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Abstract. Market timing, one of the core challenges to design successful trading
strategies, is concerned with deciding when to buy or sell an asset of interest on
a financial market. Market timing strategies can be built by using a collection of
components or functions that process market context and return a recommenda-
tion on the course of action to take. In this chapter, we revisit the work presented
in [20] on the application of Genetic Algorithms (GA) and Particle Swarm Op-
timization (PSO) to the issue of market timing while using a novel approach for
training and testing called Trend Representative Testing. We provide more de-
tails on the process of building trend representative datasets, as well as, introduce
a new PSO variant with a different approach to pruning. Results show that the
new pruning procedure is capable of reducing solution length while not adversely
affecting the quality of the solutions in a statistically significant manner.

Keywords: Particle Swarm Optimization, Genetic Algorithms, Market Timing,
Technical Analysis

1 Introduction

Trading in financial markets traces its history as far back as the early 13th century.
From humble beginnings where traders met to exchange basic commodities, financial
markets have since evolved where securities, stocks, bonds, commodities, currencies
and other financial instruments are traded electronically at minute fractions of a second.
After the market crash of 1987 in the USA, measures were taken by the U.S. Securities
and Exchange Commission (SEC) to prevent brokers abstaining from responding to
investors’ buy and sell orders, in an attempt to mitigate the risk of increasing losses to
investors. One of these measures was the Small Order Execution System (SOES). This
allowed investors, bar institutions, to use computers to submit orders on the NASDAQ
exchange that were automatically matched and executed. For the first time, traders could
side step middle men and market makers, and deal with the exchange directly. Traders
quickly figured that they could use technology to submit orders and trade on the stock
exchange, and that the conduit was widely available. With time, a new kind of trader
emerged: the day trader; one that trades through the day and closes out the day with
no held securities. By the mid 1990’s, the SEC introduced another set of measures that
allowed institutions to avail exchanges that electronically matched and executed orders,



known as Electronic Communication Networks (ECN). Although originally intended as
alternative trading venues, and underestimated by the established exchanges, electronic
exchanges and ECNs grew exponentially to process roughly a quarter of all trades in
the US by the early 2000s. By then, the major exchanges such as NASDAQ and NYSE
gave in and acknowledged the potential of electronic exchanges, and through a series
of mergers and acquisitions, availed their own [21].

The birth of electronic exchanges and ECNs also ushered in a new form of trading:
algorithmic trading. Traders wishing to outsmart and beat their competitors to the mar-
ket started using algorithms to embody trading strategies and submit orders directly to
the exchange. The sophistication and speed of these systems grew with time, and started
using computational and artificial intelligence techniques by the late 1990s and traded
with massive volume at fractions of a second by the mid 2000s.

In order to design a trading system, algorithmic or otherwise, a designer has to
tackle four basic issues. The first issue is the “why” behind the trading. This concerns
the objectives the designer wants to achieve from their trading. These objectives are
usually defined in terms of profits, exposure to risk and the length of time the designer
wants to achieve their goals over. The objectives can be constrained (e.g. “Double the
initial capital, while allowing maximum losses of 25% over the next six months...”) or
open-ended (e.g. “Maximize profits while minimizing losses for the foreseeable future
using the initial capital provided...”). Once the objectives are set, the designer now has
to contend with which assets or securities to trade in, or the “what” behind trading.
This issue is also known as portfolio optimization. Deciding what to trade in is usually
based on what best serves the objectives defined by the designer, and again can be either
constrained (e.g trading in the securities that belong only to a particular sector of the
market) or unconstrained. Having decided on why we are trading, and what securities
we are trading, the designer then has to answer “when” to actually buy or sell a given
security. This issue is known as market timing. The final issue a designer has to contend
with is “how”. This is also known as execution optimization, and is concerned with
how to best form and execute orders for buying or selling a given security once such a
decision comes so as to best serve the objectives set out by the designer.

As this chapter is concerned with tackling the issue of market timing, let us further
contemplate the implications of tackling such an issue. Market timing can be formally
defined as the identification of opportunities to buy or sell a given tradable item in the
market so as to best serve the financial goals of the trader [14]. A common approach
followed to tackle market timing is to use a collection of components or functions that
process current and past market data and produce a recommendation on a course of
action: buy, sell or do nothing (also known as hold). This collection of components
would form the core of the market timing strategy, and the challenge presented to the
designer of an algorithmic trading system is to select the most appropriate components
and tune their parameters in such a manner so that it would best serve their goals.

Designers of algorithmic trading systems have increasingly employed computa-
tional intelligence techniques soon after the introduction of electronic exchanges. One
such employed technique is that of Particle Swarm Optimization (PSO). In compari-
son to Genetic Algorithms (GA) and Genetic Programming (GP), PSO has not been as
popular in the financial domain, and in particular within the market timing space. GA



and GP have been used as the core metaheuristic for market timing strategies ever since
the introduction of electronic exchanges in the mid 1990s, while the earliest approach
that utilized PSO for market timing was introduced in 2011 [4]. Within the financial
domain, PSO has seen limited adoption in literature in comparison to GA, even though
PSO has shown to have a performance advantage according to some studies [11,24].

This chapter serves as an extension of the work presented in [20]. We performed
an extensive comparison between the applications of PSO and GA to market timing
in terms of quality of solutions generated using an expanded set of signal generating
components. We also introduced the concept of trend representative testing as a poten-
tial remedy to the limitations of step-forward testing – the incumbent method of testing
when it comes to training and testing in market timing. In this chapter, we reiterate the
work represented in [20], while adding more detail to the process and methodology of
trend representative testing as well as a new PSO algorithm with a different approach
to pruning.

The remainder of this chapter is structured as follows. In Section 2, we delve deeper
into the issue of market timing and review a formalization of market timing first pre-
sented in [19] that considers both the selection of components and the tuning of their
parameters simultaneously. In Section 3 we look at the application of computational in-
telligence metaheuristics to tackle market timing and the associated limitations of these
approaches. We then take a deeper look at the concept of trend representative testing in
Section 4. We provide a more elaborate description of the process of generating a trend
representative dataset compared to [20], and discuss how it can potentially address the
limitations identified in Section 3. This is followed by a description of the algorithms
used to tackle market timing using trend representative testing in Section 5. We also in-
troduce another variant of PSO with a different take on pruning than in [20]. The main
impetus behind introducing this new variant is that we wanted to see if it is possible to
reduce solution lengths, and the effect that would have on solution quality. In Sections
6 and 7 we discuss how we set up our experiments, present their results and analyze
the performance of the different algorithms covered in this chapter. Finally, Section 8
presents the conclusion and suggestions for future research.

2 Timing Buy and Sell Decisions

As mentioned earlier, the issue of market timing is concerned with deciding when to
take action with a given security we wish to trade. Our actions can be to either buy
this security, sell it or take no action at all. Over time, distinct schools of thought have
emerged on how to best time your actions on the market, and these schools of thought
can be categorized into two major types: technical analysis and fundamental analysis.

Technical analysis can trace its roots to the 17th and early 18th century with the work
of Joseph De La Vega on the Amsterdam stock exchange and Homna Munehisa on the
rice markets of Ojima in Osaka. Technical analysis considers a security’s current and
historical price and volume movements, along with current demand and supply of the
security in the market, in an attempt to forecast possible future price movements [14].
Charles Dow helped set the foundations of modern technical analysis with his Dow
Theory, introduced in the 1920s. Modern technical analysis is based on three founda-



tions: price discounts all relevant information regarding the security in question, prices
have a tendency to move in trends and that history repeats itself. The first foundation
is based on the assumption that all factors that can effectively affect the price of a se-
curity have exerted their influence by the time a trade takes place. These factors can
include the psychological state of persons or entities interested in trading the security,
the expectations of these entities and the forces of supply and demand amongst other
factors. The first foundation further posits that it is sufficient to only consider current
and previous prices of securities of interest as a reflection of all exerted influences on
such securities. The second foundation assumes that prices have a tendency to move in
trends based on the expectations of entities currently trading in securities of interest.
For example, if traders expect that demand will increase for a particular security they
would buy that particular security in order to sell at a higher price for profit. As more
traders react to this behavior by buying into the security themselves, hoping to generate
a profit in the same manner, the price of the security is driven higher and higher in a
cascade. The security is then considered to be in an uptrend. The trend takes its course,
and an opposite cascade of selling occurs, the security is considered to be in an down-
trend. Being able identify the trend a security is currently in will enable the trader to
take the correct course of action within the confines of their strategy. The third founda-
tion assumes that entities trading in securities have a tendency to consistently react in
the same fashion when presented with particular market conditions. This phenomenon
was proven empirically by observing the histories of a multitude of securities across
multiple markets over time.

Methods of technical analysis employs the use of functions known as indicators. In-
dicators process price history and produce a recommendation of whether to buy or sell
a given security. This output recommendation is also known as a signal. Indicators will
usually have one or more parameters that affect their behavior, and using different val-
ues for these parameters will produce a different signal profile for the same input data.
Readers interested in the various methodologies of technical analysis are redirected to
the works of Pring [23] and Kaufman [14] for comprehensive descriptions of a multi-
tude of technical analysis techniques as an exhaustive list of all the technical analysis
tools available to the contemporary trader is beyond the scope of this chapter.

On the other hand, fundamental analysis is based on the concept that a security has
two prices: a fair price and its current market price [22]. Over time, the market price will
match the fair price of the security. To arrive at the fair price for a security, fundamental
analysis will consider the current financial state of the entity that issued the security.
This will include looking at the current and previous financial and accounting records
of that entity, considering current and previous management, looking at sales projec-
tions and the track record of the entity of meeting those projections, earnings history,
micro- and macroeconomic factors surrounding the entity and even the current market
sentiment towards the entity among other factors. After considering those factors and
arriving at a fair price, decisions to buy and sell will be based on the current discrep-
ancy between the fair price and the market price. The assumption here is that the market
price will close the gap and converge with the fair price. If the fair price is less that the
current market price, then the decision will be to sell, and if the opposite is true then the
decision will be to buy.



Although the more traditional of both approaches, fundamental analysis is not with-
out its caveats. A major issue with fundamental analysis is the rate of release of infor-
mation for the sources of analysis. Sales and Revenue reports are usually released on
a quarterly schedule, while tax filings are only published annually. This could be prob-
lematic for strategies working on smaller time horizons, such as trading on a daily or
second-by-second basis. In efforts to work around this limitation, fundamental analysis
has expanded to include the emergent field of social media sentiment analysis. Senti-
ment analysis on social media networks is the process of mining these networks for
the sentiment of their participants towards all aspects, micro or macro, that could affect
a traded security. As contribution on social media occurs at a much higher frequency
than the publication of financial documents and reports, traders can act much faster and
utilize fluctuations in sentiment to guide buy and sell decisions.

In practice, traders building a strategy would employ techniques from both schools.
A common approach is to use fundamental analysis for portfolio composition and tech-
nical analysis for market timing. The reasoning behind using techniques from both
schools of thought is to reduce the exposure to risk that one or more techniques from
either schools might be incorrect or consume data that is of untrustworthy nature 1, thus
generating signals that could incur losses. In this chapter, we have chosen to work with
technical analysis indicators for practical reasons regarding the availability of data and
access to libraries of such indicators.

In order to define a market timing strategy in formal terms, we can consider a mar-
ket timing strategy to be a set of components. Each component t in the set processes
information regarding a security in question and returns a signal: 1 for a buy recom-
mendation, 0 for a hold recommendation and −1 for a sell recommendation. Every
component will also have a weight associated with it, as well as a set of unique pa-
rameters that influence its behavior. The weight associated with a component t affects
the power of the signal generated by this particular component in the overall aggregate
signal generated by the candidate solution. If the aggregate signal is positive, then the
decision would be to buy. If, on the other hand, the aggregate signal is negative then the
decision would be to sell. Otherwise, the recommendation would be to hold and take no
action. This formulation can be presented as follows:

solution = {w1t1, ...,wntn},∀ti : {t1
i , ..., t

x
i } (1)

signal =
n

∑
i=1

witi (2)

where x denotes the number of parameters for the component at hand, w represents the
weight assigned to the component at hand, t represents a single component and n is
total number of components within the solution. The weights for the components are
all normalized to be between 0 and 1, and have a total sum of 1. Attempting to find the

1 An example of this would be using a purely fundamental approach while trading Enron before
its crash and bankruptcy in late 2001. A post-mortem investigation by the U.S. Securities and
Exchange Commision (SEC) showed that the information published in the firm’s financial
documentation were false, leading to investments by market participants that were built on
mislead assumptions.



least possible subset of components that achieve our objectives from potentially endless
combinations of components, weights and parameter values, results in a rich landscape
of candidate solutions that generate a variety of signals for the same market conditions.

3 Related Work

In the studies by Hu et al. [11] and Soler-Dominguez et al. [24], the authors perform a
comprehensive investigation on the use of computational intelligence techniques in fi-
nance. Both studies considered a large variety of computational intelligence algorithms
that included swarm intelligence (ACO, Artificial Bee Colony Optimization, PSO), evo-
lutionary algorithms (Differential Evolution, GA, GP), fuzzy systems, neural networks
and stochastic local search methods (ILS, Tabu Search, GRASP, Simulated Anneal-
ing) among others. Although the study by Hu et al. was primarily focused in the role
played by computational intelligence in the discovery of trading strategies, the one by
Soler-Dominguez et al was more holistic in nature and considered other applications
of computational intelligence techniques as long as they where within the realm of fi-
nance. The time span covered by both studies reaches as far back as the early 1990’s
and ends with recent times.

By looking at the algorithms covered by both studies, we can easily arrive at the
fact that Genetic Algorithms (GA), and to a slightly lesser extent Genetic Program-
ming (GP), are the most popular algorithms by volume of publications alone. The work
by Allen and Karjalanien [2] can be seen as one of the earliest work done using GA.
Here, the authors build trading rules based on technical analysis indicators using a GA.
The authors then benchmarked their results against a buy-and-hold strategy using out
of sample data. Another approach for the use of Genetic Algorithms (GA) is to uti-
lize them to directly optimize the parameters of one or more indicators, regardless of
whether these indicators were of the technical analysis variety or the fundamental anal-
ysis one. The works of Subramanian et al [25] and de la Fuente et al. [9] can be seen as
examples of this approach, with the former tackling market timing as a multiobjective
optimization problem. Yet another approach would be to use GA to optimize the param-
eters of another primary algorithm that is in charge of producing trading signals by way
of tuning its parameters in order to improve fitness. Algorithms in charge of producing
trading signals in this paradigm included neural networks, self-organizing maps (SOM),
fuzzy systems and an assortment of classification algorithms. An extensive cataloging
of works done using this synergistic paradigm can be seen in the study by Hu et al. [11].
More recent applications of GA to the issue of market timing can be seen in the works
of Kim et al. [15] and Kampouridis and Otero [12].

In comparison to GA and GP, Particle Swarm Optimization (PSO) has not seen such
an extensive adoption within the space of market timing. One possible factor that can
help us explain this massive difference is that GA were introduced far earlier than PSO,
late 1970’s versus mid 1990’s respectively. The very first application of PSO to market
timing was the work done by Briza and Naval, Jr. [4]. Based on the work by Subra-
manian et al. [25], the authors optimized the weights of a collection of instances of
technical analysis indicators. To generate these instances, the authors started with five
technical analysis indicators and used industry standard presets for the parameter values



to generate multiple instances from each indicator. The final signal acted upon is then
the aggregate signal collected from the individual weighed instances. The approach fol-
lowed by the authors in this case was a multiobjective one, were they optimized two
measures of financial fitness: percentage of return and Sharpe Ratio. This application
was then followed by two hybrid approaches, where PSO was used to optimize another
signal generating algorithm. In [5], Chakravarty and Dash used PSO to optimize a neu-
ral network that was tasked with the prediction of movements in an index price. Liu et
al. [17] also used PSO to optimize another signal generating algorithm, in this case a
neural network that generated fuzzy rules for market timing, and the authors reported
positive results.

In more recent publications, Chen and Kao [6] used PSO as a secondary algorithm
to optimize the parameters of a primary system that is capable of forecasting the prices
of an index as means of market timing. This primary system is built using a combina-
tion of fuzzy time series and support vector machines (SVM). In [16], Ladyzynski and
Grzegorzewski also used PSO as a secondary algorithm to optimize the parameters of
a primary system. In this case, the primary system was tasked with the identification
of price chart patterns for the purposes of market timing and relied on fuzzy logic and
classification trees. The authors noted that the use of PSO in this scenario vastly im-
proved the accuracy of their primary system and that the overall hybrid system proved
to be promising. Wang et al. [27] used a hybrid approach combining PSO and a re-
ward scheme to optimize two technical indicators in order to improve Sharpe Ratio.
The results of this hybrid showed that this approach outperformed other methods such
as GARCH. In [3], Bera et al. used PSO to optimize the parameters of a single tech-
nical indicator and choose to apply their methodology to the foreign exchange market
instead of the stock market. In their results, the authors have noted that their system
was profitable under testing. In [26], Sun and Gao have used PSO in a secondary role to
optimize the weights on the links of a neural network tasked with prediction of prices of
securities on an exchange. The results showed that this hybrid system had an error rate
of 30% in predicted prices when compared to the actual ones. In yet another approach
where PSO played a secondary role, Karathanasopoulos et al. [13] used PSO to opti-
mize the weights on a radial basis function neural network (RBF-NN) built to predict
the prices of the crude oil commodity. Compared to two other classical neural network
models, the authors noted that their PSO-enhanced approach outperformed the others
in predictive capacity.

In the aforementioned publications regarding the use of PSO in the domain of mar-
ket timing, we can observe a notable trend: PSO was more frequently used in a sec-
ondary role to optimize the performance of a primary signal generating system that
used other algorithms besides PSO. There were three exceptions to this observation:
[4], [27] and [3]. In these three exceptions, PSO was used as the sole algorithm re-
sponsible for the generation of signals – either by optimizing the weights of a set of
technical indicators with preset parameters or optimizing the parameters of one or more
indicators with preset weights. The only attempt we are aware of that considered the
simultaneous optimization of both the selection of indicators and the tuning of their
parameters was the one by Mohamed and Otero [19]. Here, the authors used PSO to
optimize the parameters of six technical indicators, as well as tuning the weights of



their produced signals and pruning ineffective ones. Their work was tested against four
stocks and showed that using PSO was a viable approach albeit with some caveats: the
set of indicators used was limited in scope; the number of datasets used for training and
testing was small; and no there was no benchmark to compare the performance of the
PSO against.

The work proposed in this chapter addresses two key limitations identified in the
literature so far: (1) it considers the optimization of both the selection of signal gener-
ating components and the values of their parameters in a simultaneous fashion; and (2)
avoid the tendency of market timing strategies to overfit to particular price movements
when using step-forward testing via the proposition of the use of trend representative
testing as is discussed next.

4 Trend Representative Testing: Simulating Various Market
Conditions While Training and Testing

The current incumbent method of training and testing used when building market tim-
ing strategies in the literature surveyed is a procedure known as step-forward test-
ing [14,11,24]. A straightforward approach, step-forward testing starts by acquiring a
stream of price data for a particular tradable asset and then arbitrarily split this stream
into two sections: the chronologically earlier section being used for training, while the
later is used for testing. A common approach is to ensure that the training section is
proportionally twice the size of the testing section in terms of number of data points
contained within each section. The main issue with step-forward testing is that while
training your algorithm, you are confined to the price movements or trends observed
from the data points within the training section. This means that the algorithm is only
exposed to the upwards, downwards and sideways trends currently manifest in the train-
ing data both in terms of length and intensity. This introduces the likelihood of overfit-
ting to these particular trends, and when faced with different types of trends (those with
different lengths and intensities) in real life trading, all the profits that were seen while
training and testing quickly evaporate. A simple example would be if an algorithm only
sees upward trends during both training and testing, and then is exposed to a downwards
trend in real life trading. An example of this can be seen in Figure 1. This shortcoming
has been reported in both the studies by Hu et al. [11] and Soler-Dominguez et al. [24].
Furthermore, trying to apply standard tactics to avoid overfitting such as k-fold cross
validation are not easy due to the structure of the data.

In order to overcome the limitations associated with step-forward testing, we pro-
pose the use of Trend Representative Testing. The ideas behind this novel approach are
based on the suggestions of domain experts in [14]. The main philosophy behind Trend
Representative Testing is that by exposing an algorithm during training and testing to a
variety of upwards, downwards and sideways movements, we reduce the chances of the
algorithm overfitting to any single one of those trends and have a better estimation of
the algorithm’s performance in real life trading. Our objective is then to build a library
containing numerous examples of each type of trend, with various intensities and time
lengths, and define an approach on the use of this library in training and testing.



Fig. 1: An example of dividing price data for step-forward testing1. The data shown
here represents daily prices for the Microsoft (MSFT) security on the NASDAQ market
between 2016 and early 2019. The red line represents the point of division, with the first
two years of data being used for training, and the later year used for testing. The data
represents an example of the liability for step forward testing to overfit, as the entirety
of data shown here represents an extended upwards trend. Algorithms trained and tested
on this data are liable to perform poorly when exposed to a downtrend.
1 Image courtesy of Yahoo! Finance

The process of building a dataset for Trend Representative Testing is a systematic
approach of analyzing raw price streams, identifying usable subsections with known
trends and then storing them within a library so as to have a multitude of uptrends,
downtrends and sideways movements for use in training and testing. The first step of
this process is to acquire a vast amount raw price data, over an extended time frame
to improve our chances of capturing the largest variety of trends in terms of direction,
intensity and length. For our library, we acquired the raw price data for all securities
exchanged on the Nasdaq and NYSE markets traded from 1990 to 2018. Each individual
price stream is then scanned for price shocks, and upon detection, the raw price stream is
divided into two sub-streams known as cords: one cord representing the data occurring
before the price shock and the other representing the data occurring after the price
shock. The reason we remove price shocks is that they are outlier events, categorized by
a sudden change in price in response to an event. Price shocks are highly unpredictable
and disruptive events. Including these sudden and disruptive changes in the training data
would imply that our trained market timing strategies are capable of predicting price
shocks and correctly responding to them, which is not the case. This is the main reason
why we elect to remove price shocks from training and testing data. Besides being
catastrophic events, price shocks are rare and training a strategy to use them would be
highly impractical. Price shocks can be defined as price actions that are three times the
Average True Range (ATR) within a short period of time [14]. Each generated cord is
then subsampled using sliding windows of various sizes to produce strands. Each strand
is then analyzed to identify the direction of the underlying trend represented (upwards,
downwards or sideways) and intensity using the Directional Index technical indicator



Fig. 2: A visual example of the process behind generating a Trend Representative Test-
ing dataset1. The data shows here the price data for the Dow Jones index between July
1987 and January 1988. In (A) we can see the raw price data, with the tall black rect-
angular highlighting the price shock caused by the events of Black Monday on October
19, 1987. This price shock is confirmed in spikes of Average True Range and True
Range depicted directly under the top chart. Upon the identification of the price shock,
the raw stream of data is divided into two streams we call cords: one before the price
shock (B), and the other after the price shock (C). The cords are then subsampled us-
ing sliding windows of various sizes to produce what we call strands (D). Strands are
then analyzed using the Directional Index technical indicator to identify the underlying
trends and stored in library that forms the Trend Representative Testing dataset.
1 Images courtesy of Yahoo! Finance



[23] and finally added to the library. A visual example of this process can be seen Figure
2.

In order to use this new dataset, we first start by building two sets: a training set
and a testing set. A training set is composed of n triplets, where a triplet is a set of
three strands: one uptrend, one downtrend and one sideways trend. A testing set is
composed of a single triplet. During training, we select a triplet at random from the
training set with each iteration, and that triplet is used to assess the performance of all
the candidate solutions within that iteration. To measure the performance of a candidate
solution, we evaluate the performance of the candidate solution at hand agaisnt each
constituent strand within the triplet designated for the current iteration and report the
average fitness. With each new iteration, a randomly selected triplet from the training set
is designated as the current training triplet and this process is repeated until the training
criteria are met or a set of training iterations are exhausted. For testing, the triplet from
the testing set is used in a similar fashion to assess the performance of the surviving
solutions form the algorithm. The idea behind trend representative testing is that we
want discourage niching or specializing in one particular trend type and instead promote
discovering market timing strategies that fair well against various market conditions.

5 Market Timing Algorithms

In this section we describe how our market timing formalization was encoded, explain
how the algorithms were adapted to use this encoding and tackle the problem of market
timing.

5.1 Individual Encoding and Measuring Fitness

Let us begin this section by describing how the formalization presented in Section 2
is encoded into a candidate solution, and how we assess the fitness of these solutions.
According to our formalization, a candidate solution is a collection of signal generating
components, where each of these components would have a weight and a set of param-
eters. For example, if we had three signal generating components such as the technical
indicators Moving Average Converge Diverge (MACD), the Relative Strength Indicator
(RSI) and the Chaikin Oscillator (Chaikin), we could possibly have a candidate solution
of:

0.3×MACD(Fast Period = 12,Slow Period = 27,
Smooth Period = 9)

+0.2×RSI(Overbought = 70,Oversold = 30,
Period = 14)

+0.5×Chaikin(Fast Period = 3,Slow Period = 10)

where the number preceding the indicator represents its weight and the values in the
brackets represent the values of parameters per indicator. A visual example can be seen
in Figure 3.



Fig. 3: An example of an encoded candidate solution with three components. Repro-
duced from [20]

As the algorithms used are all based on a population of individuals, each individual
would represent a candidate solution. We chose to encode the individuals as multi-tier
associative arrays. The top level binding associates an indicator identifier with a set of
of its parameters. The bottom level binding associates a parameter identifier with its
value. The parameters per indicator are dependent on its type, but all indicators have an
instance of a weight parameter.

Our choice for encoding individuals as multi-tier associative arrays allows us max-
imum flexibility to use an unlimited number of signal generating components and be
agnostic of their parameters in terms of quantity and value types, as would have been
the case if we choose to encode an individual as a regular array. Encoding the individ-
ual as an array, would have confined us to particular number of components and needed
the maintenance of a mapping structure to be used to decode the array’s values, both
limitations that we wished to avoid at this time. The semantics of how each component
is handled and how its weight and parameters are tuned are then left to be implemented
in the individual algorithms, as will be discussed shortly. A new candidate solution is
generated by instantiating components from the available catalog with random values
for the parameters and adding it to the dictionary representing the individual.

As for assessing the fitness of an individual, we chose to maximize the Annualized
Rate of Return (AROR) generated by backtesting the individual at hand. Backtesting
would simulate trading based on enacting the aggregate signal produced by a solution
over a preset time period for a given asset. The data being used during backtesting
would depend on the current strand being used from the Trend Representative Testing
procedure. As for AROR, this can be defined as:

ARORsimple =
En

E0
× 252

n
(3)

where En is final equity or capital, E0 is initial equity or capital, 252 represents the
number of trading days in a typical American calendar and n is the number of days in
the testing period.

5.2 Genetic Algorithms

In order to adapt Genetic Algorithms (GA) to tackle market timing using our proposed
formalization, we utilized a typical implementation of GA and modified the crossover
and mutation operators to accommodate our individual encoding scheme. For crossover,
we begin by selecting individuals for the crossover procedure using typical tournament
selection, where the tournament size is a user-defined parameter. The selected individu-
als are then prepared by ordering the genotype by key. A crossover point is then selected



Fig. 4: An example of a crossover operation. Reproduced from [20]

at random with the constraint that it lands between the definition of two components,
but not within them. This would ensure that the components in the resulting genotypes
are valid, with the correct number of parameters and parameter values are within valid
ranges. Using the example mentioned earlier, we can generate a crossover point either
between the definition of MACD and RSI, or between RSI and Chaikin. An example of
a crossover operation can be seen in Figure 4. In order to simulate mutation, a random
component from within the individual’s genotype is replaced by a fresh copy of the
same type of component with random (but valid) values for its parameters.

The crossover and mutation operators are used to generate new populations, gener-
ation after generation. This process is repeated until an allocated budget of generations
is exhausted. Elitism is implemented via the use of an archive to keep track of the best
performing individuals per generation, with the fittest in the archive being reported as
the proposed solution at the end of the algorithm’s run.

5.3 Particle Swarm Optimization

We now turn our attention to adapting Particle Swarm Optimization (PSO) to tackle
market timing. As PSO is based on a swarm of individuals representing candidate solu-
tions, we will use the same encoding we introduced earlier. In order to be able to work
with this encoding within PSO, the standard mechanics of the various PSO operators
will have to be modified, and these modifications are discussed next.

The basic PSO model can be seen in Algorithm 1. This model supports both l-
best and g-best neighborhood structures, based on the value of the neighborhood size
parameter. A neighborhood size equal to the size of the swarm would imply a g-best
neighborhood structure, while values less than the swarm size would imply an l-best
neighborhood structure. In order to accommodate the proposed encoding scheme, we
pushed down the implementation of the addition, subtraction and multiplication opera-
tors required for the velocity update equation (lines 8–15) to be at the component level
instead of the algorithm level. This allows us to be agnostic to the types of components



Algorithm 1 Basic PSO high-level pseudocode.
1: initialize swarm S
2: repeat
3: for every particle xi in S do
4: if f (xi)> personal best(xi) then
5: personal best(xi)← f (xi)
6: end if
7: for every component j in particle i do
8: bias← αvi j(t)
9: cognitive← c1r1(yi j(t)− xi j(t))

10: social← c2r2(ŷi j(t)− xi j(t))
11: vi j(t +1)← bias+ cognitive+ social
12: if j ∈R then
13: xi j(t +1)← xi j + vi j(t +1)
14: else if j ∈ [0,1] then
15: Pr(xi j(t +1)→ 1) : sigmoid(vi j(t +1))
16: end if
17: end for
18: end for
19: until stopping criteria met
20: return fittest particle

used and their parameter values. It also removes the limitation that the parameter values
have to either be binary or numeric in nature, as long as there is a suitable override
for the addition, subtraction and multiplication operators within the component. This
opens up the possibilities for the designer to consider an arbitrary number of signal
generating components for their market timing strategies. We also adopted a decreasing
inertia schedule, Clerc’s constriction [7] and velocity scaling as measures to promote
convergence within the swarm and eliminate velocity explosion.2 For the decreasing
inertia schedule, the inertia for every particle is diminished by an amount defined by a
function based on the iterations left with every passing iteration. To eliminate velocity
explosion, the designer is a given a choice between using Clerc’s constriction [7] or
velocity scaling. With velocity scaling, the velocity vi j(t +1) is scaled down by a user
defined factor before being used to update a particle’s state. Using these modifications,
PSO can now use the proposed encoding to optimize both the parameters and weights
of a set of components in relation to a financial fitness metric.

A common problem faced by search metaheuristics, PSO included, is getting stuck
in local optima. Multiple measures have been devised since the introduction of the basic
model to remedy that problem with varying degrees of success [8]. Inspired by the
work done by Abdelbar with Ant Colony Optimization (ACO) in [1], we introduced a
variation of PSO that stochastically updates the velocity of its particles only when it is
favorable in terms of fitness. We will refer to this variation of PSO in the remainder of
this chapter as PSOS. The modifications required for PSOS are reviewed next.

2 Early experiments indicated the tendency of particles to adopt ever increasing values for ve-
locity if left unchecked, leading to the particles quickly seeking the edges of the search space
and moving beyond it.



Every particle x in the swarm S represents a candidate solution. From our earlier
discussion, this means that a particle’s state is a collection of weighted components,
where each component has its own set of parameters. A particle starts out with an in-
stance of all the available signal generating components, each instantiated with random
weights and parameter values. In contrast with the basic PSO model, the cognitive and
social components of the velocity update equation are modified to be calculated as:

cognitive =

{
yi(t)− xi(t) if rand() < | f (yi(t))

f (xi(t))+ f (yi(t))
|

0 otherwise
(4)

social =

{
ŷi(t)− xi(t) if rand() < | f (ŷi(t))

f (xi(t))+ f (ŷi(t))
|

0 otherwise
(5)

– x: particle
– i: current particle index
– y: personal best
– ŷ: neighborhood best
– f (x): the fitness of x
– rand(): random number between 0 and 1

According to equations 4 and 5, the cognitive and social components will only stochas-
tically influence velocity update if there is an improvement in fitness, following a hill
climbing fashion.

In [19], we introduced a pruning procedure in an attempt to arrive at shorter solu-
tions by actively removing signal generating components whose weight falls below a
specific threshold at specific checkpoints through the algorithm’s run. Experimentation
with this pruning procedure did not prove to be fruitful. This was further confirmed
when IRace found the best setting for that pruning procedure is to be turned off. This
suggests that the pruning procedure is too destructive. Any components that fall below
the pruning threshold is removed from all solutions in the swarm and there is no mech-
anism to reintroduce the pruned components at a later stage. Therefore, components
that do not have a good configuration at the moment, and thus not contributing to the
solution in a beneficial manner, get removed without having the opportunity to explore
other configurations. Shorter solutions have an advantage of being faster to compute
and easier to comprehend by the user, and so are still desirable. The challenge is to
find a good balance between the quality and size of a solution. In an another attempt to
arrive at the least sufficing subset of components that optimizes a financial metric, we
introduce a novel approach to pruning that was not present in [20]. In this novel pruning
approach, components with weights falling below a threshold will have their weights
updated to zero without physically removing them from the solution as was the case in
[19]. Components who have weight of zero are effectively excluded from contributing
to the aggregate signal produced by the candidate solution and thus can be disregarded.
By not permanently removing them from the solutions, we allow their reintroduction
in later iterations if they learn of a useful configuration through the interaction of the
particles in the swarm. The pruning procedure is triggered at frequent points through-
out the algorithm’s run, and the deadline (the number of iterations that pass before it



Table 1: IRace discovered configurations for each of the algorithms tested.
PSO PSOS PSOP GA

Population 45 Population 59 Population 30 Population 53
Iterations 28 Iterations 261 Iterations 90 Generations 266
Neighbors 26 Neighbors 59 Neighbors 30 Mutation Probability 0.6306
c1 2.4291 c1 3.2761 c1 2.908 Crossover Probability 0.455
c2 3.4185 c2 2.363 c2 3.417 Tournament Size 22
Clamp Scaling Clamp Scaling Clamp Scaling
Scaling Factor 0.8974 Scaling Factor 0.551 Scaling Factor 0.5988

Pruning False Pruning True
Pruning Threshold 0.1799
Pruning Deadline 15

is triggered) and threshold are all user defined parameters. This pruning procedure is
added on top of PSOS resulting in a new variant we will refer to as PSOP.

6 Experimental Setup

In order to evaluate the efficacy of the proposed methods in building competent mar-
ket timing strategies, we tested the proposed GA, PSO, PSOS and PSOP algorithms.
Since all four algorithms have parameters, testing was preceded with hyper-parameter
optimization performed using the iterated racing procedure (IRace) [18]. The IRace
procedure was run with a budget of 300 iterations and a survivor limit of one, in order
to arrive at a single configuration for each algorithm. The results of the IRace procedure
can be seen in Table 1.

Looking at the PSO variants, we can see that the variant with the smallest swarm
size is PSOP, followed by regular PSO then PSOS which is almost twice the size of
PSOP. When it comes to the total number of fitness evaluations to be performed by the
algorithm, regular PSO comes in with the least number of evaluations at 1260, followed
by PSOP and PSOS with 2700 and 15399 respectively. The regular PSO has adopted an
l-best neighborhood structure, while both PSOS and PSOP adopted g-best neighborhood
structures. All three PSO variants favored scaling over Clerc’s constriction, with both
PSO variants that use the stochastic state update procedure using a scaling factor of
around 0.5 while regular PSO adopted a more aggressive scaling profile with a scaling
factor of about 0.9. Both regular PSO and PSOP leaned slightly more towards depending
on the social component during velocity update, while PSOS showed the exact opposite.
In essence, after hyper-parameter optimization using IRace, we ended up with a fast
acting l-best PSO, an almost equally fast g-best PSOP and a relatively slow PSOS. As
for GA, the hyper-parameter optimization procedure resulted in a relatively slow GA
(with a population size and generation count close to PSOS) with a high mutation rate
and low crossover rate. This suggests that the solution landscape is on the rugged side,
with sharp peaks and deep valleys that require radical moves to traverse.

All algorithms are trained and tested using trend representative testing. The data
used contains 30 strands, representing 10 upwards, 10 downwards and 10 sideways
trends at various intensities. The 30 strands are divided into triplets, resulting in 10
distinct triplets for use in training and testing. The details of the trend dataset can be



Table 2: Data strands used for training and testing. Reproduced from [20]
Id Symbol Begin Date End Date Length Trend

BSX1 BSX 2012-10-10 2013-07-09 185 ↑
LUV1 LUV 2008-08-22 2010-05-07 430 ↔
KFY1 KFY 2007-05-16 2007-10-12 105 ↓
EXC1 EXC 2003-04-14 2003-08-20 90 ↑
LUV2 LUV 2004-12-03 2005-05-04 105 ↔
KFY2 KFY 2007-03-20 2007-09-21 130 ↓
AVNW1 AVNW 2005-07-18 2006-01-12 125 ↑
PUK1 PUK 2010-08-12 2012-04-03 415 ↔
LUV3 LUV 2008-09-02 2009-01-30 105 ↓
KFY3 KFY 2003-03-13 2003-08-04 100 ↑
EXC2 EXC 2002-10-03 2003-08-04 210 ↔
LUV4 LUV 2003-11-21 2004-04-01 90 ↓
EXC3 EXC 2003-05-12 2003-10-15 110 ↑
PUK2 PUK 2005-05-12 2006-03-13 210 ↔
MGA1 MGA 1996-02-29 1996-07-08 90 ↓
ED1 ED 1997-07-02 1997-11-20 100 ↑
EXC4 EXC 1999-08-20 2000-03-30 155 ↔
PUK3 PUK 2002-03-19 2002-07-25 90 ↓
BSX2 BSX 2009-04-22 2009-09-18 105 ↑
ED2 ED 2011-12-15 2012-05-16 105 ↔
JBLU1 JBLU 2003-05-15 2003-11-10 125 ↓
MGA2 MGA 2012-12-28 2013-10-14 200 ↑
MGA3 MGA 1995-09-19 1996-12-13 315 ↔
ATRO1 ATRO 1997-06-04 1997-11-28 125 ↓
AVNW2 AVNW 2003-03-07 2003-08-05 105 ↑
EXC5 EXC 2015-03-12 2016-09-02 375 ↔
AVNW3 AVNW 2013-06-11 2013-11-20 115 ↓
IAG1 IAG 2015-11-09 2016-08-24 200 ↑
MGA4 MGA 1995-10-17 1996-04-22 130 ↔
IAG2 IAG 2012-01-19 2012-06-04 95 ↓

seen in Table 2. The columns in Table 2 describe the symbol of the source stock data, the
beginning date, the ending date and the trend of every strand in the dataset. The data has
then been split into 10 datasets, where each dataset would contain one triplet reserved
for testing and the remaining 9 triplets form the training set. Each step in the training
and testing procedure is repeated 10 times to cater for the effects of stochasticity.

When it comes to the signal generating components available for the algorithms, we
used 63 technical analysis indicators for our experiments. These indicators contain an
assortment of momentum indicators, oscillators, accumulation/distribution indicators,
candlestick continuation pattern detectors and candlestick reversal pattern indicators.
If any of the indicators had parameters that were concerned with the length of data
processed, an upper limit of 45 days was set, so that we were guaranteed a minimum of
5 trading signals within a single trading year 3. Any other parameters are initialized to

3 A typical US trading year is compromized of 252 days.



random values as long as comply with the value constraints defined by every indicator,
and the best setting for these parameters in terms of performance is discovered by the
algorithms as they traverse the solution landscape.

7 Results

Table 3 shows the minimum, median, mean and maximum fitness achieved by the four
algorithms per dataset and trend. Regular PSO shows the most wins based on mean per-
formance with 15 wins out of a possible 30, followed by PSOS with 6 wins, then PSOP

with 5 wins and finally GA with least wins scoring only 4 out of a possible 30. Positive
values in Table 3 indicates profits were made on the initial investment, negative values
indicate that losses were incurred and a value of zero indicates a break-even situation.
By looking at overall averages in Table 4, we can see that all four algorithms performed
considerably better with downtrends when compared to the other two trend types. We
can also see that GA is the least performing algorithm in all of the trend types, and that
a PSO variant has a slight edge over GA in all three cases. The clear difference in fit-
ness between downtrends and the other two types of trends indicates that the algorithms
generate market timing strategies that are unbalanced. Nevertheless, performing better
in downtrends is positive when compared with buy-and-hold strategies which would
fail under such conditions. The issue of unbalanced performance with the various trend
types can perhaps be remedied by tackling market timing as a multi-objective optimiza-
tion problem, where we try to pursue a Pareto front that maximizes performance for
all three trend types. By observing the performance of the market strategies generated
by all four algorithms under downtrends, uptrends and sideways movements, we have a
better approximation of the performance of these strategies under varying market con-
ditions, and therein lies the value of Trend Representative Testing. With step-forward
testing, we are confined to the underlying trends represented in the training data. This
can easily lead to overfitting, where strategies only perform well when exposed to trends
that are similar to those encountered in training and poor otherwise. With Trend Repre-
sentative Testing, we explicitly avoid this issue by exposing our algorithms to a variety
of trends during both training and testing.

Table 5 shows the rankings of the algorithms after performing the non-parametric
Friedman test with the Holm’s post-hoc test by trend type on the mean results [10].
The first column shows the trend type; the second column shows the algorithm name;
the third column shows the average rank, where the lower the rank the better the algo-
rithm’s performance; the fourth column shows the p-value of the statistical test when
the average rank is compared to the average rank of the algorithm with the best rank
(control algorithm); and the fifth shows the Holm’s critical value. Statistically signif-
icant differences at the 5% level between the average ranks of an algorithm and the
control algorithm are determined by the fact that the p-value is lower than the critical
value, indicating that the control algorithm is significantly better than the algorithm in
that row. The non-parametric Friedman test was chosen as it does not make assumptions
that the data is normally distributed, a requirement for equivalent parametric tests.



Table 3: Computational results for each algorithm over the 10 datasets. The min, median, mean and max values are determined by running
each algorithm 10 times on each dataset. The best result for each dataset and trend combination is shown in bold.

GA PSO PSOS PSOP

Dataset Trend Test Strand Min Median Mean Max Min Median Mean Max Min Median Mean Max Min Median Mean Max

0 ↑ IAG1 -10.35 -5.99 -6.25 -1.39 -4.41 -4.26 -4.01 -3.04 -9.71 -5.79 -6.19 -3.42 -4.41 -4.00 -3.79 -2.08
↔ MGA4 0.39 0.88 0.91 1.60 0.66 1.78 1.60 2.09 0.93 1.19 1.25 1.70 0.91 1.53 1.45 1.93
↓ IAG2 0.80 1.95 1.71 2.16 2.17 2.17 2.17 2.17 0.69 0.93 1.22 2.17 2.17 2.17 2.17 2.18

1 ↑ BSX1 -0.67 -0.35 -0.36 -0.13 -5.91 -0.31 -0.85 -0.02 -0.85 -0.34 -0.39 -0.11 -0.36 -0.31 -0.28 -0.11
↔ LUV1 -1.33 -0.10 -0.28 -0.01 -1.71 -0.11 -0.45 -0.04 -1.10 -0.34 -0.42 -0.08 -4.53 -1.06 -1.58 -0.01
↓ KFY1 2.01 2.08 2.22 2.67 1.86 2.09 2.14 2.66 2.00 2.07 2.07 2.17 1.89 2.05 2.05 2.12

2 ↑ EXC1 2.80 2.82 2.83 2.90 2.80 2.80 2.80 2.80 2.80 2.83 2.85 2.92 2.80 2.80 2.80 2.80
↔ LUV2 2.09 2.27 2.31 2.64 2.21 2.43 2.44 2.62 2.17 2.31 2.30 2.46 2.20 2.37 2.37 2.51
↓ KFY2 1.61 1.75 1.77 2.05 1.56 1.98 2.15 3.61 1.65 2.00 2.04 2.85 1.76 1.87 1.90 2.20

3 ↑ AVNW1 -3.83 -2.01 -1.59 1.29 -1.97 0.70 0.10 1.26 -3.58 -1.84 -1.21 1.22 -1.70 -0.48 -0.17 1.28
↔ PUK1 -2.84 -1.44 -1.32 0.00 -2.37 -0.05 -0.39 0.00 -2.45 -1.25 -1.00 0.38 -2.53 -0.03 -0.59 0.09
↓ LUV3 -0.85 2.91 2.03 4.63 1.08 3.06 3.17 4.70 1.58 2.67 3.02 6.12 2.04 2.80 2.89 4.11

4 ↑ KFY3 2.08 2.49 2.45 2.67 2.67 2.72 2.74 2.80 1.39 2.42 2.40 2.94 2.58 2.67 2.64 2.67
↔ EXC2 0.16 0.91 0.84 1.55 -0.53 1.31 1.03 1.60 0.08 1.13 0.99 1.62 0.06 1.08 0.94 1.68
↓ LUV4 2.80 2.83 2.84 2.96 2.80 2.80 2.80 2.80 2.77 2.85 2.85 2.95 2.79 2.80 2.80 2.80

5 ↑ EXC3 1.39 1.64 1.71 2.14 1.96 2.03 2.12 2.38 1.52 2.02 2.00 2.39 1.96 1.96 1.98 2.14
↔ PUK2 -4.10 -0.10 -0.88 0.51 0.06 0.59 0.58 1.07 -1.51 -0.23 -0.28 0.76 -2.39 0.12 -0.37 0.54
↓ MGA1 2.80 2.99 2.98 3.15 2.80 2.80 2.80 2.80 2.80 3.14 3.15 3.80 2.80 2.80 2.80 2.80

6 ↑ ED1 0.38 1.14 1.10 1.98 1.75 1.75 1.88 2.44 -0.03 1.26 1.21 2.32 0.86 1.85 1.91 2.46
↔ EXC4 1.53 2.27 2.33 3.72 0.95 2.07 2.33 3.47 1.20 1.97 2.35 3.96 0.92 2.65 2.84 5.20
↓ PUK3 2.38 2.45 2.57 3.66 2.80 2.80 2.80 2.80 2.25 2.43 2.60 3.66 2.28 2.80 2.75 2.80

7 ↑ BSX2 3.13 3.42 3.51 4.03 2.28 3.22 3.13 3.32 3.25 3.42 3.48 3.76 3.13 3.25 3.24 3.32
↔ ED2 2.46 2.57 2.58 2.70 2.36 2.44 2.45 2.63 2.35 2.52 2.51 2.67 2.27 2.45 2.44 2.54
↓ JBLU1 -0.07 9.41 7.99 12.06 0.62 8.08 7.56 11.95 6.59 10.68 10.28 13.09 6.13 9.90 10.00 11.95

8 ↑ MGA2 -6.38 -4.34 -4.50 -3.39 -4.69 -4.33 -3.28 -0.04 -4.87 -4.63 -3.29 0.00 -4.74 -4.61 -4.12 -1.47
↔ MGA3 -1.09 -0.08 -0.13 0.51 -0.17 0.27 0.23 0.48 -1.96 -0.10 -0.08 1.34 -1.66 -0.21 -0.28 0.60
↓ ATRO1 -8.86 9.75 8.49 16.08 5.29 9.10 8.68 11.31 4.76 9.51 9.17 11.51 6.32 9.51 9.64 12.18

9 ↑ AVNW2 2.09 4.14 4.20 5.65 2.68 3.67 3.48 3.99 3.94 4.77 4.63 5.67 2.98 3.84 3.77 3.99
↔ EXC5 -1.18 -0.40 -0.27 0.96 -0.61 0.44 0.27 0.87 -0.59 -0.35 -0.19 0.56 -0.95 0.40 0.31 1.80
↓ AVNW3 1.75 1.96 1.97 2.14 1.75 1.92 1.94 2.10 1.86 2.01 2.02 2.20 1.78 1.95 1.92 2.01



Table 4: Overall average fitness by trend for each algorithm.
Algorithm

Trend GA PSO PSOS PSOP

Downtrend 3.46 3.62 3.84 3.89
Sideways 0.61 1.01 0.74 0.76
Uptrend 0.31 0.81 0.55 0.80

Table 5: Average rankings of each algorithm according to the Friedman non-parametric
test with the Holm post-hoc test over the mean performance. No statistical differences
at the significance level 5% were observed.
Trend Algorithm Ranking p-value Holm

Downtrend PSOS (control) 2.0 – –
PSO 2.35 0.5444 0.05
PSOP 2.75 0.1939 0.025
GA 2.9 0.119 0.0167

Sideways PSOP (control) 2.1 – –
PSO 2.2 0.8625 0.05
GA 2.7 0.2987 0.025
PSOS 3.0 0.119 0.0167

Uptrend PSOS (control) 2.2 – –
GA 2.2 1.0 0.05
PSO 2.75 0.3408 0.025
PSOP 2.85 0.2602 0.0167

We can see from Table 5 that PSO variants that employed the stochastic state update
procedure (namely PSOS and PSOP) ranked highest across all three trend types, albeit
not at a statistically significant level. This leads to two interesting observations. The first
of these observations is that all three PSO variants experimented with here are compet-
itive with GA in terms of performance when it comes to the domain of market timing.
PSO can also produce these competitive results at a lower cost in terms of total num-
ber of fitness evaluations as can be seen from the algorithm configurations in Table 1.
The second observation is that PSOP, the PSO variant with pruning, is also competitive
with the PSO variants without the pruning procedure as no statistical significance was
observed in the results. Figure 5 shows a histogram of the solution lengths returned by
PSOP during testing. We can see that the majority of solution lengths were between 29
and 46 components, with only a single solution employing all 63 components. This sug-
gests that PSO is capable of discovering shorter solutions without adversely affecting
performance in a significant manner. This presents the opportunity of pursuing shorter
and shorter solution lengths with the aim of finding the least satisfying subset of com-
ponents that maximize our financial metrics. By finding shorter solutions, we will be
capable of producing market timing strategies that execute faster and are more easily
comprehensible.



Fig. 5: A histogram showing the solution lengths of the solutions from PSOP. We can
clearly see that the majority of solutions range in length between 29 and 46. Only a
single solution employed all 63 technical indicators.

8 Conclusion

In this chapter we revisited and extended the work presented in [20] by improving the
details of trend representative testing and introducing a new PSO variant (PSOP) with a
novel pruning procedure. The results show that all three PSO variants are competitive to
GA in terms of performance, and one particular variant was capable of achieving such
a performance at a fraction of the number of fitness evaluations required. The results
also show that the newly introduced PSO variant, PSOP, was capable of producing
competitive results in comparison to the other algorithm while returning solutions that
are considerably shorter in length.

We suggest the following avenues of future research. First, use a more sophisticated
measure of financial fitness. This would allow us to simulate hidden costs of trading
such as slippage. Second, approach the problem of market timing as a multi-objective
one by trying to maximize performance across the three types of trends and against
multiple financial objectives. Third, pursuing shorter solution lengths by considering
it as one of multiple objectives in a multi-objective approach to market timing. The
validity of this pursuit is based on the evidence presented in the results returned by
PSOP, where the majority of the solutions returned did not use the full set of signal
generating components available and yet remained competitive in terms of performance
to the solutions generated by the other algorithms. Finally, adapt more metaheuristics
to tackle market timing and compare their performance against the currently proposed
ones in significantly larger datasets. We could then use meta-learning to understand
if and when metaheuristics perform significantly better than others under particular



conditions and use that information to build hybrid approaches that use more than one
metaheuristic to build strategies for market timing.
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