49 research outputs found

    Development and evaluation of a smartphone-based electroencephalography (EEG) system

    Get PDF
    The aim of the study was to design, develop and evaluate a general-purpose EEG platform which integrates with a smartphone. The target specification was a system with 19 EEG channels and data stored onto the smartphone via a Wi-Fi connection. The hardware was developed using three ADS1299 integrated circuits, and the game engine, Unity, was used to develop the smartphone app. An evaluation of the system was conducted using recordings of alpha waves during periods of eye closure in participants (Bland-Altman statistical comparison with a clinical grade EEG system). The smartphone was also used to deliver time-locked auditory stimuli using an oddball paradigm to evaluate the ability of the developed system to acquire event related potentials (ERP) during sitting and walking. No significant differences were found for the alpha wave peak amplitude, frequency and area under the curve for the intra-system (two consecutive periods of alpha waves) or inter-system (developed smartphone-based EEG system versus FDA-approved system) comparisons. ERP results showed the peak amplitude of the auditory P300 component to deviant tones was significantly higher when compared to standard tones for sitting and walking activities. It is envisaged that our general-purpose EEG system will encourage other researchers to design and build their own specific versions rather than being limited by the fixed features of commercial products

    Open Source EEG Platform with Reconfigurable Features for Multiple-Scenarios

    Get PDF
    Electroencephalogram (EEG) acquisition systems are widely used as diagnostic and research tools. This document shows the implementation of a reconfigurable family of three affordable 8-channels, 24 bits of resolution, EEG acquisition systems intended for a wide variety of research purposes. The three devices offer a modular design and upgradability, permitting changes in the firmware and software. Due to the nature of the Analog Front-End (AFE) used, no high-pass analog filters were implemented, allowing the capture of very low frequency components. Two systems of the family, called “RF-Brain” and “Bluetooth-Brain”, were designed to be light and wireless, planned for experimentation where movement of the subject cannot be restricted. The sample rate in these systems can be configured up to 2000 samples per second (SPS) for the RF-Brain and 250 SPS for the Bluetooth-Brain when the 8 channels are used. If fewer channels are required, the sampling frequency can be higher (up to 4 kSPS or 2 kSPS for 1 channel for RF-Brain and Bluetooth-Brain respectively). The third system, named “USB-Brain”, is a wired device designed for purposes requiring high sampling frequency acquisition and general purpose ports, with sampling rates up to 4 kSPS

    Development and applications of a smartphone-based mobile electroencephalography (EEG) system

    Get PDF
    Electroencephalography (EEG) is a clinical and research technique used to non-invasively acquire brain activity. EEG is performed using static systems in specialist laboratories where participant mobility is constrained. It is desirable to have EEG systems which enable acquisition of brain activity outside such settings. Mobile systems seek to reduce the constraining factors of EEG device and participant mobility to enable recordings in various environments but have had limited success due to various factors including low system specification. The main aim of this thesis was to design, build, test and validate a novel smartphone-based mobile EEG system.A literature review found that the term ‘mobile EEG’ has an ambiguous meaning as researchers have used it to describe many differing degrees of participant and device mobility. A novel categorisation of mobile EEG (CoME) scheme was derived from thirty published EEG studies which defined scores for participant and device mobilities, and system specifications. The CoME scheme was subsequently applied to generate a specification for the proposed mobile EEG system which had 24 channels, sampled at 24 bit at a rate of 250 Hz. Unique aspects of the EEG system were the introduction of a smartphone into the specification, along with the use of Wi-Fi for communications. The smartphone’s processing power was used to remotely control the EEG device so as to enable EEG data capture and storage as well as electrode impedance checking via the app. This was achieved by using the Unity game engine to code an app which provided the flexibility for future development possibilities with its multi-platform support.The prototype smartphone-based waist-mounted mobile EEG system (termed ‘io:bio’) was validated against a commercial FDA clinically approved mobile system (Micromed). The power spectral frequency, amplitude and area of alpha frequency waves were determined in participants with their eyes closed in various postures: lying, sitting, standing and standing with arms raised. Since a correlation analysis to compare two systems has interpretability problems, Bland and Altman plots were utilised with a priori justified limits of agreement to statistically assess the agreement between the two EEG systems. Overall, the results found similar agreements between the io:bio and Micromed systems indicating that the systems could be used interchangeably. Utilising the io:bio and Micromed systems in a walking configuration, led to contamination of EEG channels with artifacts thought to arise from movement and muscle-related sources, and electrode displacement.To enable an event related potential (ERP) capability of the EEG system, additional coding of the smartphone app was undertaken to provide stimulus delivery and associated data marking. Using the waist-mounted io:bio system, an auditory oddball paradigm was also coded into the app, and delivery of auditory tones (standard and deviant) to the participant (sitting posture) achieved via headphones connected to the smartphone. N100, N200 and P300 ERP components were recorded in participants sitting, and larger amplitudes were found for the deviant tones compared to the standard ones. In addition, when the paradigm was tested in individual participants during walking, movement-related artifacts impacted negatively upon the quality of the ERP components, although components were discernible in the grand mean ERP.The io:bio system was redesigned into a head-mounted configuration in an attempt to reduce EEG artifacts during participant walking. The initial approach taken to redesign the system involved using electronic components populated onto a flexible PCB proved to be non-robust. Instead, the rigid PCB form of the circuitry was taken from the io:bio waist-mounted system and placed onto the rear head section of the electrode cap via a bespoke cradle. Using this head-mounted system, in a preliminary auditory oddball paradigm study, ERP responses were obtained in participants whilst walking. Initial results indicate that artifacts are reduced in this head-mounted configuration, and N100, N200 and P300 components are clearly identifiable in some channels

    Sensor Approach for Brain Pathophysiology of Freezing of Gait in Parkinson\u27s Disease Patients

    Get PDF
    Parkinson\u27s Disease (PD) affects over 1% of the population over 60 years of age and is expected to reach 1 million in the USA by the year 2020, growing by 60 thousand each year. It is well understood that PD is characterized by dopaminergic loss, leading to decreased executive function causing motor symptoms such as tremors, bradykinesia, dyskinesia, and freezing of gait (FoG) as well as non-motor symptoms such as loss of smell, depression, and sleep abnormalities. A PD diagnosis is difficult to make since there is no worldwide approved test and difficult to manage since its manifestations are widely heterogeneous among subjects. Thus, understanding the patient subsets and the neural biomarkers that set them apart will lead to improved personalized care. To explore the physiological alternations caused by PD on neurological pathways and their effect on motor control, it is necessary to detect the neural activity and its dissociation with healthy physiological function. To this effect, this study presents a custom ultra-wearable sensor solution, consisting of electroencephalograph, electromyograph, ground reaction force, and symptom measurement sensors for the exploration of neural biomarkers during active gait paradigms. Additionally, this study employed novel de-noising techniques for dealing with the motion artifacts associated with active gait EEG recordings and compared time-frequency features between a group of PD with FoG and a group of age-matched controls and found significant differences between several EEG frequency bands during start and end of normal walking (with a p\u3c0.05)

    An Active Electrode Based ECG Measurement System from Minimally Spaced Precordial Bipolar Lead

    Get PDF
    Electronics miniaturization leads the development of small wearable Electrocardiography (ECG) devices. These devices are getting special attention due to current trends in Human-Computer-Interaction applications and remote patient monitoring. Therefore, user comfort is an essential requirement for these kinds of devices where the number of electrodes and the distance between the electrodes is kept short. This short inter-electrode-distance (IED) degrades the signal quality which leads to poor signal-to-noise ratio (SNR). In this thesis, a novel measurement system was developed to record ECG from bipolar chest lead with short IED. The measurement system was developed with single supply, low noise active electrode (AE) and ADS1299 Evaluation board (EVM) to evaluate the performance of active electrode with ADS1299 ECG analogue-front-end (AFE). The low noise, high input impedance, and precision components were given priority during the design of the AE. The performance of the developed system was carried out by testing common mode rejection ratio (CMRR), SNR and frequency response. The system was used to record ECG signal with commercial product BN-RSPEC module with different IED in diagonal orientation near the heart’s main axis. The single supply AE+ADS1299 system demonstrated excellent noise performance over the specified bandwidth of 262 Hz. The system also demonstrated high CMRR at 50 Hz. The most noteworthy accomplishment of this thesis was that the developed system is capable of recording P wave from the midsternum with a short IED of 0.3 cm. Although the measurements were performed on a single subject, this system outperforms the BN-RSPEC module from BIOPAC Inc. in recording from the close spaced electrodes

    Design and Evaluation of a Hardware System for Online Signal Processing within Mobile Brain-Computer Interfaces

    Get PDF
    Brain-Computer Interfaces (BCIs) sind innovative Systeme, die eine direkte Kommunikation zwischen dem Gehirn und externen Geräten ermöglichen. Diese Schnittstellen haben sich zu einer transformativen Lösung nicht nur für Menschen mit neurologischen Verletzungen entwickelt, sondern auch für ein breiteres Spektrum von Menschen, das sowohl medizinische als auch nicht-medizinische Anwendungen umfasst. In der Vergangenheit hat die Herausforderung, dass neurologische Verletzungen nach einer anfänglichen Erholungsphase statisch bleiben, die Forscher dazu veranlasst, innovative Wege zu beschreiten. Seit den 1970er Jahren stehen BCIs an vorderster Front dieser Bemühungen. Mit den Fortschritten in der Forschung haben sich die BCI-Anwendungen erweitert und zeigen ein großes Potenzial für eine Vielzahl von Anwendungen, auch für weniger stark eingeschränkte (zum Beispiel im Kontext von Hörelektronik) sowie völlig gesunde Menschen (zum Beispiel in der Unterhaltungsindustrie). Die Zukunft der BCI-Forschung hängt jedoch auch von der Verfügbarkeit zuverlässiger BCI-Hardware ab, die den Einsatz in der realen Welt gewährleistet. Das im Rahmen dieser Arbeit konzipierte und implementierte CereBridge-System stellt einen bedeutenden Fortschritt in der Brain-Computer-Interface-Technologie dar, da es die gesamte Hardware zur Erfassung und Verarbeitung von EEG-Signalen in ein mobiles System integriert. Die Architektur der Verarbeitungshardware basiert auf einem FPGA mit einem ARM Cortex-M3 innerhalb eines heterogenen ICs, was Flexibilität und Effizienz bei der EEG-Signalverarbeitung gewährleistet. Der modulare Aufbau des Systems, bestehend aus drei einzelnen Boards, gewährleistet die Anpassbarkeit an unterschiedliche Anforderungen. Das komplette System wird an der Kopfhaut befestigt, kann autonom arbeiten, benötigt keine externe Interaktion und wiegt einschließlich der 16-Kanal-EEG-Sensoren nur ca. 56 g. Der Fokus liegt auf voller Mobilität. Das vorgeschlagene anpassbare Datenflusskonzept erleichtert die Untersuchung und nahtlose Integration von Algorithmen und erhöht die Flexibilität des Systems. Dies wird auch durch die Möglichkeit unterstrichen, verschiedene Algorithmen auf EEG-Daten anzuwenden, um unterschiedliche Anwendungsziele zu erreichen. High-Level Synthesis (HLS) wurde verwendet, um die Algorithmen auf das FPGA zu portieren, was den Algorithmenentwicklungsprozess beschleunigt und eine schnelle Implementierung von Algorithmusvarianten ermöglicht. Evaluierungen haben gezeigt, dass das CereBridge-System in der Lage ist, die gesamte Signalverarbeitungskette zu integrieren, die für verschiedene BCI-Anwendungen erforderlich ist. Darüber hinaus kann es mit einer Batterie von mehr als 31 Stunden Dauerbetrieb betrieben werden, was es zu einer praktikablen Lösung für mobile Langzeit-EEG-Aufzeichnungen und reale BCI-Studien macht. Im Vergleich zu bestehenden Forschungsplattformen bietet das CereBridge-System eine bisher unerreichte Leistungsfähigkeit und Ausstattung für ein mobiles BCI. Es erfüllt nicht nur die relevanten Anforderungen an ein mobiles BCI-System, sondern ebnet auch den Weg für eine schnelle Übertragung von Algorithmen aus dem Labor in reale Anwendungen. Im Wesentlichen liefert diese Arbeit einen umfassenden Entwurf für die Entwicklung und Implementierung eines hochmodernen mobilen EEG-basierten BCI-Systems und setzt damit einen neuen Standard für BCI-Hardware, die in der Praxis eingesetzt werden kann.Brain-Computer Interfaces (BCIs) are innovative systems that enable direct communication between the brain and external devices. These interfaces have emerged as a transformative solution not only for individuals with neurological injuries, but also for a broader range of individuals, encompassing both medical and non-medical applications. Historically, the challenge of neurological injury being static after an initial recovery phase has driven researchers to explore innovative avenues. Since the 1970s, BCIs have been at one forefront of these efforts. As research has progressed, BCI applications have expanded, showing potential in a wide range of applications, including those for less severely disabled (e.g. in the context of hearing aids) and completely healthy individuals (e.g. entertainment industry). However, the future of BCI research also depends on the availability of reliable BCI hardware to ensure real-world application. The CereBridge system designed and implemented in this work represents a significant leap forward in brain-computer interface technology by integrating all EEG signal acquisition and processing hardware into a mobile system. The processing hardware architecture is centered around an FPGA with an ARM Cortex-M3 within a heterogeneous IC, ensuring flexibility and efficiency in EEG signal processing. The modular design of the system, consisting of three individual boards, ensures adaptability to different requirements. With a focus on full mobility, the complete system is mounted on the scalp, can operate autonomously, requires no external interaction, and weighs approximately 56g, including 16 channel EEG sensors. The proposed customizable dataflow concept facilitates the exploration and seamless integration of algorithms, increasing the flexibility of the system. This is further underscored by the ability to apply different algorithms to recorded EEG data to meet different application goals. High-Level Synthesis (HLS) was used to port algorithms to the FPGA, accelerating the algorithm development process and facilitating rapid implementation of algorithm variants. Evaluations have shown that the CereBridge system is capable of integrating the complete signal processing chain required for various BCI applications. Furthermore, it can operate continuously for more than 31 hours with a 1800mAh battery, making it a viable solution for long-term mobile EEG recording and real-world BCI studies. Compared to existing research platforms, the CereBridge system offers unprecedented performance and features for a mobile BCI. It not only meets the relevant requirements for a mobile BCI system, but also paves the way for the rapid transition of algorithms from the laboratory to real-world applications. In essence, this work provides a comprehensive blueprint for the development and implementation of a state-of-the-art mobile EEG-based BCI system, setting a new benchmark in BCI hardware for real-world applicability

    A feasibility study of a complete low-cost consumer-grade brain-computer interface system

    Get PDF
    Brain-computer interfaces (BCIs) are technologies that provide the user with an alternative way of communication. A BCI measures brain activity (e.g. EEG) and converts it into output commands. Motor imagery (MI), the mental simulation of movements, can be used as a BCI paradigm, where the movement intention of the user can be translated into a real movement, helping patients in motor recovery rehabilitation. One of the main limitations for the broad use of such devices is the high cost associated with the high-quality equipment used for capturing the biomedical signals. Different low-cost consumer-grade alternatives have emerged with the objective of bringing these systems closer to the final users. The quality of the signals obtained with such equipments has already been evaluated and found to be competitive with those obtained with well-known clinical-grade devices. However, how these consumer-grade technologies can be integrated and used for practical MI-BCIs has not yet been explored. In this work, we provide a detailed description of the advantages and disadvantages of using OpenBCI boards, low-cost sensors and open-source software for constructing an entirely consumer-grade MI-BCI system. An analysis of the quality of the signals acquired and the MI detection ability is performed. Even though communication between the computer and the OpenBCI board is not always stable and the signal quality is sometimes affected by ambient noise, we find that by means of a filter-bank based method, similar classification performances can be achieved with an MI-BCI built under low-cost consumer-grade devices as compared to when clinical-grade systems are used. By means of this work we share with the BCI community our experience on working with emerging low-cost technologies, providing evidence that an entirely low-cost MI-BCI can be built. We believe that if communication stability and artifact rejection are improved, these technologies will become a valuable alternative to clinical-grade devices.Fil: Peterson, Victoria. Universidad Nacional de Entre Ríos; ArgentinaFil: Galván, Catalina María. Universidad Nacional del Litoral; ArgentinaFil: Hernández, Hugo. Universidad Nacional de Entre Ríos; ArgentinaFil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentin

    Automatic Pain Assessment by Learning from Multiple Biopotentials

    Get PDF
    Kivun täsmällinen arviointi on tärkeää kivunhallinnassa, erityisesti sairaan- hoitoa vaativille ipupotilaille. Kipu on subjektiivista, sillä se ei ole pelkästään aistituntemus, vaan siihen saattaa liittyä myös tunnekokemuksia. Tällöin itsearviointiin perustuvat kipuasteikot ovat tärkein työkalu, niin auan kun potilas pystyy kokemuksensa arvioimaan. Arviointi on kuitenkin haasteellista potilailla, jotka eivät itse pysty kertomaan kivustaan. Kliinisessä hoito- työssä kipua pyritään objektiivisesti arvioimaan esimerkiksi havainnoimalla fysiologisia muuttujia kuten sykettä ja käyttäytymistä esimerkiksi potilaan kasvonilmeiden perusteella. Tutkimuksen päätavoitteena on automatisoida arviointiprosessi hyödyntämällä koneoppimismenetelmiä yhdessä biosignaalien prosessointnin kanssa. Tavoitteen saavuttamiseksi mitattiin autonomista keskushermoston toimintaa kuvastavia biopotentiaaleja: sydänsähkökäyrää, galvaanista ihoreaktiota ja kasvolihasliikkeitä mittaavaa lihassähkökäyrää. Mittaukset tehtiin terveillä vapaaehtoisilla, joille aiheutettiin kokeellista kipuärsykettä. Järestelmän kehittämiseen tarvittavaa tietokantaa varten rakennettiin biopotentiaaleja keräävä Internet of Things -pohjainen tallennusjärjestelmä. Koostetun tietokannan avulla kehitettiin biosignaaleille prosessointimenetelmä jatku- vaan kivun arviointiin. Signaaleista eroteltiin piirteitä sekuntitasoon mukautetuilla aikaikkunoilla. Piirteet visualisoitiin ja tarkasteltiin eri luokittelijoilla kivun ja kiputason tunnistamiseksi. Parhailla luokittelumenetelmillä saavutettiin kivuntunnistukseen 90% herkkyyskyky (sensitivity) ja 84% erottelukyky (specificity) ja kivun voimakkuuden arviointiin 62,5% tarkkuus (accuracy). Tulokset vahvistavat kyseisen käsittelytavan käyttökelpoisuuden erityis- esti tunnistettaessa kipua yksittäisessä arviointi-ikkunassa. Tutkimus vahvistaa biopotentiaalien avulla kehitettävän automatisoidun kivun arvioinnin toteutettavuuden kokeellisella kivulla, rohkaisten etenemään todellisen kivun tutkimiseen samoilla menetelmillä. Menetelmää kehitettäessä suoritettiin lisäksi vertailua ja yhteenvetoa automaattiseen kivuntunnistukseen kehitettyjen eri tutkimusten välisistä samankaltaisuuksista ja eroista. Tarkastelussa löytyi signaalien eroavaisuuksien lisäksi tutkimusmuotojen aiheuttamaa eroa arviointitavoitteisiin, mikä hankaloitti tutkimusten vertailua. Lisäksi pohdit- tiin mitkä perinteisten prosessointitapojen osiot rajoittavat tai edistävät ennustekykyä ja miten, sekä tuoko optimointi läpimurtoa järjestelmän näkökulmasta.Accurate pain assessment plays an important role in proper pain management, especially among hospitalized people experience acute pain. Pain is subjective in nature which is not only a sensory feeling but could also combine affective factors. Therefore self-report pain scales are the main assessment tools as long as patients are able to self-report. However, it remains a challenge to assess the pain from the patients who cannot self-report. In clinical practice, physiological parameters like heart rate and pain behaviors including facial expressions are observed as empirical references to infer pain objectively. The main aim of this study is to automate such process by leveraging machine learning methods and biosignal processing. To achieve this goal, biopotentials reflecting autonomic nervous system activities including electrocardiogram and galvanic skin response, and facial expressions measured with facial electromyograms were recorded from healthy volunteers undergoing experimental pain stimulus. IoT-enabled biopotential acquisition systems were developed to build the database aiming at providing compact and wearable solutions. Using the database, a biosignal processing flow was developed for continuous pain estimation. Signal features were extracted with customized time window lengths and updated every second. The extracted features were visualized and fed into multiple classifiers trained to estimate the presence of pain and pain intensity separately. Among the tested classifiers, the best pain presence estimating sensitivity achieved was 90% (specificity 84%) and the best pain intensity estimation accuracy achieved was 62.5%. The results show the validity of the proposed processing flow, especially in pain presence estimation at window level. This study adds one more piece of evidence on the feasibility of developing an automatic pain assessment tool from biopotentials, thus providing the confidence to move forward to real pain cases. In addition to the method development, the similarities and differences between automatic pain assessment studies were compared and summarized. It was found that in addition to the diversity of signals, the estimation goals also differed as a result of different study designs which made cross dataset comparison challenging. We also tried to discuss which parts in the classical processing flow would limit or boost the prediction performance and whether optimization can bring a breakthrough from the system’s perspective
    corecore