2,721 research outputs found

    A Multiobjective Optimization Approach for Market Timing

    Get PDF
    The introduction of electronic exchanges was a crucial point in history as it heralded the arrival of algorithmic trading. Designers of such systems face a number of issues, one of which is deciding when to buy or sell a given security on a financial market. Although Genetic Algorithms (GA) have been the most widely used to tackle this issue, Particle Swarm Optimization (PSO) has seen much lower adoption within the domain. In two previous works, the authors adapted PSO algorithms to tackle market timing and address the shortcomings of the previous approaches both with GA and PSO. The majority of work done to date on market timing tackled it as a single objective optimization problem, which limits its suitability to live trading as designers of such strategies will realistically pursue multiple objectives such as maximizing profits, minimizing exposure to risk and using the shortest strategies to improve execution speed. In this paper, we adapt both a GA and PSO to tackle market timing as a multiobjective optimization problem and provide an in depth discussion of our results and avenues of future research

    Enhanced Prediction of Network Attacks Using Incomplete Data

    Get PDF
    For years, intrusion detection has been considered a key component of many organizations’ network defense capabilities. Although a number of approaches to intrusion detection have been tried, few have been capable of providing security personnel responsible for the protection of a network with sufficient information to make adjustments and respond to attacks in real-time. Because intrusion detection systems rarely have complete information, false negatives and false positives are extremely common, and thus valuable resources are wasted responding to irrelevant events. In order to provide better actionable information for security personnel, a mechanism for quantifying the confidence level in predictions is needed. This work presents an approach which seeks to combine a primary prediction model with a novel secondary confidence level model which provides a measurement of the confidence in a given attack prediction being made. The ability to accurately identify an attack and quantify the confidence level in the prediction could serve as the basis for a new generation of intrusion detection devices, devices that provide earlier and better alerts for administrators and allow more proactive response to events as they are occurring

    Interpreting Housing Prices with a MultidisciplinaryApproach Based on Nature-Inspired Algorithms and Quantum Computing

    Get PDF
    Current technology still does not allow the use of quantum computers for broader and individual uses; however, it is possible to simulate some of its potentialities through quantum computing. Quantum computing can be integrated with nature-inspired algorithms to innovatively analyze the dynamics of the real estate market or any other economic phenomenon. With this main aim, this study implements a multidisciplinary approach based on the integration of quantum computing and genetic algorithms to interpret housing prices. Starting from the principles of quantum programming, the work applies genetic algorithms for the marginal price determination of relevant real estate characteristics for a particular segment of Naples’ real estate market. These marginal prices constitute the quantum program inputs to provide, as results, the purchase probabilities corresponding to each real estate characteristic considered. The other main outcomes of this study consist of a comparison of the optimal quantities for each real estate characteristic as determined by the quantum program and the average amounts of the same characteristics but relative to the real estate data sampled, as well as the weights of the same characteristics obtained with the implementation of genetic algorithms. With respect to the current state of the art, this study is among the first regarding the application of quantum computing to interpretation of selling prices in local real estate markets

    Cognition-Based Networks: A New Perspective on Network Optimization Using Learning and Distributed Intelligence

    Get PDF
    IEEE Access Volume 3, 2015, Article number 7217798, Pages 1512-1530 Open Access Cognition-based networks: A new perspective on network optimization using learning and distributed intelligence (Article) Zorzi, M.a , Zanella, A.a, Testolin, A.b, De Filippo De Grazia, M.b, Zorzi, M.bc a Department of Information Engineering, University of Padua, Padua, Italy b Department of General Psychology, University of Padua, Padua, Italy c IRCCS San Camillo Foundation, Venice-Lido, Italy View additional affiliations View references (107) Abstract In response to the new challenges in the design and operation of communication networks, and taking inspiration from how living beings deal with complexity and scalability, in this paper we introduce an innovative system concept called COgnition-BAsed NETworkS (COBANETS). The proposed approach develops around the systematic application of advanced machine learning techniques and, in particular, unsupervised deep learning and probabilistic generative models for system-wide learning, modeling, optimization, and data representation. Moreover, in COBANETS, we propose to combine this learning architecture with the emerging network virtualization paradigms, which make it possible to actuate automatic optimization and reconfiguration strategies at the system level, thus fully unleashing the potential of the learning approach. Compared with the past and current research efforts in this area, the technical approach outlined in this paper is deeply interdisciplinary and more comprehensive, calling for the synergic combination of expertise of computer scientists, communications and networking engineers, and cognitive scientists, with the ultimate aim of breaking new ground through a profound rethinking of how the modern understanding of cognition can be used in the management and optimization of telecommunication network

    The role of artificial intelligence-driven soft sensors in advanced sustainable process industries: a critical review

    Get PDF
    With the predicted depletion of natural resources and alarming environmental issues, sustainable development has become a popular as well as a much-needed concept in modern process industries. Hence, manufacturers are quite keen on adopting novel process monitoring techniques to enhance product quality and process efficiency while minimizing possible adverse environmental impacts. Hardware sensors are employed in process industries to aid process monitoring and control, but they are associated with many limitations such as disturbances to the process flow, measurement delays, frequent need for maintenance, and high capital costs. As a result, soft sensors have become an attractive alternative for predicting quality-related parameters that are ‘hard-to-measure’ using hardware sensors. Due to their promising features over hardware counterparts, they have been employed across different process industries. This article attempts to explore the state-of-the-art artificial intelligence (Al)-driven soft sensors designed for process industries and their role in achieving the goal of sustainable development. First, a general introduction is given to soft sensors, their applications in different process industries, and their significance in achieving sustainable development goals. AI-based soft sensing algorithms are then introduced. Next, a discussion on how AI-driven soft sensors contribute toward different sustainable manufacturing strategies of process industries is provided. This is followed by a critical review of the most recent state-of-the-art AI-based soft sensors reported in the literature. Here, the use of powerful AI-based algorithms for addressing the limitations of traditional algorithms, that restrict the soft sensor performance is discussed. Finally, the challenges and limitations associated with the current soft sensor design, application, and maintenance aspects are discussed with possible future directions for designing more intelligent and smart soft sensing technologies to cater the future industrial needs

    Where Information Systems Research Meets Artificial Intelligence Practice: Towards the Development of an AI Capability Framework

    Get PDF
    Information systems (IS) research has always been one of the leading applied research areas in the investigation of technology-related phenomena. Meanwhile, for the past 10 years, artificial intelligence (AI) has transformed every aspect of society more than any other technological innovation. Thus, this is the right time for IS research to foster more quality and high-impact research on AI starting by organizing the cumulated body of knowledge on AI in IS research. We propose a framework called AI capability framework that would provide pertinent and relevant guidance for conducting IS research on AI. Since AI is a fast-evolving phenomenon, this framework is founded on the main AI capabilities that shape today’s fast-moving AI ecosystem. Thus, it is crucial that such a framework engages both AI research and practice into a continuous and evolving dialogue

    Building Market Timing Strategies Using Trend Representative Testing and Computational Intelligence Metaheuristics

    Get PDF
    Market timing, one of the core deciding when to buy or sell an asset of interest on a financial market. Market timing strategies can be built by using a collection of components or functions that process market context and return a recommendation on the course of action to take. In this chapter, we revisit the work presented in [20] on the application of Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) to the issue of market timing while using a novel approach for training and testing called Trend Representative Testing. We provide more details on the process of building trend representative datasets, as well as, introduce a new PSO variant with a different approach to pruning. Results show that the new pruning procedure is capable of reducing solution length while not adversely affecting the quality of the solutions in a statistically significant manner
    • …
    corecore