c�2y (we are also interested in c�y = qc�2y, a
nonlinear transformation of c�2y) so this plug-in estimator is certainly biased;
this bias we ignore when estimating the Pareto frontier that balances by and c�y.
To study the variability of this estimated Pareto frontier (caused by the noise
following from estimating the regression parameters), we use bootstrapping.

The estimation of the mean and variance of the simulation output through (12)
and (13) raises the following crucial question (also raised by Myers and Mont-
gomery (1995, pp. 41-54), but assuming a constant output variance): Is the
underlying RSM model (1) an adequate approximation? The linear regression
literature presents several methods for answering this question; see Kleijnen
(2008, p. 54). We focus on a method that is also applied outside linear regres-
sion (e.g. in Kriging), namely cross-validation. There are several variations
on cross-validation (see Iooss, Ribatet, and Marrel (2007) and Meckesheimer
et al. (2001)), but the most popular variant is leave-one-out cross-validation.
Following Kleijnen (2008, p. 57), we de�ne this cross-validation as follows.

(1) Delete I/O combination i from the complete set of n combinations, to
obtain the remaining I/O data set� denoted by (X�i;w�i). Assume that
this step results in an (n� 1)� q noncollinear matrix X�i (i = 1; : : : ; n);
a necessary condition is n > q. Obviously, w�i denotes the (n � 1)-
dimensional vector with the remaining (n� 1) simulation outputs.

(2) Recompute the OLS estimator of the regression parameters in (7):

d��i = (X0
�iX�i)

�1X0
�iw�i. (14)

(3) Use d��i (recomputed regression parameters) to compute dy�i, which de-
notes the regression predictor of the simulation output generated by xi
(which corresponds with the simulation input of the combination deleted
in step 1): dy�i = x0id��i. (15)

(4) Repeat the preceding three steps, until all n combinations have been
processed. This results in n predictions dy�i (i = 1; : : : ; n).

(5) Use a scatterplot with the n pairs (wi;dy�i) to judge whether the meta-
model is valid.

(6) Because the scaling of this scatterplot may give the wrong impression,
we also evaluate the relative prediction errors dy(�i)=wi.

(7) A valid regression model also implies that the estimated regression coe¢ -
cients do not change much when deleting an I/O combination; i.e., there
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is not much change in d��i with (i = 0; 1; : : : ; n) where d��0 denotes the
estimator when zero combinations are deleted, so d��0 = c�.

Our �nal goal in robust optimization is to minimize the estimated mean by�
which assumes that (12) is an adequate approximation� while keeping the es-
timated standard deviation c�y� which assumes that (13) is adequate� below
a given Threshold (say) T . We solve this constrained minimization problem
through Matlab�s �fmincon�, which gives the values of the �estimated robust
decision variables�(say) dd+ and its corresponding mean by and standard de-
viation c�y. Next, we vary the threshold value T (say) 100 times, which may
give a di¤erent solutiondd+ with its corresponding by and c�y. Then, we collect
the 100 pairs (by; c�y) to estimate the Pareto frontier. Finally, we estimate the
variability of this frontier curve through bootstrapping of the estimated re-
gression estimates that gave by and c�y. We shall illustrate our methodology in
the next section.

4 EOQ inventory simulation

We apply our methodology to the simulation optimization of the classic EOQ
inventory model, which is often used in practical supply chain management.
First, we de�ne the EOQ model, including symbols and assumptions; also see
Pentico, Drake, and Toews (2008) and Teng (2008). Following Zipkin (2000,
pp. 30-39), we use the following assumptions:

(1) The demand is known and constant, say a units per time unit.
(2) The order quantity is Q units.
(3) No shortages are allowed.
(4) Delivery lead time is zero; i.e., the order arrives into inventory as soon as

the order is placed.
(5) Review is continuous; i.e. an order is placed as soon as the inventory level

drops to the reorder point, which is set to zero because of assumptions 1
and 4.

(6) Total costs has the following components:
� setup cost per order, K
� cost per unit purchased or produced, c
� holding cost per inventory unit per time unit, h.

De�ning a �cycle�as the period between two consecutive replenishments, the
cycle length is obviously Q=a. The cost per time unit is simply the total cost
over one cycle divided by the cycle length. The goal is to minimize the costs
per time unit (say) C, over an in�nite time horizon.
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This problem has an analytical solution, which we shall use to check our
simulation results. The (analytical or simulated) cost C is

C =
aK

Q
+ ac+

hQ

2
: (16)

So the EOQ is

Qo =

s
2aK

h
; (17)

which is known as the square-root EOQ formula. The corresponding minimum
cost is

Co = C(Qo) =
p
2aKh+ ac: (18)

4.1 Simulation optimization of the EOQ model

Obviously, the EOQ simulation is deterministic. Because all cycles are iden-
tical, we simulate a single cycle only. We start this cycle with an inventory
of Q units. We copy the following parameter values from Hillier and Lieber-
man (2001, pp. 936-937, 942-943): a = 8000, K = 12000, c = 10, and h =
0.3. Hence (17) and (18) imply that the true optimal input is Qo = 25298
and the corresponding output is Co = 87589; of course, this optimum input
remains unknown to our procedure, and we use it only to guide our design of
the simulation experiment and to verify its results.

Our simulation experiment consists of the following four steps.

(1) Design: We assume that in practice the analysts have some knowledge
about the location of the relevant experimental area. To select the ex-
perimental area, we therefore start with the interval [0:5Qo; 1:5Qo]. This
selection, however, would imply that the midpoint coincides with the true
optimum input (Qo = 25298)� which rarely occurs in practice. We there-
fore shift the interval a little bit (namely, by less than 5000 units) to the
right so that it is centered at the �round�value Q = 30000. Furthermore,
we pick �ve equally spaced points (a Central Composite Design or CCD
would also have �ve points, albeit not equally spaced; see Myers and
Montgomery (1995, p. 55) and Table 5), including the extreme points,
0:5�30000 = 15000 and 1:5�30000 = 45000; see row 1 of Table 1 below.
The input parameters are �xed to their base (nominal) values (a = 8000,
K = 12000, c = 10, h = 0.3).

(2) Simulation Model: We program the simulation model in Arena; see Kel-
ton, Sadowski, and Sturrock (2007). Next we run this simulation, and
obtain C(Qi) = Ci, which denotes the cost corresponding with input
value i (i = 1; : : : ; 5) selected in step 1; see the Input/Output (I/O) com-
binations (Qi; Ci) displayed in Table 1.
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Q 15000 22500 30000 37500 45000

C 88650 87641.66 87700 88185 88883.34
Table 1
I/O data of EOQ simulation

i \�0(�i) \�1(�i) \�1;1(�i) [y(�i) [y(�i)=Ci

0 87663.4257 202.004 1097.15

1 87731.998 522.008 640 87849.94 0.991

2 87769.82 139.94 1008.49 87952.11 1.004

3 87628.88 202.004 1137.79 87628.92 0.999

4 87583.63 155.46 1163.64 87951.95 0.997

5 87603.997 479.34 1493.34 89576.98 1.008
Table 2
Cross-validation of EOQ regression metamodel

(3) RSM Metamodel: Based on these I/O data, we estimate a second-order
polynomial regression metamodel, using OLS. We could use either the
original or the coded factor values; see again (2). However, we focus on the
estimated e¤ects of the coded decision variable, because these e¤ects (say)b� show their relative importance; moreover, their numerical accuracy is
better: the condition number for X is 3:08, whereas it is 1:07 � 1010 when
using the original Q. This b� is displayed in the row with i = 0 (zero I/O
data eliminated) in Table 2. (We also compute the estimated e¤ects of
the original variable; e.g., the estimated quadratic e¤ect is then of order
10�6, so it seems unimportant; however, Q2 is 302982 = 9� 108 so their
joint e¤ect is of order 102.)

(4) Metamodel cross-validation: The remaining rows of Table 2 display the re-
estimated regression parameters following from (14), and the re-estimated
regression prediction following from (15). This table also presents the
relative prediction errors dy(�i)=Ci, which supplement the scatterplot in
Figure 2. The estimated regression coe¢ cients in di¤erent rows remain
more or less the same. Anyhow, we decide to accept the regression meta-
model because we think it is an approximation that is adequate enough
for our goal, which is the illustration of robust optimization through the
EOQ model (for the roles of di¤erent goals in simulation see Kleijnen
and Sargent (2000)). Comparing Figures 2 and 3 suggests that the �rst
�gure is much worse; however, using the same scale in both �gures (not
displayed) changes that impression.

Note: Table 2 implies that the estimated main e¤ect is not signi�cantly di¤er-
ent from zero, whereas the quadratic e¤ect is; see the t statistic in (10). As we
discussed below (10), we do not replace the estimated main e¤ect by zero. We
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Fig. 2. Scatterplot for regression metamodel of EOQ simulation model

point out that the estimated e¤ects are not independent, because (X0X)�1 in
(8) is not diagonal.

The estimated optimum (say) cQo follows from the �rst-order optimality con-
dition @ bC=@Q =c�1+2d�1;1x1 = 0, where x1 is the coded variable corresponding
with Q, which gives cQo = 28636. This cQo gives the estimated minimal costcCo = 87654. In this example, we know the true optimum so we can eas-
ily verify the estimated optimum: cQo=Qo =28636=25298 = 1:13 and cCo=Co
= 87654=87589 = 1: 001 so the cost virtually equals the true minimum, even
though the input is 13% o¤. This illustrates the well-known insensitivity prop-
erty of the EOQ formula.

Note: We also experiment with a smaller experimental area; i.e., a smaller Q
range. We assume that the center of this new area is still close to the true
optimum. The Taylor series argument suggests that this smaller area gives
a better approximation locally. Appendix 1 shows that the smaller Q range
indeed gives a more accurate metamodel; the resulting estimated optimum is
only 1% below the true EOQ and the corresponding cost virtually equals the
true cost.
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4.2 Robust optimization of EOQ model

Next, we drop Assumption 1 in Section 4, which stated that the demand is a
known constant a. We still assume that the demand per time unit is constant,
but this constant is unknown. Many references on inventory management with
uncertain parameters are given by Borgonovo and Peccati (2007).

Note: Yu (1997) also assumes an uncertain demand rate, but uses other cri-
teria than we do: he either minimizes the maximum costs or minimizes the
maximum percentage deviation from the optimal cost. Moreover he does not
assume a probability function for the various scenarios (demand rate values),
but uses �a discrete scenario set�. Altogether, his approach resembles that of
Ben-Tal et al., which we discussed in the Introduction.

Note: The assumption of uncertain constants is often made in deterministic
simulation of physical systems; e.g., a nuclear waste-disposal simulation may
assume that the permeability of a speci�c area is constant but unknown; see
Kleijnen and Helton (1999). An economic example is the exchange rate be-
tween the US dollar and the euro exactly one year from today: that rate is a
constant but unknown.

We may collect historical data to infer the probability of the true value of the
parameter a. If there is no such data, then we may ask experts for their opinion
on the true value of the parameter. This knowledge elicitation results in an
input distribution (say) F (a). In practice, several distribution types are used,
such as normal, lognormal, and uniform; see Kleijnen and Helton (1999). In
our experiments we assume� without loss of generality� that a has a Normal
(Gaussian) distribution with mean �a and standard deviation �a:

a � N(�a; �a): (19)

More speci�cally, we assume that �a denotes the �base�or �nominal�value that
was used in the simulation optimization of the EOQ model in Section 4.1, and
�a quanti�es the uncertainty about the true input parameter. We experiment
with a �low�and �high�uncertainty: �a = 0:10�a and �a= 0:50�a. Because
these standard deviations can give a negative value for a, we resample until
we get non-negative values only; i.e., we adjust the normal distribution in (19)
slightly. However, we ignore this adjustment in our further analysis.

Following Myers and Montgomery (1995, pp. 463-534), we select �a few�values
(levels) for the environmental factors. Those authors use only two values per
environmental factor (which su¢ ces to estimate its main e¤ect and its inter-
actions with the decision factors). We, however, use Latin Hypercube Sampling
(LHS) to select �a few�values for the environmental factors (because LHS is
popular in risk and uncertainty analysis; see Kleijnen 2008), which runs as
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Q n a 4530,34 5478,85 7687,37 9329,26 11559,02

15000 51177,72 61421,54 85273,65 103006 127087,4

22500 51094,63 61085,52 84348,68 101643,2 125130

30000 51615,59 61480 84448,7 101524,3 124713,8

37500 52378,16 62166,7 84958,71 101902,9 124914,1

45000 53261,54 62999,49 85673,71 102530,4 125422,6
Table 3
I/O simulation data for EOQ model with uncertain demand rate

follows.

Let ne denote the number of combinations of the environmental factors e.
Then LHS splits the admissible (experimental) range of each factor eg into
ne subranges such that each subrange has an equal probability 1=ne. More
speci�cally, our EOQ simulation has a single environmental factor, denoted by
a. So, LHS splits the range of possible a values (0 < a <1) into ne = 5 equally
likely subranges, namely (0; �a � 0:85�a], (�a � 0:85�a; �a � 0:73�a]; (�a �
0:73�a; �a + 0:73�a], (�a + 0:73�a; �a + 0:85�a], (�a + 0:85�a;1). Notice that
the �base�value �a has zero probability, but a value �close�(namely less than
0:73�a away) has 20% probability. We use lhsnorm from the Matlab Statistics
Toolbox to select �ve values from N(�a; �a); see The MathWorks Inc. (2005).
This gives the a values in Table 3, which uses the relatively high uncertainty
�a = 0:50�a. Appendix 2 shows the results for the smaller uncertainty �a =
0:10�a.

For the decision variable Q we select the �ve values that we also used in Table
1 (Appendix 1 also considers a smaller Q-range). We cross the two designs
for a and Q respectively, as is usual in a Taguchian approach. However, we
could also have used LHS to get a combined design for a and Q. We also use
a CCD instead of LHS (see Table 5); Myers and Montgomery(1995, p. 487)
also discuss designs more e¢ cient than crossed designs.

We run the EOQ simulation model for all 5 � 5 combinations of the inputs
(decision and environmental inputs), which gives Table 3.

We again code the inputs; see (2). So x1 corresponds with Q and x2 with a;
e.g., a = 7687,37 corresponds with x2 = �0:1017 (not exactly zero, because of
the sampling that LHS does). Furthermore, if �a = 0:50�a = 4000 and b2 =
2:85�10�4, then the standard deviation of x2 is �2 = 4000�2:85�10�4 = 1:14.

To analyze these I/O data, we might compute the estimated conditional vari-

ance \var(CjQi) from the row with Qi (i = 1; : : : ; 5) in Table 3; also see Lee
and Nelder (2003). Instead we follow Myers and Montgomery (1995) and es-
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Fig. 3. Scatterplot of regression metamodel for RO of EOQ

timate the variance using all the elements in this table; also see (13). The
latter approach gives a better estimator, provided the RSM metamodel (1) is
correct.

To compute the OLS estimates, we must re-arrange the 5 � 5 elements of
Table 3 into the n � q X-matrix of (7) where now n = 25 and q = 5; w now
becomes a vector with the 25 simulation outputs C. This gives the estimated
intercept c�0, the estimated �rst-order e¤ect c�1 and second-order e¤ect d�1;1 of
Q, the estimated �rst-order e¤ect c1 of a, and the interaction d�1;1, which are
displayed in the row denoted by 0 (zero rows eliminated) in Table 4. The rest
of this table displays the cross-validation results (analogous to Table 2). This
table gives the scatterplot in Figure 3. This table and this �gure suggest that
this metamodel is adequate for robust optimization through RSM.

Note: Appendices 1 and 2 give results for a smaller range of the decision
variable Q and the environmental variable a. These results show even better
�t.

Note: To check the negative sign of d�1;1 (interaction between Q and a), we use
the analytical solution (16) to derive @2C=@Q@a = �K=Q2, which is indeed
negative.

Using a RSM metamodel like the one in the �rst row of Table 4, Myers and
Montgomery (1995, p. 501) derive contour plots for the mean and variance. Be-
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i \�0(�i) \�1(�i) \�1;1(�i) \1(�i) \�1;1(�i) [y(�i) [y(�i)=Ci

0 88150.40 190.56 1058.33 36774.03 -899.67

1 88144.21 172.94 1088.31 36755.96 -863.54 51440.09 1.005

2 88147.70 181.73 1072.54 36768.01 -887.64 61545.93 1.002

3 88152.19 198.89 1046.41 36774.09 -899.80 85169.34 0.999

4 88154.29 214.81 1026.29 36764.26 -880.14 102725.72 0.997

5 88157.15 259.16 976.22 36714.38 -780.37 126368.95 0.994

6 88150.48 190.51 1058.24 36773.93 -899.57 51096.08 1.000

7 88154.53 188.27 1054.63 36770.90 -896.54 61150.15 1.001

8 88164.19 182.52 1046.82 36773.90 -899.54 84550.05 1.002

9 88172.91 177.00 1040.41 36784.95 -910.59 101956.72 1.003

10 88190.37 165.55 1028.40 36817.51 -943.16 125653.78 1.004

11 88124.57 190.56 1090.86 36793.63 -899.67 51330.94 0.994

12 88131.43 190.56 1081.72 36783.93 -899.67 61275.30 0.997

13 88146.40 190.56 1063.03 36774.05 -899.67 84407.52 1.000

14 88158.08 190.56 1049.58 36776.69 -899.67 101600.85 1.001

15 88177.60 190.56 1028.69 36795.56 -899.67 124973.16 1.002

16 88136.05 182.81 1071.52 36789.93 -883.77 52147.29 0.996

17 88137.51 183.42 1069.82 36783.76 -889.94 61965.54 0.997

18 88139.92 184.45 1067.07 36774.13 -899.57 84805.76 0.998

19 88141.21 185.03 1065.63 36769.57 -904.12 101775.07 0.999

20 88142.70 185.75 1064.09 36765.65 -908.04 124813.22 0.999

21 88140.63 218.39 1105.69 36745.49 -956.75 53675.97 1.008

22 88144.24 210.75 1090.83 36760.27 -927.18 63283.89 1.005

23 88148.76 198.15 1069.18 36773.97 -899.79 85768.71 1.001

24 88150.72 188.53 1055.65 36773.21 -901.30 102506.95 1.000

25 88152.94 164.73 1027.41 36751.56 -944.60 125152.04 0.998
Table 4
Cross-validation of regression metamodel for RO of EOQ
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Fig. 4. Estimated (dashed) curve and true (solid) curve for mean cost versus order
quantity

cause our EOQ example has a single decision variable, we do not superimpose
contour plots but present the following two plots:

� Figure 4 shows the plot for Q (the decision variable) versus bC (mean output,
estimated through regression analysis); see (12) with the regression para-
meters �0, �, B, , and � replaced by their estimates. Indeed, E(a) in
(12) is a known input value: it is not exactly equal to �a in (19) because
we resample negative a values, which have a probability of nearly 2% for
high �a and virtually zero for small �a; we could also have estimated E(a)

through a =
5P
1
ai=5 where ai is shown in Table 3.

� Figure 5 showsQ versus c�C , the estimated standard deviation of C predicted
through the RSM metamodel. We prefer the standard deviation over the
variance because the former uses the same scale as the simulated cost C
and its regression estimate bC. We use (13) with , �, and �2� replaced by
their estimates, including the MSR estimator (9) of �2� . Notice that �

2
a is a

known input value, so we also know the variance of the corresponding coded
variable x2, namely �22 = 1:142 = 1:3). Altogether we obtain c�C = [(c1 +d�1;1x1)2�22+b�2� ]1=2 = [(36755:96� 863:54x1)2� 1:3+ 4:6224� 104]1=2. Figure
5 shows this second-order polynomial, which actually resembles a linearly
decreasing function in the relatively small domain of Q that is pictured; also
see the next Note.
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Fig. 5. Estimated (dashed) curve and true (solid) curve for standard deviation of
cost versus order quantity

Note: For this simple example we know the true I/O function of the simulation
model, namely (16). So the true standard error of the cost C is

�C = �
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We also plot this �C against Q in Figure 5 (assuming �xed cost parameters
K and c, and demand variance �2a ). Comparing the two curves in Figure 5
shows that the estimated curve is an adequate approximation.

From Figures 4 and 5 we derive the �estimated robust optimal�order quantity
(say) dQ+, which we de�ne as the quantity that minimizes the estimated meanbC while keeping the estimated standard deviation c�C below a given threshold
T . We solve this constrained minimization problem through Matlab�s fmincon.
For example, if T = 4:25�104 = 42500, then Figure 5 impliesdQ+ = 2:8568�104
= 28568. However, let T become smaller, e.g., T = 4:15� 104 = 41500. Then
Figure 5 implies dQ+ = 3:5222� 104 = 35222; see Figure 6, in which the curve
becomes a horizontal line with �height�dQ+ if the threshold is high enough.
We point out that Section 4.1 gave the classic EOQ cQo = 28636, assuming
the demand rate equals the nominal value. Now we use a di¤erent model,
assuming di¤erent demand rates. The latter model gives an estimated optimal
order quantity dQ+ that di¤ers from cQo. This di¤erence is nearly 25% if the
managers are risk-averse (high threshold T ).
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Fig. 6. Estimated robust optimal value for EOQ against threshold for standard
deviation of cost

We assume that management cannot give a single, �xed value for the threshold,
so we vary the threshold over the interval [41067,43200]. This interval gives
the estimated Pareto frontier in Figure 7. This �gure demonstrates that if
management prefers low costs variability, then they must pay a price; i.e., the
expected cost increases.

We repeat the experiment with a smaller �a (lower demand variability), which
implies a less volatile environment. Some re�ection shows that we cannot keep
the threshold values T the same in environments with di¤erent magnitudes of
volatility. The new threshold values give the estimated Pareto frontier of Figure
8. Comparing the estimated Pareto frontiers of Figures 7 and 8 demonstrates
that a less volatile world gives lower mean cost. Moreover, this comparison
quanti�es the bene�ts of obtaining more information on the uncertain demand
rate (e.g., a marketing survey may decrease the standard deviation of the
demand rate).

The estimated Pareto frontier is built on the estimates b�, so we further an-
alyze this frontier. Whereas Myers and Montgomery (1995, pp. 496-503) use
rather complicated con�dence intervals, we use parametric bootstrapping. More
speci�cally, we sample� via the Monte Carlo method, using pseudo-random
numbers� (say) B times from the multivariate� namely q-variate� normal
distribution with mean vector and covariance matrix given by (7) and (8):

b�� � Nq(b�; (X0X)�1c�2w) (21)
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Fig. 7. Estimated Pareto frontier for EOQ simulation with threshold for standard
deviation of cost
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Fig. 8. Less volatile world: estimated Pareto frontier for EOQ simulation with
threshold
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Fig. 9. Bootstrapped Pareto frontiers, original estimated frontier (dashed curve),
and true frontier (heavy curve)

where the superscript � is the usual symbol for bootstrapped values. This
sampling gives b��b (b = 1; : : : ; B). This b��b gives cC�b ; see (12) with �0, �, B,
, and � replaced by their bootstrapped estimates (i.e., estimates computed
from the bootstrapped cC�b ). It also gives d�C�b ; see (13) where �2� is replaced by
the estimate computed from the bootstrapped parameters. These two boot-
strapped variables cC�b and d�C�b give the bootstrapped optimal decision variabledQ+�b , which are computed through Matlab�s fmincon. This bootstrap sample
gives the B estimated Pareto frontiers of Figure 9, where we select B = 50 and
derive the true Pareto frontier from the analytical costs (16) and its standard
deviation (20) and we also display the original estimated frontier of Figure
7. This �gure demonstrates that bootstrapping gives a good idea of the vari-
ability of the estimated Pareto frontier; the bundle of bootstrapped curves
�envelop�the original estimated curve and the true curve. We observe that the
bundle of bootstrapped estimated costs does not completely envelop the true
curve; neither does the bundle for the bootstrapped standard deviations; see
Figures 10 and 11.

Note: Though we focus on estimating the variability of the Pareto curve, we
could also have estimated the variability of the solution of the robust optimum
problem. So the B bootstrap regression parameters �� gives B values for Q+

and the corresponding C+ and s(C)+. These B values can be used to derive
a CI; see Efron and Tibshirani (1993).
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Fig. 10. Bootstrapped estimated costs, and true cost (heavy curve)

Fig. 11. Bootstrapped standard deviations of the cost, and true standard deviation
of the cost (heavy curve)
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Note: Actually, we can validate our (fast) bootstrap procedure as follows Our
EOQ simulation is the opposite of expensive simulation: some realistic simu-
lations take hours or weeks for a single run, whereas bootstrapping this simu-
lation�s results still takes only seconds. So we repeat our LHS sample (say) L
times; i.e., we sample the demand rate a from the normal distribution in (19)
cut-o¤ at zero, while keeping the �ve Q values in Table 3 �xed. This sample of
L macroreplicates gives the regression estimate b�l with l = 1; : : : ; L. This b�l
gives cCl (costs estimated through RSM metamodel) and d�Cl (corresponding
standard deviation). Together with the threshold T this gives the estimated
Pareto frontier. Repeating this LHS L times gives a set of L estimated Pareto
frontiers; see Figure 12 with L = 50. This �gure suggests that these estimated
curves all intersect near the point (4:11; 8:83), but zooming-in around this
point reveals that the 50 curves do not intersect in a single point. Appendix
3 also displays the 50 bC-curves and the 50 c�C-curves. These curves results
in 50 Pareto curves estimated from 50 macroreplicates; see again Figure 12.
This �gure assumes that a second-order polynomial is a perfect approxima-
tion of the true I/O function, whereas the true EOQ formulas in (16) and
(20) show that this assumption is false Comparing this �gure and Figure 9
shows that the macroreplicates give a tighter bundle. Appendix 3 shows that
this phenomenon is explained by the negative correlations between estimated
regression coe¢ cients in the macroreplicates. In general, we could argue that
� compared with bootstrapping� macroreplicates use much more computer
time, and provide more information so the spread in the estimated Pareto
curves is smaller. Appendix 3 also shows that if we replace LHS by crude
sampling in the macroreplicates, then a bigger spread is the result; i.e., LHS
is indeed a variance reduction technique.

Finally, we compare the (traditional Taguchian) crossed design in Table 3 with
a CCD. A CCD for two factors (Q and a) consists of a 22 design (the four
combinations of the two extreme values per factor �1 and 1), the four �axial�
points ((0;�

p
2), (0;

p
2), (�

p
2; 0), (

p
2; 0)), and the central point ((0; 0))

in coded values; the value
p
2 is selected to make the CCD �rotatable�(see

Myers and Montgomery (1995, p. 299)) The original input values plus the
corresponding output values are displayed in Table 5.

Note: A CCD is not a subset of Table 3, because a CCD does not sample
any factor value, whereas Table 3 uses LHS for the environmental factor a.
Consequently, Table 3 does not have (say) coded values �1 and 1 for a, which
are at exactly the same distance from 0.

We again validate the resulting metamodel through cross-validation; see Ap-
pendix 4 for details. We repeat our analysis for this CCD. This gives the
Pareto frontier of Figure 13. Comparison of Figures 7 and 13 shows that the
CCD with its nine combinations gives a better estimate of the true frontier
(the heavy curve in Figure 9) than the 5 � 5 crossed-design does. We con-
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Ĉ

Fig. 12. Pareto frontiers estimated from 50 macroreplicates, and true frontier (dotted
curve)

Q a C

19393.40 5559.67 61945.81

19393.40 10529.69 114721.4

40606.60 5559.67 63330.64

40606.60 10529.69 114499.6

15000 8044.68 89132.55

45000 8044.68 89342.05

30000 4530.34 51615.54

30000 11559.02 124713.8

30000 8044.68 88164.67
Table 5
I/O simulation data for EOQ model with CCD design

jecture that the bigger design gives a more accurate OLS estimator b� of the
wrong (misspeci�ed) metamodel (namely, a second-order polynomial) for the
true I/O function implied by the EOQ simulation model.
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Fig. 13. Bootstrapped Pareto frontiers, original estimated frontier (dashed curve)
and true Pareto frontier (heavy curve) based on CCD

5 Conclusions and future research

This article leads to the following conclusions:

(1) Robust optimization of simulated systems may use Taguchi�s worldview,
which distinguishes between decision variables to be optimized and envi-
ronmental variables that remain uncertain.

(2) Taguchi�s statistical techniques may be replaced by RSM.
(3) Myers and Montgomery (1995)�s RSM developed for Taguchian optimiza-

tion may be further adapted such that it results in bootstrapped Pareto
frontiers, which better enable management to make the �nal compromise
decision.

(4) Application of this new methodology to the classic EOQ model shows
that� for a certain (known) environment� the methodology gives a good
estimate of the true EOQ, and� for an environment with a demand rate
that has a known distribution� the classic EOQ and the robust EOQ
di¤er.

Future research may address the following issues.

� We conjectured that the bigger crossed design gave a more accurate OLS
estimator b� of a misspeci�ed metamodel. This is a good reason for using
a better type of metamodel, namely a Kriging model (Generalized Linear
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Q 22500 26250 30000 33750 37500

C 87641.66 87594.64 87700 87906.95 88185
Table 6
I/O data for EOQ simulation with smaller experimental area

Models or GLMs are proposed by Lee and Nelder (2003)) as alternatives for
RSM models; also see Iooss et al. (2007). In a next article we shall present
Kriging for RO.

� We shall also adjust our methodology for random simulation models, namely
(s; S) models, with either explicit out-of-stock costs so the model has a scalar
output or a service constraint so the model has vector output. Notice that
the di¤erence S � s is often based on the EOQ model.

� We shall consider integer constraints on some input variables: Lodree (2007)
studies the EOQ, assuming an integer order size. Kleijnen et al. (2008) use
the Matlab code �bnb20�to estimate the optimum accounting for integer
input constraints.

� We may consider qualitative decision variables. If the number of combina-
tions of qualitative variables is small, then we may �t metamodels for each
combination, and still apply our methodology.

� We hope to apply our methodology to complex supply chain models.
� We might try to derive an optimal design for our RO. Chung et al. (2007)
use a Genetic Algorithm to �nd a D-optimal design.
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Appendix 1: Smaller Q-range

Row 1 of Table 6 shows the Q values in the smaller experimental area; row 2
gives the corresponding simulation outputs.

Regression analysis of the I/O data in Table 6 gives Table 7 and the scatterplot
of Figure 14. Comparison with Table 2 and Figure 2 shows that the smaller
Q-range gives a more accurate metamodel. The new estimated optimum cQo
is 25115, which gives cCo = 87607 so cQo=Qo = 25115=25298 = 0:99 and cCo=Co
= 87618=87589 = 1: 000 3. Comparison with the old results (cQo=Qo = 1.13
and cCo=Co = 1.001) shows that the smaller Q range improves the estimated
optimum.

Appendix 2: Smaller uncertainty �a = 0:10�a
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i \�0(�i) \�1(�i) \�1;1(�i) [y(�i) [y(�i)=Ci

0 87698.26 279.798 214.78

1 87704.57 309.26 172.69 87633.242 0,999

2 87707.76 274.26 206.86 87612.056 1,000

3 87696.62 279.798 216.71 87698.26 0,9999

4 87690.03 274.99 221.64 87891.854 0,9997

5 87692.38 307.23 253.97 88192.838 1,001
Table 7
Cross-validation of EOQ regression metamodel with smaller range

Fig. 14. Scatterplot of the EOQ regression metamodel for smaller Q-range

Tables 8 and 9 and Figure 15 give results for smaller uncertainty in the demand
rate.

Appendix 3: Macroreplicates

Figures 16 and 17 display the 50 bC-curves and the 50 c�C-curves respectively,
computed from 50 macroreplicates. Note that the latter �gure suggests that
the 50 estimated curves coincide, but zooming-in reveals that the 50 curves do
not coincide: these curves have little spread; see Figures 18 and 19. We point
out that each macroreplicate gives a di¤erent mean and standard deviation for
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Q n a 6076.55 7438.96 7.832.04 8595.36 9101.10

15000 67876.77 82590.79 86836.02 95079.90 111541.90

22500 67381.35 81732.06 85872.48 93912.80 99239.95

30000 67696.14 81865.20 85953.20 93891.76 99151.47

37500 68335.02 82395.09 86451.64 94329.13 99548.38

45000 69135.94 83123.34 87158.94 94995.71 100188
Table 8
I/O simulation data for EOQ model with smaller a-range

Fig. 15. Scatterplot of the EOQ regression metamodel for smaller a-range

the coded variable x2; e.g., x2;l = minkal;k with l = 1; : : : ; 50 and k = 1; : : : ; 5.

There is no solution for the constrained optimization problem if the LHS
happens to result in an extremely high b�(C). Actually this happened once
in our 50 macroreplicates; we simply threw away this macroreplicate, and
sampled again.

Figure 20 shows that if we replace LHS by crude sampling in the macrorepli-
cates, then bigger spread results. This bigger spread is caused by a bigger
spread in the estimated regression coe¢ cients; e.g. Figure 21 shows the Box
plot for the estimated interaction d�1;1.
It is interesting that the spread of the estimated regression coe¢ cients is
smaller for the bootstrap than for the macroreplicates using LHS; nevertheless,
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i \�0(�i) \�1(�i) \�1;1(�i) \1(�i) \�1;1(�i) [y(�i) [y(�i)=Ci

0 83374.03 307.26 1070.93 15824.45 -387.14

1 83373.72 296.40 1082.41 15814.75 -367.74 67977.23 1.001

2 83375.07 313.61 1062.48 15825.97 -390.18 82516.93 0.999

3 83375.95 316.08 1058.27 15824.30 -386.85 86725.30 0.999

4 83378.77 320.83 1047.87 15815.61 -369.45 94878.21 0.998

5 83382.36 325.08 1036.43 15802.71 -343.66 100240.08 0.997

6 83383.68 300.95 1064.25 15813.17 -375.86 67498.17 1.002

7 83387.18 299.36 1060.43 15820.66 -383.35 81915.79 1.002

8 83388.19 299.02 1059.09 15824.72 -387.41 86079.62 1.002

9 83390.53 298.34 1055.76 15836.08 -398.77 94178.12 1.003

10 83392.58 297.83 1052.67 15847.45 -410.14 99559.36 1.003

11 83353.46 307.26 1092.07 15842.31 -387.14 67511.15 0.997

12 83367.41 307.26 1078.48 15825.81 -387.14 81799.08 0.999

13 83370.36 307.26 1075.25 15824.40 -387.14 85915.31 1.000

14 83375.54 307.26 1069.02 15825.18 -387.14 93908.39 1.000

15 83378.87 307.26 1064.54 15828.47 -387.14 99207.34 1.001

16 83355.49 295.13 1083.75 15846.11 -365.47 68110.62 0.997

17 83362.44 300.30 1080.18 15827.79 -383.80 82233.12 0.998

18 83363.51 301.14 1079.72 15824.25 -387.34 86297.79 0.998

19 83364.95 302.35 1079.27 15818.05 -393.54 94183.08 0.998

20 83365.52 302.94 1079.30 15813.89 -397.69 99401.86 0.999

21 83372.90 346.65 1112.57 15789.26 -457.51 69500.37 1.005

22 83372.29 317.81 1084.94 15821.92 -392.19 83245.96 1.001

23 83372.43 314.61 1081.48 15824.57 -386.90 87251.28 1.001

24 83373.06 310.04 1075.65 15826.26 -383.51 95037.07 1.000

25 83373.96 307.40 1071.20 15824.62 -386.79 100190.39 1.000
Table 9
Cross-validation of regression metamodel for RO of EOQ with smaller a-range
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Fig. 16. Replicated estimated costs, and true cost (heavy curve)

Fig. 17. Replicated standard deviations of the cost, and true standard deviation
(heavy curve)

the bootstrap gives more spread in the Pareto curves! The explanation is that
the estimated regression coe¢ cients in the metamodel for the standard devi-
ation are negatively correlated (so they compensate variations in each other�s
values) in the macroreplicates, whereas they are independent in the bootstrap.
More precisely, the covariance matrix in (21) implies that in our experiment

cov([�1(�i); \�
�
1;1(�i)) = 0; for the macroreplicates we use Matlab�s �Symbolic
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Fig. 18. Zoom: Mean Cost, estimated through 50 macroreplicates

Fig. 19. Zoom: Standard deviation of Cost, estimated through 50 macroreplicates

Math Toolbox�to derive that the correlation coe¢ cient cor([1(�i); \�1;1(�i)) is
-1; see Figure 22.

Appendix 4: CCD experiment

Table 10 and Figure 23 give details on our CCD experiment.

References

Alexandrov, N.M. andM.Y. Hussaini (1997), Multidisciplinary design optimization�
state of the art. Proceedings of the ICASE/NASA Langley Workshop on Mul-
tidisciplinary Design Optimization, SIAM Proceedings Series



4.1 4.12 4.14 4.16 4.18 4.2 4.22

x 104

8.72

8.74

8.76

8.78

8.8

8.82

8.84

8.86
x 10

4

s(C)

E
(C

)

Ĉσ
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Fig. 23. Scatterplot of the EOQ regression metamodel for CCD
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