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ABSTRACT
The introduction of electronic exchanges was a crucial point in
history as it heralded the arrival of algorithmic trading. Designers
of such systems face a number of issues, one of which is deciding
when to buy or sell a given security on a financial market. Although
Genetic Algorithms (GA) have been the most widely used to tackle
this issue, Particle Swarm Optimization (PSO) has seen much lower
adoption within the domain. In two previous works, the authors
adapted PSO algorithms to tackle market timing and address the
shortcomings of the previous approaches both with GA and PSO.
The majority of work done to date on market timing tackled it as a
single objective optimization problem, which limits its suitability to
live trading as designers of such strategies will realistically pursue
multiple objectives such as maximizing profits, minimizing expo-
sure to risk and using the shortest strategies to improve execution
speed. In this paper, we adapt both a GA and PSO to tackle market
timing as a multiobjective optimization problem and provide an in
depth discussion of our results and avenues of future research.
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1 INTRODUCTION
The introduction of electronic exchanges in the USA following the
market crash of 1987 was a pivotal point in the history of financial
markets as it brought with it algorithmic trading [1]. A core issue
faced by designers of algorithmic trading strategies is when to
buy or sell a given security on a financial market, also known
as market timing [2]. A common technique used to build market
timing strategies is to use a collection of components that process
the security’s market context and return a recommendation on
whether to buy or sell. Depending on the type of component, this
context could be current and previous price action for the security
at hand (technical analysis) or information regarding the entity that
has issued the security on the market (fundamental analysis). Each
component will have a set of parameters that affects its behavior and
a weight that affects the impact of the recommendation returned
by it. The overall decision on when to buy or sell then becomes the
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aggregate vote of the components selected to make up the strategy.
It is the job of the designer of the strategy to select the appropriate
components to use and set their parameters.

Designers of trading algorithms turned to computational intel-
ligence metaheuristics to assist them in addressing the different
issues faced when building such algorithms, including market tim-
ing. One such metaheuristic is Particle Swarm Optimization (PSO)
[3]. Although popular in other domains, PSO has seen a more lim-
ited application within the domain of market timing. Compared to
Genetic Algorithms (GA), which has been the most widely used
in terms of volume [4, 5]. The earliest GA application in market
timing was seen in 1999 [6], while PSO saw its first publication
in 2011 [7]. The vast majority of these applications model market
timing as a single objective optimization problem to the best of
our knowledge, where the goal would be to tune the strategy to
maximize a financial metric usually representing profits. In order
to tune the strategy, they would either optimize the selection of a
subset of components from a set of components with preset values
for the parameters or tune the parameters of a collection of com-
ponents that was selected beforehand. In [8, 9], the authors used
PSO to compose a market timing strategy by optimizing both the
selection of components and the adjustment of their parameters
simultaneously. Another issue addressed by the authors in [9] was
the potential for overfitting while training, leading to unbalanced
and poor performance in testing. This is caused by adopting a train-
ing and testing strategy known as Step Forward Testing [2], where
a stream of price action data for a particular stock is used to form
the training and testing data by dividing them along an arbitrary
point, then taking the earlier data for training and the later data
for testing. Since the training data produced by this procedure may
not contain all the possible trends of movement in price data, there
is a high probability that the algorithm will overfit to the trends
observed in the training data, and perform poorly when exposed
to a previously unobserved trends while testing. Based on [2], the
authors attempted to remedy this shortcoming by exposing the
algorithms to a variety of trends during training and testing and
named this approach Trend Representative Testing.

As we mentioned earlier, the vast majority of work done on
market timing has been on the basis of modeling the problem as
a single objective optimization one. This, however, may not be
sufficient to produce market timing strategies that are suitable for
live trading. Designers of market timing will usually chase multiple
objectives at the same time. For example, the designers may seek
strategies that maximize profits, minimize losses and exposure to
risk and do so with the least amount of components (both for the
sake of comprehensibility and speed of execution). In this paper
we improve on the work in [9] by considering market timing as a
multiobjective optimization problem, and explore the adaptations
required to the algorithms and results obtained.
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The remainder of this paper is structured as follows. We provide
a brief literature review of market timing and another brief litera-
ture review of using PSO in multiobjective optimization problems
in Section 2. We then revisit the issue of market timing, and ex-
plain how we plan to approach it as a multiobjective optimization
problem in Section 3. In Section 4, we discuss how we adapted
both the PSO and GA algorithms first introduced in [8, 9] to tackle
market timing in a multiobjective fashion. In Section 5 we discuss
our experimental setup and critique the results obtained. We finally
round things off in Section 6 with a conclusion and suggestions for
future research.

2 RELATEDWORK
In this section we will briefly describe related work done both
within the domains of using computational intelligence in market
timing, with a special focus on GA and PSO, and the work done on
adapting PSO to tackle multiobjective optimization problems. We
pay particular attention to PSO as our main goal is to build a variant
of the metaheuristic that tackles market timing as a multiobjective
optimization problem and produce competent strategies.

2.1 Market Timing
As mentioned earlier, GAs have seen a far wider adoption when it
came to tackling market timing in comparison to PSO. One of the
earliest works to tackle market timing was by Allen and Karjalanien
[6], a GA is used to develop trading rules based on technical analysis
indicators, and benchmarked their results against a buy-and-hold
strategy and out of sample data. Another early approach was to use
GA to directly optimize the parameters of one or more financial
analysis indicators.Examples of such an approach can be seen in
the work of de la Fuente et al. [10] and Subramanian et al. [11]
– the latter tackling market timing using multiple fitness metrics,
each in turn. Both of these approaches directly encode the indicator
parameters into the GA chromosome, and use the evolutionary
process to arrive at the values for these parameters that produce
the best results. Other approaches since then use GA to improve
the fitness of another primary metaheuristic in charge of producing
the trading signals by optimizing its parameters. These primary
signal-producing metaheuristics included fuzzy systems, neural
networks, self-organizingmaps (SOM) and a variety of classification
algorithms. A thorough breakdown of such synergistic approaches
can be seen in [5]. More recent approaches using GA to tackle
market timing can be seen in the work of Kampouridis and Otero
[12] and Kim et al. [13].

Particle swarm optimization (PSO) has not seen the popularity
of GA in the space of market timing. The earliest PSO approach to
tackle market timing was proposed by Briza and Naval, Jr. [7]. In-
spired by Subramanian and colleagues [11], the authors optimized
the weights of instances of five technical indicators who had preset
parameter values according to industry wide standards. All the
weighed instances of the technical indicators would then produce a
cumulative signal whether to buy or sell. Although the authors used
a multiobjective approach to optimize for Sharpe Ratio and Percent-
age of Return, the number of technical indicators was limited to
five and the indicators used predefined values for their parameters.
The work presented in this paper significantly improves on it by

considering 5 objectives, 63 technical indicators, optimizing both
the number of indicators to use and their parameters. Chakravarty
and Dash [14] also used PSO for market timing by utilizing it to
optimize a neural network capable of predicting movements in an
index price. Similarly Liu et al. [15] used PSO to optimize a neural
network that generated fuzzy rules for market timing and reported
positive results.

More recently, Chen and Kao [16] used PSO to optimize a sys-
tem that relied on fuzzy time series and support vector machines
(SVM) to forecast the prices of an index for the purposes of market
timing. Ladyzynski and Grzegorzewski [17] used a combination of
fuzzy logic and classification trees to identify price chart patterns,
while PSO is used to optimize the parameters of the aforementioned
hybrid approach. In their results, the authors have noted that use
of PSO vastly improved the predictive capacity of the fuzzy logic
and classification tree hybrid, and that the overall system proved
to be promising. In the work by Wang et al. [18], a combination
of a reward scheme and PSO was used to optimize the weights of
two technical indicators. The Sharpe ratio was used to measure the
performance of the hybrid, and in their results, the authors note
that their system outperformed other methods such as GARCH (a
statistical method of analyzing time series data common in econo-
metrics). Bera et al [19] used PSO to only optimize the parameters
of a single technical indicator. Although trading on the foreign
exchange instead of the stock exchange, the authors note that their
system has shown to be profitable in testing. Sun and Gao [20] used
PSO to optimize the weights on a neural network that predicted
the prices of securities on an exchange. The authors note that their
system was able to predict the price with an error rate of around
30% when compared to the actual prices. Karathanasopoulos and
colleagues [21] used PSO to optimize the weights on a radial basis
function neural network (RBF-NN) that is capable of predicting the
price of the crude oil commodity. Though not on the stock exchange,
the trading of commodities occurs on similar exchanges and uses
many of the same market timing techniques. Compared to two
classical neural network models, the authors note that their PSO-
augmented approach significantly outperformed them in predictive
capacity.

Finally, the latest work on using PSO within the market timing
domain has been [8, 9]. In [8] the authors proposed a PSO algorithm
that can both select a suitable subset of components as well as tune
their parameters. They then further improved on the algorithm to
avoid the risk of overfitting by introducing Trend Representative
Testing, where the algorithm is trained and tested on multiple trend
type [9], and compared its performance against a GA.

2.2 Multiobjective PSO
The earliest approach to adapt PSO to tackle multiobjective opti-
mization problems is the one by Moore and Chapman in 1999 [22].
This approach followed a dominance based scheme to attaining a
Pareto front and employed the use of archives at two levels. The
first archive is maintained per particle in the swarm and is used to
track the non-dominated solutions discovered by each particle. The
second (global) archive is used to track globally non-dominated
solutions discovered by the swarm and, at the end of the algorithm
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run, it is used to represent the Pareto set discovered. When updat-
ing the state of particles via the PSO velocity equation, the authors
would use a randomly selected solution from a particle’s individual
archive to stand in for a personal best. As for the neighborhood
best, the selection is based on random selection amongst all the
individual archives maintained by the neighbors of a given particle.

In 2002, Hu and Eberhart proposed a lexicographical approach
for PSO to multiobjective optimization problems in [23]. Here, the
authors set out to solve a MOP that utilized two fitness metrics.
The authors used the simpler fitness metric to define the neighbors
in a dynamic neighborhood of any given particle, and use the more
complex fitness metric to select the neighborhood best. Personal
bests in this scenario are the latest non-dominated solutions dis-
covered by the particles as they traverse the search landscape. As
this approach is limited to only being capable of optimizing two
objectives, the authors revisited this scheme in [24] and adopted
a dominance based scheme. An archive was added to keep track
of non-dominated solutions discovered during the run of the al-
gorithm, while measures were taken to improve the exploration
aspect of the algorithm and allow it reach regions of the search
landscape that were unreachable by the earlier algorithm. Coello
Coello and Lechga proposed Multiobjective PSO (MOPSO), which is
another dominance based algorithm to tackle MOPs [25]. The main
feature of MOPSO is that it maintained a truncated archive, where
priority in admission is given to new non-dominated solutions that
occupy less densely populated regions of the current Pareto front.
Personal bests are defined as the latest non-dominated solutions
discovered by a given particle so far, while neighborhood bests are
probabilistically selected from sparsely populated regions of the
Pareto front.

In 2003, Zhang et al proposed a lexicographical based approach
for tackling MOPs using PSO [26]. Here the authors maintained sep-
arate global and personal bests for every objective being optimized.
Neighborhood bests are a synthetic average of all the objectives
begin optimized. Personal bests could either be constructed in the
same fashion or selected at random from the set of tracked personal
bests across all objectives. Mostaghim and Teich attempted to im-
prove the performance of MOPSO proposed by Coello Coello and
Lechuga [27]. Their contribution can be summed up as the intro-
duction of a new measure to improve the selection of neighborhood
bests that lead to a faster convergence and improved diversity in the
Pareto set returned. Another PSO variant proposed in 2003 is that of
Zhang and Huang [28]. The main contribution of the authors here
is that selection of a neighborhood best is based on probabilistic
choice amongst solutions maintained in the archive that considers
their distance from the particle at hand, favoring closer solutions.
Personal bests in this scenario are the last non-dominated solutions
discovered by the particles throughout the run of the algorithm.

More recent approaches include [5], [29], [30], [31] and [32].
In an attempt to improve the diversity of solutions in the Pareto
front and prevent premature convergence, the author in [5] pro-
pose a multiobjective PSO with novel measures to address these
challenges. Based on a dominance-based approach, the authors
utilize a bounded external archive to maintain the non-dominated
solutions discovered during the search. Each particle also main-
tains a personal archive of non-dominated solutions, from a which

a personal best is selected to participate in velocity and state up-
date. With each iteration, a subset of the members in the external
archive is selected to form candidates from which a neighborhood
best is selected to participate in velocity update. These candidates
are selected based on density and potential metrics, where density
estimates how close a given solution is to other solutions on the cur-
rent Pareto front and potential estimates how close a given solution
would be to the true Pareto front. The candidates in this subset are
then scored based on entropy, and one is probabilistically chosen
to represent the neighborhood best per particle. As for selecting a
personal best, one is chosen from the personal archive that mini-
mizes the hyperbox formed between the current particle’s state, its
previous velocity, its neighborhood best and the current contents of
its archive. With the influence of density, potential and entropy, the
multiobjective PSO traverses the solution landscape and returns
the contents of the external archive at the end of the search as the
discovered Pareto set. Another unique feature about this approach
is that it is capable of adjusting its intertia, cognitive and social
biases dynamically based on the delta of entropy displayed by the
positions of the particles in the swarm between every iteration.

In [29], the authors proposed a PSO algorithm to perform cluster-
ing in a multiobjective fashion. The swarm’s goal is to minimize the
distance between two data points within a cluster (cohesion) and
maximize the number of clusters within the dataset (connectivity).
A particle here represents a possible assignment of a data point to
a cluster. Using a dominance-based approach, the authors maintain
an archive per particle that keeps track of the last discovered non-
dominated solution discovered by each particle. The neighborhood
best is selected at random from an archive formed by the union of
all the particle archives. An external archive is used to keep track
of all the non-dominated solutions discovered by the swarm, and
at the end of algorithm’s run, is used to represent the discovered
Pareto set.

In [30], authors proposed dubbed Vortex Multi-Objective Parti-
cle Swarm Optimization (MOVPSO). The main shortcoming identi-
fied by the authors in typical dominance-based approaches of PSO
(mainly based on the model defined in [22]) is the lack of diversity
in the Pareto front. To address this shortcoming, the proposed algo-
rithm traverses the search space using two alternating behaviors:
convergence and dispersion. During convergence, the positions of
the particles in the swarm is evaluated, and the swarm is attracted
to positions that are furthest away from the swarm’s center of
mass based on Euclidean distance. The trajectories taken during
convergence are linear. After convergence, the particles undergo
dispersion from that previous convergence point, in trajectories
that are circular in motion, with an ever increasing radius. With
the constant alternation between convergence and dispersion, the
authors hoped that the algorithm would be better in discovering the
search space and returning a Pareto front with a higher diversity
than the typical approaches.

In [31] the authors attempt to simplify the state update mech-
anism and improve diversity of solutions discovered with their
Diversity Enhanced Multiobjective PSO (DEMPSO). In DEMPSO,
the velocity update equation drops the cognitive component and
relies solely on the bias and social components. A global archive
is used to maintain all the non-dominated solutions discovered in
DEMPSO. The neighborhood best for each particle is based on the
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member of the global archive that has the farthest cosine distance
from its current position. The algorithm also balances exploration
and exploitation by dynamically shifting between the two behaviors
based on the current particles’ velocities.

Finally, in [32], the authors tackle multiobjective problems with a
relatively high number of objectives using a proposed PSO approach
that promotes diversity in the Pareto front by utilizing multiple
subswarms. Considered as a hybrid between dominance-based and
lexicographical approaches, the proposed algorithm uses a set of
subswarms in its search process, one for each objective function to
be optimized. Each subswarm specializes in optimizing a single ob-
jective function. An external, bounded archive is used to keep track
of all non-dominated solutions discovered across all the particles in
all of the subswarms. When selecting a neighborhood best for veloc-
ity update, a particle considers a non-dominated solution from the
archive based on only two objective functions. The first is the objec-
tive being optimized by the current subswarm. For the second, we
consider the remaining objectives being optimized and normalize
their values based on the solutions in the archive. We then compare
the performance of the current particle against the normalized val-
ues of these objectives and select the objective where the current
particle is doing the worst. The neighborhood best is then chosen
out of the archive where it dominates the current particle based on
these two objectives. Personal bests are considered to be the last
best solution encountered in terms of the objective function being
optimized by the particle’s subswarm. This coevolutionary particle
swarm based approached showed promising performance when
compared against a number of other multiobjective optimization
algorithms while testing them using two standard testing suites.

3 FINANCIAL METRICS
As we mentioned earlier, market timing is the issue of deciding
when to buy or sell a given security on a financial market. In this
paper we aim tomodel the issue ofmarket timing as amultiobjective
one, and this begins with defining the objectives we aim to optimize.
These are presented next.

3.1 Annualized Rate of Returns (AROR)
The Annualized Rate of Returns (AROR) is defined as the amount
of returns on initial capital invested adjusted to reflect an annual
rate. AROR can be calculated as follows:

ARORsimple =
En
E0

×
252
n

(1)

where En is final equity or capital, E0 is initial equity or capital,
252 represents the number of trading days in a typical American
calendar and n is the number of days in the testing period. For our
purposes, we aim to maximize this metric. When reading AROR
values, a value of one means that we are just breaking even on our
investments. Values above one indicate gains, while values below
one indicate losses.

3.2 Annualized Portfolio Risk
Annualized portfolio risk is defined as the volatility of returns en-
countered during trading within a specific time period. Annualized

portfolio risk is calculated as follows:

RISK = σ (returns) ×
√
252 (2)

where σ (returns) is the standard deviation of the returns on the
trades performed during backtesting. During multiobjective opti-
mization, our aim is to minimize this metric. Since the annualized
portfolio risk is presented in units of currency, ideally you would
want to minimize this variance in returns as much as possible. A
strategy with low variance means that the gains obtained were
evenly distributed across the transactions that were made through-
out the lifetime of the strategy. This would indicate that the strategy
is stable – more or less of such transactions would result in gains
or losses that can be easily estimated.

3.3 Value at Risk (VaR)
Value at risk represents the likely value of the initial capital in
terms of units of currency we are liable to lose based on a given
confidence level. This is calculated as follows:

VaR = µ(daily returns) − cσ (daily returns) (3)

where daily returns represents the returns achieved day by day
during backtesting, µ represents the mean of those returns and σ
represents the standard deviation of the daily returns. The con-
fidence level c is a user controlled parameter that represents the
statistical confidence of losses the user would like to see. A default
value of 1.65 (representing 95% confidence) is used. This equation
returns a negative number, and as we aim to minimize this metric,
the result is always multiplied by −1.

3.4 Transaction Count
The number of transactions produced by a market timing strategy is
significant in that it gives an indication of how stable that strategy
is, and that is based on the concept of sample error. It is therefore
advantageous to maximize the number of data points available,
and hence maximize the number of transactions generated by the
market timing strategy. As transactions have a cost in real trading,
a system that generates a disproportionate number of transactions
would result into a hefty cost that could obliterate any returns
gained. In order to avoid such situations, and reach reasonable trade-
offs, we simulated transaction cost while backtesting based on a
fixed commission model. To calculate this value, we first calculate a
working commission, which is a percentage of the value of the asset
being bought or sold multiplied by the number of shares involved
in the transaction. If the working commission does not drop below
a minimum threshold or exceed a maximum threshold, then the
working commission is considered the transaction cost; otherwise,
the minimum or maximum threshold is considered the transaction
cost depending on whether the working commission was below
the former or exceeded the latter. This fixed commission model is
based on Interactive Brokers (IB) fixed commission model. 1 The
values used for the parameters of the commission model are:

• Percentage: 0.005%
• Minimum Threshold: $1.0
• Maximum Threshold: 1% of total transaction value.

1https://www.interactivebrokers.com/en/index.php?f=1590&p=stocks1
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3.5 Solution Length
Solutions that are longer in length imply the involvement of a large
number of signal generating components (technical indicators in
our case). Reducing the number of components involved will reduce
computational cost and improve comprehensibility by the end user.
Therefore, we aim to minimize the number of components involved
in a solution to attain these aforementioned goals. The solution
length is determined by counting the number of components within
the solution that have a weight above zero, i.e. components that
have a positive contribution towards the aggregate signal that is
generated. Any components that have a weight of zero have their
contributions to the aggregate signal nullified, and are therefore
not considered for solution length.

4 PROPOSED ALGORTITHMS
As this work is based on [9], the encoding of the problem and hence
the individual representation for either the GA or PSO algorithms
discussed in the paper is reused. We also use the basic algorithm
structures for GA, PSO and PSOS . The main modifications done
in this paper are in regards to adapting these algorithms to per-
form multiobjective optimization. We decided to adopt a Pareto
dominance based approach for multiobjective optimization, which
would result in the algorithms returning a Pareto set of solutions
across the five objectives being optimized. In the following subsec-
tions, we discuss the extensions proposed in order to tackle market
timing using a dominance-based approach to multiobjective opti-
mization. These include modifications to fitness evaluation, global
archive management, GA selection operators, tracking personal
bests for PSO and neighborhood selection in PSO. We also discuss
a new pruning procedure for the PSO with Stochastic State Update
(PSOS ) algorithm from [9]. In total, we propose three multiobjective
algorithms for market timing.

4.1 General Modifications
The first modification we performed was to redefine fitness. As [9]
used AROR as its sole optimized objective, evaluating fitness was
straight forward: higher values are better. In this paper, we pursue
the optimization of five financial metrics, and since we are using
a dominance based approach, a solution can only be considered
to be fitter than another if, and only if, the solution at hand is not
worse than the one it is being compared to in all five metrics and
better than it in at least one metric. All non-dominated solutions
that are discovered throughout the run of the algorithm are then
collectively known as the Pareto set, and that is the final result
returned by the algorithms.

As we need to keep track of all the non-dominated solutions
as they are discovered, a global archive is maintained by all three
algorithms for the storage of all non-dominated solutions found.
Upon the discovery of a new solution, it is compared against the
current occupants of the global archive. If the solution is dominated
by any of the current occupants, it is rejected. If the new solution
remains non-dominated after comparison with current archive,
then it is admitted. Upon admittance, if the new solution dominates
one or more occupants, these are removed from the archive. The
archive we used for our algorithms are unbounded, meaning they
can store an arbitrary number of solutions with no limitations in

terms of size. The global archive is updated at the end of every
iteration of the algorithm. For GA this occurs after the generation
of a new population, and for the PSO algorithms, this occurs after
the particle state updates.

4.2 GA Modifications
Besides adopting a multiobjective fitness function and a global
archive, the only other modification to the GA first described in [9]
is modifying the tournament selection used in selecting parents for
crossover and mutation. In order to perform tournament selection,
we first select random individuals from the current population and
attempt to admit them to a temporary archive. Candidates that
are dominated by other candidates will either not be allowed ad-
mittance into the archive or be removed. A random selection is
then made form the surviving, non-dominated occupants to rep-
resent the selected individual. This is performed twice with every
crossover or one with every mutation event to produce the required
parent(s) for the operation.

4.3 PSO Modifications
As with the GA, our first modification was to adopt a multiobjective
fitness function and a global archive to maintain a Pareto front. For
both PSO variants, our second modification is related to how we
maintained personal bests for the particles to participate in the
velocity update function. All the particles in our multiobjective
PSO maintain a personal archive were non-dominated personal so-
lutions are stored. After a state update, and the subsequent fitness
evaluation, the particle state is considered for admittance into its
own personal archive. As with the global archive, these personal
archives are also unbounded. When it comes time to select a per-
sonal best to participate in the velocity update function, we select
one at random from the the particle’s personal archive. Our final
modification to both PSO algorithms was how a neighborhood best
is selected. For neighborhood selection, we use a temporary archive
that stores the non-dominated neighbors of the particle at hand.
Each neighboring particle will also select a solution at random from
its own personal archive to be admitted into the temporary archive
on the condition that it is non-dominated by the current solutions.
A solution is then selected at random from this temporary archive
to represent the neighborhood best.

Another issue we faced, was how to adapt the stochastic state
update procedure of PSOS to work with a multiobjective fitness.
The solution we proposed for calculating the probabilities of updat-
ing the cognitive and social components is to use the dominance
score. Given two solutions x and y, we define the the dominance
score d(x,y) as the number of objective where solution x is better
than solution y. We can calculate the update probabilities in the
following manner:

coдnitive =

{
yi (t ) − xi (t ) if rand() < |

d (yi (t ),xi (t ))
d (xi (t ),yi (t ))+d (yi (t ),xi (t ))

|

0 otherwise
(4)

social =

{
ŷi (t ) − xi (t ) if rand() < |

d (ŷi (t ),xi (t ))
d (xi (t ),ŷi (t ))+d (ŷi (t ),xi (t ))

|

0 otherwise
(5)

• x : particle
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Table 1: IRace discovered configurations for each of the al-
gorithms tested.

PSO PSOSP GA

Population 50 Population 43 Population 49
Iterations 67 Iterations 83 Generations 24
Neighbors 50 Neighbors 43 Mutation Probability 0.8087
c1 3.7543 c1 4.3644 Crossover Probability 0.1409
c2 2.502 c2 2.5136 Tournament Size 32
Clamp Scaling Clamp Clerc
Scaling Factor 0.5314 Scaling Factor –

Pruning? True
Pruning Threshold 0.0959
Pruning Deadline 2

• i: current particle index
• y: personal best
• ŷ: neighborhood best
• d(x,y): the dominance score of x over y
• rand(): random number between 0 and 1

We also modified the pruning procedure for PSOS . In [9] the
pruning procedure permanently removed components from all
particles in the swarm if they fell below a threshold. During hy-
perparameter optimization, it was determined that this pruning
was ineffective and it was turned off by the tuning algorithm. In
this paper, we modified the pruning procedure to only ignore com-
ponents when they fall below a specific threshold. This nullifies
the impact of those components but allows for the possibility of
their reactivation later in the algorithm’s run during a velocity
update procedure. We refer to this modified PSOS with the updated
probability of update calculation and updated pruning procedure
as PSOSP .

5 EXPERIMENTAL SETUP AND RESULTS
In order to evaluate the performance of the three algorithms, we first
performed hyperparameter optimization on them using IRace [33].
The IRace procedure was provided with a budget of 300 evaluations
and set to return a single configuration for the parameters of the
algorithm being tuned. All algorithms have a tuned population size
and number of iterations. The additional parameters tuned for GA
are mutation probability, crossover probability and tournament size.
For both PSO variants, the parameters also included neighborhood
size, cognitive coefficient, social coefficient and velocity clamping
technique. For PSOSP , pruning frequency and pruning threshold
are also considered for tuning. The final parameter values for the
algorithms discovered by IRace can be seen in Table 1.

All three algorithms are then trained and tested using Trend
Representative Testing, and utilizing the same training and testing
datasets as described in [9]. For each algorithm, we hold one parti-
tion for testing, and use the other nine partitions for training, and
go through the available strands to produce ten distinct training
and testing datasets. Each algorithm is run against each dataset ten
times to factor in the effects of stochasticity. This would result in 100
experiments being run per algorithm. Also, as in [9], all algorithms
had access to a set of 63 technical indicators to compose individuals
from. All the indicator parameters are initialized to random values,
with those representing lengths of history constrained to be within

Table 2: Best Performance Per Objective. For every opti-
mized objective, we find the best performing instance. The
test strand where this is observed is in brackets next to the
primary objective name. The best discovered solution per al-
gorithm observed within the strand and objective at hand is
then listed. The top performing solution is highlighted in
bold. In case of a tie, we consider the objectives in a lexico-
graphical approach using the following order: AROR, Port-
folio Risk, VaR, Transactions Count and Solution Length.

Primary Objective (Strand) PSOSP GA PSO

AROR (ATRO1) ▶ AROR 2.5162E+01 1.6296E+01 1.8093E+01
Portfolio Risk 3.3176E+06 2.0895E+06 2.5298E+06
VaR 3.9490E+05 2.6933E+05 1.8831E+05
Transactions Count 7.8000E+01 7.0000E+01 6.8000E+01
Solution Length 2.0000E+00 5.7000E+01 3.6000E+01

Portfolio Risk (MGA1) AROR 2.9173E+00 2.8743E+00 2.8743E+00
▶ Portfolio Risk 0.0000E+00 0.0000E+00 0.0000E+00

VaR 0.0000E+00 0.0000E+00 0.0000E+00
Transactions Count 2.0000E+00 2.0000E+00 2.0000E+00
Solution Length 1.0000E+00 3.8000E+01 3.8000E+01

VaR (JBLU1) AROR 1.4984E+01 1.2095E+01 1.3313E+01
Portfolio Risk 1.0970E+06 1.0717e+06 1.0115E+06

▶ VaR 0.0000E+00 0.0000E+00 0.0000E+00
Transactions Count 1.0200E+02 6.8000E+01 7.6000E+01
Solution Length 3.8000E+01 3.5000E+01 5.8000E+01

Transactions Count (LUV1) AROR -5.1663E-02 -9.9755E-02 -8.5752E-02
Portfolio Risk 4.6062E+05 4.7781E+05 4.3228E+05
VaR 5.8006E+04 6.5248E+04 6.0277E+04

▶ Transactions Count 6.3400E+02 6.1600E+02 6.1800E+02
Solution Length 5.1000E+01 1.0000E+01 4.4000E+01

Solution Length (ATRO1) AROR 1.8919E+01 3.6600E+00 1.2000E+01
Portfolio Risk 2.5523E+06 1.0528E+06 1.5216E+06
VaR 2.9994E+05 9.1406E+04 1.4375E+05
Transactions Count 7.8000E+01 6.6000E+01 6.0000E+01

▶ Solution Length 1.0000E+00 2.0000E+00 2.6000E+01

1 and 45, guaranteeing at least five buy, sell or hold signals to be
generated with a typical US trading year of 252 days.

Table 2 shows the best performing solutions discovered per objec-
tive being optimized. For every objective we identify the test strand
where the best value was achieved, followed by the best solutions
discovered by each algorithm in that strand. In the case of more
than one solution being non-dominated, we follow a lexicograph-
ical approach in order to determine the winning solution based
on the following order: AROR, Portfolio Risk, VaR, Transactions
Count and Solution Length. We can see from Table 2 that PSOSP

was the algorithm that returned the best value for all objectives. We
cannot, however, claim that the solutions discovered by PSOSP are
Pareto-dominant when compared to the other algorithms with the
exception of the case of Portfolio Risk with the MGA1 test strand.
This is also an interesting solution as it shows the possibility of
achieving returns (a positive AROR), using a singular technical
indicator (Solution length), with no losses at all (zero Portfolio Risk
and VaR) albeit with a low confidence (a low Transactions Count).
With multiobjective optimization, the designer of a market timing
strategy now has a choice to prioritize their objectives as they see
fit. In between the best performing solutions reported per objective
in Table 2 is a multitude of solutions representing various compro-
mises between the optimized objectives from which the designer
of the market timing strategy can choose a compromise that best
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Table 3: Hypervolume results for each algorithm over the ten datasets. The minimum, mean and max values are obtained by
running each algorithm ten times on each dataset. Best mean results are highlighted in bold.

PSOSP GA PSO
# Trend Test Strand Min Mean Max Min Mean Max Min Mean Max

0 ↑ IAG1 0.0000E+00 2.0721E+12 2.0721E+13 0.0000E+00 3.1374E+13 1.5687E+14 7.5013E+14 1.0792E+15 1.2775E+15
↔ MGA4 7.5915E+15 8.6809E+15 9.4711E+15 5.2677E+15 7.4559E+15 8.3000E+15 4.1511E+15 5.1502E+15 5.6475E+15
↓ IAG2 3.7947E+15 4.2788E+15 4.7965E+15 1.0276E+15 1.9300E+15 2.2820E+15 7.4536E+14 1.1568E+15 1.3039E+15

1 ↑ BSX1 3.0031E+13 9.9077E+14 1.4692E+15 1.0081E+13 1.8054E+15 3.0269E+15 1.9595E+15 2.2582E+15 3.1386E+15
↔ LUV1 0.0000E+00 2.4946E+13 2.4946E+14 0.0000E+00 1.8595E+14 4.6486E+14 0.0000E+00 1.9513E+14 4.4559E+14
↓ KFY1 8.8162E+15 9.4288E+15 9.5916E+15 2.4293E+15 5.1271E+15 5.7078E+15 2.1772E+15 2.7837E+15 2.9949E+15

2 ↑ EXC1 8.6084E+15 9.3953E+15 1.0252E+16 2.9952E+15 4.4676E+15 5.5422E+15 1.6888E+15 2.3700E+15 2.9973E+15
↔ LUV2 9.8965E+15 1.0258E+16 1.0538E+16 5.4433E+15 6.7389E+15 7.7529E+15 3.1646E+15 3.7100E+15 4.4641E+15
↓ KFY2 1.0929E+16 1.2033E+16 1.2391E+16 4.8750E+15 6.8397E+15 8.0802E+15 4.4121E+15 4.9381E+15 5.5544E+15

3 ↑ AVNW1 2.8912E+13 4.0510E+14 7.1632E+14 2.2933E+15 2.5120E+15 2.6314E+15 1.9179E+15 2.0253E+15 2.1264E+15
↔ PUK1 0.0000E+00 2.8179E+14 3.9323E+14 7.8278E+14 6.6284E+15 1.1050E+16 2.7412E+15 4.1300E+15 5.2560E+15
↓ LUV3 7.1381E+15 7.8621E+15 8.2233E+15 1.5829E+15 2.8642E+15 3.6973E+15 1.8231E+15 2.4935E+15 2.6640E+15

4 ↑ KFY3 5.9623E+15 7.2981E+15 8.0712E+15 1.9308E+15 3.5694E+15 4.7005E+15 2.0784E+15 2.6586E+15 2.8978E+15
↔ EXC2 2.4848E+16 2.6919E+16 2.8877E+16 1.2030E+16 1.5234E+16 1.6574E+16 1.0438E+16 1.1680E+16 1.2540E+16
↓ LUV4 1.0567E+16 1.1611E+16 1.2368E+16 5.5361E+14 3.6987E+15 6.7676E+15 1.6656E+15 2.3846E+15 2.7778E+15

5 ↑ EXC3 8.8289E+15 9.7774E+15 1.0698E+16 4.6275E+15 6.1406E+15 6.9482E+15 3.5527E+15 4.1234E+15 4.3049E+15
↔ PUK2 3.2566E+15 4.6627E+15 6.3107E+15 7.3783E+15 1.3314E+16 1.7129E+16 9.4559E+15 1.0565E+16 1.1319E+16
↓ MGA1 2.1257E+16 2.5686E+16 2.6937E+16 3.5782E+15 4.6755E+15 5.2255E+15 1.8923E+15 3.2313E+15 3.9332E+15

6 ↑ ED1 6.4009E+15 6.8579E+15 7.1890E+15 2.3051E+15 3.3556E+15 3.9156E+15 1.4573E+15 2.0448E+15 2.3906E+15
↔ EXC4 3.0371E+16 3.2708E+16 3.3832E+16 9.9233E+15 1.3657E+16 1.5948E+16 9.3957E+15 1.0610E+16 1.1396E+16
↓ PUK3 4.8598E+15 5.7253E+15 6.1008E+15 5.9158E+14 1.6142E+15 2.1978E+15 5.3062E+14 1.1570E+15 1.4815E+15

7 ↑ BSX2 1.6475E+16 1.7237E+16 1.7544E+16 6.8725E+15 9.8105E+15 1.1704E+16 4.6320E+15 5.7433E+15 6.2048E+15
↔ ED2 1.2493E+16 1.2777E+16 1.3624E+16 7.4084E+15 8.8559E+15 9.1930E+15 4.2265E+15 4.8188E+15 5.2441E+15
↓ JBLU1 7.4437E+15 8.4528E+15 8.8882E+15 5.2696E+15 7.3373E+15 8.3671E+15 2.7088E+15 3.4958E+15 4.1904E+15

8 ↑ MGA2 0.0000E+00 1.8604E+14 2.4925E+14 4.6791E+14 2.3694E+15 3.5465E+15 9.8324E+14 1.5455E+15 2.5241E+15
↔ MGA3 1.9961E+15 5.0144E+15 7.3013E+15 4.6563E+15 7.0662E+15 1.1523E+16 4.6429E+15 5.6118E+15 6.3861E+15
↓ ATRO1 1.1505E+16 1.3654E+16 1.5298E+16 7.6311E+14 6.8626E+15 8.5909E+15 5.8541E+15 6.7805E+15 7.1962E+15

9 ↑ AVNW2 7.9967E+15 8.8008E+15 9.5728E+15 3.6122E+15 5.2354E+15 6.1116E+15 4.1268E+15 4.5777E+15 4.8163E+15
↔ EXC5 9.9980E+15 2.1932E+16 2.6254E+16 7.0217E+15 2.8121E+16 3.6686E+16 2.0235E+16 2.2887E+16 2.5011E+16
↓ AVNW3 9.0977E+15 1.0261E+16 1.1159E+16 3.5222E+15 6.1280E+15 7.6136E+15 3.3619E+15 3.8850E+15 4.2041E+15

fits their needs. This is only possible by using a dominance based
multiobjective optimization approach to market timing.

When comparing AROR to the values obtained in [9], we can
see that the best performing solution discovered in AROR is higher
than the maximum value discovered in [9]: 25.16 compared to 16.08
respectively. A comparison of the AROR values can be seen in Table
4. The maximum values are used in the comparison since AROR is
an objective that is maximized. It is interesting to note that all the
maximum values obtained via the multiobjective versions of the
algorithms are higher than their single objective counterparts with
the exception of two cases.

In order to evaluate the dominance aspect of the algorithms, we
compare the hypervolume covered by the Pareto fronts produced by
them. Hypervolume is a measure of the combined dominated space
across all objectives being optimized covered by the solutions in the
Pareto set returned by the algorithm. We use the implementation in
[34, 35] to measure hypervolume. The hypervolume measurements
can be seen in Table 3. The hypervolume measurements used a
reference point of (0, 1000000, 1000000, 0) for AROR, Portfolio
Risk, VaR and Transactions Count respectively. A value of zero
was used for AROR as this represents a break-even situation where
the strategy neither lost capital or made any profits. The value
of 1000000 is used for Portfolio Risk and VaR as this is the same
value used for initial capital when performing backtesting, and

would represent risking the full volume of the capital allocated for
investment. A value of zero is used for the number of transactions as
this is technically the least amount of transactions that the market
timing strategy can generate: none. As for solution length, we find
the largest value reported in the Pareto set being tested and use
that as the reference point. When considering hypervolume, larger
values are better, and these are highlighted in bold based on the
mean values obtained per test strand and algorithm. We can see
that PSOSP has outperformed the other two algorithms when it
came to downtrends. As for uptrends, we have five wins for PSOSP ,
two for GA and two for PSO. In sideways movements, we have five
wins for PSOSP , three for GA and a single win for PSO. In order to
see if any of the algorithms has a statistically significant advantage
when it came to dominance, we used the Friedman non-parametric
test with the Holm correction on the mean hypervolumes attained
by all three algorithms divided by trend type [36]. The results of the
Friedman test can be seen in Table 5. We can see that PSOSP had a
statistically significant advantage over GA and PSO in downtrends;
no statistically significant differences when it came to uptrends and
sideways movements.

Although hypervolume begins to provide some idea of the perfor-
mance of the algorithms on the five objectives, it does not provide
information regarding the spread of the solutions on the Pareto
front. Having solutions that are evenly spread across the Pareto
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Table 4: A comparison of the AROR values between the
single objective andmultiobjective optimization algorithms.
The maximum values obtained in the experiments are used
since AROR is an objective that is maximized. The higher
values per algorithm pair (single objective versus multiob-
jective) is highlighted in bold.

Algorithm
# Test Strand PSOS PSOSP GA GA (MO) PSO PSO (MO)

0 ↑ IAG1 -3.42 0.04 -1.39 0.06 -3.04 0.97
↔ MGA4 1.70 2.08 1.60 2.14 2.09 2.30
↓ IAG2 2.17 2.90 2.16 2.92 2.17 2.95

1 ↑ BSX1 -0.11 0.63 -0.13 0.73 -0.02 1.27
↔ LUV1 -0.08 0.07 -0.01 0.03 -0.04 0.07
↓ KFY1 2.17 3.39 2.67 2.81 2.66 3.02

2 ↑ EXC1 2.92 3.44 2.90 3.08 2.80 3.05
↔ LUV2 2.46 2.79 2.64 2.92 2.62 2.88
↓ KFY2 2.85 6.52 2.05 3.80 3.61 3.89

3 ↑ AVNW1 1.22 0.77 1.29 1.83 1.26 2.08
↔ PUK1 0.38 0.06 0.00 0.76 0.00 0.64
↓ LUV3 6.12 6.16 4.63 6.00 4.70 7.13

4 ↑ KFY3 2.94 3.08 2.67 2.91 2.80 3.30
↔ EXC2 1.62 5.14 1.55 2.08 1.60 2.49
↓ LUV4 2.95 4.89 2.96 3.75 2.80 3.74

5 ↑ EXC3 2.39 2.35 2.14 2.31 2.38 2.55
↔ PUK2 0.76 2.04 0.51 2.40 1.07 3.16
↓ MGA1 3.80 7.85 3.15 3.37 2.80 4.35

6 ↑ ED1 2.32 2.58 1.98 2.75 2.44 2.84
↔ EXC4 3.96 14.27 3.72 5.88 3.47 6.91
↓ PUK3 3.66 4.53 3.66 3.95 2.80 3.64

7 ↑ BSX2 3.76 4.33 4.03 4.15 3.32 4.33
↔ ED2 2.67 2.82 2.70 2.71 2.63 2.75
↓ JBLU1 13.09 14.98 12.06 12.63 11.95 13.43

8 ↑ MGA2 0.00 0.09 -3.39 0.44 -0.04 0.68
↔ MGA3 1.34 1.79 0.51 0.79 0.48 1.60
↓ ATRO1 11.51 25.16 16.08 16.30 11.31 18.09

9 ↑ AVNW2 5.67 12.02 5.65 8.60 3.99 10.88
↔ EXC5 0.56 3.54 0.96 3.85 0.87 3.42
↓ AVNW3 2.20 4.79 2.14 4.74 2.10 3.33

Table 5: Average rankings of each algorithmaccording to the
Friedman non-parametric test with the Holm post-hoc test
over the mean hypervolume. Statistical significance at 0.05
percentage level is observed in downtrends where PSOSP

outperforms both PSO and GA.

Trend Algorithm Ranking p-value Holm

Uptrend GA (control) 1.8 – –
PSOSP 1.8 0.9999 0.05
PSO 2.4 0.1797 0.025

Sideways GA (control) 1.5 – –
PSOSP 2.0 0.2636 0.05
PSO 2.5 0.0253 0.025

Downtrend PSOSP (control) 1.0 – –
GA 2.0 0.0253 0.05
PSO 3.0 7.7442E-6 0.025

front will provide a larger diversity of solutions for the user to
select from. This measure of diversity can perhaps be included in
the evaluation of the multiobjective algorithms presented here in a
future work.

6 CONCLUSION
In this paper, we extend the work in [9] and proposed a GA and
two PSO variants to tackle market timing as a multiobjective op-
timization problem. The number of financial metrics is increased
from one to five, and we consider potential for loss in Portfolio
Risk and VaR, confidence in solution in Transaction Count and
Solution alongside the original profit metric AROR. We adopted
a dominance based approach to multiobjective optimization, and
modify the original algorithms with the addition of a global archive
to maintain a Pareto set of solutions. We also adapted the selection
procedure in GA, and both and neighborhood best selection in the
two PSO variants. Finally, modified the pruning procedure of the
original PSOS algorithm to not remove components of a solution
permanently, and instead ignore their impact when their weight
falls below a predefined threshold. This allows for the possibility
of reactivation later in the algorithm’s run via a velocity update.
we name this variant PSOSP . Results show that PSOSP has a sta-
tistically significant advantage over GA and PSO when it came to
downtrend movements based on mean hypervolume. When com-
paring the maximum AROR value observed here versus in [9], we
can note that the value observed here is considerably higher: 25.16
to 16.08 respectively.

We propose the following opportunities of future research. Al-
though hypervolume provides some insight into the performance
of the multiobjective algorithms, it does not provide information
regarding the diversity of solutions in the returned Pareto sets.
Considering this metric when evaluating Pareto fronts could be
beneficial, as fronts with high diversity present the user with a
better variety of compromises between the optimized objectives to
select from. We also observed from the results that one algorithm
performed particularly well under a particular trend type. This
work could be enhanced by increasing the number of multiobjec-
tive algorithms tackling market timing and use meta-learning to
discover metaheuristics that have a statistically significant advan-
tage for each trend type. This ensemble of metaheuristics could
then be used to build more adept market timing strategies. A fi-
nal proposition for improvement would be in regards to Pareto
front management. We currently do not have any constraints about
which regions of the Pareto front the solutions come from. This
means that the Pareto front may have its population around certain
regions, limiting the choice provided to the end user in terms of
compromise between the different objectives optimized. By ensur-
ing that the Pareto front is more uniformly populated across its
various objectives, we ensure that the end user has a better choice
of compromises between the different objectives. This applies to
both the GA and PSO algorithms, and can be done by incorporating
some of the aspects of front management from algorithms such as
NSGA-II [37] and NSGA-III [38].
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