936 research outputs found

    Detection of land cover changes in El Rawashda forest, Sudan: A systematic comparison: Detection of land cover changes in El Rawashda forest, Sudan: A systematic comparison

    Get PDF
    The primary objective of this research was to evaluate the potential for monitoring forest change using Landsat ETM and Aster data. This was accomplished by performing eight change detection algorithms: pixel post-classification comparison (PCC), image differencing Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), Transformed Difference Vegetation Index (TDVI), principal component analysis (PCA), multivariate alteration detection (MAD), change vector analysis (CVA) and tasseled cap analysis (TCA). Methods, Post-Classification Comparison and vegetation indices are straightforward techniques and easy to apply. In this study the simplified classification with only 4 forest classes namely close forest, open forest, bare land and grass land was used The overall classification accuracy obtained were 88.4%, 91.9% and 92.1% for the years 2000, 2003 and 2006 respectively. The Tasseled Cap green layer (GTC) composite of the three images was proposed to detect the change in vegetation of the study area. We found that the RBG-TCG worked better than RGBNDVI. For instance, the RBG-TCG detected some areas of changes that RGB-NDVI failed to detect them, moreover RBG-TCG displayed different changed areas with more strong colours. Change vector analysis (CVA) based on Tasseled Cap transformation (TCT) was also applied for detecting and characterizing land cover change. The results support the CVA approach to change detection. The calculated date to date change vectors contained useful information, both in their magnitude and their direction. A powerful tool for time series analysis is the principal components analysis (PCA). This method was tested for change detection in the study area by two ways: Multitemporal PCA and Selective PCA. Both methods found to offer the potential for monitoring forest change detection. A recently proposed approach, the multivariate alteration detection (MAD), in combination with a posterior maximum autocorrelation factor transformation (MAF) was used to demonstrate visualization of vegetation changes in the study area. The MAD transformation provides a way of combining different data types that found to be useful in change detection. Accuracy assessment is an important final step addressed in the study to evaluate the different change detection techniques. A quantitative accuracy assessment at level of change/no change pixels was performed to determine the threshold value with the highest accuracy. Among the various accuracy assessment methods presented the highest accuracy was obtained using the post-classification comparison based on supervised classification of each two time periods (2000 -2003 and 2003-2006), which were 90.6% and 87% consequently

    An Unsupervised Algorithm for Change Detection in Hyperspectral Remote Sensing Data Using Synthetically Fused Images and Derivative Spectral Profiles

    Get PDF
    Multitemporal hyperspectral remote sensing data have the potential to detect altered areas on the earth’s surface. However, dissimilar radiometric and geometric properties between the multitemporal data due to the acquisition time or position of the sensors should be resolved to enable hyperspectral imagery for detecting changes in natural and human-impacted areas. In addition, data noise in the hyperspectral imagery spectrum decreases the change-detection accuracy when general change-detection algorithms are applied to hyperspectral images. To address these problems, we present an unsupervised change-detection algorithm based on statistical analyses of spectral profiles; the profiles are generated from a synthetic image fusion method for multitemporal hyperspectral images. This method aims to minimize the noise between the spectra corresponding to the locations of identical positions by increasing the change-detection rate and decreasing the false-alarm rate without reducing the dimensionality of the original hyperspectral data. Using a quantitative comparison of an actual dataset acquired by airborne hyperspectral sensors, we demonstrate that the proposed method provides superb change-detection results relative to the state-of-the-art unsupervised change-detection algorithms

    Advanced Pre-Processing and Change-Detection Techniques for the Analysis of Multitemporal VHR Remote Sensing Images

    Get PDF
    Remote sensing images regularly acquired by satellite over the same geographical areas (multitemporal images) provide very important information on the land cover dynamic. In the last years the ever increasing availability of multitemporal very high geometrical resolution (VHR) remote sensing images (which have sub-metric resolution) resulted in new potentially relevant applications related to environmental monitoring and land cover control and management. The most of these applications are associated with the analysis of dynamic phenomena (both anthropic and non anthropic) that occur at different scales and result in changes on the Earth surface. In this context, in order to adequately exploit the huge amount of data acquired by remote sensing satellites, it is mandatory to develop unsupervised and automatic techniques for an efficient and effective analysis of such kind of multitemporal data. In the literature several techniques have been developed for the automatic analysis of multitemporal medium/high resolution data. However these techniques do not result effective when dealing with VHR images. The main reasons consist in their inability both to exploit the high geometrical detail content of VHR data and to model the multiscale nature of the scene (and therefore of possible changes). In this framework it is important to develop unsupervised change-detection(CD) methods able to automatically manage the large amount of information of VHR data, without the need of any prior information on the area under investigation. Even if these methods usually identify only the presence/absence of changes without giving information about the kind of change occurred, they are considered the most interesting from an operational perspective, as in the most of the applications no multitemporal ground truth information is available. Considering the above mentioned limitations, in this thesis we study the main problems related to multitemporal VHR images with particular attention to registration noise (i.e. the noise related to a non-perfect alignment of the multitemporal images under investigation). Then, on the basis of the results of the conducted analysis, we develop robust unsupervised and automatic change-detection methods. In particular, the following specific issues are addressed in this work: 1. Analysis of the effects of registration noise in multitemporal VHR images and definition of a method for the estimation of the distribution of such kind of noise useful for defining: a. Change-detection techniques robust to registration noise (RN); the proposed techniques are able to significantly reduce the false alarm rate due to RN that is raised by the standard CD techniques when dealing with VHR images. b. Effective registration methods; the proposed strategies are based on a multiscale analysis of the scene which allows one to extract accurate control points for the registration of VHR images. 2. Detection and discrimination of multiple changes in multitemporal images; this techniques allow one to overcome the limitation of the existing unsupervised techniques, as they are able to identify and separate different kinds of change without any prior information on the study areas. 3. Pre-processing techniques for optimizing change detection on VHR images; in particular, in this context we evaluate the impact of: a. Image transformation techniques on the results of the CD process; b. Different strategies of image pansharpening applied to the original multitemporal images on the results of the CD process. For each of the above mentioned topic an analysis of the state of the art is carried out, the limitations of existing methods are pointed out and the proposed solutions to the addressed problems are described in details. Finally, experimental results conducted on both simulated and real data are reported in order to show and confirm the validity of all the proposed methods

    Detection of land cover changes in El Rawashda forest, Sudan: A systematic comparison: Detection of land cover changes in El Rawashda forest, Sudan: A systematic comparison

    Get PDF
    The primary objective of this research was to evaluate the potential for monitoring forest change using Landsat ETM and Aster data. This was accomplished by performing eight change detection algorithms: pixel post-classification comparison (PCC), image differencing Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), Transformed Difference Vegetation Index (TDVI), principal component analysis (PCA), multivariate alteration detection (MAD), change vector analysis (CVA) and tasseled cap analysis (TCA). Methods, Post-Classification Comparison and vegetation indices are straightforward techniques and easy to apply. In this study the simplified classification with only 4 forest classes namely close forest, open forest, bare land and grass land was used The overall classification accuracy obtained were 88.4%, 91.9% and 92.1% for the years 2000, 2003 and 2006 respectively. The Tasseled Cap green layer (GTC) composite of the three images was proposed to detect the change in vegetation of the study area. We found that the RBG-TCG worked better than RGBNDVI. For instance, the RBG-TCG detected some areas of changes that RGB-NDVI failed to detect them, moreover RBG-TCG displayed different changed areas with more strong colours. Change vector analysis (CVA) based on Tasseled Cap transformation (TCT) was also applied for detecting and characterizing land cover change. The results support the CVA approach to change detection. The calculated date to date change vectors contained useful information, both in their magnitude and their direction. A powerful tool for time series analysis is the principal components analysis (PCA). This method was tested for change detection in the study area by two ways: Multitemporal PCA and Selective PCA. Both methods found to offer the potential for monitoring forest change detection. A recently proposed approach, the multivariate alteration detection (MAD), in combination with a posterior maximum autocorrelation factor transformation (MAF) was used to demonstrate visualization of vegetation changes in the study area. The MAD transformation provides a way of combining different data types that found to be useful in change detection. Accuracy assessment is an important final step addressed in the study to evaluate the different change detection techniques. A quantitative accuracy assessment at level of change/no change pixels was performed to determine the threshold value with the highest accuracy. Among the various accuracy assessment methods presented the highest accuracy was obtained using the post-classification comparison based on supervised classification of each two time periods (2000 -2003 and 2003-2006), which were 90.6% and 87% consequently

    Assessing the role of EO in biodiversity monitoring: options for integrating in-situ observations with EO within the context of the EBONE concept

    Get PDF
    The European Biodiversity Observation Network (EBONE) is a European contribution on terrestrial monitoring to GEO BON, the Group on Earth Observations Biodiversity Observation Network. EBONE’s aims are to develop a system of biodiversity observation at regional, national and European levels by assessing existing approaches in terms of their validity and applicability starting in Europe, then expanding to regions in Africa. The objective of EBONE is to deliver: 1. A sound scientific basis for the production of statistical estimates of stock and change of key indicators; 2. The development of a system for estimating past changes and forecasting and testing policy options and management strategies for threatened ecosystems and species; 3. A proposal for a cost-effective biodiversity monitoring system. There is a consensus that Earth Observation (EO) has a role to play in monitoring biodiversity. With its capacity to observe detailed spatial patterns and variability across large areas at regular intervals, our instinct suggests that EO could deliver the type of spatial and temporal coverage that is beyond reach with in-situ efforts. Furthermore, when considering the emerging networks of in-situ observations, the prospect of enhancing the quality of the information whilst reducing cost through integration is compelling. This report gives a realistic assessment of the role of EO in biodiversity monitoring and the options for integrating in-situ observations with EO within the context of the EBONE concept (cfr. EBONE-ID1.4). The assessment is mainly based on a set of targeted pilot studies. Building on this assessment, the report then presents a series of recommendations on the best options for using EO in an effective, consistent and sustainable biodiversity monitoring scheme. The issues that we faced were many: 1. Integration can be interpreted in different ways. One possible interpretation is: the combined use of independent data sets to deliver a different but improved data set; another is: the use of one data set to complement another dataset. 2. The targeted improvement will vary with stakeholder group: some will seek for more efficiency, others for more reliable estimates (accuracy and/or precision); others for more detail in space and/or time or more of everything. 3. Integration requires a link between the datasets (EO and in-situ). The strength of the link between reflected electromagnetic radiation and the habitats and their biodiversity observed in-situ is function of many variables, for example: the spatial scale of the observations; timing of the observations; the adopted nomenclature for classification; the complexity of the landscape in terms of composition, spatial structure and the physical environment; the habitat and land cover types under consideration. 4. The type of the EO data available varies (function of e.g. budget, size and location of region, cloudiness, national and/or international investment in airborne campaigns or space technology) which determines its capability to deliver the required output. EO and in-situ could be combined in different ways, depending on the type of integration we wanted to achieve and the targeted improvement. We aimed for an improvement in accuracy (i.e. the reduction in error of our indicator estimate calculated for an environmental zone). Furthermore, EO would also provide the spatial patterns for correlated in-situ data. EBONE in its initial development, focused on three main indicators covering: (i) the extent and change of habitats of European interest in the context of a general habitat assessment; (ii) abundance and distribution of selected species (birds, butterflies and plants); and (iii) fragmentation of natural and semi-natural areas. For habitat extent, we decided that it did not matter how in-situ was integrated with EO as long as we could demonstrate that acceptable accuracies could be achieved and the precision could consistently be improved. The nomenclature used to map habitats in-situ was the General Habitat Classification. We considered the following options where the EO and in-situ play different roles: using in-situ samples to re-calibrate a habitat map independently derived from EO; improving the accuracy of in-situ sampled habitat statistics, by post-stratification with correlated EO data; and using in-situ samples to train the classification of EO data into habitat types where the EO data delivers full coverage or a larger number of samples. For some of the above cases we also considered the impact that the sampling strategy employed to deliver the samples would have on the accuracy and precision achieved. Restricted access to European wide species data prevented work on the indicator ‘abundance and distribution of species’. With respect to the indicator ‘fragmentation’, we investigated ways of delivering EO derived measures of habitat patterns that are meaningful to sampled in-situ observations

    Recent Advances in Image Restoration with Applications to Real World Problems

    Get PDF
    In the past few decades, imaging hardware has improved tremendously in terms of resolution, making widespread usage of images in many diverse applications on Earth and planetary missions. However, practical issues associated with image acquisition are still affecting image quality. Some of these issues such as blurring, measurement noise, mosaicing artifacts, low spatial or spectral resolution, etc. can seriously affect the accuracy of the aforementioned applications. This book intends to provide the reader with a glimpse of the latest developments and recent advances in image restoration, which includes image super-resolution, image fusion to enhance spatial, spectral resolution, and temporal resolutions, and the generation of synthetic images using deep learning techniques. Some practical applications are also included
    • …
    corecore